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In this paper, we develop a sharp interface tumor growth model in two dimensions to 
study the effect of both the intratumoral structure using a controlled necrotic core and the 
extratumoral nutrient supply from vasculature on tumor morphology. We first show that 
our model extends the benchmark results in the literature using linear stability analysis. 
Then we solve this generalized model numerically using a spectrally accurate boundary 
integral method in an evolving annular domain, not only with a Robin boundary condition 
on the outer boundary for the nutrient field which models tumor vasculature, but also 
with a static boundary condition on the inner boundary for pressure field which models 
the control of tumor necrosis. The discretized linear systems for both pressure and nutrient 
fields are shown to be well-conditioned through tracing GMRES iteration numbers. Our 
nonlinear simulations reveal the stabilizing effects of angiogenesis and the destabilizing 
ones of chemotaxis and necrosis in the development of tumor morphological instabilities 
if the necrotic core is fixed in a circular shape. When the necrotic core is controlled in 
a non-circular shape, the stabilizing effects of proliferation and the destabilizing ones of 
apoptosis are observed. Finally, the values of the nutrient concentration with its fluxes 
and the pressure level with its normal derivatives, which are solved accurately at the 
boundaries, help us to characterize the corresponding tumor morphology and the level of 
the biophysical quantities on interfaces required in keeping various shapes of the necrotic 
region of the tumor. Interestingly, we notice that when the necrotic region is fixed in a 
3-fold non-circular shape, even if the initial shape of the tumor is circular, the tumor will 
evolve into a shape corresponding to the 3-fold symmetry of the shape of the fixed necrotic 
region.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The growth of a solid tumor is characterized by several increasingly aggressive stages of development. In the first stage, 
carcinogenesis, genetic mutations result in the occurrence of abnormal cell proliferation and cell apoptosis. In the second 
stage, avascular growth, the tumor receives nutrients (e.g., oxygen) by diffusion through the surrounding tissues. As the size 
of tumor increases, necrosis occurs in the center of tumor since the interior tumor cells start to die due to the lack of 
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nutrient supply. The necrotic core is thus formed, and tumor cells within this region will secrete Tumor Angiogenesis Factor 
(TAF) in order to grasp more nutrient supply. The control of the development of necrotic region is thus significant.

After the development of a tumor-induced neovasculature from angiogenesis, the tumor arrives at the stage of vascular 
growth and receives nutrients from the vasculature. Along with this development, the heterogeneous nutrient distributions 
could induce diffusional instability through nonuniform rates of cell proliferation, apoptosis, and migration. Tumor morpho-
logical instability, in turn, is capable of bringing more available nutrients to the tumor by increasing its surface-to-volume 
ratio. In particular, regions where instabilities first occur tend to grow at a faster rate than the rest of the tumor tissue (e.g., 
differential growth) that further enhances the instabilities and leads to complicated tumor morphologies, which was shown 
to increase the invasive behavior of tumor, e.g., in [1]. In order to study the evolution of tumor morphologies for clinical 
purposes, it is therefore important to build a mathematical model not only tracking the tumor interface accurately but also 
incorporating the angiogenesis process under the control of the necrotic region.

The mathematical modeling and the nonlinear simulation of the process of tumor growth has been studied since the 
mid-1960s (see, for example, the reviews [2–11] and books [12,13]). Following the early biomechanical models of avascular 
tumor growth proposed by Greenspan [14], the bifurcation analysis [15–22], numerical simulations, and computational 
modeling [23–30] have contributed significantly to the tumor modeling area. Recently, tumor growth models with a necrotic 
core have also been developed and analyzed via the bifurcation theory [31–37].

In this paper, based on the tumor model with a complex far-field geometry [38], we extend the tumor microenviron-
ment with a heterogeneous distribution of vasculature to include angiogenesis, necrosis and chemotaxis. More specifically, we 
develop a novel boundary integral formulation featuring both the Robin boundary condition on tumor boundary for the 
nutrient field, signifying the angiogenesis effect, and a static boundary condition on the necrotic boundary for pressure field, 
signifying the control of necrosis. Such boundary integral formulation comes from a quasi-steady assumption of the nutrient 
field and is justified through an estimation of the taxis time scale versus the diffusion time scale. The main goals of this 
paper are to analyze the linear stability of the tumor model with angiogenesis, necrosis and chemotaxis, and numerically 
simulate the fully nonlinear dynamics, using a novel formulation with boundary integral method in two dimensions.

The work presented in this paper is unique in the following aspects. First, we consider the boundary of the necrotic 
core fixed with a threshold nutrient level (also fixed), which allows us to study the nutrient distribution which induces 
morphological instabilities under the scenario that the necrotic core is controlled. We remarked that the role of necrosis in 
destabilizing the tumor morphology is also investigated in [39]. Second, from the numerical perspective, we develop a new 
boundary integral method (BIM), which naturally incorporates the Robin boundary condition which models angiogenesis
without approximation errors introduced by spatial meshes at tumor boundary. The integral equations uniquely determine 
the nutrient concentration and the normal derivative of the pressure at the tumor boundary, and also determine the pressure 
level and the nutrient flux across the necrotic boundary. Such a sharp interface model that solves integral equations with 
spectral accuracy enables us to accurately track the evolution of the tumor and all the biophysical quantities required on 
both interfaces. Those quantities on the interfaces are important for us to understand the mechanism of the control of tumor 
necrosis. Lastly, we investigate the significance of the factors which contributes to angiogenesis, necrosis and chemotaxis on 
the fully nonlinear tumor dynamics.

The paper is organized as follows. In Section 2, we formulate the sharp interface model. In Section 3, we nondimen-
sionalize the resulting systems. In Section 4, we develop the BIM formulation and summarize our numerical method. In 
Section 5, we analyze the linear stability of the system. In Section 6, we present our simulation results of the fully nonlin-
ear system including a numerical convergence study, a comparison with linear analysis results, and parameter studies under 
various effects. The conclusion is presented in Section 7. In Appendices A, B, C, and D, we give a complete derivation of our 
linear stability analysis, the details of our numerical method including layer potential evaluations for boundary integrals, the 
small-scale decomposition to remove the stiffness from the high-order derivatives in high curvature region on the interface 
and the semi-implicit time-stepping scheme to evolve the tumor interface.

2. Mathematical model

Computation domain As illustrated in Fig. 1, let �0 be the necrotic core, �(t) be the tumor tissue, �0 be the controlled 
necrotic boundary and �(t) be the tumor boundary.

Nutrient field The nutrient field in �(t) is governed by:

σt = D�σ − λσ in �(t), (1)

where D, λ are the diffusion constant and uptake rate, respectively. We assume Dirichlet boundary condition on the necrotic 
boundary:

σ = σ N on �0, (2)

where σ N is the constant nutrient level at the necrotic boundary. We assume Robin boundary condition on the tumor 
boundary:
2
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Fig. 1. Illustration of the computation domain.

∂σ

∂n
+ β(σ − σ) = 0 on �(t), (3)

where n is the outward normal, σ̄ is the constant nutrient level outside the tumor, β is the rate of nutrient supply to the 
tumor, which reflects the extent of angiogenesis. We remark that we can also use the Robin boundary condition to replace 
the Dirichlet boundary condition on the necrotic boundary, since as β is large enough, the Robin boundary condition will 
converge to the Dirichlet boundary condition, which is used for tumor boundary in [23].

Pressure field To introduce chemotaxis, the directed cell migration up gradients of nutrients, we use the Chemo-Darcy’s law:

u = −μ∇p + χσ ∇σ in �(t), (4)

where u is the tumor cell velocity, μ is the cell mobility and χσ is the chemotaxis coefficient. The mass conservation:

∇ · u = λM
σ

σ∞
− λA in �(t), (5)

where λM , λA are the rates of mitosis (cell birth) and apoptosis (cell death), respectively. Applying Eq. (4) into Eq. (5), we 
have

−μ�p =
(

λM

σ∞ − χσ

)
σ − λA in �(t). (6)

We assume a static boundary condition on the necrotic boundary:

0 = −μ
∂p

∂n0
+ χσ

∂σ

∂n0
on �0, (7)

which corresponds to our assumption that the necrotic boundary is fixed.
The Laplace-Young condition is assumed on the tumor boundary:

p = γ κ |�(t) on �(t), (8)

where γ is the constant representing cell-cell adhesions and κ |�(t) is the mean curvature of the curve �(t).

Equation of motion The equation of motion for the interface �(t) is given by:

V ≡ u · n = −μ
∂p

∂n

∣∣∣∣
�(t)

+ χσ
∂σ

∂n

∣∣∣∣
�(t)

on �(t). (9)

3. Non-dimensionalization

We introduce the diffusion length L, the intrinsic taxis time scale λ−1
χ , and the characteristic pressure ps by:

L =
√

D

λ
, λχ = χσ σ∞

L2
, ps = λχ L2

μ
, (10)

where χσ is a characteristic taxis coefficient. The length scale L and the time scale λχ
−1 are used to non-dimensionalize 

the space and time variables by x = L̃x, t = λχ
−1̃t . Define

σ̃ = σ
∞ , σ = σ N

∞ , p̃ = p
, χ̃σ = χσ

, β̃ = Lβ. (11)

σ σ ps χσ

3
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Since taxis occurs more slowly than diffusion (e.g. minutes vs hours), we assume λχ � λ, which leads to a quasi-steady 
reaction-diffusion equation for the nutrient field. We remark that by the term “taxis”, we mean taxis of tumor cells up 
nutrient gradients, as embodied in Eq. (4). Then Eq. (1) becomes εσ̃̃t = �̃σ̃ − σ̃ , where ε = λχ

λ
≈ Tdiffusion

T taxis
. For the nutrient 

diffusion time scale Tdiffusion, typically it can be assumed to occur in the scale of minutes, say 1 minute (see p.226 in [40]). 
For the taxis time scale T taxis, we can estimate it through dividing the diameter of the diffusion-limited tumor spheroid 
by the speed of migration of tumor cell up chemical gradients. For the tumor diameter, as summarized in [41]: “oxygen 
diffusion limits are typically 100–200 μm”, and here we take the average 150 μm. For the speed of tumor migration, as 
summarized in [42]: “Some carcinoma cells with an amoeboid morphology can move at high speeds inside the tumors
(∼ 4 μm min−1) ... At the other end of the range of modes of motility, ... mesenchymal migration ... (0.1–1 μm min−1)”, and 
here we take the average of the two types ∼ 2 μm min−1. Therefore, the taxis time scale can be estimated as 150 μm

2 μmmin−1 =
1.25 hour. Hence we have ε ≈ Tdiffusion

T taxis
≈ 1 minute

1 hour
� 1. The dimensionless system is thus given by:

Nutrient field We have governing equations for the nutrient field:⎧⎪⎪⎪⎨⎪⎪⎪⎩
�̃σ̃ = σ̃ in �(t),

σ̃ = σ on �0,

∂̃σ̃

∂̃ñ
= β̃(1− σ̃ ) on �(t),

(12)

where β̃ (angiogenesis factor) represents the extent of angiogenesis.

Pressure field

• Non-dimensional Chemo-Darcy’s law.

ũ = −∇̃ p̃ + χ̃σ ∇̃σ̃ in �(t), (13)

where χ̃σ (chemotaxis constants) represents taxis effect.
• Conservation of tumor mass.

