ZePHyR: Zero-shot Pose Hypothesis Rating

Brian Okorn*, Qiao Gu*, Martial Hebert and David Held

Abstract—Pose estimation is a basic module in many robot
manipulation pipelines. Estimating the pose of objects in the
environment can be useful for grasping, motion planning, or
manipulation. However, current state-of-the-art methods for
pose estimation either rely on large annotated training sets
or simulated data. Further, the long training times for these
methods prohibit quick interaction with novel objects. To
address these issues, we introduce a novel method for zero-
shot object pose estimation in clutter. Our approach uses a
hypothesis generation and scoring framework, with a focus
on learning a scoring function that generalizes to objects not
used for training. We achieve zero-shot generalization by rating
hypotheses as a function of unordered point differences. We
evaluate our method on challenging datasets with both textured
and untextured objects in cluttered scenes and demonstrate that
our method significantly outperforms previous methods on this
task. We also demonstrate how our system can be used by
quickly scanning and building a model of a novel object, which
can immediately be used by our method for pose estimation.
Our work allows users to estimate the pose of novel objects
without requiring any retraining. Additional information can
be found on our website https://bokorn.github.io/zephyr/

I. INTRODUCTION

6D pose describes the position and orientation of an
object, defined in a reference frame relative to a predefined
model of the object. An object’s 6D pose fully describes
the state of a static rigid object and, as such, is commonly
used as a representation for planning [1], [2]. A robot can
use an estimate of an object’s pose to perform complex
manipulation interactions with the object [3], [4], [5], [6].

Current state-of-the-art methods for object pose estimation
train a new model for each object they are being evaluated
on [7], [8], [9]. This requires a large amount of annotated
training data, either produced by capturing and annotating
large datasets or through rendering the object in synthetically
generated scenes. For example, the YCB-Video dataset [7]
contains 133,827 human-annotated images with roughly
25,000 images per object. Although this dataset has enabled
the training of powerful deep learning methods [7], [8], curat-
ing such a human-labeled dataset (including both capturing a
diverse dataset and labeling the data) for each new object that
a robot must interact with is cambersome. Methods that rely
on purely simulated data [10], [11], [12] avoid this limitation
but must instead contend with the sim2real gap between
the synthetic data and real sensor observations. Improved
rendering [13] and domain randomization techniques [14]
have been suggested to alleviate this gap, but ensuring

* indicates equal contribution.

B. Okorn, Q. Gu, M. Hebert and D. Held are with the Robotics Institute,
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213.
(bokorn@andrew.cmu.edu, giaog@andrew.cmu.edu,
hebert@cs.cmu.edu, dheld@andrew.cmu.edu)

[==

Fig. 1: Pose hypotheses scored using Zero-shot Pose Hy-
pothesis Rating on novel drill object, reconstructed at test
time. The highest scoring pose is rendered in color. Poses
are outlined in color corresponding to score, with highly-
rated poses in red and to lower ones in

that the simulated data accurately represents the variations
observed in the real world continues to be an open problem.

Regardless of how this data is obtained, training new
networks has a time and space cost. This training can take
many hours, which prevents robots using such systems from
quickly being able to interact with new objects. Additionally,
new network weights are trained for each new object, which
presents a difficulty for memory-constrained robot systems.
These constraints do not scale well in cases where robots
need to interact with many different types of objects.

One approach to mitigate these issues is to use a non-
learned geometry-based method [15], [16]. These methods,
however, do not typically capture visual texture well, and
they rely on hard-coded, rather than learned, invariances,
which limits the potential accuracy of the system (based on
our experiments in Section [V-D). A few recent learning-
based approaches have attempted to perform zero-shot object
pose estimation [17], [18] but these methods require instance
segmentation masks to be provided as input, which limits
their use in a “zero-shot” system, as such masks are typically
trained per-object.

We seek to remove these limitations by developing a novel
learning-based method for zero-shot object pose estimation
that can handle both textured and untextured objects in
cluttered scenes and does not require object masks as input.
Our method uses the paradigm of pose hypothesis generation
and evaluation: given a scene, a large number of candidate
poses consistent with the observation are generated. The
fitness of each hypothesis is then evaluated and the best-
fit candidate is selected. Such an approach requires the

https://bokorn.github.io/zephyr/

hypothesis rating function to give appropriate weight to
the features that most correlate with the correct pose. The
variation between sensor data and the object model, caused
by sensor noise or lighting changes, as well as partial occlu-
sions, can make designing this scoring function challenging.
Past approaches to hypothesis scoring have used voting over
hypotheses or feature matching [19], [20], [15]; in contrast,
this paper proposes a scoring function that learns to compare
the observed images and rendered model points. Our learned
scoring function demonstrates a significant improvement on
zero-shot object pose estimation over a wide set of objects
and environmental variations.

The key insight of our method is to use a learned scoring
function that compares the sensor observation to a sparse
rendering of each candidate pose hypothesis. This scoring
function receives as input an unordered set of point differ-
ences, shown in Fig. 2l which we show is crucial to perform
zero-shot generalization to novel objects not seen in the
training set. Our method is trained over a disparate set of
objects and then evaluated on novel objects not included in
the training set.

We demonstrate that our Zero-shot Pose Hypothesis Rat-
ing method (ZePHyR) works on objects in clutter without
requiring object masks as input, unlike past zero-shot meth-
ods [18], [17]. ZePHyR handles both untextured objects as
well as objects with significant visual texture, not seen at
training time. Therefore, ZePHyR achieves the goal of zero-
shot object pose estimation mentioned earlier:

e We require no new human annotations or large-scale

synthetic data generation to interact with novel objects.

« We require no retraining for novel objects.

o ZePHyR uses only a single set of network weights,
rather than requiring new weights for each unique
object, reducing the memory constraints.

We evaluate our method on YCB-Video and LineMOD-
Occlusion, two challenging pose estimation datasets. Our
method achieves state-of-the-art results over previous zero-
shot pose estimation methods.

II. RELATED WORK

A. Non-learned Zero-shot Pose Estimation

Zero-shot pose estimation is the task of estimating the
pose of objects not seen at training time. Non-learning based
approaches [21], [22], [23], [24], [25], [26], [27], [28],
[29] are inherently zero-shot, leveraging robust features and
the available object model at test time. Point Pair Features
(PPF) [16], [15], [30], [31], [30], [32] use pairs of oriented
points to generate geometrically consistent pose hypotheses
and select the best hypothesis using voting and clustering.
These are the top-performing zero-shot methods on the BOP
leader board [33], when averaged over all datasets, but
struggle to compete with deep learned methods on the highly
textured YCB dataset due to the methods being exclusively
based on depth.

