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Abstract: Reinforcement learning (RL) in low-data and risk-sensitive domains
requires performant and flexible deployment policies that can readily incorporate
constraints during deployment. One such class of policies are the semi-parametric
H-step lookahead policies, which select actions using trajectory optimization over
a dynamics model for a fixed horizon with a terminal value function. In this work,
we investigate a novel instantiation of H-step lookahead with a learned model and a
terminal value function learned by a model-free off-policy algorithm, named Learn-
ing Off-Policy with Online Planning (LOOP). We provide a theoretical analysis of
this method, suggesting a tradeoff between model errors and value function errors
and empirically demonstrate this tradeoff to be beneficial in deep reinforcement
learning. Furthermore, we identify the “Actor Divergence” issue in this framework
and propose Actor Regularized Control (ARC), a modified trajectory optimization
procedure. We evaluate our method on a set of robotic tasks for Offline and On-
line RL and demonstrate improved performance. We also show the flexibility of
LOOQORP to incorporate safety constraints during deployment with a set of navigation
environments. We demonstrate that LOOP is a desirable framework for robotics
applications based on its strong performance in various important RL settings.
Project video and details can be found at hari-sikchi.github.io/loop.
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1 Introduction

Off-policy reinforcement learning algorithms
have been widely used in many robotic ap-
plications due to their sample efficiency and
their ability to incorporate data from different
sources [1, 2, 3, 4]. Model-free off-policy algo-
rithms sample transitions from a replay buffer to
learn a value function and then update the policy
according to the value function [5, 6]. Thus, the
performance of the policy is highly dependent
on the estimation of the value function. How-
ever, learning an accurate value function from
off-policy data is challenging especially in deep
RL due to a variety of issues, such as overes-
timation bias [7, 8], delusional bias [9], rank
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Figure 1: Overview of LOOP: A learned dynamics
model is utilized for Online Planning with a termi-
nal value function. The value function is learned
via a model-free off-policy algorithm.

loss [10], instability [11], and divergence [12]. Another shortfall of model-free off-policy algorithms
in continuous control is that the policy is usually parametrized by a feedforward neural network

which lacks flexibility during deployment.

Previous works in model-based RL have explored different ways of using a dynamics model to
improve off-policy algorithms [13, 14, 15, 16, 17]. One way of incorporating the dynamics model
is to use H-step lookahead policies [18]. At each timestep, H-step lookahead policies rollout the
dynamics model H-step into the future from the current state to find an action sequence with the
highest return. Within this trajectory optimization process, a terminal value function is attached to the
end of the rollouts to provide an estimation of the return beyond the fixed horizon. This way of online
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planning offers us a degree of explainability missing in fully parametric methods while also allowing
us to take constraints into account during deployment. Previous work proves faster convergence
with H-step lookahead policies in tabular setting [18] or showed improved sample complexity with
a ground-truth dynamics model [19]. However, the benefit of H-step lookahead policies remains
unclear under an approximate model and an approximate value function. Additionally, if H-step
lookahead policies are used during the value function update [19], the required computation of value
function update will be significantly increased.

In this work, we take this direction further by studying H-step lookahead both theoretically and
empirically with three main contributions. First, we provide a theoretical analysis of H-step lookahead
under an approximate model and approximate value function. Our analysis suggests a trade-off
between model error and value function error, and we empirically show that this tradeoff can be
used to improve policy performance in Deep RL. Second, we introduce Learning Off-Policy with
Online Planning (LOOP) (Figure 1). To avoid the computational overhead of performing trajectory
optimization while updating the value function as in previous work [19], the value function of
LOOP is updated via a parameterized actor using a model-free off-policy algorithm (“Learning
Off-Policy”). LOOP exploits the benefits of H-step lookahead policies when the agent is deployed
in the environment during exploration and evaluation (“Online Planning”). This novel combination
of model-based online planning and model-free off-policy learning provides sample-efficient and
computationally-efficient learning. We also identify the “Actor Divergence" issue in this combination
and propose a modified trajectory optimization method called Actor Regularized Control (ARC).
ARC performs implicit divergence regularization with the parameterized actor through Iterative
Importance Sampling.

Third, we explore the flexibility of H-step lookahead policies for improved performance in offline RL
and safe RL, which are both important settings in robotics. LOOP can be applied on top of various
offline RL algorithms to improve their evaluation performance. LOOP’s semiparameteric behavior
policy also allows it to easily incorporate safety constraints during deployment. We evaluate LOOP
on a set of simulated robotic tasks including locomotion, manipulation, and controlling an RC car.
We show that LOOP provides significant improvement in performance for online RL, offline RL, and
safe RL, which makes it a strong choice of RL algorithm for robotic applications.

2 Related Work

Model-based RL Model-based reinforcement learning (MBRL) methods learn a dynamics model
and use it to optimize the policy. State-of-the-art model-based RL methods usually have better
sample efficiency compared to model-free methods while maintaining competitive asymptotic perfor-
mance [20, 13]. One approach in MBRL is to use trajectory optimization with a learned dynamics
model [17, 21, 22]. These methods can reach optimal performance when a large enough planning
horizon is used. However, they are limited by not being able to reason about the rewards beyond the
planning horizon. Increasing the planning horizon increases the number of trajectories that need to
be sampled and incurs a heavy computational cost.

Various attempts have been made to combine model-free and model-based RL. GPS [23] combines tra-
jectory optimization using analytical models with the on-policy policy gradient estimator. MBVE [15]
and STEVE [16] use the model to improve target value estimates. Approaches such as MBPO [13]
and MAAC [24] follow Dyna-style [25] learning where imagined short-horizon trajectories are used
to provide additional transitions to the replay buffer leveraging model generalization. Piché et al.
[26] use Sequential Monte Carlo (SMC) to capture multimodal policies. The SMC policy relies
on combining multiple 1-step lookahead value functions to sample a trajectory proportional to the

unnormalized probability exp(Zfil (A(s,a))); this approach potentially compounds value function
errors, in contrast to LOOP which uses single H-step lookahead planning for each state. POLO [19]
shows advantages of trajectory optimization under ground-truth dynamics with a terminal value
function. The value function updates involve additional trajectory optimization routines which is one
of the issues we aim to address with LOOP. The computation of trajectory optimization in POLO
is O(THN) while LOOP is O(T'H) where T is the number of environment timesteps, H is the
planning horizon, and N is the number of samples needed for training the value function.

Off-Policy RL LOOP relies on a terminal value function for long horizon reasoning which can be
learned effectively via model-free off-policy RL algorithms. Off-policy RL methods such as SAC [5]



and TD3 [6] use the replay buffer to learn a Q-function that evaluates a parameterized actor and then
optimize the actor by maximizing the Q-function. Off-policy methods can be modified to be used for
Offline RL problems where the goal is to learn a policy from a static dataset [27, 8, 28, 29, 30, 31, 32].
MBOP [33], a recent model-based offline RL method, leverages planning with a terminal value
function, but the value function is a Monte Carlo evaluation of truncated replay buffer trajectories,
whereas in LOOP the value function is trained for optimality under the dataset.

3 Preliminaries

A Markov Decision Process (MDP) is defined by the tuple (S, A, p, r, py) with state-space S, action-
space A, transition probability p(s;y1|st, at), reward function 7(s, a), and initial state distribution
po(s). In the infinite horizon discounted MDP, the goal of reinforcement learning algorithms is to
maximize the return for policy 7 given by J™ = Eq, wx(s,),s0~po [2oteo V7 (St, ar)].

Value functions: V™ : § — R represents a state-value function which estimates the return from
the current state s, and following policy 7, defined as V7™ (s) = Eq, wr(s,)[Dpo 77 (5t: at)|s0 = s].
Similarly, Q™ : S x A — R represents a action-value function, usually referred as a Q-function,
defined as Q" (s, a) = Eq,or(s,) Do 77 (St: at)|s0 = s, a0 = a]. Value functions corresponding
to the optimal policy 7* are defined to be V* and Q*. The value function can be updated according
to the Bellman operator 7 :

TQ(St, at) = V"(Su at) + E8t+1~p,at+1~7'rQ [’Y(Q(Swla (It+1)] (D
where 7¢ is updated to be greedy with respect to @, the current Q-function.

Constrained MDP for safety: A constrained MDP (CMDP) is defined by the tuple (S, A, p, 1, ¢, po)
with an additional cost function c(s,a). We define the cumulative cost of a policy to be D™ =
Ea,~m(se),s0~p0 > co ytc(§t, at)]. A common objective for safe reinforcement learning is to find a
policy m = argmax_J” subject to D™ < dy where d is a safety threshold [34].