∇̃ · ũ =P (σ̃ −A) in �(t), (14)

where P = λM

λχ
(proliferation rate) represents the rate of cell mitosis relative to taxis, A = λA

λM
(apoptosis rate) repre-

sents apoptosis relative to cell mitosis.
• Boundary conditions.

∂̃ p̃

∂̃ñ0

∣∣∣∣
�0

= χ̃σ
∂̃σ̃

∂̃ñ0

∣∣∣∣
�0

on �0, (15)

p̃|�(t) = G̃−1 κ̃ |�(t) on �(t), (16)

where G̃−1 = μγ

λχ L3
represents the relative strength of cell-cell interactions (adhesion).

Therefore, we have governing equations for pressure field:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−�̃p̃ =P(σ̃ −A) − χ̃σ σ̃ in �(t),

∂̃ p̃

∂̃ñ0

∣∣∣∣
�0

= χ̃σ
∂̃σ̃

∂̃ñ0

∣∣∣∣
�0

on �0,

p̃|�(t) = G̃−1 κ̃ |�(t) on �(t).

(17)

Equation of motion

Ṽ = − ∂̃ p̃

∂̃ñ

∣∣∣∣
�(t)

+ χ̃σ
∂̃σ̃

∂̃ñ

∣∣∣∣
�(t)

on �(t). (18)

Equivalently, we have

Ṽ = − ∂̃ p̃

∂̃ñ

∣∣∣∣ + χ̃σ β̃(1− σ̃ ) on �(t). (19)

�(t)

4
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4. Boundary Integral Method (BIM) reformulation

Recall that we have Poisson equation for the non-dimensional pressure p̃:

−�̃p̃ = (P− χ̃σ )σ̃ −PA in �(t). (20)

Consider an algebraic transformation in �(t):

p = p̃ + (P− χ̃σ )σ̃ −PA x̃ · x̃
2d

in �(t), (21)

which satisfies:

−�̃p = −�̃p̃ − (P− χ̃σ )σ̃ +PA= 0 in �(t), (22)

where d is the dimension of Rd ⊇ �(t), and p is the modified pressure. Dropping all tildes and overbars for brevity, we have 
the Laplace equation for the modified pressure p:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�p = 0 in �(t),
∂p

∂n0

∣∣∣∣
�0

=P ∂σ

∂n0

∣∣∣∣
�0

−PA n0 · x
d

∣∣∣
�0

on �0,

p|�(t) =G−1 κ |�(t) + (P− χσ ) σ |�(t) −PA x · x
2d

∣∣∣
�(t)

on �(t),

(23)

where σ satisfies modified Helmholtz equations in the annular domain �(t):⎧⎪⎪⎪⎨⎪⎪⎪⎩
�σ = σ in �(t),

σ |�0
= σ on �0,

∂σ

∂n

∣∣∣∣
�(t)

= β(1− σ |�(t)) on �(t).
(24)

The equations of motion for �(t) are determined by:

V = − ∂p

∂n

∣∣∣∣
�(t)

+P ∂σ

∂n

∣∣∣∣
�(t)

−PA n · x
d

∣∣∣
�(t)

on �(t). (25)

Equivalently, we have

V = − ∂p

∂n

∣∣∣∣
�(t)

−P
(
A

n · x
d

∣∣∣
�(t)

− β
(
1− σ |�(t)

))
on �(t). (26)

From potential theory, the solutions to Eqs. (23) and (24) can be represented as boundary integrals with single layer and 
double layer potentials. We use direct BIM formulations to both σ and p in the annular domain �(t):

4.1. Direct BIM for the modified Helmholtz equation

Consider the Green’s function for modified Helmholtz equations in �(t):

�Gx∗ − Gx∗ = −δx∗ in �(t), (27)

where Gx∗ = Gx∗ (x
′), x∗, x′ ∈ �(t) are the source point and field point, respectively, and δx∗ (x

′) is the Dirac delta function. 
The fundamental solution to Eq. (27) is

Gx∗(x
′) = 1

2π
K0(r), (28)

where K0 is a modified Bessel function of the second kind, r ≡ |x∗ − x′|. Multiplying the 1st equation in Eq. (24) by Gx∗ and 
Eq. (27) by −σ and summing them up, we obtain

Gx∗�σ − σ�Gx∗ = σδx∗ in �(t). (29)

Integrating Eq. (29) over �(t) and using Green’s second identity give∫ (
Gx∗

∂σ ′

∂n′
�

− σ ′ ∂Gx∗
∂n′

�

)
ds′ = σ(x∗) ∀x∗ ∈ �(t), (30)
�0∪�(t)

5
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where the symbol prime denotes the evaluation on field points, for example, n′
� = n�(x′) is the unit exterior (w.r.t. the 

domain �(t) enclosed by its boundaries) normal on the corresponding boundaries, i.e., n′
� = −n′

0 on �0, n′
� = n′ on �(t)

and n′
0 = n0(x′), n′ = n(x′) are the unit outer (pointing away from origin) normals on �0 and �(t), respectively. Letting 

x∗ → x0 ∈ �0, x∗ → x ∈ �(t) in Eq. (30) and using the 2nd and the 3rd equation in Eq. (24), we obtain

1

2
σ +

∫
�0

(
σ

∂Gx0

∂n′
0

− Gx0
∂σ ′

∂n′
0

)
ds′ +

∫
�(t)

(
Gx0β(1− σ ′) − ∂Gx0

∂n′ σ ′
)
ds′ = σ ∀x0 ∈ �0, (31)

∫
�0

(
σ

∂Gx

∂n′
0

− Gx
∂σ ′

∂n′
0

)
ds′ +

∫
�(t)

(
Gxβ(1− σ ′) − ∂Gx

∂n′ σ ′
)
ds′ + 1

2
σ = σ ∀x ∈ �(t), (32)

where we used standard jump relations of double layer potentials. Before taking the limit, alternatively, if we introduce 

linear operators by denoting single layer potentials by SGz

∣∣∣
C

[φ] ≡
∫
C

Gzφ
′ds′ and double layer potentials by DGz

n�

∣∣∣
C

[φ] ≡∫
C

∂Gz

∂n′
�

φ′ds′ , where C is the integral domain �0, �(t) or �0 ∪ �(t) and z can be x0, x or x∗ , then Eq. (30) can be rewritten 

as

DGx∗
n�

∣∣∣
�0∪�(t)

[σ ]− SGx∗
∣∣∣
�0∪�(t)

[
∂σ

∂n�

]
= −σ(x∗) ∀x∗ ∈ �(t). (33)

The jump relations imply⎧⎪⎪⎨⎪⎪⎩
lim

h→0+ D
Gx0±hn0
n0

∣∣∣
�0

[φ] =
(
DGx0

n0

∣∣∣
�0

± 1
2 I

)
[φ], ∀x0 ∈ �0,

lim
h→0+ D

Gx±hn
n

∣∣∣
�(t)

[φ] =
(
DGx

n

∣∣∣
�(t)

± 1
2 I

)
[φ], ∀x ∈ �(t).

(34)

Letting x∗ → x0 ∈ �0, x∗ → x ∈ �(t) in Eq. (33) and using the 2nd and the 3rd equation in (24) with Eq. (34), we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
SGx0

∣∣∣
�0

[
∂σ

∂n0

]
+
(
β SGx0 +DGx0

n

)∣∣∣
�(t)

[σ ] = σ

(
DGx0

n0 − 1

2
I

)∣∣∣∣
�0

[1]+ β SGx0

∣∣∣
�(t)

[1] ,

SGx

∣∣∣
�0

[
∂σ

∂n0

]
+
(

β SGx +DGx
n + 1

2
I

)∣∣∣∣
�(t)

[σ ] = σ DGx
n0

∣∣∣
�0

[1]+ β SGx

∣∣∣
�(t)

[1] ,
(35)

which is the reformulation of Eqs. (31), (32) into operator form (see [43] for similar treatment of expression). This system 
needs to be solved for the unknowns ∂σ

∂n0

∣∣∣
�0

and σ |�(t) .

4.2. Direct BIM for the Laplace equation

Consider the Green’s function for Laplace equation in �(t):

��x∗ = −δx∗ in �(t), (36)

where �x∗ = �x∗ (x
′), x∗, x′ ∈ �(t) are the source point and field point respectively, and δx∗ (x

′) is the Dirac delta function. 
The fundamental solution to Eq. (36) is

�x∗(x
′) = 1

2π
ln

1

r
, (37)

where r ≡ |x∗ − x′|. Multiplying the 1st equation in (23) by �x∗ and Eq. (36) by −p and summing them up, we obtain

�x∗�p − p��x∗ = pδx∗ in �(t). (38)

Integrating Eq. (38) over �(t) and using Green’s second identity, we have∫
�0∪�(t)

(
�x∗

∂p′

∂n′
�

− p′ ∂�x∗
∂n′

�

)
ds′ = p(x∗) ∀x∗ ∈ �(t), (39)

where the symbol prime denotes the evaluation on field points, for example, n′
� = n�(x′) is the unit exterior (w.r.t. the 

domain �(t) enclosed by its boundaries) normal on the corresponding boundaries, i.e., n′
� = −n′ on �0, n′

� = n′ on �(t)
0

6



M.-J. Lu, W. Hao, C. Liu et al. Journal of Computational Physics 459 (2022) 111153
and n′
0 = n0(x′), n′ = n(x′) are the unit outer (pointing away from origin) normals on �0, �(t), respectively. Denote single 

layer potentials by S�z

∣∣∣
C

[φ] ≡
∫
C

�zφ
′ds′ and double layer potentials by D�z

n�

∣∣∣
C

[φ] ≡
∫
C

∂�z

∂n′
�

φ′ds′ , where C is the integral 

domain �0, �(t) or �0 ∪ �(t) and z can be x0, x or x∗ . Then Eq. (39) can be rewritten as

S�x∗
∣∣
�0∪�(t)

[
∂p

∂n�

]
− D�x∗

n�

∣∣∣
�0∪�(t)

[p] = p(x∗) ∀x∗ ∈ �(t). (40)

The jump relations imply⎧⎪⎪⎨⎪⎪⎩
lim

h→0+ D
�x0±hn0
n0

∣∣∣
�0

[φ] =
(
D�x0

n0

∣∣∣
�0

± 1
2 I

)
[φ] ∀x0 ∈ �0,

lim
h→0+ D

�x±hn
n

∣∣∣
�(t)

[φ] =
(
D�x

n

∣∣∣
�(t)

± 1
2 I

)
[φ] ∀x ∈ �(t).

(41)

Letting x∗ → x0 ∈ �0, x∗ → x ∈ �(t) in Eq. (40) and using the 2nd and the 3rd equation in (23) with Eq. (41), we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

−1

2
I + D�x0

n0

)∣∣∣∣
�0

[p]+ S�x0

∣∣∣
�(t)

[
∂p

∂n

]
= S�x0

∣∣∣
�0

[
∂p

∂n0

]
+ D�x0

n

∣∣∣
�(t)

[p] ,

D�x
n0

∣∣∣
�0

[p]+ S�x
∣∣
�(t)

[
∂p

∂n

]
= S�x

∣∣
�0

[
∂p

∂n0

]
+
(
D�x

n + 1

2
I

)∣∣∣∣
�(t)

[p] .
(42)

This system needs to be solved for the unknowns p|�0
and ∂p

∂n

∣∣∣
�(t)

.