B. Learned Zero-shot Object Pose Estimation

Several learned methods solve the zero-shot pose estima-
tion problem using class-based pose estimation [34], [35] as

opposed to instance-based pose estimation. These methods
learn a pose estimator capable of generalizing among objects
in the given class, but such methods are not intended to gen-
eralize to novel classes. While this is a step in the direction
of zero-shot pose estimation, it still requires training a new
network for each class.

Pose refinement methods like DeepIM [36] learn to es-
timate the residual pose between the observed data and a
rendered viewpoint and have shown to generalize well to
unseen classes of objects. These methods, however, require
the initial rendered pose to be relatively close to the obser-
vation to produce accurate results, and as such is primarily
used to refine a coarse pose prediction. Our method requires
no such close initialization.

A few recent zero-shot methods use a learned representa-
tion of the object in their pose estimation pipeline [37], [18],
[17]. While these methods have been shown to generalize
across objects, they require a bounding box for the target
object, which is obtained using an object-specific learned
detector (and hence not a zero-shot system) or the ground-
truth bounding box. This requirement is avoided in the
MOPED dataset [17], as there is only a single object in
the scene, which greatly simplifies the task of estimating
the object mask [38]. For the LineMOD-Occlusion dataset,
ground truth object masks are used [17]. Our method does
not require such bounding boxes or masks as input, making
it truly zero-shot.

C. Pose Scoring

There has been some study of learned fitness functions.
Differentiable RANSAC (DSAC) [20] explores learning a
fully differentiable RANSAC algorithm. Specifically, they
study the use of a REINFORCE style loss for scoring
candidate hypotheses. We take inspiration from this work;
however, their method focuses on a different task of camera
localization rather than object pose estimation; as a result,
many important details of our method, such as the input
featurization and network architecture, are significantly dif-
ferent from their approach. Pose Proposal Critic [39] learns
to regress to the reprojection error between a rendered pose
and the observation. They numerically differentiate this error
function as a means of pose refinement. However, they only
evaluate this approach as a pose refinement technique, with
a close initial pose estimate; in contrast, our focus is on
evaluating a large set of pose hypotheses that span the entire
observation space.

III. METHOD
A. Overview

The primary objective of this work is zero-shot object
pose estimation in clutter. To achieve this, we train our pose
estimation method on one set of objects and then evaluate
on a set of novel objects, without requiring any re-training.
This differentiates our work from previous work that requires
real or synthetic training data of the test objects [7], [8]. Our
work additionally differentiates from other zero-shot pose
estimation work [17], [18], [16], in that it operates well
in cluttered scenes, requires no object masks as input, and

Difference function f

Color difference

N w L

Scoring

Network
Geometry difference
o
e
5]
2
: 2
_ | ||
Point difference D; Hypothesis A;

-
Object model M

Pose hypotheses H'

Fig. 2: System Pipeline. Our method first projects the sampled model points M onto the observation I according to a pose
hypothesis h;. Then D; are extracted as the point-wise differences between the observation and the projected model points,
describing the alignment of the pose hypothesis at each projected point. A network takes in D; and regresses to a score s;
for each pose h; which evaluates how well the pose matches the observation.

produces accurate poses for both textured and untextured
objects.

An overview of our method is shown in Figure 2] Given a
set of 6D pose hypotheses, we first project each hypothesis
into the scene. Our method learns to score each hypothesis
by comparing differences in the projected object model point
cloud to the RGB-D observation. For each projected model
point, we extract the color and geometry information from
both the model and the observation and compute the local
differences of the extracted information. This yields a set of
point-differences, one for each projected model point. Each
element in this set encodes the local alignment between the
model and the observation with respect to color and geome-
try. We adopt a point-based network [40], [41] to analyze this
unordered set of point-differences and regress to an overall
score for each pose hypothesis. Focusing on differences as
well as adopting a point-based neighborhood structure helps
us avoid overfitting to object-specific properties from the
training set and allows us to generalize to unseen objects
at test time.

In this work, our primary focus is the learned scoring
function and we use existing methods to generate our initial
pose hypothesis set. While many algorithms could be used
to generate these potential object pose hypotheses [20], [42],
[43], we use a combination of Point Pair Features [15] and
SIFT features [44].

B. Learned Scoring Function

The main goal of our method is to score pose hypotheses
by projecting them into the observed scene and learning to
compare their local geometric and color differences. Suppose
that we have a set of 6D pose hypotheses H = {h;}",
that we wish to evaluate. We represent the object as a point
cloud M = {z;}7_,, sampled from the provided object
mesh model, or obtained from a 3D reconstruction pipeline.
Each point contains both geometric (depth and normal) and

color information drawn from its local region on the object.
Similarly the observation image I contains geometric and
color values from the observation. To evaluate hypothesis h;,
we project each object point x; onto the observation’s image
plane, using the known camera parameters. This projection
gives a point at image coordinates y;; with transformed
point values Z;; (the point depth and normal vector are
transformed; the color of the projected point is unchanged).
For each pose hypothesis, the difference between the pro-
jected values, Z;;, and their corresponding image values,
I(y;j), is computed according to a simple distance function,
dij = f(Zij,I(yij)) (see Section for details).

The set D; = {d;;}7., represents an unordered set of
point differences for pose hypothesis h;, each of which
is associated with a given point xz; in the model and a
location y;; in the observation image. We train a deep
neural network gg(D;) with parameters 6 to analyze this
difference set and regress to a pose fitness score, s;. While
one might assume that a simple hand-designed function for g
would be sufficient, in practice, however, occlusions, lighting
differences and other confounding factors make such simple
methods ineffective. Our learned function can intelligently
combine point differences on multiple parts of the object to
robustly estimate the most likely pose hypothesis.

C. Loss Function

To train this hypothesis scoring function, we adopt the
probabilistic selection loss proposed by DSAC [20], as
it directly optimizes the expected pose error when hy-
potheses are sampled according to the predicted scores.
For each pose hypotheses h; with corresponding true pose
error ¢;, we compute the expected pose error of sam-
pling according to the softmax distribution induced by s;,
L=3",softmaz(s;)e;.