4 H-step Lookahead with Learned Model and Value Function

Model-based algorithms often learn an approximate dynamics model M (S¢+1|8t, a¢) using the data
collected from the environment. One way of using the model is to find an action sequence that
maximizes the cumulative reward with the learned model using trajectory optimization [35, 36, 37].
An important limitation of this approach is that the computation grows exponentially with the planning
horizon. Thus, methods like [35, 17, 21, 38, 39] plan over a fixed, short horizon and are unable to
reason about long-term reward. Let 7z be such a fixed horizon policy:

H-1
7w (so) =argmax max E [Ry(so,7)],where Ry (s, 7) = Z yir(se, ag) 2)
—0

ao al,.., -1

where 7 denotes the action sequence a[g..f7—1]- One way to enable efficient long-horizon reasoning

is to augment the planning trajectory with a terminal value function. Given a value-function V, we
define a policy 7, - obtained by maximizing the H-step lookahead objective:

WHV(SO)—argmaX max [E; {RHV(507T):| 3)
aop ai,..,aH -1 )
H-1
where Ry; i (s0, 7 ZVTSt,at + 77V (sy)
t=0

The quality of both the model M and the value-function V' affects the performance of the overall
policy. To show the benefits of this combination of model-based trajectory optimization and the
value-function, we now analyze and bound the performance of the H-step look-ahead policy 7

compared to its fixed-horizon counterpart without the value-function g (Eqn. 2), as well as the
greedy policy obtained from the value-function 7y, = argmax,Ey pr([s,a) [r(s, a) +V (s )]

Following previous work, we will construct the proofs with the state-value function V', but the proofs
for the action-value function ) can be derived similarly.



Lemma 1. (Singh and Yee [40]) Suppose we have an approximate value function V such that
max,|V*(s) — V(s)|< €. Then the performance of the I1-step greedy policy my, can be bounded as:

JT g < %[261,] )
Theorem 1. (H-step lookahead policy) Suppose M isan approximate dynamics model with Total
Variation distance bounded by €. Let V' be an approximate value function such that max,|V*(s) —

V(s)|§ €y. Let the reward function r(s, a) be bounded by [0, Ry, ] and V be bounded by [0,Viyax].
Let €, be the suboptimality incurred in H-step lookahead optimization (Egn. 3). Then the performance
of the H-step lookahead policy 7, v, can be bounded as:

JT = v <

€
T [Clem, H )+ +7"e] (5)

where H-1
Clém, H,Y) = Rumax Y 7'tem + 7" Hem Vinax
t=0

Proof. Due to the page limit, we defer the proof to Appendix A.1. We also provide extension
of Theorem 1 under assumptions on model generalization and concentrability in Corollary 1 and
Theorem 2 respectively in Appendix A. O

H-step Lookahead Policy vs H-step Fixed Horizon Policy: The fixed-horizon policy 7y can
be considered as a special case of 7y with V(s) = 0Vs € S. Following Theorem 1, ¢;, =
max,|V*(s)| implies a potentially large optimality gap. This suggests that learning a value function
that better approximates V* than V(s) = (0 will give us a smaller optimality gap in the worst case.

H-step lookahead policy vs 1-step greedy policy: By comparing Lemma 1 and Theorem 1, we
observe that the performance of the H-step lookahead policy 7, ¢ reduces the dependency on the

value function error e, at least by a factor of v ~1 while introducing an additional dependency on
the model error €,,. This implies that the H-step lookahead is beneficial when the value-function bias
dominates the bias in the learned model. In the low data regime, the value function bias can result
from compounded sampling errors [41] and is likely to dominate the model bias, as evidenced by the
success of model-based RL methods in the low-data regime [33, 42, 13]; we observe this hypothesis
to be consistent with our experiments where H-step lookahead offers large gains in sample efficiency.
Further, errors in value learning with function approximation can stem from a number of reasons
explored in previous work, some of them being Overestimation, Rank Loss, Divergence, Delusional
bias, and Instability [7, 11, 6, 43, 10]. Although this result may be intuitive to many practitioners, it
has not been shown theoretically; further, we demonstrate that we can use this insight to improve the
performance of state-of-the-art methods for online RL, offline RL, and safe RL.

S Learning Off-Policy with Online Planning

We propose Learning Off-Policy with Online Planning (LOOP) as a framework of using H-step
lookahead policies that combines online trajectory optimization with model-free off-policy RL
(Figure 1). We use the replay buffer to learn a dynamics model and a value function using an off-
policy algorithm. The H-step lookahead policy (Eqn. 3) generates rollouts using the dynamics model
with a terminal value function and selects the best action for execution. The underlying off-policy
algorithm is boosted by the H-step lookahead which improves the performance of the policy during
both exploration and evaluation. From another perspective, the underlying model-based trajectory
optimization is improved using a terminal value function for reasoning about future returns. In this
section, we discuss the Actor Divergence issue in the LOOP framework and introduce additional
applications and instantiations of LOOP for offline RL and safe RL.

5.1 Reducing actor-divergence with Actor Regularized Control (ARC)

As discussed above, LOOP utilizes model-free off-policy algorithms to learn a value function in a
more computationally efficient manner. It relies on actor-critic methods which use a parametrized
actor my to facilitate the Bellman backup. However, we observe that combining trajectory optimization
and policy learning naively will lead to an issue that we refer to as “actor divergence": a different
policy is used for data collection (H-step lookahead policy 7 H,V) than the policy that is used to learn



the value-function (the parametrized actor 7). This leads to a potential distribution shift between the
state-action visitation distribution between the parametrized actor 7y and the actual behavior policy
Ty v Which can lead to accumulated bootstrapping errors with the Bellman update and destabilize
value learning [43]. One possible solution in this case is to use Offline RL [30]; however, in practice,
we observe that offline RL in this setup leads to learning instabilities. We defer discussion on this
alternative to the Appendix D.7. Instead, we propose to resolve the actor-divergence issue via a
modified trajectory optimization method called Actor Regularized Control (ARC).

In ARC, we aim to constrain the action selection of the trajectory optimization to be close to the
parametrized actor. We frame the following general constrained optimization problem for policy
improvement [44]:

Popt = argmax - [LHJA/(st,T)] s st Drr(pl|pprior) < € (6)
P

where L, ((s¢, 7) is the expected lookahead objective (Eqn. 3) under the learned model given by

Lyy(se,7)=Ey [R PRAGHT 7)} , starting from state s;, p” is a distribution over action sequences T
of horizon H starting from s;, and p;,;,,. is a prior distribution over such action sequences. We will
use the parametrized actor to derive this prior in ARC. This optimization admits a closed form solution
by enforcing the KKT conditions where the optimal policy is given by pf,,, o pgm-o,re%L 1,0 (56:7) 145,
46, 47, 48], where 7 is the lagrangian dual variable. The above formulation generalizes a number of
prior work [5, 35, 45] (more details in Appendix B.3).

Approximating the optimal policy py,, as a multivariate gaussian with diagonal covariance py,,, =
N (fopts Oopt) » the parameters can be estimated using importance sampling under the proposal
distribution py, ;. as:

R Popt(T') Popt(T')
T =N =E_, | =2~ =E, | =22 " ()2 (7
Popt (,Uoph Uopt) ; Hopt T N lp;7)ior (T/) T |, Oopt ! M p;m'm« (7_,) (7' ,U) @)

P T . . " S .
where 7'~ Dprior: We use iterative importance sampling to estimate pg,,, Whl.Cl.l is par?lmetenzed as
a Gaussian whose mean and variance at iteration m + 1 are given by the empirical estimate:

N ir ! N 17 !
m1 _ 2izi[e” 1.0 (07 7] o+l — Sy [en Py CeT) (77 — 2] ®)
t TS e S, b o)

where 7/ ~ N (1™, 0™) and N'(1°, 6°) is set to pj,;,,.. As long as we perform a finite number of
iterations, the final trajectory distribution is constrained in total variation to be close to the prior as a
result of finite trust region updates as shown in Lemma 2 in Appendix A.4.

To reduce actor divergence in LOOP, we constrain the action-distribution of the trajectory optimization
to be close to that of the parametrized actor 7. To do so, we set p7 .. = Bmg + (1 — B)N (pe—1,0).
The trajectory prior is a mixture of the parametrized actor and the action sequence from the previous
environment timestep with additional Gaussian noise A/ (0, ). Using 1-timestep shifted solution
from the previous timestep allows to amortize trajectory optimization over time [33]. For online RL,
we can vary o to vary the amount of exploration during training. For offline RL, we set 5 = 1 to
constrain actions to be close to those in the dataset (from which 7y is learned) to be more conservative.

5.2 Additional instantiations of LOOP: Offline-LOOP and Safe-LOOP

LOOP not only improves the performance of previous model-based and model-free RL algorithms
but also shows versatility in different settings such as the offline RL setting and the safe RL setting.
These potentials of H-step lookahead policies have not been explored in previous work.

LOOP for Offline RL: In offline reinforcement learning, the policy is learned from a static dataset
without further data collection. We can use LOOP on top of an existing off-policy algorithm as
a plug-in component to improve its test time performance by using the model-based rollouts as
suggested by Theorem 1. Note that this is different from the online setting in the previous section
in which LOOP also influences exploration. In offline-LOOP, to account for the uncertainty in the
model and the Q-function, ARC optimizes for the following uncertainty-pessimistic objective similar
to [49, 50]:

mean(x[Ry (¢, )] — BpessStdix)[Ry v (5¢,7)] ©))



Figure 2: We evaluate LOOP over a variety of environments ranging from locomotion, manipulation
to navigation including Walker2d-v2, Ant-v2, PenGoal-v1, Claw-v1, CarGoall, etc.

where [K] are the model ensembles, 3,55 is the pessimism parameter and R 7.y 18 the H-horizon
lookahead objective defined in Eqn. 3.