4.3. Summary of BIM linear systems

By rewriting Eqs. (35) and (42), we summarize this section as the following linear systems:

• Nutrient field.⎛⎝ SGx0

∣∣∣
�0

(
β SGx0 +DGx0

n

)∣∣∣
�(t)

SGx
∣∣
�0

(
β SGx +DGx

n + 1
2 I
)∣∣∣

�(t)

⎞⎠( ∂σ
∂n0

∣∣∣
�0

σ |�(t)

)
︸ ︷︷ ︸

unknown

=
⎛⎝σ

(
DGx0

n0 − 1
2 I
)∣∣∣

�0
[1]+ β SGx0

∣∣∣
�(t)

[1]

σ DGx
n0

∣∣∣
�0

[1]+ β SGx
∣∣
�(t) [1]

⎞⎠ (43)

• Pressure field.⎛⎝
(
− 1

2 I + D�x0
n0

)∣∣∣
�0
S�x0

∣∣∣
�(t)

D�x
n0

∣∣∣
�0

S�x
∣∣
�(t)

⎞⎠( p|�0
∂p
∂n

∣∣∣
�(t)

)
︸ ︷︷ ︸

unknown

=
⎛⎝ S�x0

∣∣∣
�0

[
∂p
∂n0

]
+ D�x0

n

∣∣∣
�(t)

[p]

S�x
∣∣
�0

[
∂p
∂n0

]
+
(
D�x

n + 1
2 I
)∣∣∣

�(t)
[p]

⎞⎠ (44)

Note that the right hand side of Eq. (44) is known from the boundary conditions in Eq. (23), which are reformulated from 
Eqs. (15) and (16). We then outline our numerical method in the following algorithm:

Algorithm 1 Numerical algorithm.
1: procedure Evolve tumor interface �(t)
2: Initialization at t = 0 � Given initial shape �(0) and obtain equal arclength meshes
3: for t = 0 to tfinal do
4: solve BIM linear systems in Eqs. (43), (44) by GMRES
5: compute normal velocity V with Eq. (26)
6: compute tangent velocity T with Eq. (C.3)
7: update tangent angle θ via Eq. (D.2)
8: update arclength sα via Eq. (D.5)
9: update tumor interface �(t)

10: end for
11: end procedure

For details on how these integrals are discretized and how the systems Eq. (35) and Eq. (42) are solved, we refer the 
reader to Appendix B. For details on the corresponding discretizations used and the time-stepping method for evolving the 
interface �(t) in time, we refer the reader to Appendix C and Appendix D.
7
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5. Linear analysis

The purpose of performing linear analysis is twofold: (1) to study the morphologically unstable regime of parameters by 
analyzing the linear solutions; (2) to validate our numerical method by checking the agreement of the nonlinear simulation 
results with the linear solutions at early times. In this section, we focus on the first aspect and we will study the second 
aspect in Section 6.2. We present the results of a linear stability analysis (details are provided in Appendix A) of the non-
dimensional sharp interface equations (23)–(26) reformulated in the preceding section. The linear stability of perturbed 
radially symmetric tumors was previously analyzed in [23]. Here, we extend their results to take into account the nutrient 
field with Robin boundary condition and the fixed necrotic core �0 with radius R0. Consider a lth mode perturbation of a 
radially symmetric tumor interface �:

r(θ, t) = R(t) + δ(t) cos lθ, (45)

where r is the tumor/host interface, R is the radius of the underlying circle, δ is the dimensionless perturbation size, and θ
is the polar angle. We first deduce that on the necrotic boundary, the pressure and the nutrient flux are given by:

p|�0
= P

(
A1

(
I0(R) + I1 (R0) R0 ln

(
R0

R

))
+ A2

(
K0(R) − K1 (R0) R0 ln

(
R0

R

)))
− χσ (A1 I0(R) + A2K0(R)) − PA

2

(
R2
0 ln

(
R0

R

)
+ R2

2

)
+ G

−1

R

+ δeilθ
(
P
((

A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R) − (A1 I1 (R0) − A2K1 (R0))
R0

R

)
2(RR0)

l

R2l + R2l
0

+ R0

l

(
B1 Il−1 (R0) − B2Kl−1 (R0)

) R2l
0 − R2l

R2l + R2l
0

)

− χσ

(
A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R) − (A1 I1 (R0) − A2K1 (R0))

R0

R

)
R2l
0 − R2l

R2l + R2l
0

+
(
PAR2

0

2R
− PAR

2
+G−1 l

2 − 1

R2

)
2(RR0)

l

R2l + R2l
0

)
,

∂σ

∂n

∣∣∣∣
�0

=A1 I1 (R0) − A2K1(R0) + δeilθ
(
B1

(
Il−1 (R0) − l

R0
Il (R0)

)
− B2

(
Kl−1 (R0) + l

R0
Kl (R0)

))
. (46)

And on the tumor boundary, the nutrient concentration and the pressure flux are given by:

σ |� = A1 I0 (R) + A2K0(R) + δeilθ (A1 I1 (R) − A2K1(R) + B1 Il(R) + B2Kl(R)) ,

∂p

∂n

∣∣∣∣
�

=
(
P (A1 I1 (R0) − A2K1 (R0)) − PAR0

2

)
R0

R

+ δeilθ
(
P
(

−(A1 I1 (R0) − A2K1 (R0))
R0

R2

+
(
A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R) − (A1 I1 (R0) − A2K1 (R0))

R0

R

)
R2l − R2l

0

R2l + R2l
0

l

R

+ 2
(
B1 Il−1 (R0) − B2Kl−1 (R0)

) RlRl
0

R2l + R2l
0

R0

R

)

− χσ

(
A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R) − (A1 I1 (R0) − A2K1 (R0))

R0

R

)
R2l − R2l

0

R2l + R2l
0

l

R

+PA
2

(
R0

R

)2

+
(
PAR2

0

2R
− PAR

2
+G−1 l

2 − 1

R2

)
R2l − R2l

0

R2l + R2l
0

l

R

)
.

Then we deduce that the evolution equation for the tumor radius R is given by:

dR

dt
=P

(
A1 I1(R) − A2K1(R) − R0

R
(A1 I1(R0) − A2K1(R0))

)
︸ ︷︷ ︸−

PA
2

R2 − R2
0

R︸ ︷︷ ︸
Apoptosis

, (47)
Proliferation

8
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where

A1 = σ (K1(R) − βK0(R)) + βK0 (R0)

K0 (R0) (β I0(R) + I1(R)) + I0 (R0) (K1(R) − βK0(R))
, (48)

A2 = σ (β I0(R) + I1(R)) − β I0 (R0)

K0 (R0) (β I0(R) + I1(R)) + I0 (R0) (K1(R) − βK0(R))
. (49)

The equation of the shape perturbation δ
R is given by:(

δ

R

)−1 d

dt

(
δ

R

)

=

Apoptosis︷ ︸︸ ︷
PA

((
1−

(
R0

R

)2
)(

1− 2R2l
0

R2l + R2l
0

)
l

2
−
(
R0

R

)2
)

−

Cell-cell adhesion︷ ︸︸ ︷
G−1 l

(
l2 − 1

)
R3

(
1− 2R2l

0

R2l + R2l
0

)

−

Angiogenesis︷ ︸︸ ︷
Pβ

(
1

R
+ A1

(
I1(R) − I0(R)

R

)
− A2

(
K1(R) + K0(R)

R

)
+ B1 Il(R) + B2Kl(R)

)

+

Chemotaxis︷ ︸︸ ︷
χσ

(
A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R) − (A1 I1 (R0) − A2K1 (R0))

R0

R

)(
1− 2R2l

0

R2l + R2l
0

)
l

R

+

Proliferation︷ ︸︸ ︷
P
(

(A1 I1 (R0) − A2K1 (R0))
R0

R2

(
2+ l

(
1− 2R2l

0

R2l + R2l
0

))
− 2

(
B1 Il−1 (R0) − B2Kl−1 (R0)

) RlRl
0

R2l + R2l
0

R0

R

)

−

Proliferation︷ ︸︸ ︷
P
(

(A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R))

(
1− 2R2l

0

R2l + R2l
0

)
l

R

)
, (50)

where Il(R) and Kl(R) are modified Bessel functions of the first and of the second kind, respectively. A complete derivation 
and the expressions of Ai, Bi, i = 1, 2, which contain the parameters R0, σ and β are given in Appendix A.

In Fig. 2, we first show that the linear stability analysis results by Cristini et al. on the evolution of both the tumor radius 
R (Eq. (7) in [23]) and the shape factor δ

R (Eq. (11) in [23] but with typo, corrected formula can be found as Eq. (4.7a) in 
[12]), which are plotted in dash lines, can be recovered from our results as R0 → 0 and β → ∞ in Eq. (47) and Eq. (50), 
which is verified numerically by decreasing R0 from 0.1 (left) to εmachine ≈ 2.2204 × 10−16 (right) and by increasing β from 
0.5 to 100 as plotted in solid lines.

We next characterize the stability regime by determining A =Ac as a function of the unperturbed radius R such that 
d
dt

(
δ
R

)= 0:

Ac =

⎛⎜⎜⎜⎜⎝
Cell-cell adhesion︷ ︸︸ ︷

G−1 l
(
l2 − 1

)
PR3

(
1− 2R2l

0

R2l + R2l
0

)

+

Angiogenesis︷ ︸︸ ︷
β

(
1

R
+ A1

(
I1(R) − I0(R)

R

)
− A2

(
K1(R) + K0(R)

R

)
+ B1 Il(R) + B2Kl(R)

)

−

Chemotaxis to Proliferation︷ ︸︸ ︷
χσ

P

(
A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R) − (A1 I1 (R0) − A2K1 (R0))

R0

R

)(
1− 2R2l

0

R2l + R2l
0

)
l

R

− (A1 I1(R0) − A2K1(R0)
R0

R2

(
2+ l

(
1− 2R2l

0

R2l + R2l

))

0

9
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Fig. 2. The rate of change of the tumor radius R in [a] and the shape factor δ
R in [b] for the case with parameters P = 1, A = 0.3, χσ = 0, σ = 0, G−1 =

0.001. In both [a] and [b], the necrotic boundary is circular with radius R0 = 0.1 (left) and R0 = εmachine ≈ 2.2204 ×10−16 (right). The solid lines are plotted 
with Eq. (47) in [a] and Eq. (50) in [b] for β = 0.5, 1, 2, 100. The dash lines are plotted with Eq. (7) in [23] in [a] and Eq. (4.7a) in [12] in [b].

+ (A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R))

(
1− 2R2l

0

R2l + R2l
0

)
l

R

+2
(
B1 Il−1(R0) − B2Kl−1(R0)

) RlRl
0

R2l + R2l
0

R0

R

)

/

((
1−

(
R0

R

)2
)(

1− 2R2l
0

R2l + R2l
0

)
l

2
−
(
R0

R

)2
)

. (51)

Here, Ac is the critical value of apoptosis that divides regimes of stable growth (A < Ac , e.g., below the curve) and 
regimes of unstable growth (A >Ac , e.g., above the curve) for a given mode l = 2 and necrotic radius R0 = 0.1. We focus 
on the parameters P = 5, G−1 = 0.001, σ = 0.2.