In our experiment, ¢; is defined as the log of the average
point distance (ADD) for non-symmetric objects and its sym-

metric analog (ADD-S) for symmetric ones [7]. Empirically,
we find that the log of this error better dampens the effects
of outliers. More discussion can be found in Section [II-D.2}
At test time, the highest-scoring pose hypothesis is selected.
The inference pipeline is described in Algorithm [T}

Algorithm 1: Hypothesis Scoring Pose Estimation

Compute initial pose hypothesis set H = {h;}7*;
foreach h; in ‘H do
Project all model points according to %; onto the
image plane to get projected model points Z;; at
projected image coordinates y;;;
Get observation points I(y;;);
Compute point differences d; = f(Z:5,1(yi;)):
Score point-differences s; = go({di;}72;);
end
Return hypothesis h;«, where ¢* = arg max; s;;

D. Implementation details

1) Hypothesis Generation: We generate the initial hy-
potheses set using the commercially available Point Pair
Feature software, HALCON 20.05 Progress software [45],
which implements the PPF algorithm described in Drost et
al. [15]. For each observation, we use the top 100 pose
hypotheses generated by PPF. For detecting objects with high
visual texture (e.g. for all objects in YCB-V), we augment
these hypotheses using Dense SIFT feature matching. We
obtain pose hypotheses from these features by aligning the
surface normals and SIFT orientations of pairs of matched
SIFT features; aligning the SIFT orientations and normals
enables a single pair of matched SIFT features to define a
6D pose hypothesis.

2) Network Input: As input to the hypothesis scoring
function, we use very simple geometric and color information
for both the model and observation data. For each point
on the model, we compute its 3D location, surface normal,
and color in HSV space. When projecting each point into
the observation frame, we transform both the normals and
3D coordinates to compute the depth and normal with
respect to the camera. The color data is unaffected by the
projection. Similarly, we compute local surface normals from
the observation, and thus we obtain depth, normal and HSV
color information at each pixel of the observation image.

To create the network inputs d;;, we compute the signed
difference between the projected and observed points for
both depth and color. For surface normals, we use the cosine
of the angle difference between the projected and observed
normals. Additionally, we concatenate the projected image
coordinates, y;;, of the associated image point, normalized
to zero mean and unit variance, as an additional input, to
provide the structural neighborhood information.

3) Network Structure: Our network takes in the set of
point-differences D; = {d;;}J_,; and outputs a single
score, s;, that estimates how well the pose hypothesis h;
matches the observation. Because D); is an unordered set of
point-differences, we use a network architecture designed to

handle unordered sets of points; specifically, we use Point-
Net++ [41]. Our experiments show that the loose neighbor-
hood structure of this architecture enables zero-shot general-
ization to unseen objects. To define the spatial neighborhood
for grouping points in PointNet++’s point set abstraction
layers, we use the normalized image coordinates. We explore
the effect of networks with different neighborhood structures
in Section See the supplementary material for more
experimental details and hyperparameters.

IV. EXPERIMENTS
A. Datasets

We evaluated our method on two of the most popu-
lar datasets in the BOP Challenge [33], the YCB-Video
(YCB-V) dataset [7] and the LineMOD-Occlusion (LM-O)
dataset [9]. In these experiments, we follow the evaluation
protocol set up by the BOP Challenge, with the additional
constraint that our method is not trained on the objects it
is tested on. This allows us to test our ability to perform
zero-shot generalization to novel objects.

YCB-Video dataset (YCB-V) [7] contains 92 RGB-D
video sequences of 21 YCB objects [48] of varying shape
and texture, annotated with 6D poses. This a particularly
challenging dataset for object pose estimation due to its
varying lighting conditions, occlusions, and sensor noise.
We follow the dataset split in [7], and for the evaluation,
we adopt the BOP testing set [33], where 75 images with
higher-quality ground-truth poses from each of 12 test videos
are used. To demonstrate the generalization ability of our
method, one half of the objects are used for training, and
the other half are used for testing. To accommodate the
full dataset, a second network is trained with train and test
objects exchanged, such that each network only sees half
of the objects during training, and no network is trained on
the objects that it will be tested on. Note that we train our
network on the training (seen) objects in the YCB-V training
split and test on the testing (unseen) objects in the testing
split, so not a single test image or object is seen during
training. When evaluating on YCB-V, we use hypotheses
generated by both PPF and SIFT matching to handle the
high degree of visual texture. We also adopt a ICP refinement
step [21] for post-processing.

LineMOD-Occlusion dataset (LM-O) [9] adopted a sin-
gle scene from the test set of the larger LineMOD (LM)
dataset [24] and provides ground-truth 6D pose annotations
for 8 low-textured objects. For training, we used the PBR-
BlenderProc4BOP [49] training images provided by the
BOP challenge. This dataset contains photo-realistic syn-
thetic images of LM objects dropped onto a table, with
randomized background texture and object materials. Our
model is only trained on synthetic images of the 7 objects
that are in the LM dataset but not in the LM-O dataset; we
then evaluate on the LM-O objects, which were not seen
at training time. When evaluating on LM-O, we only use
hypotheses generated by PPF; we find that SIFT hypotheses
are ineffective on this dataset since the objects do not contain
much visual texture.

Zero-Shot Methods Object Specific Methods

Drost [15] | Vidal [16] | Multipath [18] Dzrf)}::{(ygur:) CosyPose [46] | Pix2Pose [47]
YCBV [034 0.450 0.289 0516 0.861 0675
LM-O 0.527 0.581 0.217 0.598 0.714 0.588

TABLE I: AR scores for methods of zero-shot and object specific pose estimation on object pose datasets (higher is better).

B. Metrics

As suggested by the BOP challenge, we report the average
recall (AR) scores as the average of the following three
average-recall pose error metrics: Visible Surface Discrep-
ancy (VSD), Maximum Symmetry-Aware Surface Distance
(MSSD), and Maximum Symmetry-Aware Projection Dis-
tance (MSPD). For a detailed formulation of each metric,
please refer to the supplementary material and [33].

C. Baselines

We compare our method to both zero-shot and object-
specific methods. As we are most concerned with our
performance as compared to other zero-shot methods, we
compare to two variants of Point Pair Features, Drost [15]
and Vidal [16]. An implementation of Drost’s PPF [45] is
used as the hypothesis generation algorithm in our work.
Vidal had until recently been the top-performing method in
the BOP challenge, and demonstrates the peak performance
of PPF-only systems (although their code is not available).
Other recent papers have proposed learning-based methods
for zero-shot pose estimation, namely Multipath Augmented
Autoencoders [18], which we compare against. While this
method has been shown to generalize to unseen objects, the
reported results that we include are a product of training a
single model on the test objects; further, their method utilizes
an object-specific detection network (also trained on the test
objects) [50]. In addition to the zero-shot baselines, we report
the current state of the art in object-specific methods as
CosyPose [46] and Pix2Pose [47]. Both of these methods
train a network on annotated instances of the test objects and
have weights specifically associated with each object. While
we are not attempting to match the performance of these
systems, we report their results to illustrate the still remaining
gap between zero-shot and object-specific methods.