Safe Reinforcement Learning: Another benefit of LOOP with its semi-parameteric policy is that we

can easily incorporate (possibly non-stationary) constraints with the model-based rollout, while being

an order of magnitude more sample efficient than existing safe model-free RL algorithms. To account

for safety in the planning horizon, ARC optimizes for the following cost-pessimistic objective:
t+H—1

argmax,, I {RH,V(SIJT)}S-L max > Ale(siar) < do (10)
t=t

where K| are the model ensembles, ¢ is the constraint cost function and R, ¢ is the H-horizon
lookahead objective defined in Eqn. 3 and d is the constraint threshold. For each action rollout, the

worst-case cost is considered w.r.t model uncertainty to be more conservative. The pseudocode for
modified ARC to solve the above constrained optimization is given in Appendix B.3.1.

6 Experimental Results

In the experiments, we evaluate the performance of LOOP combined with different off-policy
algorithms in the settings of online RL, offline RL and safe RL over a variety of environments
(Figure 2). Implementation details of LOOP and the baselines can be found in Appendix C.

6.1 LOOP for Online RL

In this section, we evaluate the performance of LOOP for online RL on three OpenAl Gym
MuJoCo [51] locomotion control tasks: HalfCheetah-v2, Walker-v2, Ant-v2 andtwo
manipulation tasks: PenGoal-vl, Claw-vl. In these experiments, we use Soft Actor-Critic
(SAC) [5] as the underlying off-policy method with the ARC optimizer described in Section 5.1. Fur-
ther experiments on InvertedPendulum-v2, Swimmer, Hopper-v2 and Humanoid-v2
and more details on the baselines can be found in Appendix D.1 and Appendix C.2 respectively.
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Figure 3: Comparisons of LOOP and the baselines for online RL. LOOP-SAC is significantly more
sample efficient than SAC. It is competitive to MBPO for locomotion tasks and outperforms MBPO
for manipulation tasks (PenGoal-vl and Claw-v1). The dashed line indicates the performance of
SAC at 1 million timesteps. Additional results on more environments can be found in Appendix D.1.

Baselines: We compare the LOOP framework against the following baselines: PETS-restricted,
a variant of PETS [17] that uses trajectory optimization (CEM) for the same horizon as LOOP
but without a terminal value function. LOOP-SARSA uses a terminal value function which is an
evaluation of the replay buffer policy, similar to MBOP [33] in spirit. To compare with other ways
of combining model-based and model-free RL, we also compare against MBPO [13] and SAC-VE.
MBPO leverages the learned model to generate additional transitions for value function learning.



SAC-VE utilizes the model for value expansion, similar to MBVE [15] but uses SAC as the model-
free component for a fair comparison with LOOP as done in [13]. We do not include comparison to
STEVE [16] or SLBO [52] as they were shown to be outperformed by MBPO, and perform poorly
compared to SAC in Hopper and Walker environments [13]. We were unable to reproduce the results
for SMC [26] due to missing implementation. We did not include POLO here due several reasons.
An extended discussion can be found in Appendix D.2.

Performance: From Figure 3, we observe Walker-v2 Walker-v2
that LOOP-SAC is significantly more sam- e

ple efficient than SAC, the underlying model-
free method used to learn a terminal value
function. LOOP-SAC also scales well to
high-dimensional environments like Ant-v2
and PenGoal-v1l. PETS-restricted performs
poorly due to myopic reasoning over a lim- —— LOOP-SAC-noARC LOOP-SAC

ited horizon H. SAC-VE and MBPO repre-

sent different ways of incorporaﬁng a model Figure 4: (Left) ARC reduces the actor-divergence
to improve off-policy learning. LOOP-SAC measured by the L2 distance between the mean
outperforms SAC-VE and performs Competi_ of the parametrized actor and the output of the H-
tively to MBPO, outperforming it significantly step lookahead policy. (Right) In absence of ARC,
in PenGoal-v1 and Claw—v1. In principle, policy learning can be unstable.

methods like MBPO and value expansion can be combined with LOOP to potentially increase
performance; we leave such combinations for future work. LOOP-SARSA has poor performance
as a result of the poor value function that is trained for evaluating replay buffer policy rather than
optimality. As an ablation study, we also run experiments using LOOP without ARC, which optimizes
the unconstrained objective of Eqn. 3 using CEM [36]. Figure 4 (left) shows that ARC reduces
actor-divergence effectively and Figure 4 (right) shows that learning performance is poor in absence
of ARC for Walker—v2. More ablation results can be found in Appendix D.5.
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6.2 LOOP for Offline RL

Dataset Env CRR | LOOP | Improve% | PLAS | LOOP | Improve% | MBOP
atase CRR PLAS
hopper 65.73 | 85.83 30.6 32.08 | 56.47 76.0 48.8
medium halfcheetah | 41.14 | 41.54 1.0 39.33 | 39.54 0.5 44.6
walker2d | 69.98 | 79.18 13.1 46.20 | 52.66 14.0 41.0
hopper 27.69 | 29.08 5.0 29.29 | 31.29 6.8 124
med-replay | halfcheetah | 42.29 | 42.84 1.3 4396 | 44.25 0.7 423
walker2d 19.84 | 27.30 37.6 3559 | 41.16 15.7 9.7

Table 1: Normalized scores for LOOP on the D4RL datasets comparing to the underlying offline RL
algorithms and a baseline MBOP. LOOP improves the base algorithm across various types of datasets
and environments.

For Offline RL, we benchmark the performance using the D4RL datasets [53]. We combine LOOP
with two value-based offline RL algorithms: Critic Regularized Regression (CRR) [54] and Policy in
Latent Action Space (PLAS) [32]. We use the original offline RL algorithms to train a value function
from the static data and then use it as the terminal value function for LOOP. We use 5 = 1 in the
trajectory prior of ARC (Section 5.1) in the offline RL setting to keep the policy conservative.

Baselines: In addition to the underlying offline RL algorithms, we also include recent work
MBOP [33] as a baseline. MBOP uses a terminal value function which is an evaluation of the
dataset policy. In contrast, LOOP uses a terminal value function trained with offline RL algorithms
which is more optimal.

Performance: Table 1 presents the comparison of LOOP and the underlying offline RL algorithms.
LOOP offers an average improvement of 15.91% over CRR and 29.49% over PLAS on the complete
D4RL MuJoCo Locomotion dataset. Full results can be found in Appendix D.3. The results further
highlight the benefit of the LOOP framework compared to the underlying model-free algorithms.
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Figure 5: We compare safeLOOP with other safety methods such as CPO, LBPO, and PPO-lagrangian
on OpenAl Safety Gym environments. It shows significant sample efficiency while offering similar
or better safety benefits as the baselines.

6.3 LOOP for Safe RL

For safe RL, we modify the H-step lookahead optimization to maximize the sum of rewards while sat-
isfying the cost constraints, as described in Section 5.2. We evaluate our method on two environments
from the OpenAl Safety Gym [55] and an RC-car simulation environment [56]. The objective of the
Safety Gym environments is to move a Point mass agent or a Car agent to the goal while avoiding
obstacles. The RC-car environment is rewarded for driving along a circle of 1m fixed radius with a
desired velocity while staying within the 1.2m circle during training. Details for the environments
can be found in Appendix C.4.

Baselines: We compare our safety-augmented RC-car S RC-car
LOOP (safeLOOP) against various state-of-the- ~ 3*° g™
art safe learning methods such as CPO [57], E,m N\ %’m
LBPO [58], and PPO-lagrangian [59, 55]. CPO £ \_\ 8 r
uses a trust region update rule that guarantees = < 2w

°

safety. LBPO relies on a barrier function formu- O rimesteps e imesteps
lated around a Lyapunov constraint for safety.

PPO-lagrangian uses dual gradient descent to
solve the constrained optimization. To ensure a
fair comparison, all policies and dynamics mod-

—— safeLOOP safePETS —— LOOP — PETS

Figure 6: RC-car experiments show the impor-
L POl ) tance of the terminal value function in the LOOP
els are randomly initialized, as is commonly  framework. SafeLOOP achieves higher returns
done in safe RL experiments (rather than starting  han safePETS while being competitive in safety
from a safe initial policy). We additionally com- performance. Both safePETS and PETS fail to

pare against a model-based safety method that o5 4 drifting policy due to limited lookahead.
modifies PETS for safe exploration (safePETS)

without the terminal value function. We mostly compare to model-free baselines due to a lack of safe
model-based Deep-RL baselines in the literature.

Performance: For the OpenAl Safety Gym environments, we observe in Figure 5 that safeLOOP
can achieve performant yet safe policies in a sample efficient manner. SafeLOOP reaches a higher
reward than CPO, LBPO and PPO-lagrangian, while being orders of magnitude faster. SafeLOOP
also achieves a policy with a lower cost faster than the baselines. From another aspect, the simulated
RC-car experiments demonstrate the benefits of the terminal value function in safe RL. Figure 6 shows
the performance of LOOP, safeLOOP, PETS, and safePETS on this domain. PETS [17] and safePETS
do not consider a terminal value function. SafeLOOP is able to achieve high performance while
maintaining the fewest constraint violations during training. Qualitatively, LOOP and safeLOOP
are able to learn a safe drifting behavior, whereas PETS and safePETS fail to do so since drifting
requires longer horizon reasoning beyond the fixed planning horizon in PETS. The results suggest
that safeLOOQP is a desirable choice of algorithm for safe RL due to its sample efficiency and the
flexibility of incorporating constraints during deployment.