In Fig. 3, we plot Ac as a function of R , β = 0.5 (solid), β = 2 (dashed), and χσ as labeled in the legend. The figure 
reveals that the unstable regime expands in general with stronger taxis, with the inset as an exception that shows an 
opposite tendency for β = 2 when the tumor radius R is small and between 0.59 to 1.03. Moreover, all the dashed curves 
are pulled upward under a richer supply of nutrients from vasculature (β = 2). These two observations suggest that as the 
tumor is growing, chemotaxis may enhance the morphological instability while angiogenesis might inhibit it, which will be 
further investigated in Section 6.3.
10
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Fig. 3. Critical apoptosis parameter Ac as a function of unperturbed radius R from equation (51), circular necrotic boundary R0 = 0.1, and χσ labeled in 
the legend. Solid: β = 0.5; Dashed: β = 2. See text for details.

6. Results

6.1. Numerical convergence in time and space

In this section, we test the convergence of our method.
First, we present a temporal resolution study in Fig. 4 [a]. The errors calculated by differences of tumor area between the 

simulation with �t = 2.5 × 10−5 and �t = 2 × 10−4, 1 × 10−4, 5 × 10−5, respectively, are plotted versus time. In all cases, 
the number of spatial collocation points is N = 512. We first examine the case plotted in dash-dot lines with χσ = 10, the 
necrotic radius R0 = 0.1 and other parameters P = 5, A = 0.25, β = 0.5, σ = 0.2 and G−1 = 0.001. We find a factor of 4 is 
observed when �t is halved, indicating a second order convergence rate. This is expected since the time stepping scheme 
is second order accurate (Appendix D.) Similar observations can also be found for the case plotted in dot lines with χσ = 5. 
The corresponding tumor morphologies are shown in Fig. 4 [b] with χσ = 10 and [c] with χσ = 5.

To be more precise, define temporal convergence rate Cn = ln(en/en+1)
ln2 , where en = |An − A0| denotes the error of the 

n-th level, A0 is the area of the finest case (�t = 2.5 × 10−5), the first refinement level A1 is that of the roughest case 
(�t = 2 × 10−4) and An+1 is finer than An . Thus, what we have plotted in Fig. 4 [a] are what we denoted as ei, i = 1, 2, 3
here for the two cases χσ = 5, 10. In Fig. 5, the temporal convergence rate of refinement level 1 (using e1, e2) and 2 (using 
e2, e3) are plotted versus time for the two cases χσ = 5, 10. We see the convergence rate is of second order, even better 
for higher refinement level, before t ≈ 0.8 for χσ = 10 and t ≈ 1.5 for χσ ≈ 1.5. We remark that at t ≈ 1 (χσ = 10) and 
t ≈ 1.8 (χσ = 5) the convergence rate deteriorates when there are regions of the tumor boundary starting to touch one 
another (which can be found in Fig. 4 [b] and [c] for the case with finest �t). This is caused by the approaching of the 
topological singularity of the tumor boundary, which we will discuss later.

In space, the accuracy of our simulation is established by a resolution study of the simulation shown in Fig. 6, with all 
biophysical parameters the same as the case in Fig. 4. The spatial error is investigated by varying the number N of spatial 
collocation points representing the tumor boundary �(t). The errors calculated by tumor area of the solution between the 
simulation with N = 512 and those with N = 64, 128, 256 respectively are plotted versus time in Fig. 6 [a]. In all cases, 
the time step is �t = 5 × 10−5. At early times, the error is dominated by the tolerance for solving the integral equations 
(1 × 10−10). This is consistent with the spectral accuracy of our method. We remark that such error control lasts longer by 
refining the time step size �t . The corresponding tumor morphologies are shown in Fig. 6 [b] with χσ = 10 and [c] with 
χσ = 5.

In Fig. 7, we show the GMRES iteration number of the linear system in Eq. (35) for nutrient in [a] and of the one in 
Eq. (42) for pressure in [b] with all the parameters the same as those used in Fig. 6. We observe that the iteration number 
increases as time evolves. An abrupt increase was observed before the computation stops. To understand this phenomena, 
we need to mention that as commented in [44] for the application of boundary integral methods to elastic media problems 
11
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Fig. 4. Temporal resolution studies for the case with parameters P = 5, A = 0.25, χσ = 5 (dash-dot lines), χσ = 10 (dot lines), β = 0.5, σ = 0.2 and 
G−1 = 0.001. The necrotic boundary is circular with radius R0 = 0.1, and initial tumor boundary is r = 2.5 + 0.1 cos(2θ). The errors shown are calculated 
as the differences of tumor area between the solution with �t = 2.5 × 10−5 and those with �t = 2 × 10−4, 1 × 10−4, 5 × 10−5. Dash-dot lines are the 
errors for χσ = 10 and dot lines are the errors for χσ = 5 in [a]. The corresponding tumor morphologies before the computations terminate are shown in 
[b] with χσ = 10 and in [c] with χσ = 5. In all cases N = 512.

in the end of their Sec. 3.1, if the precipitates merge, which corresponds to that neighboring tumor fingers are getting really 
close (almost merging) to one another as shown in Fig. 6 [b] and [c], then a topological change occurs and the kernels of 
the boundary integral systems become singular. In computations, this difficulty is reflected by a rapid increase in condition 
number and GMRES iteration count when the boundary become very close. Thus, it is related to the geometry of �(t) and 
the coefficient matrix of the boundary integral system will become ill-conditioned when any two columns of it (calculated 
by the distance-dependent Green functions as described in Sec. 4) become nearly the same due to the geometry change. 
Although this difficulty exists, we observe that the numerical approach still works for our purpose to study the evolution of 
the tumor and all the biophysical quantities required on both interfaces before the topological change.

6.2. Comparison with linear analysis when the necrotic core is circular

We next compare the nonlinear simulation with linear theory. The results are shown in Fig. 8 [a] where we consider the 
case with the parameters P = 5, A = 0.25, β = 0.5, χσ = 5, σ = 0.2 and G−1 = 0.001, circular necrotic boundary R0 = 0.1, 
12
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Fig. 5. The temporal convergence rate Cn = ln(en/en+1)
ln2 , where en = |An − A0| denotes the error of the n-th level, A0 is the area of the finest case (�t =

2.5 × 10−5), the first refinement level A1 is that of the roughest case (�t = 2 × 10−4) and An+1 is finer than An . Refinement level 1 uses e1, e2 and 
refinment level 2 uses e2, e3. Dot lines correspond to χσ = 10 and dash-dot lines correspond to χσ = 5.

and initial tumor boundary r = 2.5 + 0.1 cos(2θ). While there is good agreement between the linear and nonlinear results 
at early times, both the effective radius and shape factors are under-predicted by linear theory at later times. The nonlinear 
tumors, shown in Fig. 8 [b], show the development of the tumor tissue encapsulating the surrounding tissue. In the next 
section, we will use the nonlinear simulation to investigate those factors that influence tumor progression.

6.3. Nonlinear simulation with a circular necrotic core

In this section we study the factors of tumor growth with a fixed circular necrotic core from three different aspects: 
angiogenesis, chemotaxis and necrosis. In the first aspect, we take β = 0.5, 1, 2 to show the effect of angiogenesis. In the 
second, we take R0 = 0.1, 1, 1.5 to study the effect of necrosis. In the third, we take χσ = 5, 10 to demonstrate the effect of 
chemotaxis.

Angiogenesis We present the evolution of tumor in Fig. 9 where the angiogenesis factor β = 0.5, 1, 2 corresponds to the 
rows from top to bottom, and the columns from left to right correspond to different time t = 2.1, 2.2, 2.3. Hence, by 
comparing the evolution among the rows, we can see the effect of angiogenesis.

At t = 2.1 (first column), for example, as β increases, a larger tumor size is observed, which indicates that tumor vas-
cularization will enhance the growth rate of the tumor. For β = 2 (third row), t = 2.3, we can see the tumor eventually 
evolves into a compact spheroid which suggests that angiogenesis may inhibit the instability and is consistent with our 
linear stability results. We also remark that in our case with finite angiogenesis factor β (Robin boundary condition), the 
tumor interface has a much more unstable shape than the case with “infinite” β (Dirichlet boundary condition) in [23].

Necrosis and chemotaxis We present the tumor evolution in the first three rows in Fig. 10 where the radius of the (fixed) 
necrotic core R0 = 0.1, 1, 1.5 corresponds to the rows from the first to the third row, and the columns from left to right 
correspond to different time t as labeled. In the first column at t = 0, all tumors are with the same initial shape r =
2.5 + 0.1 cos(2α) but different necrotic radii. By comparing the first three rows from left to right, we see the tumor develop 
cavities along y-axis and such development is slower on tumors with a larger necrotic core. We also observe tumor further 
develops crown-like spikes protruding from their surfaces and such development tends to induce more spikes on tumors 
with a larger necrotic core.

In the fourth row, we change the chemotaxis constant from χσ = 10 to χσ = 5, with the remaining parameters the same 
as in the third row. Here we plot the time t at the double amount of time to compare the development of morphology since 
smaller taxis decelerates tumor growth. By comparing the third and the fourth row, we see tumor with larger χσ eventually 
generates more aggressive spikes, which indicates the effect of chemotaxis in triggering the development of spikes.

6.4. Nonlinear simulation with a non-circular necrotic core

In this section, instead of fixing the necrotic core with circular shape, we fix the necrotic core with a non-circular (3-fold) 
shape and present the evolution of tumor morphology from the perspective of Proliferation and Apoptosis.
13
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Fig. 6. Spatial resolution studies for the case with parameters P = 5, A = 0.25, χσ = 5 (dash-dot lines), χσ = 10 (dot lines), β = 0.5, σ = 0.2 and G−1 =
0.001. The necrotic boundary is circular with radius R0 = 0.1, and initial tumor boundary is r = 2.5 +0.1 cos(2θ). The errors are calculated as the differences 
of tumor area between the solution with N = 512 and those with N = 64, 128, 256. The corresponding tumor morphologies are shown in [b] with χσ = 10
and in [c] with χσ = 5. In all cases �t = 5 × 10−5.

Proliferation and apoptosis In Fig. 11, we demonstrate the dependence of tumor growth on proliferation and apoptosis with 
non-circular necrotic core R0 = 2 + 0.3 cos(3α). The first cases in each row start with the same initial tumor boundary 
r = 2.5 + 0.1 cos(2α) and necrotic boundary R0 = 1 + 0.3 cos(3α). In the first row, we take P = 5, A = 0.25 and observe 
that the evolution of tumor morphology is influenced by the morphology of its necrotic core and eventually develop two 
cavities on the left part of tumor. In the second row, we decrease the proliferation rate P from 5 to 1 and find that at 
the same time t , the tumor attains a similar pattern with additional minor cavities, which shows that the proliferation rate 
P stabilizes tumor morphology In the third row, comparing to the second, we increase the apoptosis rate A from 0.25 to 
0.35 and observe that the size of tumor shrinks and that when tumor cells are removed through apoptosis, more space is 
released for the aggressive patterns like protruding fingers to develop.

6.5. The concentrations and fluxes for the control of necrotic region

In this section, we study the control of a fixed necrotic core by observing the evolution of nutrient concentrations and 
fluxes on the boundaries. Here we consider two prototypical shapes of the necrotic region: circular and non-circular (3-fold). 
The parameters are the same as those used to produce the third row in Fig. 11.
14
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Fig. 7. GMRES iteration numbers of linear system for nutrient in [a] and for pressure in [b] for the case with parameters P = 5, A = 0.25, χσ = 5
(dash-dot lines), χσ = 10 (dot lines), β = 0.5, σ = 0.2 and G−1 = 0.001. The necrotic boundary is circular with radius R0 = 0.1, and initial tumor boundary 
is r = 2.5 + 0.1 cos(2θ). In all cases �t = 5 × 10−5.