D. Zero-shot Pose Estimation Results

In Table [l we find that our method outperforms all
zero-shot methods, significantly improving over our initial
pose hypotheses produced by Drost and outperforming the
best PPF-only solution in Vidal [16]. We see the largest
improvement on the YCB dataset, where PPF is unable
to fully resolve the pose of the geometrically symmetric
but textually asymmetric objects, seen in failure to match
the cylindrical objects in Figure Our method is able
to leverage both color and geometry, selecting the most
accurate pose hypothesis. Additionally, we find our method
to be comparable to the object-specific results produced by
Pix2Pose [47]. While DeepIM [36] is a local refinement
method, and not directly comparable to ZePHyR, we do
evaluate its performance based on PPF in the supplementary
material.

E. Evaluating Generalization

As we stated previously, in order to ensure our network is
not trained on the test objects we split the objects in YCB-V
into two halves, training a network on each set of objects. We
select via index parity, as it separates the dataset into splits
with roughly equal numbers of symmetric and asymmetric
objects, with “Object Set 1” and “Object Set 2” representing
the set of objects with even and odd object IDs respectively.
To evaluate how well our network generalizes, we compare
our results on unseen objects to the objects each network
was trained on. The full breakdown of each network’s scores
are shown in Table |lI} Although there is some performance
drop on unseen objects, the gap is relatively small, showing
the generalization abilities of our method. The ‘“Zero-Shot”
column of shows the zero-shot performance of each model
on the objects it does not see during training.

Our method trained on
Tested on Set 1 Set 2 Zero-Shot
Object Set 1 0.624 0.543 0.543
Object Set 2 || 0.488 0.496 0.488
All Object 0.557 0.520 0.516

TABLE II: AR scores on YCB-V object subsets.
F. Neighborhood Structure

We explore the effects of different neighborhood structures
on the accuracy and generalization of our method. Our
method uses a PointNet++ [41] architecture that uses a
hierarchical neighborhood structure; we compare this to a
CNN architecture that uses a strict neighborhood structure
and a PointNet-based architecture [40] that uses a global
structure. For the CNN approach, we generate a sparse
difference image using the projected point differences before
passing it to a ResNet18 network [51]. Our PointNet++ ap-
proach uses normalized image coordinates for neighborhood
grouping. The PointNet approach contains the normalized
image coordinates but it does not perform explicit neigh-
borhood grouping. In Table we see that the loose local
neighborhood structure found in PointNet++ outperforms the
global structure of PointNet as well as the strict structure
used in image convolutions. This implies that some neigh-
borhood structure is important for evaluating these sparse
point differences, but a too strict neighborhood hampers both
performance and generalization.

PointNet++ PointNet CNN

On YCB-V dataset (Hierarchical) | (Global) | (Strict)
Seen (Training) Objects 0.624 0.477 0.533
Unseen (Test) Objects 0.488 0.355 0.386
Total 0.557 0.416 0.459

TABLE III: Comparison of the performance of the different
neighborhood structure through network architectures.

Input Image

Original PPF Results

Our Improved Results

Fig. 3: Qualitative results on image from YCB-V dataset showing the improved accuracy of our method.

G. Input Ablations

To determine the relative importance of each of our input
channels, we retrain our networks without each dimension.
We show results on YCB in Table [IV] training on the
“Object Set 1” and testing on “Object Set 2”. Additionally,
this table shows the effects of concatenating observation
and model inputs (“Model without Diff”), as opposed to
computing their difference (as in our method). As can be
seen, using concatenation instead of differencing gives little
change in performance for seen objects, whereas it gives
worse performance for unseen objects. Unsurprisingly, the
color information has the greatest effect on the accuracy of
our system, as it is the most orthogonal to the information
used by our PPF hypotheses.

Model without
Color | Depth | Normal | Coords | Diff
Unseen Objects
(Zero-shot) -18% | -15% -71% -89% | -6.3%
Seen Objects | p400 | 420 | 08% | 1.1% | 2.1%
(Training)

TABLE IV: Percent change in AR scores on YCB Video
dataset caused by removal of each input to our method.

H. Timing analysis

We analyze the inference speed of our method in Table [V}
We separate our method into 5 stages, including generat-
ing pose hypotheses from SIFT feature matching (“SIFT”),
generating pose hypotheses from PPF (“PPF”), computing,
transforming and comparing the observation and model val-
ues for all hypotheses (“Projection”) and inference with our
scoring network (“Scoring”). Note that we only use 100 PPF
hypotheses for LM-O, whereas we use additional 1000 SIFT
hypotheses for YCB-V. We found that the LM-O dataset
required more accurate initial pose hypotheses, requiring
significantly more processing time. To compensate for this,
we evaluate the time-performance trade-off of different sets
of PPF parameters on the LM-O dataset, shown in blue
on Figure 4 Since the LM-O dataset is challenging due
to strong occlusions and limited scales of objects in the
scene, PPF methods [15], [16] need a high sampling rate
to produce reasonable pose estimates. Therefore, increased
speed comes at the cost of performance, but our method
consistently improves the accuracy of the initial hypotheses,
shown in red, at all stages of the curve.

SIFT | PPF | Projection | Scoring | Total
YCB-V || 0.142 | 0.291 0.051 0.135 | 0.619
LM-O 0 2.900 0.014 0.034 | 2.949

TABLE V: Test time spent (sec) in each stage of our pipeline.

0.6 e
I
E 0.5 ,/7 I
«
© 0.4
&
—toig
z ros
0.2 |
0.5 1 15 2 25 3
Time (s)

Fig. 4: Speed accuracy analysis of our method (blue) over
various PPF hypothesis generation hyperparameters on LM-
0. Base PPF accuracy shown in orange.

1. Reconstructed Model Results

To show the effectiveness of our method in robotic sce-
narios, we test our pipeline on newly generated object model
reconstructions. Using fiducial markers [52] and TSDF based
surface reconstruction [53], we build textured mesh model
of a novel drill object. As shown in Figure [I] we are able
to estimate the pose of the target object while in human
hands and while being manipulated by the robot; because
our method is zero-shot, we do not require any retraining
to estimate the pose of new objects such as this one. We
find that these poses, coupled with annotated grasp locations,
allow the robot to perform task specific grasps. See our
video for visualizations of the predicted poses as well as
demonstration of our grasping pipeline.

V. CONCLUSION

We propose a method for zero-shot object pose estimation,
focusing on pose hypothesis scoring. By extracting point
differences between the projected object points and the
observation and imposing a loose neighborhood structure on
these points, we learn a pose scoring function that generalizes
well to novel objects. On the challenging YCB-Video and
LineMOD-Occlusion datasets, our method achieves state-of-
the-art performance for zero-shot object pose estimation in
clutter, evaluated on both textured and untextured objects. We
hope that our method paves the way for roboticists to obtain
accurate pose estimates for novel objects without needing
additional training or data annotation.