7 Conclusion

In this work we analyze the H-step lookahead method under a learned model and value function and
demonstrate empirically that it can lead to many benefits in deep reinforcement learning. We propose
a framework LOOP which removes the computational overhead of trajectory optimization for value
function update. We identify the actor-divergence issue in this framework and propose a modified
trajectory optimization procedure - Actor Regularized Control. We show that the flexibility of H-step
lookahead policy allows us to improve performance in online RL, offline RL as well as safe RL and
this makes LOOP a strong choice of RL algorithm for robotic applications.
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A Theory

A.1 H-step lookahead with approximation error

We aim to show that H-step model-based lookahead policies are more robust to certain types of
approximation errors than 1-step greedy policies given an approximate value function. We restate
Theorem 1 here for convenience and then provide a proof.

Theorem 1. (H-step lookahead policy) Suppose M is an approximate dynamics model such that
maxs , Dy (M(.|s,a)7 M(.|s, a)) < €m. Let V be an approximate value function such that
max,|V*(s) — V(s)|§ €,. Let the reward function by bounded in [0, R, ] and V be bounded in

[0,Vinax]. Let €, be the suboptimality incurred in H-step lookahead optimization (Eqn. 3) such that

Jr—J< €p, Where J* is the optimal return for the H-step optimization and J is the result of the
suboptimal H-step optimization. Then the performance of the H-step lookahead policy Ty ¢ can be
bounded as:

¥ T ¥ 2 €p H
JT = Jrav < 1 _VH[C(@”’HVY) t5 €v)
where
H—-1
C(ema H; ’Y) = Rmax ’Yttem + fYHHGmV;nax
t=0

Proof. Assume we have an e,-approximate value function i.e ||V — V*|,o< €, and we have an
approximate transition model which satisfies Dy (M (s, a), M(.s, a)) < €m , similar to assump-

tions in [19, 18]. We analyze the optimality gap of the policy which uses an H-step lookahead
optimization (Eqn. 3) with this approximate model and value function. First, we define some useful
notations: let M be the MDP defined by (S, A, M, r, sg) which uses the ground truth dynamics M,

state space S, action space .4, reward function 7 and starting state 50, and let M be the MDP defined
by (S, A, M 7, 80) which uses the approximate dynamics model M. Correspondingly, let H be an

H-step finite horizon MDP given by (S, A, M, rmix, So) and let # be an H-step finite horizon MDP
given by (S, A, M, T'mix, S0) where

e (50, 1) = r(s,a) ift< H
mix\ 2ty Ut ) — V(SH) ift=H

We redefine 7 , to be the policy obtained by repeatedly optimizing for the H-step lookahead

Y

objective (Eqn. 3) in # and acting for H steps in M. We do not consider the MPC setting for
simplicity in proof i.e. the policy does not perform any replanning after taking its initial actions. We
will use - denote the optimal policy for some MDP K. Let 7 denote an H-step trajectory sampled
by running 77;3 in M and similarly 7 is used to denote an H-step trajectory sampled by running 73,
in M. Let 7* denote the H-step trajectory sampled by running 7 , in M. Let p:, p, and p,« be the
corresponding trajectory distributions. The performance gap we want to upper bound is given by:

JT = JTY = V*(s0) — V.7 (s0) (12)
=Erenp. Z '(se,ae) + ’YHV*(SH): —Erep. Z 'r(se,ar) + VY (SH)] (13)
=Erenp,. Z Vr(se ar) + 'VHV*(SH): —Erp, Z V'r(se ar) + 'YHV*(SH)} (14)
+ Binp, {Z V'r(se, ar) + ’YHV*(SH)} — Eteps {Z (s, ap) + VY (SH)} (15)
=Erenp. Z 7'(se,a0) + 'YHV*(SH): —Einp. Z (st ar) + ’YHV*(SH)} (16)
+ By [V (s) = V77 (51))] (17)
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Since we have |V*(s) — V(s)|< €, Vs, we can bound the following expressions:
Erenp,. {Z Yr(se ar) + VHV*(SH)} SErep, . [Z V'r(se ar) + VH‘A/(SH)} +7e, (18)
Ervp, |30 77(st000) +97V (s11)| = Eony, [ Y2 7(s0.00) + 97V ()| =7, (19)
Subtracting these two inequalities (18 and 19), we get:
Erenp,. {Z yir(se, ap) + ’VHV*(SH)] —Esp, [Z yir(se, ag) + ’}/HV*(SH)} (20)
S Erenp.. {Z V' (se,ar) + VH‘A/(SH)} = Einps {Z V' (se,ar) + VHV(SH)] +2v7e,
Substituting Eqn. 20 into Eqn. 16 we can bound the performance gap as follows:
JT = JTay = V*(sg) — VTV (50)
<Eremp. [ny (s, ar) + ’yHV(sH)} Etrp, [Z Yir(se, ap) + ’yHV(sH)} 1)
+29% e, + YT Bep [V (s) = V7 (311)]
= Erenp. [ 3017505 0) + 97V (510)| = B |34 7(s0000) + 97V (si)| @2

+Ermp, {Z vir(se, ap) + WHV(SH)] —Esp. {Z yir(se, ap) + 'YHV(SH)}

+ 29" ey + Y By, [V*(sm) — VY (sp)] (23)
< Brap, |3 2r(st00) +9V (s11)] = Eonpe [ 4750000 +9™ V()| 29)
29 ey + 4T Esy. [V (s1) — V¥ (sp7)] (25)

The last step is due to the fact that 7 is generated by the optimal action sequence in the ground-
truth H-step MDP H as defined earlier which implies that E,«,, . [E Yir(se, ar) + ’}/HV(SH)} <

Erns, [ (st 0) + 47V (s1)]

Now we aim to characterize the performance gap between an optimal policy of MDP H, w;, with the
optimal policy of MDP H, 73, evaluating both in the ground truth MDP H. We wish to characterize
this performance gap as a function of model errors and value errors f (€, €,,7, H):.

Ernp, [Z yir(se, ar) + VHV(SH)} —Esop, {Z Yor(se, ar) + fny/(sH)} < f(em, €0,7, H)

Let J3, denote the performance of policy m when evaluated in MDP H starting from same initial state
so. Then we can write this performance gap as

Ervp, {Z V'r(se, ar) + VHV(SH)} —Eip, {Z yr(se ar) + ’VHV(SH)] (26)
= JTH TR 7)
= TR TR T T J;” I (28)
) () ()
(- ) - (5 - ) v
<2 max (S —J) +e (31)

me{ny, ﬂ"H}

The second-to-last equation is due to the assumed suboptimality of H-step lookahead planner where

we have V policies T, J A o J ™ . Since the total variation between M and M is at most

€m» 1.6 Dy ( (|s,a), M(.|s, a)) < €m, we have that |p} (s, a) — p5(s, a)|< te,, where pi(s,a)
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is the discounted state-action visitation induced by 7 on H, p2(s, a) is the discounted state-action

visitation induced by the same policy on H and superscript ¢ indicates the state-action marginal at
the ¢ timestep (for proof see Lemma B.2 Markov Chain TVD Bound [13]). Then we can write
the performance of policy 7 in terms of its induced state marginal and the reward function, i.e

I =2 ap1(s,a)rmix(s,a) = 37, Zf:o ¢t (8, a)rmix (s, a) and use the Markov chain TVD
bound:
T =% = (pi(s,a) = pa(s,a))rmin(s, ) (32)

s,a

175, = T51 = 1> (p1(5,@) = p2(s,@))rmin(s, )| (33)

s,a

H
=D A (pl(s,a) = ph(s,a))rhic(s, a)l (34)

s,a t=0

H
S ZZ’YtI(/)i(S,a) —Ptz(S,G))V;ﬁx(Saa) (35)
s,a t=0
H-1
< Ruax »_ 7'tem + 7" He Vina (36)
t=0
= Clem, H,7) (37)

Combining Eqn. 31 and Eqn. 37 we have:
Erp. | 227" (sts00) + 77V ()| = Bovyy |32 "r(s0s00) + 971V ()] < 20(em, Ho) 4,
(38)

We substitute Eqn. 38 in Eqn. 24. Also observe that the last term in Eqn. 24
YHE:[V*(sg) — V™H#.V (sgr)] can be bounded recursively. Then, we will have the following opti-
mality gap for the H-step lookahead policy 7, v

* T O €p H
JT = T < o m— [C(em,H,v)JrE +77 €] (39)

The H-step lookahead policy 7, - reduces the dependency on €, (the maximum error of the value

function) by a factor of v and introduces an additional dependency on ,, (the maximum error
of the model). In contrast, when we use 1-step greedy policy, the performance gap is bounded by

(Lemma 1):

g =g < L [9¢,] (40)
I—vy

Lemma 1 can be seen as a special case of our bound when ¢, is set to 0 and H is setto 1. O

A.2 H-step lookahead with model generalization error

In this section, we derive a similar proof as the previous section with a weaker assumption on model
error. We consider a model trained by supervised learning where the sample error can be computed
by PAC generalization bounds which bounds the expected loss and empirical loss under a dataset
with high probability.

We define D to be the dataset of transitions and 7p to be the data collecting policy.