Control of a circular necrotic region In Fig. 12, we present the control of a fixed circular necrotic core, where [a] shows the 
evolution of tumor morphologies with a circular necrotic boundary R0 = 1, [b] shows the corresponding nutrient fluxes 
∂σ
∂n0

∣∣∣
�0

at the fixed necrotic boundary (first row) and the nutrient concentrations σ |�(t) at the evolving tumor boundary 

(second row), [c] shows the corresponding hydrostatic pressure p|�0
at the fixed necrotic boundary (first row) and the 

pressure fluxes ∂p
∂n

∣∣∣
�(t)

at the evolving tumor boundary (second row). We remark that these four quantities are essentially 

the unknowns we solved at each time step using the boundary integral method (see Section 4; the modified pressure can 
be recovered back to the hydrostatic pressure by Eq. (21).)

At t = 0, we see the nutrient fluxes on the necrotic boundary reach two local maximums at the places where the two 
boundaries are closest (α = π/2, 3π/2), while the nutrient concentrations on the tumor boundary reach local minimums 
at those directions. At t = 1, 2 and 1.25, the two local maximums of the nutrient fluxes on the necrotic boundary grow 
higher, while the two local minimums of the nutrient concentrations on the tumor boundary become deeper and then 
start to oscillate in response to the unstable tumor morphology. For t = 1.2 and 1.35, we see in [a] the developing of 
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Fig. 8. In [a]: A comparison between linear theory (blue curves) and the nonlinear simulations (red circles) for the effective radius R (left) and shape factor 
δ
R (right). Red circles: nonlinear simulations; Blue lines: linear solutions. In [b]: The nonlinear tumor morphologies. The parameters are P = 5, A = 0.25, 
β = 0.5, χσ = 5, σ = 0.2 and G−1 = 0.001. The necrotic boundary is circular with R0 = 0.1, and initial tumor boundary is r = 2.5 + 0.1 cos(2θ). Here, 
N = 512 and �t = 1 × 10−4. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

crown-like protrusions in tumor morphology. Interestingly, we observe that the envelope of the oscillating curve of nutrient 
concentrations except for the region close to local minima has a similar profile with the fluxes.

For the hydrostatic pressure, by comparing the first rows in 12 [b] and [c], we see that the pressure level has a similar 
but more oscillating profile than that of the level of the nutrient fluxes at the necrotic boundary, which reveals a balance 
at the necrotic boundary for the size of the necrotic core to be maintained fixed. In the second row of 12 [c], we see that 
the signs of the pressure fluxes reflects the region of the expansion 

(
− ∂p

∂n > 0
)

or the shrinking 
(
− ∂p

∂n < 0
)

of tumor. For 

example, as t = 1.2, the negative sign of the two local minimums of − ∂p
∂n corresponds to the cavities developed along the 

y-axis (α = π/2, 3π/2).

Control of a non-circular region Next, we present the control of a fixed non-circular (3-fold) necrotic core in Fig. 13, where 
[a] is the evolution of tumor morphologies with a non-circular (3-fold) necrotic boundary R0 = 1 +0.3 cos(3α) (same as the 
third row in Fig. 11), [b] and [c] are in the same arrangement as in Fig. 12.

At t = 0, we see the nutrient fluxes on the necrotic boundary reach 3 local maximums at the places where the two 
boundaries are closest (α = 0, 2π/3, 4π/3), while the nutrient concentrations look flat throughout the tumor boundary. 
As for t = 0.8 and 0.85, similar to Fig. 12, the two local maximums of the nutrient fluxes on the necrotic boundary grow 
higher and two local minimums of the nutrient concentrations on the tumor boundary appear, become deeper, and start to 
oscillate in response to the unstable tumor morphology. For t = 0.85 and 0.95, we see the development of splitting fingers 
in tumor morphology. Again, we observe that the envelope of the oscillating curve of nutrient concentrations except for the 
region close to local minima still has a similar profile with the fluxes as in Fig. 12. We also have similar observations for 
the hydrostatic pressure as in Fig. 12. However, by comparing the values in Fig. 12 and 13, we can see the extremes in 
13 possess larger absolute magnitudes than those in 12, which indicates that the perturbation of the control shape of the 
necrotic core may cause the microenvironment of tumor to become more heterogeneous.

In Fig. 14, we change the initial tumor shape to be a pure circle with radius r = 2.5, while other settings remain the 
same as in Fig. 13. Interestingly, the tumor morphology in [a] still evolves into a three-fold unstable pattern. In addition, 
we can see the values of the nutrient and the pressure at the boundaries in [b] and [c] all possess more evenly distributed 
and symmetric profiles than those in Fig. 13, which results from the more symmetric pattern of the tumor morphology in 
Fig. 14 [a].
16
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Fig. 9. The tumor morphologies under different values of the angiogenesis factor β = 0.5 (first row), β = 1 (second row) and β = 2 (third row). The 
remaining parameters are P = 5, A = 0.25, χσ = 5, R0 = 0.1, σ = 0.2 and G−1 = 0.001. The initial tumor boundary is r = 2.5 + 0.1 cos(2α). Here, N = 512
and �t = 1 × 10−4.

7. Conclusions

In this paper, we have developed, analyzed, and solved numerically a tumor growth model that investigates the intratu-
moral structure using a controlled necrotic core and the extratumoral nutrient supply from vasculature, which is modeled 
by a Robin boundary condition at the tumor boundary. The model incorporates cell proliferation, death, angiogenesis, necrosis
and chemotaxis up gradients of nutrients that are transported diffusionally from the vascularized tumor boundary and up-
taken by tumor cells. Linear analysis, though limited to a simple geometry (performed here for a circular necrotic boundary), 
reveals the presence of rich pattern formation mechanisms via unstable tumor growth.

To gain insight into the nonlinear solutions, we developed a novel boundary integral method that naturally incorporates 
the Robin boundary condition to accurately and efficiently simulate the system. Direct layer potential representations were 
used for both pressure and nutrient fields, which enables us to obtain the value of the nutrient concentration with its fluxes 
and the hydrostatic pressure with its gradients on the interfaces accurately by solving two systems of integral equations. The 
tumor interface was evolved using a semi-implicit time-stepping method developed previously (e.g., [45,23]). The method is 
spectrally accurate in space and second-order accurate in time.

With the advantage of boundary integral methods in addressing the complex boundary geometries and naturally incor-
porating the Robin boundary condition for nutrient field, our nonlinear simulations explored various unstable morphologies 
caused by angiogenesis, chemotaxis, necrosis and cancer cell proliferation and apoptosis. When the tumor is growing with a 
fixed circular necrotic core, we investigate the effect of angiogenesis in inhibiting the morphological instability and the ef-
fect of chemotaxis and necrosis in destabilizing the tumor morphology, which is also observed in [39] and [38]. When the 
tumor is growing with a fixed non-circular necrotic core, we show the effect of proliferation in accelerating tumor growth 
17
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Fig. 10. The tumor morphologies under different sizes of the necrotic core R0 = 0.1 (first row), 0.5 (second row) and 1 (third and fourth row). The 
remaining parameters are P = 5, A = 0.25, β = 0.5, χσ = 10 (first 3 rows), 5 (fourth row) , σ = 0.2 and G−1 = 0.001. The initial tumor boundary is 
r = 2.5 + 0.1 cos(2α). Here, N = 512 and �t = 5 × 10−5.

and stabilizing tumor morphology and apoptosis acting in the opposite way. Finally, our numerical approach provides us 
with accurate physical quantities required to maintain the control of the shapes of the necrotic region for both nutrient and 
pressure fields.

In future work, we can investigate the motion of the necrotic boundary (e.g., two moving boundaries in the system) as 
considered in [33]. Note that multiple moving interfaces have been studied recently in the context of Hele-Shaw flow [46,
47]. In addition, we can consider the secretion of the Tumor Angiogenesis Factor (TAF) from the moving necrotic boundary 
or the diffusion of the inhibitors (e.g. drugs) from the moving tumor boundary. Furthermore, the nutrient concentration on 
the necrotic boundary need not be constant and the cell division and uptake rates need not be uniform, as assumed here. 
Another immediate extension is to use the Stokes equations (see for example [48]) to study the fluid properties of tumor cell 
and extracellular matrix mixtures through their different viscosities. The regulation of cell fates and motility, proliferation 
and apoptosis rates by mechanical and thermal stresses can also be incorporated. Finally, while we presented the results in 
two dimensions, similar behaviors are expected to hold qualitatively in three dimensions, and we plan to perform full 3D 
simulations to confirm this.
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Fig. 11. The tumor morphologies with non-circular necrotic core R0 = 1 + 0.3 cos(3α) for P = 5, A = 0.25 (first row), P = 1, A = 0.25 (second row) and 
P = 1, A = 0.35 (third row). The remaining parameters are β = 0.5, χσ = 10, σ = 0.2 and G−1 = 0.001. The initial tumor boundary is r = 2.5 + 0.1 cos(2α). 
Here, N = 512 and �t = 5 × 10−5.
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Appendix A. Linear stability analysis

The governing equations are⎧⎪⎪⎪⎨⎪⎪⎪⎩
�σ = σ in �(t),

σ |�0
= σ on �0,

∂σ

∂n

∣∣∣∣
�(t)

= β(1− σ |�(t)) on �(t).
(A.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�p = 0 in �(t),

∂p

∂n0

∣∣∣∣
�0

=P ∂σ

∂n0

∣∣∣∣
�0

−PA n0 · x
d

∣∣∣
�0

on �0,

p|�(t) =G−1 κ |�(t) + (P− χσ ) σ |�(t) −PA x · x ∣∣∣ on �(t).

(A.2)
2d �(t)
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Fig. 12. In [a]: The tumor morphologies with a circular necrotic boundary R0 = 1. In [b]: the nutrient fluxes ∂σ
∂n0

at necrotic boundary �0 (first row), and 
the nutrient concentrations σ at tumor boundary � (second row). In [c]: the hydrostatic pressure p at necrotic boundary �0 (first row), and pressure fluxes 
− ∂p

∂n at tumor boundary � (second row). The remaining parameters are P = 1, A = 0.35, β = 0.5, χσ = 10, σ = 0.2 and G−1 = 0.001. The initial tumor 
boundary is r = 2.5 + 0.1 cos(2α). Here, N = 512 and 5 × 10−5.

V = − ∂p

∂n

∣∣∣∣
�(t)

−P
(
A

n · x
d

∣∣∣
�(t)

− β
(
1− σ |�(t)

))
on �(t). (A.3)

Consider a perturbed tumor interface �(t):

r(t) = R(t) + δ(t)eilθ . (A.4)

In cylindrical coordinates modified Helmholtz equation satisfies

r−1 (rσr)r + r−2σθθ + r−2σzz − σ = 0 in �(t). (A.5)
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Fig. 13. In [a]: The tumor morphologies with a non-circular (3-fold) necrotic boundary R0 = 1 + 0.3 cos(3α). In [b]: the nutrient fluxes ∂σ
∂n0

at necrotic 
boundary �0 (first row), and the nutrient concentrations σ at tumor boundary � (second row). In [c]: the hydrostatic pressure p at necrotic boundary �0

(first row), and pressure fluxes − ∂p
∂n at tumor boundary � (second row). The remaining parameters are P = 1, A = 0.35, β = 0.5, χσ = 10, σ = 0.2 and 

G−1 = 0.001. The initial tumor boundary is r = 2.5 + 0.1 cos(2α). Here, N = 512 and 5 × 10−5.