VI. ACKNOWLEDGEMENTS

This work was supported by NASA NSTREF, United States
Air Force and DARPA under Contract No. FA8750-18-C-
0092, National Science Foundation under Grant No. IIS-
1849154, and LG Electronics.

[1]

[2]

[3]
[4]
[5]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki,
“Incremental task and motion planning: A constraint-based approach.”
in RSS, 2016.

M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant
hamiltonian optimization for motion planning,” I/RR, 2013.

S.-K. Kim and M. Likhachev, “Planning for grasp selection of partially
occluded objects,” in ICRA, 2016.

G. Thomas, M. Chien, A. Tamar, J. A. Ojea, and P. Abbeel, “Learning
robotic assembly from cad,” in /ICRA, 2018.

C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, “The columbia
grasp database,” in ICRA, 2009.

M. Ciocarlie, K. Hsiao, E. G. Jones, S. Chitta, R. B. Rusu, and
I. A. Sucan, “Towards reliable grasping and manipulation in household
environments,” in Experimental Robotics, 2014.

Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, ‘“Posecnn: A
convolutional neural network for 6d object pose estimation in cluttered
scenes,” RSS, 2018.

C. Wang, D. Xu, Y. Zhu, R. Martin-Martin, C. Lu, L. Fei-Fei, and
S. Savarese, “Densefusion: 6d object pose estimation by iterative dense
fusion,” in CVPR, 2019, pp. 3343-3352.

E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and
C. Rother, “Learning 6d object pose estimation using 3d object
coordinates,” in ECCV, Cham, 2014, pp. 536-551.

J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birch-
field, “Deep object pose estimation for semantic robotic grasping of
household objects,” arXiv preprint arXiv:1809.10790, 2018.

X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox,
“Poserbpf: A rao-blackwellized particle filter for 6d object pose
estimation,” in RSS, 2019.

M. Sundermeyer, Z.-C. Marton, M. Durner, and R. Triebel, “Aug-
mented autoencoders: Implicit 3d orientation learning for 6d object
detection,” IJCV, vol. 128, no. 3, pp. 714-729, 2020.

J. Tremblay, T. To, and S. Birchfield, “Falling things: A synthetic
dataset for 3d object detection and pose estimation,” in CVPRW, 2018,
pp. 2038-2041.

D. Dwibedi, I. Misra, and M. Hebert, “Cut, paste and learn: Sur-
prisingly easy synthesis for instance detection,” in ICCV, 2017, pp.
1301-1310.

B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match
locally: Efficient and robust 3d object recognition,” in CVPR, 2010,
pp. 998-1005.

J. Vidal, C.-Y. Lin, X. Llad6, and R. Marti, “A method for 6d pose
estimation of free-form rigid objects using point pair features on range
data,” Sensors, vol. 18, no. 8, p. 2678, 2018.

K. Park, A. Mousavian, Y. Xiang, and D. Fox, “Latentfusion: End-to-
end differentiable reconstruction and rendering for unseen object pose
estimation,” in CVPR, 2020.

M. Sundermeyer, M. Durner, E. Y. Puang, Z.-C. Marton, N. Vaskevi-
cius, K. O. Arras, and R. Triebel, “Multi-path learning for object pose
estimation across domains,” in CVPR, June 2020.

M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381-395, 1981.

E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel,
S. Gumbhold, and C. Rother, “Dsac-differentiable ransac for camera
localization,” in CVPR, 2017, pp. 6684—-6692.

P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,”
TPAMI, vol. 14, no. 2, pp. 239-256, 1992.

M. Ulrich, C. Wiedemann, and C. Steger, “Combining scale-space and
similarity-based aspect graphs for fast 3d object recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
no. 10, pp. 1902-1914, 2012.

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua,
and V. Lepetit, “Gradient response maps for real-time detection
of textureless objects,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 34, no. 5, pp. 876-888, 2012.

S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,
and N. Navab, “Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes,” in ACCV, Berlin,
Heidelberg, 2013, pp. 548-562.

E. Mufioz, Y. Konishi, V. Murino, and A. Del Bue, “Fast 6d pose
estimation for texture-less objects from a single rgb image,” in 2016
IEEE International Conference on Robotics and Automation (ICRA),
2016, pp. 5623-5630.

J. J. Lim, A. Khosla, and A. Torralba, “Fpm: Fine pose parts-based
model with 3d cad models,” in Computer Vision — ECCV 2014,
D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham: Springer
International Publishing, 2014, pp. 478-493.

E. Muiloz, Y. Konishi, C. Beltran, V. Murino, and A. Del Bue, “Fast
6d pose from a single rgb image using cascaded forests templates,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2016, pp. 4062—4069.

Z. Guo, Z. Chai, C. Liu, and Z. Xiong, “A fast global method combined
with local features for 6d object pose estimation,” in 2019 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM),
2019, pp. 1-6.

H. Yu, Q. Fu, Z. Yang, L. Tan, W. Sun, and M. Sun, “Robust robot
pose estimation for challenging scenes with an rgb-d camera,” IEEE
Sensors Journal, vol. 19, no. 6, pp. 2217-2229, 2019.

B. Drost and S. Ilic, “3d object detection and localization using mul-
timodal point pair features,” in 2012 Second International Conference
on 3D Imaging, Modeling, Processing, Visualization & Transmission.
IEEE, 2012, pp. 9-16.

E. Kim and G. Medioni, “3d object recognition in range images using
visibility context,” in /ROS, 2011, pp. 3800-3807.

S. Hinterstoisser, V. Lepetit, N. Rajkumar, and K. Konolige, “Going
further with point pair features,” in ECCV, 2016, pp. 834-848.

T. Hodan, F. Michel, E. Brachmann, W. Kehl, A. Glent Buch, D. Kraft,
B. Drost, J. Vidal, S. Ihrke, X. Zabulis, C. Sahin, F. Manhardt,
F. Tombari, T.-K. Kim, J. Matas, and C. Rother, “BOP: Benchmark
for 6D object pose estimation,” ECCV, 2018.

L. Manuelli, W. Gao, P. Florence, and R. Tedrake, “kpam: Keypoint
affordances for category-level robotic manipulation,” arXiv preprint
arXiv:1903.06684, 2019.

H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas,
“Normalized object coordinate space for category-level 6d object pose
and size estimation,” in CVPR, 2019, pp. 2642-2651.