Corollary 1. (H-step lookahead with function approximation) Suppose M is an approx-
imate dynamics model such that max;Es r, , DTV(M(.|s,a)||M(.|S,a))} < ém.  Let

V be an approximate value function such that max,|V*(s) — V(s)|< e, Let the maxi-
mum TV distance of state distribution visited by lookahead policy wy  be bounded wrt

state visitation of data generating policy by max;Esr,, . [DTV(pﬁrHVprTD)} < ¢ and

max (DTV(WD(a|s)||7r}}(a\s)), DTV(WD(G\S)HWE(GB))) < € Vs. Let the reward function by
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bounded in [0, R,,..] and V be bounded in [0, Vyax]. Then the performance of the H-step lookahead
policy 7y v, can be bounded as:

. 2
JT = JEv < m[c(e;nae}76i7H’7) +'7H€v]
where

H-1
C(G;n, 671'7 » Y max Z ’Ytt 6m + €7r + Rmauxez + VHH(em + 6Tr)‘/max
t=0

Proof. In the function approximation setting, a more realistic perfomance bound depends on the gen-
eralization error of model and distribution shift for the new policy under the collected dataset of tran-

sitions D. Let 7p be the data collecting policy. Let Egr, , [DTV (M(.]s,a)||M(.|s,a))| < ém Vs

and max (DT‘/(WD(G,|S)||7T}}(Q‘S)), DTV(WD(a\s)||wE(a|s))) < € Vs. Following Lemma B.2

Markov Chain TVD Bound [13] with model generalization error €,,, policy distribution shift €, and
bounded state visitation of lookahead policy by ¢;, we have: |p! (s, a) — ph(s,a)|< t(Em + €x) + €
Substituting the new state-action divergence bound in Eqn. 35 from Theorem 1 we get the following
performance bound:

2
T =TT < =[O, En i Hy ) 9] (41)
—yH
where C (€, €, H,7) = Rimax Zt o Yt + €) + Ruaxei + YT H (€ + 62) Vinax-
Intuitively this bound highlights the tradeoff between model error and value error reasonably when

the dataset is sufficiently exploratory to cover 77; and H-step lookahead policy has visitation close to
the dataset.

O

A.3 H-step lookahead with Empirical Dataset Distribution using Fitted-Q Iteration

In this section, we take a look at the analysis of H-step lookahead under a set of different assumptions.
In particular, we assume a form of model generalization error and that the optimal H-step trajectory
is obtained via fitted-Q iteration in the H-step MDP at every timestep during policy deployment. This
analysis largely follows the fitted-Q iteration analysis from [60, 61, 41] but we adapt it to H-step
lookahead in a simplified form.

Assumption 1. Let our replay buffer dataset be denoted by D and the data generating distribution
be given by d™P, where wp is the data generating policy. Let the Q-function class is given by
Q C R5*A, The empirical bellman update T Q) under the learned model is given by:

L, (Q,Q%) = s [(Q(s,a) =1 =@M m(s)))?] (42)

where Q¥ is the Q-function at k iteration, d™ ¥t is the state visitation under a learned model M from
dataset D. Also we define:

Lawp (Q, Q") = Esarsmamn [(Q(s,a) — 7 — vQ"(s', mq(5)))?] (43)
A form of model generalization error: We assume the following uniform deviation bound which holds
with high probability (> 1 — §):

VQ7Qk7 ‘LD(Qan) _Ld"D (Qan)‘S gm (44)

This bound can be obtained by concentration inequality as in [41] using concentration inequality €.,

s,a,r,s’' ~

Intuitively the assumption above states that the bellman error obtained in the data-generating distribu-
tion is close to the bellman error obtained via state-action distribution induced by the learned model,
where the model is learned on a finite fixed dataset D sampled from data generating distribution.

In the following analysis, we assume that H-step lookahead policy is obtained by performing fitted-Q
iteration in the H-step approximate MDP 7 defined in Theorem 1.
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Theorem 2. Suppose M is an approximate dynamics model such that Assumption 1 holds. Let 1%
be an approximate value function such that maxs|V*(s) — V(s) |< €. Let the reward function by
bounded in [0, R, ] and V be bounded in [0,Vuax]. Let concentrability coefficient C be such that
Vs, a el
Then the performance of the H-step lookahead policy T HV obtained by running fitted-Q iteration on
the learned model to convergence can be bounded as:

< C where v(s, a) is state-action distribution induced by any non-stationary policy.

. 2 N
™ _ JTHYV < ~ H H
JT = Jty < 1771{[0(%,0, ) e
where
- 2(1 —~+H 1 -
e, CoH,7) = 2177 )( \/2em0)
1—7v 1—7v

Proof. In this section we analyze the performance of H-step lookahead policies under the assumptions
for Fitted Q Iteration [41]. This analysis extends the fitted-Q iteration analysis from greedy to H-step
lookahead policies.

Let ||g||p,. denote a weighted p-norm under distribution v given by || gl|,..= ESNVHg(s)\P]%. We
start by reusing the previous analysis in Theorem 1 under the new stated assumptions to replace the
bound for Eqn. 26. Let 77;3 be denoted by 7z and 73, by 7} for ease of notation. In this analysis
7y is the 1-step greedy policy obtained from @)y, the learned Q-function after k iterations of fitted-Q
iteration on the H-step MDP H.

Rewriting Eqn. 26:

Ermp, [ D22 7(50000) + 77V (511)| = Bonp, [ 3o 1'r(s0,00) 97V (sw)| - 49)
— J;"L;i _ Jile (46)

Using performance difference lemma we can write:

H
TR = TR S YA T B [V (5) = Q0 (s, )| 47

~
—

M=

VtilEswd*H |:V7T;I (5) - Qk(57 Tr}k'i) + Qk(57 7?rH) - QW;I (57 7?rH):| (48)

t=1
H
<> (1Q7 = Qullyarnmgy HIQ™H = Qullygrur ) (49)
t=1
H
<3 (1Q7H = @il g, Q7 = @l s ) (50)

&~
Il
-

The second line follows from the fact that Qx (s, 7g) > Qi (s, 7)) since T maximizes Q. The
concentrability assumptions allows us to compare weighted norms under state distribution induced

by any policy v (s, a) and d™P (s, a) as follows: ||.||, < \/5||.||dm. We can bound ||Q™# — Qp|lux
for arbitrary state distribution y and policy 7 as:

1Q™H — Qulluxr = Q7" — TQr—1 + T Q-1 — Qx| (51)
<TQ™H — TQr—1lluxr+ITQr—1 — Qilluxn (52)
<TQ™ = T Q- pxnt VT Qo1 — Qillams (53)

=N Qr-1(,7q,_,) — Q7 (-, 77?{)||P(uxw)+\/5|‘7—@k—l — Qkllarp (54
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where P(p x ) as distribution over S where s,a ~ pu, s ~ p(s,a). Define T =

argmax, . 4(Q (s,a), Qx—1(s,a)). Then we have:
Q7% — Qklluir = MNQr=1 (7 1) = Q¥ ()| puscm) + MAICHT Qir = Qllamo (55)
< VEITQuo1 — Qullaro +71Qu—1 — Q7| puxm) s (56)

The second term ||Qy_1 — Q™H|| P(uxm)xmm:, can be expanded via recursion for k times, since the
same analysis holds. We now bound ||7Qx—1 — Qk|la b -

1 TQk-1— Q55 = Larp (Qi, Qr—1) — Laro (T Qr—1, Qr—1) (57)
< Lp(Qk,Qr—1) — Lp(TQr-1,Qr—-1) + 26, wp>1-90 (58)
< 26n (59)
As fitted Q iteration converges k — oo for v < 1, we have:
* 1 -~k ~ ~ Vma:v
Q™ _Qk||u><7r§ 1 71 \V 26m0+7k1—7 (60)

In this analysis we obtain 7y by performing fitted Q iteration (¢ — oo) under the dataset D.
Therefore our bound for Eqn. 26 from the previous analysis under the current assumptions reduces to:

Ermp, |37 (st a0) + 77V (510)| = Bempe [ Y2 7(s1200) 47 Vsm)| - 61)
= Ji = T (©)
_~H ~
<) (L ec) (©3)
1—7v 1—7v
< C(ém,C, H, ) (64)

Plugging this back in our previous analysis we have the following performance bound for H-step
lookahead policy:

JW* — JHV < 1 _,YH [O(gmvéaHv '7) +’7H€v] (65)
where C(&,,,C, H,~) = 2(11%7) (ﬁ\/ 2€mé). O

A.4 ARC constrains trajectories close to the parameterized actor

In section 5.1, we use ARC, an iterative importance sampling procedure to solve the constrained
optimization in Eqn. 6. The following lemma shows that the final trajectory distribution output as a
result of finite importance sampling iteration is bounded in total variation to the trajectory distribution
given by the parameterized actor.

Lemma 2. Let p;, ;. be a distribution over action sequences. Applying M KL-based trust region
steps of size € 10 py,,.;,,. results in a distribution p} that satisfies:

€
D1y W) <15 (66)

Proof. This lemma is adapted from [42] and provided for completeness. Let p;, be the distribution at
the k trust region step. pj = py,.;,, Using Pinsker’s inequality we have:

Drr(pillpks1) < e (67)
Drv (pillPk+1) < \/E (68)
Using triangle inequality we have:
Drv Wiolivh) < My 5 ©9)
O
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Algorithm Details

B.1 LOOP for online RL

Algorithm 1 LOOP-SAC (for Online RL and Safe RL)

Initialize the parametrized actor 74, Q-function (g, predictive model Mw, empty replay buffer D.
Given planning horizon H.