Assume axial symmetry, i.e, σ = σ(r, θ) is independent of z, then

r−1 (rσr)r + r−2σθθ − σ = 0. (A.6)

A.1. Radial solutions

We first consider the radial solution, i.e., σ = σ(r), then (A.6) reduces to modified Bessel differential equation:(
r2

d2

dr2
+ r

d

dr
− r2

)
σ(r) = 0 in �(t). (A.7)

Recall the general form of modified Bessel differential equation is
21
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Fig. 14. In [a]: The tumor morphologies with a non-circular (3-fold) necrotic boundary R0 = 1 + 0.3 cos(3α). In [b]: the nutrient fluxes ∂σ
∂n0

at necrotic 
boundary �0 (first row), and the nutrient concentrations σ at tumor boundary � (second row). In [c]: the hydrostatic pressure p at necrotic boundary �0

(first row), and pressure fluxes − ∂p
∂n at tumor boundary � (second row). The remaining parameters are P = 1, A = 0.35, β = 0.5, χσ = 10, σ = 0.2 and 

G−1 = 0.001. The initial tumor boundary is r = 2.5. Here, N = 512 and 5 × 10−5.

(
x2

d2

dx2
+ x

d

dx
−
(
x2 + n2

))
y(x) = 0. (A.8)

The general solutions are

y = a1 Jn(−ix) + a2Yn(−ix)

= c1 In(x) + c2Kn(x), (A.9)

where Jn(x) is a Bessel function of the first kind, Yn(x) is a Bessel function of the second kind, In(x) is a modified Bessel 
function of the first kind and Kn(x) is a modified Bessel function of the second kind.
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The following recurrence relation is useful in the linear analysis

I ′n(x) = 1

2
(In−1(x) + In+1(x)) ,

I ′n(x) = In−1(x) − n

x
In(x) = n

x
In(x) + In+1(x),

I ′0(x) = I1(x). (A.10)

K ′
n(x) = −1

2
(Kn−1(x) + Kn+1(x)) ,

K ′
n(x) = −Kn−1(x) − n

x
Kn(x) = n

x
Kn(x) − Kn+1(x),

K ′
0(x) = −K1(x). (A.11)

We obtain σ = A1 I0 (r) + A2K0 (r) in �(t). Applying the boundary conditions on the circles r = R0, R , we have

A1 I0 (R0) + A2K0 (R0) = σ , (A.12)

A1 I1(R) − A2K1(R) = β (1− A1 I0(R) − A2K0(R)) . (A.13)

Solving for A1, A2, we obtain

A1 = σ (K1(R) − βK0(R)) + βK0 (R0)

K0 (R0) (β I0(R) + I1(R)) + I0 (R0) (K1(R) − βK0(R))
, (A.14)

A2 = σ (β I0(R) + I1(R)) − β I0 (R0)

K0 (R0) (β I0(R) + I1(R)) + I0 (R0) (K1(R) − βK0(R))
. (A.15)

As R0 → 0 we have

A1 → 1

I0(R) + I1(R)
β

, (A.16)

A2 → 0. (A.17)

A.2. Perturbation of radial solutions

Now we seek a solution of the modified Helmholtz’ s equation on the perturbed circle given by (A.4). Since δ is the 
perturbation size, following [49] we consider the Fourier expansion of the solution to the 1st order in δ:

σ(r, θ) = σ0(r) + δeilθσ1(r) in �(t). (A.18)

Note here that r, θ and δ are all functions of time t , i.e. r = r(t), θ = θ(t), δ = δ(t). Multiplying Eq. (A.6) by r2, we obtain(
r2∂2

r + r∂r + ∂2
θ − r2

)(
σ0(r) + δeilθσ1(r)

)
= 0 in �(t), (A.19)(

r2
d2

dr2
+ r

d

dr
− r2

)
σ0(r) = 0 in �(t), (A.20)(

r2
d2

dr2
+ r

d

dr
−
(
r2 + l2

))
σ1(r) = 0 in �(t). (A.21)

Therefore it is sufficient to consider the expression:

σ = A1 I0(r) + A2K0(r) + δeilθ (B1 Il(r) + B2Kl(r)) in �(t). (A.22)

Apply nutrient boundary conditions on the interface r = R + δeilθ with δ � 1. (Orders higher than O (δ) are all discarded 
in the following calculations.) At O (1), the equations are the same as the radial solution.

The equations at O (δ) determine the coefficients B1, B2:

B1 Il (R0) + B2Kl (R0) = 0, (A.23)

B1

(
Il−1(R) − l

R
Il(R)

)
− B2

(
Kl−1(R) + l

R
Kl(R)

)
+A1

(
I0(R) − 1

R
I1(R)

)
+ A2

(
K0(R) + 1

R
K1(R)

)
= −β (B1 Il(R) + B2Kl(R) + A1 I1(R) − A2K1(R)) . (A.24)
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Solving for B1, B2, we have

B1 = − Kl (R0) (A1 ((βR − 1)I1(R) + R I0(R)) + A2 ((1− βR)K1(R) + RK0(R)))

Il (R0)
(
(l − βR)Kl(R) + RKl−1(R)

)+ Kl (R0)
(
(βR − l)Il(R) + R Il−1(R)

) , (A.25)

B2 = Il (R0) (A1 ((βR − 1)I1(R) + R I0(R)) + A2 ((1− βR)K1(R) + RK0(R)))

Il (R0)
(
(l − βR)Kl(R) + RKl−1(R)

)+ Kl (R0)
(
(βR − l)Il(R) + R Il−1(R)

) . (A.26)

Applying the definition for A1, A2 in Eq. (A.14), (A.15), we have

B1 = − Kl (R0)
(
σ
(
β
( 1
R − β

)+ 1
)+ βK0 (R0) ((βR − 1)I1(R) + R I0(R)) + β I0 (R0) ((βR − 1)K1(R) − RK0(R))

(K0(R0) (β I0(R) + I1(R)) + I0(R0) (K1(R) − βK0(R)))
(
Il(R0)

(
(l − βR)Kl(R) + RKl−1(R)

)+ Kl(R0)
(
(βR − l)Il(R) + R Il−1(R)

)) ,
(A.27)

B2 = − Il(R0)
(
σ
(
β2 − β

R − 1
)

+ βK0(R0) (I1(R) − R (β I1(R) + I0(R))) + β I0 (R0) ((1− βR)K1(R) + RK0(R))
)

(K0(R0) (β I0(R) + I1(R)) + I0(R0) (K1(R) − βK0(R)))
(
Il(R0)

(
(l − βR)Kl(R) + RKl−1(R)

)+ Kl(R0)
(
(βR − l)Il(R) + R Il−1(R)

)) .
(A.28)

As β → ∞

B1 → − (RKl (R0) (I1(R)K0 (R0) + I0 (R0) K1(R)) − σ Kl (R0))

R (I0 (R0) K0(R) − I0(R)K0 (R0)) (Il (R0) Kl(R) − Il(R)Kl (R0))
, (A.29)

B2 → −
(
σ Il (R0) − R Il (R0) (I1(R)K0 (R0) + I0 (R0) K1(R))

)
R (I0 (R0) K0(R) − I0(R)K0 (R0)) (Il (R0) Kl(R) − Il(R)Kl (R0))

. (A.30)

The nutrient σ on � is given by

(σ )� =
(
A1 I0 (r) + A2K0(r) + (B1 Il (r) + B2Kl(r))δe

ilθ
)

�

= A1 I0 (R) + A2K0(R) + (A1 I1 (R) − A2K1(R) + B1 Il(R) + B2Kl(R)) δeilθ . (A.31)

The normal derivative of σ on � is given by(
∂σ

∂n

)
�

=
(

∂σ

∂r

)
�

=
((

A1 I0(r) + A2K0(r) + (B1 Il(r) + B2Kl(r))δe
ilθ
)
r

)
�

=
(
A1 I1 (r) − A2K1(r) +

(
B1

(
Il−1 (r) − l

r
Il (r)

)
− B2

(
Kl−1 (r) + l

r
Kl (r)

))
δeilθ

)
�

= A1 I1 (R) − A2K1(R)

+
(
A1

(
I0(R) − I1(R)

R

)
+ A2

(
K0(R) + K1(R)

R

)
+B1

(
Il−1(R) − l

Il(R)

R

)
− B2

(
Kl−1(R) + l

Kl(R)

R

))
δeilθ . (A.32)

Similarly we seek a solution of Laplace equation on the perturbed circle given by Eq. (A.4). It is sufficient to consider the 
expression

p = C1 + C2 ln r + δeilθ
(
D1r

l + D2

rl

)
. (A.33)

For the perturbed circle defined by Eq. (A.4), κ is given by

κ = 1

R

(
1+ l2 − 1

R
δeilθ

)
. (A.34)

On the interface we obtain

(p)� = C1 + C2 ln R + δeilθ
(
C2

R
+ D1R

l + D2

Rl

)
=G−1(κ)� + (P− χσ ) (σ )� −PA (x · x)�
4
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=G−1 1

R
− PA

4
R2 + (P− χσ ) (A1 I0(R) + A2K0(R))

+
(
G−1 l

2 − 1

R2
− PA

2
R + (P− χσ ) (A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R))

)
δeilθ .

It is straightforward to derive that

C1 + C2 ln R =G−1 1

R
− PA

4
R2 + (P− χσ ) (A1 I0(R) + A2K0(R)) , (A.35)

C2

R
+ D1R

l + D2

Rl
=G−1 l

2 − 1

R2
− PA

2
R + (P− χσ ) (A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R)) . (A.36)

The normal derivative of p is given by(
∂p

∂n

)
�0

=
(

∂p

∂r

)
�0

= C2

R0
+ δeilθ l

(
D1R

l−1
0 − D2

Rl+1
0

)

=P
(

∂σ

∂n0

)
�0

−PA (n0 · x)�0

2

=P
(
A1 I1 (R0) − A2K1 (R0) +

(
B1

(
Il−1 (R0) − l

R
Il (R0)

)
− B2

(
Kl−1 (R0) + l

R
Kl (R0)

))
δeilθ

)
− PA

2
R0

=P
(
A1 I1 (R0) − A2K1 (R0) + (B1 Il−1 (R0) − B2Kl−1 (R0)

)
δeilθ

)
− PA

2
R0,

where we have used Eq. (A.24).
Then it is straightforward to derive that

C2

R0
=P (A1 I1 (R0) − A2K1 (R0)) − PA

2
R0, (A.37)

l

(
D1R

l−1
0 − D2

Rl+1
0

)
=P (B1 Il−1 (R0) − B2Kl−1 (R0)

)
. (A.38)

Now solving C1, C2 by Eqs. (A.35), (A.37), we have

C1 =P (A1 (I0(R) − R0 ln(R)I1 (R0)) + A2 (K0(R) + R0 ln(R)K1 (R0))) − χσ (A1 I0(R) + A2K0(R))

+ PA
2

(
R2
0 ln (R) − R2

2

)
+G−1 1

R
,

C2 =P (A1 I1 (R0) − A2K1 (R0)) R0 − PA
2

R2
0.