Y. Li, G. Wang, X. Ji, Y. Xiang, and D. Fox, “Deepim: Deep iterative
matching for 6d pose estimation,” in ECCV, 2018.

Y. Xiao, X. Qiu, P--A. Langlois, M. Aubry, and R. Marlet, “Pose from
shape: Deep pose estimation for arbitrary 3d objects,” arXiv preprint
arXiv:1906.05105, 2019.

C. Xie, Y. Xiang, A. Mousavian, and D. Fox, “The best of both
modes: Separately leveraging rgb and depth for unseen object instance
segmentation,” in CoRL, 2020, pp. 1369-1378.

L. Brynte and F. Kahl, “Pose proposal critic: Robust pose refinement
by learning reprojection errors,” arXiv preprint arXiv:2005.06262,
2020.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in CVPR, July
2017.

C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierar-
chical feature learning on point sets in a metric space,” in NeurlPS,
2017, pp. 5099-5108.

V. Narayanan and M. Likhachev, “Perch: Perception via search for
multi-object recognition and localization,” in ICRA, 2016, pp. 5052—
5059.

A. Collet, M. Martinez, and S. S. Srinivasa, “The moped framework:
Object recognition and pose estimation for manipulation,” IJ/RR,
vol. 30, no. 10, pp. 1284-1306, 2011.

D. G. Lowe, “Object recognition from local scale-invariant features,”
in ICCV, vol. 2. Ieee, 1999, pp. 1150-1157.

MVTec Software GmbH, “Halcon.” [Online]. Available: https://www.
mvtec.com/products/halcon/documentation/release-notes- 1911-0/

Y. Labbe, J. Carpentier, M. Aubry, and J. Sivic, “Cosypose: Consistent
multi-view multi-object 6d pose estimation,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2020.

https://www.mvtec.com/products/halcon/documentation/release-notes-1911-0/
https://www.mvtec.com/products/halcon/documentation/release-notes-1911-0/

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

K. Park, T. Patten, and M. Vincze, “Pix2pose: Pix2pose: Pixel-wise
coordinate regression of objects for 6d pose estimation,” in The IEEE
International Conference on Computer Vision (ICCV), Oct 2019.

B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The ycb object and model set: Towards common benchmarks
for manipulation research,” in 2015 International Conference on
Advanced Robotics (ICAR), 2015, pp. 510-517.

T. Hodan, V. Vineet, R. Gal, E. Shalev, J. Hanzelka, T. Connell,
P. Urbina, S. Sinha, and B. Guenter, “Photorealistic image synthesis
for object instance detection,” ICIP, 2019.

K. He, G. Gkioxari, P. Dolldr, and R. Girshick, “Mask r-cnn,” in ICCV,
2017, pp. 2961-2969.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016, pp. 770-778.

S. Garrido-Jurado, R. Mufioz-Salinas, F. J. Madrid-Cuevas, and M. J.
Marin-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6,
pp- 2280-2292, 2014.

Q.-Y. Zhou and V. Koltun, “Dense scene reconstruction with points
of interest,” ACM Transactions on Graphics (ToG), vol. 32, no. 4, pp.
1-8, 2013.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning, 2015, pp. 448-456.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

M. S. GmbH, find_surface_model [HALCON Operator Reference /
Version 13.0.4], 2019 (accessed Nov 2nd, 2020), https://www.mvtec.
com/doc/halcon/13/en/find _surface_model.html.

https://www.mvtec.com/doc/halcon/13/en/find_surface_model.html
https://www.mvtec.com/doc/halcon/13/en/find_surface_model.html

APPENDIX
A. Pose Error Metrics

For the evaluation of our method, we adopt three metrics
proposed by the BOP challenge 2019 [33]. Given an object
model M, an estimated pose P and its corresponding ground
truth P, we calculate three metrics as follows.

1) Visible Surface Discrepancy (VSD): Given the esti-
mated and ground truth pose P and P, the object model
is rendered to obtain the estimated and ground truth distance
maps D and D respectively. The distance maps are then
compared with the observed distance map to obtain the
visibility masks V and V, which are the sets of pixels
where the object is visible in the test image. Then the VSD
measures the discrepancy of the estimated and ground truth
distance maps that are visible as follows.

€ysp = avg

{o if pe VAV AID(p) —Dp)| <t
pEVUV

1 otherwise,

)

where p € V NV iterates over all pixels that is both visible
under P and P. Note here VSD only measures geometry
alignment (color agnostic) and treats indistinguishable poses
as equivalent by considering only the visilbe object part.

2) Maximum Symmetry- Aware Surface Distance (MSSD):
Consider a object point cloud M = {z;} and a set of sym-
metric transformations 7 for this object, MSSD is defined
as

EMSSD — min max

Pz, — PT H . 2
TGTJ/’J'EM ’ x] x] 2 ()

MSSD measures the surface deviation in 3D, and thus is
relevant for robotics applications.

3) Maximum Symmetry-Aware Projection Distance
(MSPD): Let proj denote the 2D projection operations.
Then MSPD is defined as

eMspPD = :/mel%l*mrjngfxt Hproj(ij) - proj(PT:Ej)HQ. 3)
Therefore MSPD measures the maximum perceivable dis-
crepancy in 2D image space.

Based on the above three metrics, a overall Average Recall
(AR) score is computed. Given an estimated pose, it is
considered correct if e < 6. w.rt pose error metric e,
where e € {eVSD7 EMSSD eMSpD} and 6, is the threshold of
correctness. The ratio of correctly-estimated poses over all
pose estimation targets, is defined as recall. Then AR, is the
Average Recall w.r.t. metric e, which can be calculated for
multiple thresholds 6, and multiple misalignment tolerance
7 in the case of eygp. The final AR score is computed as
the average of three:

AR = (ARysp + ARwmssp + ARyispp) /3. “4)

We report the breakdown of our results in different AR
scores in Table [VII

AR ARvsp ARmssp ARwmspp
YCB-V | 0.516 0.619 0.492 0.437
LM-O 0.598 0.495 0.640 0.660

TABLE VI: AR scores breakdown for YCB-V and LM-O
datasets, using our method.

B. Ground Truth Translation Results

The Multipath Augmented Autoencoders [18] baseline
assumes that the object is cropped from the scene prior
to input. In contrast, the focus of ZePHyR is to perform
zero-shot pose estimation in cluttered scenes which contain
multiple objects. In such cluttered scenes, finding the correct
object crop of a novel object is non-trivial.