1:
2:

e

// Training
for t = 1..(train_steps) do
Select action given by a = ARC(s,74). > Use safeARC for safeLOOP
Execute a in the environment and observe reward r and new state s’.
Store the transition (s, a,r, s') in replay buffer D.
Optimize 74 and @y using SAC over replay buffer D.
Train model M, on the replay buffer D until convergence every K, training steps.
end for
// Evaluation
for t = 1..(eval_steps) do
Select action given by a = ARC(s,74).
Execute a in the environment and observe reward r and new state s’.

: end for

B.2 LOOP for offline RL

Algorithm 2 LOOP-offline

Initialize the parametrized actor 7y, Q-function (g, predictive model Mw, empty replay buffer D.
Given planning horizon H.

1:

// Training
Train model Mw on the replay buffer D till convergence.
Run an Offline RL algorithm till convergence on D to learn Qg and 4.
// Evaluation
for t = 1..(eval_steps) do

Select action given by a = ARC(s¢, 7).

Execute ¢ in the environment and observe reward 7 and new state s’.
end for
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B.3 Actor Regularized Control (ARC)

Eqn. 6 gives a general constrained optimization for policy update. In Eqn. 6, with terminal state-action
value functions,when [p7,.;,,. = Uniform , H = 0], we recover the SAC [5] deployment policy, when
[p;M-OT = 7P , H = 0], we recover the AWAC [45] deployment policy and when 7y, = N(0,0),
we recover the MPPI [35] deployment policy.

In the LOOP framework we use ARC as our trajectory optimization routine to solve Eqn. 6.
Algorithm 3 shows the pseudocode for ARC routine used for Online and Offline RL experiments.

Algorithm 3 Actor Regularized Control (ARC)
Input: st, 7y
Given the parameterized actor 74, Q-function (), predictive model M, reward model 7, replay

buffer D, Planning Horizon H, 1-timestep shifted solution from the previous timestep 7 ~*, ARC
iterations n 4 pc, number of trajectories (population size) V.

1: for: =1..napc do

2: Ri.y=0 > Rewards of N trajectories
3: AN =0 > N action sequences with horizon H
4: for j = 1..N trajectories do
5: /I Generate a trajectory with the model
6: S1 = ST
7: for t = 1..H horizon do
8: /I Generate actions from a mixture prior
9: Aji=ar = Brg(s) + (1 - BIN (i )
10: St+1 = Md; (5t7 at)
11: end for
12: // Rollout the action sequence P times in each model within the ensemble
13: R=0
14: for £ = 1.. Kmodels do
15: for p = 1.. P particles do
16: S1 = ST
17: for t = 1..H horizon do
18: ay = Aj,t
19: St41 = My (s¢, ar)
20: R=R+~"1(1(t = H)Qo(st,ar) + L(t # H)7(s¢,ar))
21: end for
22: end for
23: end for
24: /MUncertainty penalized average reward
250 Ry = (SELRIP) — Bews DRIP — DI (55))%)
26: end for

27: Hnew 1:H = weighted-mean(A .y, weights = exp(R1.x /7))
28: Ynew 1.1 = weighted-mean((A1.x — fnew)?, weights = exp(Ry.n /7))

29: Py = Q% finew + (1 — a)p] > Update mean
30: = axShe + (1—a)S] > Update variance
31: end for

., T T
Output: " = fty,, i1

Bpess is set to zero for Online RL experiments and safe RL experiments where trajectories are scored
by unpenalized average. It is tuned for Offline RL experiments as detailed in Appendix C.
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B.3.1 ARC for safe-RL
We optimize for the following objective in LOOP for safe RL:

H
argmax, E {RH’V(st)} s.t. H&?]XZV%(S“ ar) < dy (70)
t=0

where [K] are the model ensembles, ¢ is the constraint cost function and R v 18 the H-horizon
lookahead objective defined in Eqn. 3. We incorporate safety in the trajectory optimization procedure
following previous work [62, 63]. The pseudocode for safeARC used in safeLOOP is shown in
Algorithm 4.

B.4 Discussion on the choice of terminal value function

LOOP-SAC, LOOP-SARSA and POLO use different ways to learn a terminal value funcion. LOOP-
SARSA is evaluating the "replay buffer policy" instead of the H-step lookahead policy because we
are using off-policy data (where the original SARSA is an on-policy algorithm). We believe this is the
main reason behind its poor performance. Unfortunately, on-policy LOOP-SARSA would be too slow,
due to the need for collecting on-policy data. POLO is formulated to evaluate V™ with the model.
However, POLO requires running trajectory optimization during the value function update, which is
computationally expensive. In contrast to these methods, LOOP uses an off-policy algorithm to learn
V*. We found that this approach has good performance and it is significantly more computationally
efficient than POLO. An interesting direction of future work could be to try to combine LOOP with
an efficient off-policy evaluation algorithm to estimate V™.
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Algorithm 4 safeARC

Input: sp, 7y
Given the parameterized actor 74, Q-function @)y, predictive model Mw, reward model 7, replay
buffer D, planning horizon H, 1 timestep shifted solution from the previous timestep u” 1, safety
threshold dy, minimal safe trajectories m, ARC iterations n 4 ¢, number of trajectories (population
size) N.

1: fori =1..napc do

2: Ri.xy=0 > Rewards of N trajectories
3: Ci.n=0 > Cost of N trajectories
4: ANy =0 > N action sequences with horizon H
5: for j = 1..N trajectories do
6: /I Generate a trajectory with the model
7: S1 = 8T
8: for t = 1..H horizon do
9: /I Generate actions from a mixture prior
10: Ajr=ay = Bry(se) + (1= BN (i ', 0)
11: St+1 = M¢(8t7at)
12: end for
13: /I Rollout the action sequence P times in each model within the ensemble
14: R=0
15: for k = 1.. K models do
16: for p = 1..P particles do
17: S1 = ST
18: for t = 1..H horizon do
19: ay = Aj,t
20: St4+1 = Mw(st, (lt)
21: R=R+~"7Y1(t = H)Qo(st,a¢) + 1(t # H)7(s¢,a1))
22: C = C+7t71(é(8t,at))
23: end for
24: end for
25: end for
26: R; =+ Zle (R/P) > Average Reward across the ensemble
27: C; = maxg) max|p)(C) > Maximum Cost across the ensemble and particles
28: end for
29: if count(Cy.y < dg) < m then
30: tnew = weighted-mean(A+. v, weights = exp(—Cy /7))
31: Y ew = weighted-mean((A 1. x — finew)?, weights = exp(—Cy /7))
32: > Weighted mean w.r.t neg-cost
33: else
34: safe-idx = {i for C; < dp}
35: Hnew= weighted-mean(Agyfe-iax, weights = exp(Ryafe-iax /)
36: Ynew = weighted-mean(Agfeidx — finew)>> Weights = exp(Rafe-iax /7))
37: > Weighted mean w.r.t safe actions
38: end if
39: Pl = o finew + (1 —a)pl > Update mean
40 X, = axY,+ (1—a)XT > Update variance
41: end for

Output: " =pl

C Experiment Details

We use the same hyperparameters for the underlying off-policy method (SAC) and the ensemble
dynamics models following previous work for LOOP and all the baselines [21, 17, 5]. All the results
presented are averaged over 5 random seeds.
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C.1 Implementation Details for the Dynamics Model Ensemble

Following [21, 17], we use probabilistic ensembles of dynamics models that capture the epistemic
uncertainty as well as the aleatoric uncertainty in forward predictions [64]. The dynamics model M
is comprised of K neural networks. Each individual network is randomly initialized and trained with
the same dataset. Using the transition dataset, we train the dynamics model to predict the next state
as well as the reward. In practice, instead of directly regressing to the next state, we instead predict
Aty1, where Ayq = spp1 — S¢ parametrized as a Gaussian distribution with a diagonal covariance
matrix. We regress directly to the scalar reward.

C.2 Online RL

Additional details on PenGoal-vl and Claw-vl: We modify the original Pen-v1 environment 2
to have a narrower range of goals given by: [0.7,0.7] + A(0,0.1) and name this environment
as PenGoal-vl. We use the Claw-v1 environment from Nagabandi et al. [21] using the original
implementation® but we find the scale of rewards to be different from the paper.

Baselines: We use the original implementation for MBPO*. For SAC, we use a public implementa-
tion 3. We use a planning horizon of 3 for PETS-restricted which is the same as LOOP. LOOP-SARSA
is based on the same H-step lookahead idea, but with a terminal value function that is a evaluation of
the replay buffer. The value function is updated using the following SARSA update from the replay
buffer transitions:

TP Q(st,ar) = r(st, ar) + YQ(S141, ary1) , where (s¢, ar, 74, Se41, 0041 ~ D) (71)
This baseline is similar to MBOP [33]. The main difference is that in this case the Q-function is
learned via TD-backups for evaluation whereas MBOP uses Monte Carlo Evaluation. For SAC-VE,
we implement H-step value expansion from [15] on top of SAC for a fair comparison. This is
following the value expansions baseline implemented in MBPO [13].