Next, solving D1, D2 by Eqs. (A.36), (A.38), we have

D1 = P
R2l + R2l

0

(
Rl (A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R)) − R0R

l−1 (A1 I1 (R0) − A2K1 (R0))

+ Rl+1
0

l

(
B1 Il−1 (R0) − B2Kl−1 (R0)

))
− χσ

R2l + R2l
0

(
Rl (A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R)) − R0R

l−1 (A1 I1 (R0) − A2K1 (R0))
)

+ Rl

R2l + R2l
0

(
PAR2

0

2R
− PAR

2
+G−1 l

2 − 1

R2

)
, (A.39)

D2 = P
R2l + R2l

(
RlR2l

0

(
A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R) − R0

R
(A1 I1 (R0) − A2K1 (R0))

)

0
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− R2l Rl+1
0

l

(
B1 Il−1 (R0) − B2Kl−1 (R0)

))
(A.40)

− χσ

R2l + R2l
0

(
RlR2l

0

(
A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R) − R0

R
(A1 I1 (R0) − A2K1 (R0))

))

+ RlR2l
0

R2l + R2l
0

(
PAR2

0

2R
− PAR

2
+G−1 l

2 − 1

R2

)
. (A.41)

Thus

p =P
(
A1

(
I0(R) + I1 (R0) R0 ln

( r

R

))
+ A2

(
K0(R) − K1 (R0) R0 ln

( r

R

)))
− χσ (A1 I0(R) + A2K0(R)) − PA

2

(
R2
0 ln
( r

R

)
+ R2

2

)
+ G

−1

R

+ δeilθ

⎛⎜⎝P
⎛⎜⎝(A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R) − (A1 I1 (R0) − A2K1 (R0))

R0

R

) (Rr)l + (R0R)l
(

R0
r

)l
R2l + R2l

0

+ R0

l

(
B1 Il−1 (R0) − B2Kl−1 (R0)

) (R0r)l − R2l
(

R0
r

)l
R2l + R2l

0

⎞⎟⎠

− χσ

(
A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R) − (A1 I1(R0) − A2K1(R0))

R0

R

) (R0r)l − R2l
(

R0
r

)l
R2l + R2l

0

+
(
PAR2

0

2R
− PAR

2
+G−1 l

2 − 1

R2

)
(Rr)l + (R0R)l

(
R0
r

)l
R2l + R2l

0

⎞⎟⎠ .

And (
∂p

∂n

)
�

=
(
P (A1 I1 (R0) − A2K1 (R0)) − PAR0

2

)
R0

R

+ δeilθ
(
P
(

−(A1 I1 (R0) − A2K1 (R0))
R0

R2

+
(
A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R) − (A1 I1 (R0) − A2K1 (R0))

R0

R

)
R2l − R2l

0

R2l + R2l
0

l

R

+ 2
(
B1 Il−1 (R0) − B2Kl−1 (R0)

) RlRl
0

R2l + R2l
0

R0

R

)

− χσ

(
A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R) − (A1 I1 (R0) − A2K1 (R0))

R0

R

)
R2l − R2l

0

R2l + R2l
0

l

R

+PA
2

(
R0

R

)2

+
(
PAR2

0

2R
− PAR

2
+G−1 l

2 − 1

R2

)
R2l − R2l

0

R2l + R2l
0

l

R

)
.

(A.42)

Note that

n · (x)� = r + O
(
δ2
)

= R + δeilθ + O
(
δ2
)

. (A.43)

Combining Eqs. (A.31), (A.42) and (A.43), we obtain

V =dR

dt
+ dδ

dt
eilθ

= −
(

∂p
)

−P
(
A

n · (x)� − β(1 − (σ )�)

)

∂n � 2
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= P
(

β (1− A1 I0(R) − A2K0(R)) − A
2

R2 − R2
0

R

)
−P (A1 I1 (R0) − A2K1 (R0))

R0

R

+ δeilθ
(
PA
2

(
R2 − R2

0

R2

R2l − R2l
0

R2l + R2l
0

l − R2 + R2
0

R2

)
−G−1 l

(
l2 − 1

)
R3

R2l − R2l
0

R2l + R2l
0

−Pβ (A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R)) +P
(

(A1 I1 (R0) − A2K1 (R0))
R0

R2

−
(
A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R) − (A1 I1 (R0) − A2K1 (R0))

R0

R

)
R2l − R2l

0

R2l + R2l
0

l

R

−2
(
B1 Il−1 (R0) − B2Kl−1 (R0)

) RlRl
0

R2l + R2l
0

R0

R

)

−χσ

(
A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R) − (A1 I1 (R0) − A2K1 (R0))

R0

R

)
R2l − R2l

0

R2l + R2l
0

l

R

)
.

Equating coefficients of like harmonics, we obtain

dR

dt
=P

(
β (1− A1 I0(R) − A2K0(R)) − A

2

R2 − R2
0

R

)
−P (A1 I1 (R0) − A2K1 (R0))

R0

R
, (A.44)

or equivalently, simplifying by Eq. (A.13), we have

dR

dt
=P

(
A1 I1(R) − A2K1(R) − R0

R
(A1 I1(R0) − A2K1(R0))

)
︸ ︷︷ ︸

Proliferation

− PA
2

R2 − R2
0

R︸ ︷︷ ︸
Apoptosis

, (A.45)

R−1 dR

dt
= P

R
(A1 I1(R) − A2K1(R)) − PA

2

(
1−

(
R0

R

)2
)

−P (A1 I1 (R0) − A2K1 (R0))
R0

R2
. (A.46)

O (δ) terms

δ−1 dδ

dt
=PA

2

(
R2 − R2

0

R2

R2l − R2l
0

R2l + R2l
0

l − R2 + R2
0

R2

)
−G−1 l

(
l2 − 1

)
R3

R2l − R2l
0

R2l + R2l
0

−Pβ (A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R)) +P
(

(A1 I1 (R0) − A2K1 (R0))
R0

R2

−
(

(A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R)) − (A1 I1 (R0) − A2K1 (R0))
R0

R

)
R2l − R2l

0

R2l + R2l
0

l

R

− 2
(
B1 Il−1 (R0) − B2Kl−1 (R0)

) RlRl
0

R2l + R2l
0

R0

R

)

− χσ

(
(A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R)) − (A1 I1 (R0) − A2K1 (R0))

R0

R

)
R2l − R2l

0

R2l + R2l
0

l

R
. (A.47)

The equation of shape perturbation is given by(
δ

R

)−1 d

dt

(
δ

R

)
= δ−1 dδ

dt
− R−1 dR

dt

=

Apoptosis︷ ︸︸ ︷
PA

((
1−

(
R0

R

)2
)(

1− 2R2l
0

R2l + R2l

)
l

2
−
(
R0

R

)2
)

−

Cell-cell adhesion︷ ︸︸ ︷
G−1 l

(
l2 − 1

)
R3

(
1− 2R2l

0

R2l + R2l

)

0 0
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−

Angiogenesis︷ ︸︸ ︷
Pβ

(
1

R
+ A1

(
I1(R) − I0(R)

R

)
− A2

(
K1(R) + K0(R)

R

)
+ B1 Il(R) + B2Kl(R)

)

+

Chemotaxis︷ ︸︸ ︷
χσ

(
A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R) − (A1 I1 (R0) − A2K1 (R0))

R0

R

)(
1− 2R2l

0

R2l + R2l
0

)
l

R

+

Proliferation︷ ︸︸ ︷
P
(

(A1 I1 (R0) − A2K1 (R0))
R0

R2

(
2+ l

(
1− 2R2l

0

R2l + R2l
0

))
− 2

(
B1 Il−1 (R0) − B2Kl−1 (R0)

) RlRl
0

R2l + R2l
0

R0

R

)

−

Proliferation︷ ︸︸ ︷
P
(

(A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R))

(
1− 2R2l

0

R2l + R2l
0

)
l

R

)
. (A.48)

The apoptosis parameter Ac as a function of R such that d
dt

(
δ
R

)= 0 is given by

Ac =

⎛⎜⎜⎜⎜⎝
Cell-cell adhesion︷ ︸︸ ︷

G−1 l
(
l2 − 1

)
PR3

(
1− 2R2l

0

R2l + R2l
0

)

+

Angiogenesis︷ ︸︸ ︷
β

(
1

R
+ A1

(
I1(R) − I0(R)

R

)
− A2

(
K1(R) + K0(R)

R

)
+ B1 Il(R) + B2Kl(R)

)

−

Chemotaxis to Proliferation︷ ︸︸ ︷
χσ

P

(
A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R) − (A1 I1 (R0) − A2K1 (R0))

R0

R

)(
1− 2R2l

0

R2l + R2l
0

)
l

R

− (A1 I1(R0) − A2K1(R0)
R0

R2

(
2+ l

(
1− 2R2l

0

R2l + R2l
0

))

+ (A1 I1(R) − A2K1(R) + B1 Il(R) + B2Kl(R))

(
1− 2R2l

0

R2l + R2l
0

)
l

R

+2
(
B1 Il−1(R0) − B2Kl−1(R0)

) RlRl
0

R2l + R2l
0

R0

R

)

/

((
1−

(
R0

R

)2
)(

1− 2R2l
0

R2l + R2l
0

)
l

2
−
(
R0

R

)2
)

.

Appendix B. The evaluation of the boundary integrals

With the integral formulation above, we assume interface curves � and �∞ are analytic and given by 
{
x(α, t) =

(x(α, t), y(α, t) : 0 ≤ α ≤ 2π
}
, where x is 2π -periodic in the parametrization α. The unit tangent and normal (outward) 

vectors can be calculated as s = (xα, yα)/sα , n = (yα, −xα)/sα , where the local variation of the arclength sα =√x2α + y2α . 
Subscripts refer to partial differentiation. We track the interfaces � and �∞ by introducing N marker points to discretize 
the planar curves, parametrized by α j = jh, h = 2π

N , N is a power of 2. Here we focus on the numerical evaluation of 
integrals following [44,50,48]. A rigorous convergence and error analysis of the boundary integral method for a simplified 
tumor problem can be found in [51].