In BOP leaderboarcﬂ Multipath Autoencoders [18] reports
their performance with the assistance of a dataset-wise
trained MaskRCNNs as a segmentation network. Consider
that the main contribution of [18] is learning rotation en-
coding that generalizes over objects, we resolve the scale
ambiguity and isolate the orientation error by providing this
network with the ground truth translation for each object
at test time. As shown in Table [VII, our method still
outperforms [18], especially on the YCB-V dataset where
most objects have rotational symmetry.

Method Multipath AutoEncoder Ours
w/o GT trans w/ GT trans | w/o GT trans

YCB-V 0.289 0.355 0.516

LM-O 0.217 0.560 0.598

TABLE VII: AR scores for different method with and
without ground truth translation (“GT trans”).

C. Pose Hypothesis Ablations Results

We test our scoring method on different subsets of
pose hypotheses to explore our sensitivity to the hypoth-
esis generation method. In Table. we report the AR
scores of the Point Pair Features baseline (“PPF”) [15],
our scoring method using pose hypotheses generated
only from PPF (“PPF+Scoring”), our scoring method us-
ing pose hypotheses generated only from SIFT feature
matching (“SIFT+Scoring”) and our scoring method us-
ing pose hypotheses generated from both PPF and SIFT
(“Both+Scoring”). The results indicates that on the YCB-V
dataset, where most objects have high-quality mesh models
and rich textures, the SIFT feature matching method provides
valuable pose hypotheses. When combining PPF and SIFT
hypotheses with our scoring method, the results improve
over using our scoring method with PPF hypotheses alone.
LineMOD (LM-0), however, contains mostly low texture or
textureless objects. For this dataset, SIFT hypotheses are less
useful and adding them mildly reduces the accuracy of our
method but needs more processing time.

D. Network Details

1) PointNet++: As mentioned in Section III-D.3, we
reduce the sizes of MLP and adjust parameters of original

Uhttps://bop.felk.cvut.cz/method_info/96/

https://bop.felk.cvut.cz/method_info/96/

Method PPF | PPF+ZePHyR | SIFT+ZePHyR | Both+ZePHyR
YCB-V | 0.344 0.458 0.390 0.516
LM-O | 0.527 0.598 0.011 0.595

TABLE VIII: BOP AR scores for ZePHyR based on different
hypothesis generation methods.

PointNet++ design, to enable the training of the whole
network with 1100 pose hypotheses in 11 GB GPU memory.
We uniformly downsample the object mesh models so that
the leaf size for the voxel grid is 7 millimeter and each
object has 1000 points on average, and further randomly
subsampled the input points down to 2000 when the number
of points in the downsampled object model still exceeds this
number. The detailed network architecture is described as
follows.

We use the single scale grouping (SSG) version of Point-
Net++. Following architecture protocol in [41], we denote
SA(K,r,[l,...,143]) as a set abstraction (SA) level with K
local regions of ball radius r using PointNet of d fully
connected layers with width [; (i = 1,...,d). SA([l1, ...l4])
represents a global set abstraction level that converts set
to a single vector. FC(l,dp) represents a fully connected
layer with width [and dropout ratio dp. All fully connected
layers are followed by batch normalization [54] and ReLU
activation functions, except for the last score prediction layer.
The resulting PointNet++ architecture is as follows:

SA(128,0.2,[16,32]) — SA(16,0.5, [32.64]) —
SA([64,128]) — FC(64,0.4) — FC(16,0.4) — FC(1)

2) PointNet: For the ablation experiment on PointNet in
Section V-C, we also use a reduced version of Classification
Network described in [40]. We remove the input transform
and feature transform layers. We use a three-layer MLP,
with the size of the hidden layer to be 16, pre-bottleneck,
a bottleneck max pooling layer of dimension 16, and a 3-
layer MLP with the hidden layer size 64 post-bottleneck.
All except the last MLP layers are followed by a batch
normalization layer [54] and a ReLU activation. The final
output of the last layer estimates a single score for each
input point cloud.

3) Convolutional Network: For the CNN mentioned in
Section V-C, we use a vanilla ResNet-18 [51] with no
pretrained-weight. The the number of input channels of the
first layer is expanded to match the number of error features,
and the last layer is changed to a 2-layer MLP with the
hidden layer size 64. The final output is a single score for
each pose hypothesis.

E. Training Details

For computational efficiency, we subsample the training
data points in the YCB-V and LM-O datasets and pre-process
them for fast training. Specifically, from the YCB-V training
split, we evenly sampled 4716 observations, containing 2346
observations of objects with even IDs and 2370 of objects
with odd IDs. From the synthetic training set of LineMOD
dataset [49], we evenly sampled 1749 observations of objects

that are not in LM-O dataset as the training set. The obser-
vations of the training objects are then split, with 90% used
for training and 10% used for validation. After training, the
model weights at the epoch with lowest error on validation
set of the “seen” objects are selected for evaluation, and the
observations of “unseen” objects are not used during training
or validation.

To train the PointNet and PointNet++ archetectures, we
use an Adam optimizer [55] with an initial learning rate
3 x 10~*. For the CNN training, the initial learning rate
is 1 x 1075, We trained each network for 100 epochs and
the learning rate reduces to 1/10 after epoch 30 and 80.

We augment the training data by randomly jittering the
brightness, contrast, saturation and hue of the observation
images by factor of 0.2, 0.2, 0.2 and 0.05 respectively. To
prevent overfitting to the training objects, we also jointly
perturb the color of the model and the observation color,
changing the color of both the real and rendered data in the
same way. The factors for brightness, contrast, saturation and
hue in this process are all 0.5.

F. Comparison of DeepIM

Method | Drost [15] Drost [15] + Drost [15] +
DeepIM [36] | ZePHyR(ours)

YCB-V 0.344 0.324 0.516

LM-O 0.527 0.165 0.598

TABLE IX: BOP AR scores for DeepIM taking pose hy-
pothesis from PPF.

ZePHyR is a pose hypothesis scoring method, which is
different from other learned pose refinement methods in the
literature in the sense that ZePHyR can select the best one
among multiple pose hypotheses over the entire search space
while pose refinement only improves a single pose in a local
region. To quantify this difference, we evaluate DeepIM [36]
using the publicly available implementatiorﬂ and the model
checkpoint trained on the YCB-V dataset (model trained on
LM-O is not provided). Note that for YCB-V, the DeepIM
performance is not zero-shot as YCB objects are seen during
training, while its performance on LM-O is zero-shot. The
pose for DeepIM is initialized from the results of Drost et
al. [15], and the results are shown in Table.