Training Details: For LOOP-SAC we use SAC [5] as the underlying off-policy RL algorithm. Both
the policy network (the parameterized actor) and the Q-function are parameterized by (256, 256)
MLP with ReL.U activations. The output of the policy network is a tanh squashed Gaussian. We use
Adam to optimize both the policy and the Q-network with a learning rate of 3e-4. The temperature
for SAC is learned to match a predefined target entropy. The replay buffer has a size of 1e6 and we
use a batch size of 256. The target networks are updated with polyak averaging. Dynamics model
related hyperparameters are listed in Table 2 and ARC related hyperparameters are in Table 3.

Hyperparameter \ Value
Model Update frequency (¥K,,) 250
Ensemble Size (K) 5
Network Architecture (200,200,200,200)
Model Learning rate 0.001

Table 2: Dynamics Model Hyperparameters

C.3 Offline RL

Baselines: We reimplement the CRR baseline in Pytorch. For PLAS, we use the original implemen-
tation ©. Note that LOOP requires terminal Q-functions which estimate the cumulative value of future
rewards. Some offline RL methods such as CQL will not be suitable to be combined with LOOP
because CQL estimates a conservative lower-bound of the Q-function [31]. For MBOP [33], we
report the results from their paper.

Training Details: For both LOOP-CRR and LOOP-PLAS we use the provided hyperparameters in
the original papers. To optimize for the H-step lookahead objective given in Eqn. 3, we use ARC with

*https://github.com/vikashplus/mj_envs
3https://github.com/google-research/pddm/tree/master/pddm
*https://github.com/JannerM/mbpo
Shttps://github.com/openai/spinningup
Shttps://github.com/Wenxuan-Zhou/PLAS
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Hyperparamater | Value

Planning Horizon (H) 3
Population Size (V) 100
Number of Particles (P) 4
Alpha («) 0.1
Iterations (narc) 5
Mixture ratio (/3) 0.05
Eta (n) 1

Table 3: Online RL: ARC Hyperparameters

1 iteration of Iterative importance sampling and 5 = 1 in the mixture prior. This is done to ensure
that ARC trajectories are close to the actor trajectory distribution since the estimated Q-functions
are only accurate within the data distribution. For each dataset, We perform an hyperparameter
search over horizons h - [2,4,10], pessimism parameter Spess - [0,0.5,1,5], exponential weighting
temperature 1 /7 - [0.01,0.03,0.1,1,3,10] and noise standard deviation o- [0.01,0.05,0.1]. We list the
hyperparameters from the best experiments in Table 1.

Dataset-type | Environments LOOP-CRR LOOP-PLAS
yp ‘ h 1/17 /Bpﬁss o | h 1/77 ﬂpcss g

hopper 2 10.0 0.5 0.4 4 3 0.5 0.4
random halfcheetah 2 0.01 5.0 0.4 2 1 0 0.01
walker2d 4 30 0.0 0.05 | 10 10 0 0.05
hopper 2 3.0 1.0 0.01 2 10 0.5 0.01
medium halfcheetah 2 0.01 0.0 0.01 2 001 1.0 0.01
walker2d 2 01 0.5 0.05 | 4 3.0 0 0.01
hopper 4 0.03 0.5 0.01 2 3.0 1.0 0.01
med-replay halfcheetah 2 1.0 0.5 001 | 2 0.03 5.0 0.01
walker2d 4 1.0 0.5 0.1 4 0.01 0.5 0.01
hopper 4 0.1 1.0 0.05 | 4 0.1 5.0 0.01
med-expert halfcheetah 2 001 5.0 0.01 | 2 0.01 0.5 0.05
walker2d 4 0.01 1.0 0.01 2 10.0 1.0 0.01

Table 4: Hyperparameters used in LOOP behavior policy during evaluation for Offline RL methods

C.4 Safe RL

Details on the Environments: For benchmarking safety environments we use the OpenAl safety
gym environments [55]. We use a modified observation space for the agents where each agent
observes its readings from velocimeter, magnetometer, and gyro sensors, LIDAR observations for
the obstacles, and the goal location to a total of a 26-dimensional observation space. We also use
an RC-car environment [56] in safe RL experiments shown in Figure 7. RC-car environment has a
6-dimensional observation space consisting of car’s position and rate of change of its position. It’s
action space comprises of throttle and steer command.

4 @ .
..C.D ® ) .

) - -
"% C
@, oo ﬁ"i‘v .

3 2 4 [ 1 2 3

Figure 7: Safety environments. Left to Right: PointGoall, CarGoall, Drift-vO
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Baselines: We compare against CPO [57], LBPO [58], and PPO-lagrangian [59]. We use the original
implementation for LBPO’ and the safety benchmark [55] for CPO and PPO-lagrangian. All of the
three baselines require a threshold to be set in order to optimize for safety. SafeLOOP optimizes for
in-horizon safety whereas the baselines optimize for the infinite-step cumulative discounted return,
so it becomes difficult to compare the methods directly. We design safeLOOP to optimize for O cost
within the planning horizon and use the asymptotic safety cost reached by safeLOOP as the threshold
for the baselines. We see that safeLOOP can reach average infinite horizon cost less than 10 which is
lower than the threshold of 25 used in the official benchmark.

Training details: We use the safeARC algorithm presented in Algorithm 4 to solve the constrained
optimization objective in Eqn. 10. The ARC parameters are the same as given in Table 3 with the
Iterations(N) changed to 8 and Planning horizon(H) changed to 8. For OpenAl safety environments
we use an action repeat of 5 across our method and the baselines.

https://github.com/hari-sikchi/LBPO
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D Additional Experiments

D.1 Online RL experiments for additional environments

Figure 8 shows the comparison of LOOP-SAC with baselines on additional tasks InvertedPendulum-
v2, Swimmer, Hopper-v2 and TruncatedHumanoid-v2. LOOP-SAC is significantly more sample
efficient than SAC as we observed in Figure 3. PETS-restricted has poor performance due to
planning over a limited horizon. LOOP-SAC outperforms SAC-VE and is competitive to MBPO,
except in Humanoid-v2 where MBPO outperforms. LOOP-SARSA has a poor performance across
environments.

InvertedPendulum-v2 Swimmer-v2 . Hopper-v2 Humanoid-v2

g 1000 i 5000

g 7 300 3000 4000 M

&) 750

° 200 2000 3000

o 50 4 2000

o 100 1000

o 1000

< 0 _—

%U 05 1.0 15 20 25 3.0 0.0 05 1.0 15 20 %vo 0.2 04 06 0.8 1.0 0.0 05 1.0 15 20 25 3.0
Timesteps Tod Timesteps Tod Timesteps 1e5 Timesteps 15
= | OOP-SAC (ours) MBPO = SAC = LOOP-SARSA = SAC-VE = PETS-restricted

Figure 8: Comparisons of LOOP and the baselines for online RL for InvertedPendulum-v2, Swimmer,
Hopper-v2 and TruncatedHumanoid-v2. LOOP-SAC is significantly more sample efficient than SAC.
The dashed line indicates the performance of SAC at 1 million timesteps.

D.2 Comparison to modified POLO

In this section, we compare against POLO for Claw-v0 and HalfCheetah-v0 in Figure 9. The
author’s implementation of POLO is unavailable so we tried our best to implement it. To have a fair
comparison with LOOP, we keep the hyperparameters as close to LOOP as possible and use a learned
model; since the code for POLO is not available, we are unsure what hyperparameters were used in
the original experiments. The performance of POLO is pretty low compared to LOOP, potentially due
to the limited computation of CEM used for the value function update. Potentially the performance
of POLO would be better with much larger computational resources than what we have available.

We would also like to highlight the difference in computational efficiency in LOOP and POLO.
POLO requires an additional trajectory optimization procedure for value function computation, which
is very computationally expensive. In contrast, LOOP learns a parameterized policy and value
function to make the value function computation significantly faster. In addition, normally for online
planning, we can warm start from the results from the previous time step (‘“amortization"); LOOP
and PETS [17] take advantage of this optimization. In contrast, POLO cannot take advantage of this
amortization during optimization for the value computation because we sample states IID from the
replay buffer. Our implementation of POLO (after reasonable optimizations) takes ~84 hours for
100k steps of HalfCheetah on a single NVIDIA 1080 GPU whereas LOOP takes ~7 hours (12x less
computation) while taking ~1/5 the memory consumption of POLO.

HalfCheetah-v2 Claw-v1
14000 10000
-E 12000 5000
g 10000
&, 8000 0
[}
% 6000 5000
a—, 4000
2 2000 ~-10000
0
-15000
0.0 0.2 04 0.6 0.8 1.0 1.2 14 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Timesteps 1e5 Timesteps Tes
= | OOP-SAC (ours) POLO = MBPO — SAC = | OOP-SARSA

Figure 9: Comparisons of LOOP with modified-POLO for online RL for HalfCheetah-v2 and Claw-
v1. POLO demonstrates poor performance which might be attributed to one of the reasons mentioned
above.
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D.3 Offline RL experiments for D4RL

Table 5 shows the performance of LOOP on four types of D4RL locomotion datasets. The random
dataset is generated by a randomly initialized policy. The medium dataset is generated by executing a
“medium quality” policy trained up to half of the final performance at convergence. The medium-
replay dataset is the replay buffer of the medium quality policy. The medium-expert dataset is
generated by a medium quality policy and a fully trained policy.

