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Immune checkpoint therapies such as PD-1 blockade have vastly improved the treatment
of numerous cancers, including basal cell carcinoma (BCC). However, patients afflicted
with pancreatic ductal carcinoma (PDAC), one of the deadliest malignancies,
overwhelmingly exhibit negative responses to checkpoint therapy. We sought to
combine data analysis and machine learning to differentiate the putative mechanisms
of BCC and PDAC non-response. We discover that increased MHC-I expression in
malignant cells and suppression of MHC and PD-1/PD-L expression in CD8+ T cells is
associated with nonresponse to treatment. Furthermore, we leverage machine learning to
predict response to PD-1 blockade on a cellular level. We confirm divergent resistance
mechanisms between BCC, PDAC, andmelanoma and highlight the potential for rapid and
affordable testing of gene expression in BCC patients to accurately predict response to
checkpoint therapies. Our findings present an optimistic outlook for the use of quantitative
cross-cancer analyses in characterizing immune responses and predicting
immunotherapy outcomes.
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1 INTRODUCTION

Cancer immunotherapy has shown to elicit substantial response to many cancers and has led to
significant increases in quality of life for cancer patients. This is especially true of checkpoint therapy,
which causes tumor regression in previously untreatable cancers. Response to checkpoint therapy
has been positively correlated with tumor mutational burden (TMB) and with presence of CD8+

T cells in the tumor microenvironment (characterized as “hot” tumors) (Yarchoan et al., 2017)
(Tumeh et al., 2014). However, the potential mechanisms of checkpoint therapy are still being
investigated and there are as of yet few prognostic markers for response (Bai et al., 2020). Potential
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biomarkers include the alteration of signaling pathways in tumor
cells, namely mutations in the interferon (IFN)-γ pathway, as well
as pathways related to tumor cell proliferation and infiltration
(Possick, 2017). Poor response to immunotherapy is also linked
to inactivation of PTEN, mutations of POLE, and linked
mutations in KRAS and STK11 (Wang et al., 2021).

Basal cell carcinoma (BCC) is a skin cancer with high TMB
(estimates range from a median of 47.3 mutations/Mb to 65
mutations/Mb), arising from skin membrane stem cells
(Chalmers et al., 2017) (Bonilla et al., 2016). Despite being
mostly characterized as a “cold” tumor, BCC has been shown
to exhibit partial and complete responses to checkpoint
therapy (Moujaess et al., 2021) (Walter et al., 2010).
Recently, the PD-1 inhibitor cemiplimab received FDA
approval for patients with advanced non-resectable BCC
that are resistant to Hedgehog pathway inhibition
(Moujaess et al., 2021). BCC is a relatively unique cancer in
that the TMB does not correlated with immunogenicity. This is
thought to be a combination of downregulation of major
histocompatability complex class I (MHC-I) expression and
immunosuppression via influx of T regulatory cells driven by
overexpression of the Hedgehog pathway (Walter et al., 2010)
(Grund-Gröschke et al., 2020).

Pancreatic ductal adenocarcinoma, a carcinoma arising from
ductal cells in the pancreas, is in essence an incurable disease, with
less than 5% survival rate over 5 years as of 2016 (Bengtsson et al.,
2020). This survival rate, in conjunction with projections that
pancreatic cancers will be one of the major causes of cancer-
related deaths by 2030, highlights a strong need to develop better
biomarkers and treatments (Rahib et al., 2014). Despite
significant progress having been made in oncology treatment,
PDAC has proven to be incredibly challenging to treat, due to a
multitude of factors including lack of symptoms before metastasis
and lack of specific clinical characteristics (Wolfgang et al., 2013).
PDAC has also been found to be non-responsive to checkpoint
immunotherapy, showing a poor response to CTLA-4, PD-1 and
PD-L1 therapies (Royal et al., 2010) (Renouf et al., 2020). The
reasons for this lack of response are still under study; proposed
factors include levels of microsatellite instability, tumor
infiltrating lymphocytes (TILs), and DNA mismatch repair
deficiency (Christenson et al., 2020) (Pu et al., 2019).
Although it has a relatively low TMB, PDAC has a highly
immunosuppressive tumor microenvironment and is
immunogenic (Fan et al., 2020).

In order to study the differential mechanisms by which BCC
and PDAC cancers resist checkpoint immunotherapy treatment
and building on our previous work (Dollinger et al., 2020), we
leveraged two recent single-cell transcriptomic datasets of PDAC
and BCC (Figures 1A and Supplementary Figure S1). Through
comparing these two datasets, we identified potential common
biomarkers for nonresponse to PD-1 blockade and differences in
the immune mechanisms combating tumor progression in these
two cancers. We found that PDAC suppresses MHC-I gene
expression in CD8+ T cells and upregulates MHC-I in
malignant cells compared to BCC. Furthermore, the PD-1/PD-
L signaling axis is significantly weaker in PDAC, leaving
diminished opportunity for phenotypic changes to occur

through boosting its activity. Utilizing machine learning
classification algorithms, we additionally discovered that
PDAC displays greater similarities to melanoma, which is
highly immunogenic and undergoes rapid metastasis, than to
BCC (Dollinger et al., 2020).