Computation of the single-layer potential type integral In Eqs. (35) and (42), the single-layer potential type integrals con-
tain the Green functions with a logarithmic singularity at r = 0. They can be rewritten in the following form under the 
parametrization α
28
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∫
�

�(α,α′)φ(α′)sα(α′)dα′, (B.1)

where � are the Green functions, which can be G or � from Eqs. (28) or (37) and � may be either �(t) or �0. We may 
decompose the Green functions as below

�(α,α′) = − 1

2π
ln r = − 1

2π

(
ln2

∣∣∣∣sin α − α′

2

∣∣∣∣+ [ln r − ln2

∣∣∣∣sin α − α′

2

∣∣∣∣]) , (B.2)

G(α,α′) = 1

2π
K0(r) = − 1

2π

(
I0(r) ln2

∣∣∣∣sin α − α′

2

∣∣∣∣+ [−K0(r) − I0(r) ln 2

∣∣∣∣sin α − α′

2

∣∣∣∣]) , (B.3)

where I0 is a modified Bessel function of the first kind, r = |x(α) − x′(α′)|. The square brackets on the right-hand side of 
Eqs. (B.2), (B.3) have removable singularity at α = α′ , since r = sα

∣∣α − α′∣∣√1+ O(α − α′) = sα
∣∣α − α′∣∣ (1 + O(α − α′)) for 

α ≈ α′ , where O(α − α′) denotes a smooth function that vanishes as α → α′ , and since K0 has the expansion

K0(z) = −
(
log

z

2
+ C

)
I0(z) + �∞

n=1
ψ(n)

(n!)2
( z
2

)2n
. (B.4)

Thus, for an analytic and 2π -periodic function f (α, α′), a standard trapezoidal rule or alternating point rule can be used to 
evaluate the integral

2π∫
0

f (α,α′) ln r

2
∣∣∣sin α−α′

2

∣∣∣dα′. (B.5)

The remaining terms on the right-hand side of Eqs. (B.2), (B.3) have logarithmic singularity and can be evaluated through 
the following spectrally accurate quadrature [52]

2π∫
0

f (αi,α
′) ln 2

∣∣∣∣sin αi − α′

2

∣∣∣∣dα′ ≈ �2m−1
j=0 q| j−i| f (αi,α j), (B.6)

where m = N
2 , αi = π i

m for i = 0, 1, ..., 2m − 1, and weight coefficients

q j = −π

m
�m−1

k=1
1

k
cos

kjπ

m
− (−1) jπ

2m2
, for j = 0,1, ...,2m − 1. (B.7)

Computation of the double-layer potential-type integral In Eqs. (35) and (42), the double-layer potential type integrals contain 
the Green functions with singularity at r = 0. They can be rewritten as in the following form under the parametrization α∫

�

∂�(α,α′)
∂n(α′)

φ(α′)sα(α′)dα′, (B.8)

where � are the Green functions G or � from Eqs. (28) or (37) and � may be either �(t) or �0. Further, in Eq. (42),

∂�(α,α′)
∂n(α′)

sα(α′) = h(α,α′)1
r
, (B.9)

where the auxiliary function h(α, α′) = (x(α)−x(α′))·n(α′)sα(α′)
2πr with r = ∣∣x(α) − x(α′)

∣∣. Note that h(α, α′) ∼ O(α − α′). Since 
∂�
∂n has no logarithmic singularity, we may simply use the alternating point rule to evaluate it. For ∂G

∂n in Eq. (35), we 
decompose it as below

∂G(α,α′)
∂n(α′)

sα(α′) = h(α,α′)K1(r) = g1(α,α′) ln 2

∣∣∣∣sin α − α′

2

∣∣∣∣+ g2(α,α′), (B.10)

where g1(α, α′) and g2(α, α′) are analytic and 2π -periodic functions with

g1(α,α′) = h(α,α′)I1(r), (B.11)

g2(α,α′) = h(α,α′)
[
K1(r) − I1(r) ln 2

∣∣∣∣sin α − α′

2

∣∣∣∣] , (B.12)

where we have used the fact
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d

dr
K0(r) = −K1(r). (B.13)

Since K1 has the expansion

K1(z) = 1

z
+
(
log

z

2
+ C

)
I1(z) − 1

2

∞∑
n=0

ψ(n + 1) + ψ(n)

n!(n + 1)!
( z
2

)2n+1
, (B.14)

the square bracket on the right-hand side of Eq. (B.12) also has removable singularity at α = α′ thus the integral involving 
g2(α, α′) can be evaluated by a standard trapezoidal rule or alternating point rule. Note that

g2(α,α) = h(α,α)

r
= 1

4π

xα yαα − xαα yα

x2α + y2α
. (B.15)

The first term on the right-hand side of Eq. (B.10) is still singular and evaluated through the quadrature given in Eqs. (B.6)
and (B.7).
To summarize, using Nyström discretization with the Kress quadrature rule described above, we reduce the boundary inte-
gral Eqs. (35) and (42) to two dense linear systems with the unknowns as the discretization of p, ∂σ

∂n0
on �0 and σ , ∂p

∂n on 
�(t), which can be solved using an iterative solver, e.g., GMRES [53].

Appendix C. The evolution of the interface

As indicated by [45], the curvature-driven motion introduces high-order derivatives, both non-local and nonlinear, into 
the dynamics through the Laplace-Young condition at the interface. Explicit time integration methods thus suffer from 
severe stability constraints and implicit methods are difficult to apply since the stiffness enters nonlinearly. Hou et al. 
resolved these difficulties by adopting the θ − L formulation and the small-scale decomposition (SSD), which we apply here.

θ − L formulation This formulation helps to circumvent the problem of point clustering. Consider a point x(α, t) =
(x(α, t), y(α, t)) ∈ �(t). Denote the unit tangent and normal (outward) vectors as ŝ = (xα, yα)/sα and n̂ = (yα, −xα)/sα , 
the normal velocity and tangent velocity by V (α, t) = u · n̂ and T (α, t) = u · ŝ, respectively, where u = xt = V n̂ + T ŝ gives 
the motion of �(t). The tangent angle that the planar curve �(t) forms with the horizontal axis at x, called θ , satisfies 
θ = tan−1 yα

xα
. The length of one period of the curve is L(t) = ∫ 2π

0 sαdα, where sα , the derivative of the arclength, satisfies 
s2α = x2α + y2α . Differentiating these two equations in time, we obtain the following evolution equations:

θt = κT − Vs = 1

sα
(θαT − Vα), (C.1)

sαt = (Ts + κV )sα = Tα + θαV . (C.2)

Instead of using the (x, y) coordinates, (L, θ) becomes the dynamical variables. The unit tangent and normal vectors become 
ŝ = (cos θ, sin θ), n̂ = (sin θ, − cos θ).

The normal velocity V is calculated using Eq. (26). The tangent velocity T is chosen (independent of the morphology of 
the interface) such that the marker points are equally spaced in arclength to prevent point clustering:

T (α, t) = α

2π

2π∫
0

θα′V ′dα′ −
α∫

0

θα′V ′dα′. (C.3)

It follows that sα is independent of α thus is everywhere equal to its mean:

sα = 1

2π

2π∫
0

sα(α, t)dα = L(t)

2π
. (C.4)

The procedure for obtaining the initial equal arclength parametrization is presented in “Appendix B” of [54]. The idea is to 
solve the nonlinear equation

α j∫
0

sβdβ = j

N
L (C.5)

for α j using Newton’s method and evaluate the equal arclength marker points x(α j) by interpolation in Fourier space. We 
may recover the interface by simply integrating:

xα = xssα = L(t)
(cos θ(α, t), sin θ(α, t)). (C.6)
2π
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Small scale decomposition (SSD) The idea of the small scale decomposition (SSD) is to extract the dominant part of the 
equations at small spatial scales [45]. To remove the stiffness, we use SSD in our problem and develop an explicit, non-stiff 
time integration algorithm. In Eqs. (35) and (42), based on the analysis of the single-layer- and double-layer- type terms, 
the only singularity in the integrands comes from the logarithmic kernel. Following [45] and noticing the curvature term in 
Eq. (23), one can show that at small spatial scales,

V (α, t) ∼ 1

s2α
H[θαα], (C.7)

where H(ξ) = 1
2π

∫ 2π
0 ξ ′ cot α−α′

2 dα′ is the Hilbert transform for a 2π -periodic function ξ .
We rewrite Eq. (C.1),

θt = 1

s3α
H[θααα] + N(α, t), (C.8)

where the Hilbert transform term is the dominating high-order term at small spatial scales, and N = (κT −Vs) − 1

s3α
H[θααα]

contains other lower-order terms in the evolution. This demonstrates that an explicit time-stepping method has the high-

order constraint �t ≤
(

h

sα

)3

where �t and h are the time-step and spatial grid size, respectively. This has been demon-

strated numerically in the seminal work [45] for a Hele-Shaw problem. For the tumor growth problem, the semi-implicit 
time-stepping scheme (see Eq. (C.8)) requires �t = O (h) instead of explicit schemes which would require �t = O (h3).

Appendix D. Semi-implicit time-stepping scheme

Taking the Fourier transform of Eq. (C.8), we get

θ̂t = −|k|3
s3α

θ̂(k, t) + N̂(k, t). (D.1)

We solve Eq. (D.1) using the second order accurate linear propagator method in the Adams-Bashforth form [45] in Fourier 
space and apply the inverse Fourier transform to recover θ . Specifically, we discretize Eq. (D.1) as

θ̂n+1(k) = ek(tn, tn+1)θ̂
n(k) + �t

2
(3ek(tn, tn+1)N̂

n(k) − ek(tn−1, tn+1)N̂
n−1(k), (D.2)

where the superscript n denotes the numerical solutions at t = tn and the integrating factor

ek(t1, t2) = exp

⎛⎝−|k|3
t2∫

t1

dt

s3α(t)

⎞⎠ . (D.3)

Note that by setting the integrating factors in Eq. (D.2) to 1, we recover the Adams-Bashforth explicit time-stepping method. 
The integrating factors in Eq. (D.2) can be evaluated simply using the trapezoidal rule,

tn+1∫
tn

dt

s3α(t)
≈ �t

2

(
1

(snα)3
+ 1

(sn+1
α )3

)
,

tn+1∫
tn−1

dt

s3α(t)
≈ �t

(
1

2(sn−1
α )3

+ 1

(snα)3
+ 1

2(sn+1
α )3

)
. (D.4)

To compute the arclength sα , Eq. (C.2) is discretized using the explicit second-order Adams-Bashforth method [45],

sn+1
α = snα + �t

2
(3Mn − Mn−1), (D.5)

where M is calculated using

M = 1

2π

2π∫
V (α, t)θαdα. (D.6)
0
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Note that the second order linear propagator and Adams-Bashforth methods are multi-step method and require two 
previous time steps. The first time step is realized using an explicit Euler method for s1α and a first-order linear propagator 
of a similar form for θ̂1.

To reconstruct the tumor-host interface (x(α, tn+1), y(α, tn+1)) from the updated θn+1(α) and sn+1
α , we first update a 

reference point (x(0, tn+1), y(0, tn+1) using a second-order explicit Adams-Bashforth method to discretize the equation of 
motion xt = V n̂ with the tangential part dropped since it does not change the morphology:

(x(0, tn+1), y(0, tn+1)) = (x(0, tn), y(0, tn)) + �t

2

(
3V (0, tn)n̂(0, tn) − V (0, tn−1)n̂(0, tn−1)

)
. (D.7)

Once we update the reference point, we obtain the configuration of the interface from the θn+1(α) and sn+1
α by integrating 

Eq. (C.6) following [45]:

x(α, tn+1) = x(0, tn+1) + sn+1
α

⎛⎝ α∫
0

cos(θn+1(α′))dα′ − α

2π

2π∫
0

cos(θn+1(α′))dα′
⎞⎠ ,

y(α, tn+1) = y(0, tn+1) + sn+1
α

⎛⎝ α∫
0

sin(θn+1(α′))dα′ − α

2π

2π∫
0

sin(θn+1(α′))dα′
⎞⎠ ,

where the indefinite integration is performed using the discrete Fourier transform.
We use a 25th order Fourier filter to damp the highest nonphysical mode and suppress the aliasing error [45]. We also 

use Krasny filtering [55] to prevent the accumulation of round-off errors during the computation.
We solve first the nutrient field σ then the pressure field p. Next we compute the normal velocity V and update the 

interface �(t) and repeat this procedure.
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