Dataset Env CRR LOOP | Improve% | PLAS | LOOP | Improve% | MBOP
CRR PLAS
hopper 10.40 10.68 2.7 10.35 10.71 3.5 10.8
random halfcheetah 423 7.55 78.5 26.05 26.14 0.3 6.3
walker2d 1.94 2.04 52 0.89 2.83 218.0 8.1
hopper 65.73 85.83 30.6 32.08 56.47 76.0 48.8
medium halfcheetah | 41.14 | 41.54 1.0 39.33 39.54 0.5 44.6
walker2d 69.98 79.18 13.1 46.20 52.66 14.0 41.0
hopper 27.69 29.08 5.0 29.29 31.29 6.8 12.4
med-replay | halfcheetah | 42.29 42.84 1.3 43.96 44.25 0.7 42.3
walker2d 19.84 27.30 37.6 35.59 41.16 15.7 9.7
hopper 112.02 | 113.71 1.5 110.95 | 114.32 3.0 55.1
med-expert | halfcheetah | 21.48 24.19 12.6 93.08 98.16 5.5 105.9
walker2d 103.77 | 105.76 1.9 90.07 99.03 9.9 70.2

Table 5: Normalized scores for LOOP on the D4RL datasets comparing to the underlying offline RL
algorithms and a baseline MBOP. LOOP improves the base algorithm across various types of datasets
and environments.

D.4 Pessimism ablation for Offline RL

Table 6 shows an ablation of the pessimism term Spess in Eqn. 9 as used in LOOP for Offline RL
experiments. We note that the pessimistic term is not itself one of our contributions; this pessimistic
term was used in previous works in model-based offline RL like [49, 50] which learn a policy given
the data in an uncertainty penalized MDP. We observe that being pessimistic allows us to control
incorrect extrapolation and obtain higher returns in most of the environments.

Env LOOP LOOP 8" LOOP LOOP 5"
Dataset CRR CRR PLAS PLAS
B=0 | (B=p8) B=0 | B=p
hopper 10.31 10.68 0.5 10.67 10.71 0.5
random halfcheetah 5.12 7.55 5.0 26.14 26.14 0.0
walker2d 2.04 2.04 0.0 2.83 2.83 0.0

hopper 78.56 85.83 1.0 54.97 56.47 0.5
medium halfcheetah 41.54 41.54 0.0 38.01 39.54 1.0
walker2d 75.21 79.18 0.5 52.66 52.66 0.0

hopper 28.28 29.08 0.5 31.08 31.29 1.0
med-replay | halfcheetah | 42.71 42.84 0.5 44.01 44.25 5.0
walker2d 23.17 27.30 0.5 32.99 41.16 0.5

hopper 104.57 113.71 1.0 | 98.87 114.32 | 5.0
med-expert | halfcheetah 23.84 24.19 5.0 94.19 98.16 0.5
walker2d 104.57 105.76 1.0 | 97.87 99.03 1.0

Table 6: Normalized scores for LOOP on the DARL datasets ablating the pessimism parameter.

D.5 Empirical analysis for ARC

In this section, we aim to verify how the ARC and its specfic hyperparameters affect the performance
of LOOP for both the online RL and offline RL settings.
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D.5.1 Ablation Study on Actor Regularized Control

In this experiment, we compare the performance of LOOP with ARC to a variant of LOOP which
optimize Eqn. 3 without any constraint using CEM in the Online RL setting. CEM starts the
optimization from the mean action sequence from the previous environment time step. It does
not include actions proposed by the parameterized actor in the population. During training, we
measure the actor-divergence defined to be the Lo distance between the proposed action means of the
parameterized actor and the CEM output.

The results are shown in Figure 10. The training process sometimes become unstable in the absence
of ARC. We also observe that ARC empirically reduces actor-divergence during training.
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Figure 10: Top: We illustrate the effect of ARC on the performance for online-RL. Without ARC, the
performance is worse and the training becomes unstable. Bottom: We illustrate that ARC effectively
reduces the actor-divergence between the H-step lookahead policy and the parameterized actor.

D.5.2 ARC runtime

ARC runs at 14.3 Hz for the HalfCheetah-v1 environment with the hyperparameters specified in
Table 3 on a machine with Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz and NVIDIA GeForce
GTX 1080 Ti with a GPU memory consumption of 1500 MB.

D.5.3 Effect of § in ARC for Online RL

We see in Section 5.1 that ARC uses a mixture distribution of actor and 1-step shifted output from the
previous timestep as the prior given by:

p;m’or = pmo + (1 — IB)N(/‘tfla U)
where (3 is the mixture coefficient.

In this experiment, we compare ARC with different parameters of beta for online RL. We observe
empirically in Figure 11 that ARC with 5 < 1 is more suitable to online RL as it is less restrictive
and allows for a greater improvement on the parametric actor.

D.5.4 Effect of S in ARC for in Offline RL

We use ARC with 1 importance sampling iteration for offline RL. In the following experiment, we
compare ARC over 1 importance sampling iteration with 3 = 1 against ARC over 5 iterations with
B = 0.05. The latter version utilizes the solution obtained by ARC in previous timestep which may
potentially select trajectories that lead to out-of-distribution states with overestimated value. We see
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Figure 11: Effect of 5 in Online RL experiments. A high 3 constrains output actions to be close to
actor and can restrict policy improvement.

in Table 7 that offline RL results for LOOP using ARC with 5 = 0.05 has much worse performance
than ARC with § = 1 and also performs worse than the underlying offline RL method.

Dataset Env CRR | LOOP-CRR | LOOP-CRR | PLAS | LOOP-PLAS | LOOP-PLAS
(5=0.05) (p=1.0) (5=0.05) (B=1.0)
hopper 10.40 7.50 10.68 10.35 7.66 10.71
random halfcheetah 4.23 2.32 7.55 26.05 5.21 26.14
walker2d 1.94 2.43 2.04 0.89 1.24 2.83
hopper 65.73 15.02 85.83 32.08 9.64 56.47
medium halfcheetah | 41.14 3.09 41.54 39.33 2.99 39.54
walker2d 69.98 6.02 79.18 46.20 4.25 52.66
hopper 27.69 8.78 29.08 29.29 6.8 31.29
med-replay | halfcheetah | 42.29 3.10 42.84 43.96 4.68 44.25
walker2d 19.84 6.02 27.30 35.59 6.89 41.16
hopper 112.02 8.78 113.71 110.95 7.48 114.32
med-expert | halfcheetah | 21.48 3.09 24.19 93.08 4.10 98.16
walker2d 103.77 6.01 105.76 90.07 3.01 99.03

Table 7: Effect of 5 in offline-LOOP for the offline RL experiments. A low S can potentially select
trajectories with overestimated returns.

D.6 Benefits of deploying H-step lookahead in Online RL

In LOOP we use a H-step lookahead policy for both exploration and evaluation. In this experiment,
we run the Online RL experiments with LOOP only used for evaluation but not for exploration similar
to the Offline RL experiments. This baseline is named SAC-evalLOOP. From Figure 12, LOOP-SAC
outperforms both SAC-evalLOOP and SAC, which shows the benefits of H-step lookahead in LOOP
during training-time deployment.
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Figure 12: We compare the performance of LOOP-SAC to SAC-Online and SAC-Online-LOOPeval.
LOOP-SAC outperforms both baselines and suggests that LOOP benefits from the H-step lookahead
policy during training-time deployment.
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D.7 Using Offline RL Algorithms with LOOP for Online RL

In Section 5.1, we mentioned that naively combining H-step lookahead policy with an off-policy
algorithm will lead to the Actor Divergence issue. One potential solution we have considered besides
ARC is to use an Offline RL algorithm as the underlying off-policy algorithm. Offline RL algorithm
are designed to train a policy over a static dataset that is not collected by the parameterized actor
which in principle should mitigate the instability issues of the value function learning caused by Actor
Divergence. Note that in this case we are considering an Online RL problem setting with the help of
Offline RL algorithms.

We investigate a combination of LOOP with Offline RL methods MOPO [49] and CRR [54]. We
reimplement MOPO in PyTorch (originally in Tensorflow) for compatibility with other modules of
LOOP. We also modify the dynamics model activations from Swish to ReLU. We use the same CRR
implementation as the Offline RL experiments discussed above. We adapt MOPO and CRR to the
Online RL setting by updating the policy and the value function for 20 gradient updates for each
environment timestep. From Figure 13, LOOP-SAC has the most consistent performance across
all the environments. LOOP-CRR and LOOP-MOPO work well in some cases but are significantly
worse than LOOP-SAC in the others.
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Figure 13: Using offline RL methods like CRR (model-free) or MOPO (model-based) with LOOP
does not lead to consistently better performance.

| Model Update frequency (K,,) | 250 |
| Ensemble Size | 5 |
| Network Architecture | MLP with 4 hidden layers of size 200 |
| Model Horizon (H) | 3 |
| Model Learning rate | 0.001 |
| Policy update per environment step (R) | 20 |
| Replay Buffer Size | le6 |
| Gradient updates per timestep(R) | 20 |
| Pessimism parameter(\) | 1 |
| Model rollout length | 1 |

Table 8: LOOP-MOPO Hyperparameters
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