According to Drost et al. [15], ICP algorithm [21] is
already used as a post-processing step in the PPF pipeline
and thus their pose estimation results are already very
accurate geometrically. Therefore, the room of improvement
left for DeepIM is very limited as it only refines on a single
pose hypothesis in the local region. We observe that for
seen objects in the YCB-V dataset, DeepIM does not make
obvious improvement based on Drost and even makes it
slightly worse. And when DeepIM is tested on unseen objects
(trained on YCB objects and tested on the LM-O dataset), it
makes the initial estimation drastically worse.

2{https:// github.corn/NVlabs/DeepIM-PyTorchI

G. Qualitative Results

Figure [5] shows the qualitative results of both our method
and the baseline over the YCB-V and LM-O datasets. The
left column shows the full scene; the second column shows
the ground-truth pose for the target object. The third column
shows the highest-scoring pose according to our method, and
the last column shows the highest-scoring pose according
to the PPF baseline [15]. In the 3rd and 4th columns, the
selected pose hypothesis for each method is rendered into
the frame.

Overall, Our method demonstrates a better performance
than the PPF baseline. As PPF only considers geometry, it
cannot determine the correct orientation on some objects that
are symmetrical in shape but have distinguishing texture, like
the “Master Chef” can and tomato can in row (5), (7) and
(8) in Figure [5] But our method considers both shape and
color information, and thus can make correct estimations in
such cases. PPF also tends to match the flat side of an object
to the flat top of a table, such shown in row (3), (6), (7) and
(9) in Figure E]; our method fixes such errors.

Figure [3] also shows some cases where our method fails.
In row (8), due to the over exposure on the surface of the
sugar box, our method mixes the back side of the box with
the front side. In row (7), our method fails to detect the “Soft
Scrub” bottle probably because only its side is facing towards
the camera, where almost no texture or color information is
present. The toy cat in row (3) and the egg box in row (2)
are two failure cases where the occlusion is so strong that
the whole object is almost invisible.

H. Failure Case Analysis

Figure [6] further elaborates the failure case of the sugar
box in the row (8) of Figure E} As we can see, due to
the reflection, the upper surface of the sugar box in the
observation is overly lightened, which makes the saturation
and value errors of the wrongly-picked hypothesis smaller
than those of the correct one. However, our method correct
recover the geometry and still presents a reasonable result.

1. Time-Accuracy Trade-off on LM-O dataset

In Table we report the detailed data for the time-
accuracy trade-off curve in Figure 4 in the main paper. We
here only vary the PPF parameters and thus its inference
time. The speed of our scoring network (ZePHyR) is un-
changed. In the table, “Model SD” and “Scene SD” are
the sampling distance on the model point cloud and the
scene point cloud respectively, relative to the model diameter.
Higher numbers lead to smaller point clouds and faster
processing times. “Ref Pt Rate” is the ratio of the points
on the scene point cloud that are used as reference points
when sampling point pairs [15]. “Dense Object PC” means
the input object model to PPF is directly converted from
the mesh model without downsampling. “Sparse Object PC”
means PPF uses the downsampled object point cloud that is
used in the scoring network, as described in Section
“Sparse” and “Dense” in “Refinement” column indicates the

spacial density of the point cloud used for ICP step in PPE.
We refer readers to [15] and [56] for more details.

Note that ZePHyR is a scoring network on the provided
pose hypotheses, and in the table, our PPF+ZePHyR demon-
strate a constant improvement over the PPF baseline by a
large margin with only little time overhead. This means our
method is able robustly pick better hypothesis from the PPF’s
output. Comparing the first and the third row in the table,
we can find that PPF+ZePHyR achieves comparable results
with PPF but is sped up by more than 3 times.

Observation

@)

3

4)

®)

(6)

(N

®)

€))

Observation Ours

Fig. 5: Qualitative results on LM-O (first 3 rows) and YCB-V (last 6 rows) dataset. Raw input image and ground truth
renders shown in the first and second column, respectively. The third and fourth column compare the top results using our
scoring pipeline (“Ours”) and the original PPF (“PPF”) hypothesis algorithm [15], respectively.

(e) Error features for our result

Fig. 6: Failures case of our method. “Best” means the pose that has the lowest ADD error in the pose hypothesis set. “Ours”
means the highest scoring hypothesis returned by our method. In plot (d) and (e), “u” and “v” are the normalized projection
coordinates. “H_diff”, “S_diff”, “V_diff” and “D_diff” represent the signed difference of the hue, value, saturation and depth
between projected model points and the observation respectively. “norm_cos” is the cosine of the angle between transformed
model normal vectors and observed normal vectors.

Model SD Scene SD Ref Pt Rate Object PC Refinement | Time (PPF) BOP score (PPF) (PPFE;:ISH)/R) (Pglg- l;;;g;R)
0.03 0.03 1 Dense Dense 2.900 0.527 2.948 0.598
0.03 0.05 1 Dense Sparse 1.626 0.502 1.674 0.571
0.05 0.05 1 Dense Sparse 1.388 0.480 1.436 0.550
0.05 0.05 0.5 Dense Sparse 0.794 0.463 0.842 0.524
0.05 0.07 0.5 Dense Sparse 0.530 0.349 0.578 0.456
0.03 0.04 0.5 Sparse Sparse 0.524 0.319 0.572 0.504
0.05 0.07 0.25 Dense Sparse 0.315 0.303 0.363 0.408
0.03 0.04 0.2 Sparse Sparse 0.257 0.297 0.305 0.484
0.03 0.05 0.2 Sparse Sparse 0.219 0.253 0.267 0.441
0.05 0.05 0.2 Sparse Sparse 0.200 0.213 0.248 0.379

TABLE X: Inference time and performance on the LM-O dataset of PPF and PPF+ZePHyR using different PPF settings.

	Introduction
	Related Work
	Non-learned Zero-shot Pose Estimation
	Learned Zero-shot Object Pose Estimation
	Pose Scoring

	Method
	Overview
	Learned Scoring Function
	Loss Function
	Implementation details
	Hypothesis Generation
	Network Input
	Network Structure

	Experiments
	Datasets
	Metrics
	Baselines
	Zero-shot Pose Estimation Results
	Evaluating Generalization
	Neighborhood Structure
	Input Ablations
	Timing analysis
	Reconstructed Model Results

	Conclusion
	Acknowledgements
	References
	Pose Error Metrics
	Visible Surface Discrepancy (VSD)
	Maximum Symmetry- Aware Surface Distance (MSSD)
	Maximum Symmetry-Aware Projection Distance (MSPD)

	Ground Truth Translation Results
	Pose Hypothesis Ablations Results
	Network Details
	PointNet++
	PointNet
	Convolutional Network

	Training Details
	Comparison of DeepIM
	Qualitative Results
	Failure Case Analysis
	Time-Accuracy Trade-off on LM-O dataset