2 RESULTS

2.1 Characterization of the BCC and
PDAC TME
In order to characterize the transcriptomic differences
between responders and non-responders to PD-1 blockade
therapy, we analyzed a previously published scRNA-seq
dataset of basal cell carcinoma patients pre- and post-
treatment (Yost et al., 2019). The dataset consists of
24 site-matched samples from 11 patients with advanced
BCC; a total of 53,030 malignant, immune, and stromal
cells were obtained between the six responsive and five
nonresponsive patients. Unsupervised clustering of the
dataset revealed 20 distinct clusters (Figure 1B), including
8 T cell clusters and two malignant cell clusters (Methods).
Our clustering largely agrees with the original analysis
(Supplementary Figure S2A), with the exceptions that we
only found 1 B cell cluster and differentiated macrophages
into the M1/M2 polarization as defined in (Orecchioni et al.,
2019).

Separately, a dataset of 46,244 cells from 16 PDAC patients
and 8,541 cells from three non-malignant adjacent samples was
used to characterize the PDAC TME (Steele et al., 2020); all
samples were taken before any treatment and include both
surgical and fine-needle biopsy specimens. Both the malignant
and adjacent samples were integrated together before clustering,
which revealed 22 distinct subpopulations (Figure 1C). Whereas
the general cluster labels correspond with those of the original
paper, two important distinctions are made. First, CD8+ T cells
are divided into effector/activated cells, memory cells, and
chronically activated/exhausted cells, referred to hereafter as
exhausted cells; these labels correspond with the CD8+ T cell
subclusters in the BCC dataset to facilitate further direct
comparison, and are therefore not equivalent to those in
Extended Data Figure 4 of the original analysis. However,
examination of mean scaled expression of highly enriched
genes reveals that the newly defined clusters are
transcriptomically similar to those in the original analysis
(Supplementary Figure S2B). Second, within the population
of epithelial/ductal cells, two distinct clusters of malignant
cells were identified using 205 marker genes commonly
upregulated in PDAC tumor samples (Figure 1D) (Tang et al.,
2018). The identification of these clusters is novel and was not
detected by the original authors. Whereas one malignant cluster
had significantly elevated expression of nearly all marker genes
and a high percentage (>50%) of all cells expressing each gene, the
second malignant cluster had much more sparse and less
significantly elevated expression of the DEGs, suggesting that
there exists a wide spectrum in the degree of malignancy of ductal
cells (Supplementary Figure S2C). Both normal ductal cells in
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FIGURE 1 | Single-cell sequencing reveals distinct T cell subpopulations in BCC and PDAC and ductal cell subpopulations in PDAC. (A)Workflow diagram. (B,C)
Dimensional reduction of (B) BCC and (C) PDAC TME. (D) Dimensional reduction of PDAC ductal cells. (E) Differential gene expression between BCC responders and
nonresponders; positive fold change indicates greater expression in responders. (F) Single-cell resolution heatmap of top three differentially expressed genes per cluster
in merged BCC and PDAC dataset. (G)Normalized proportion of cells in each cluster identified in (F) that belong to BCC responders (BCC R), BCC nonresponders
(BCC NR), PDAC tumors (PDAC Can.), and adjacent PDAC samples (PDAC Adj.).
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malignant PDAC samples and those from adjacent samples
exhibited negligible expression of the 205 marker genes.

Comparing average gene expression across all cells between
responders and nonresponders in BCC, we found that MHC
genes are overexpressed in responders, whereas heat shock
protein (HSP) genes are overexpressed in nonresponders
(Figure 1E). This is in line with current literature: reduced
MHC-I expression is well-known to facilitate immune evasion
(Šmahel, 2017); MHC-II expression is correlated with response to
PD-1 blockade treatment (Rodig et al., 2018); and HSP genes are
associated with tumor proliferation and metastasis (Ciocca and
Calderwood, 2005). Merging both datasets, we find that the top
differentially expressed genes (DEGs) for each cluster aligns with
the marker genes used to identify them in (Yost et al., 2019) and
(Steele et al., 2020) (Figure 1F, Methods). Furthermore, no
significant difference was detected in the expression of top
DEGs in each cluster, e.g. expression of CCL4, CCL5, and
CD59 is similar between PDAC and BCC CD8+ effector
T cells. However, wide discrepancies can be seen in the
relative populations of different clusters between BCC
responders, BCC nonresponders, and PDAC patients
(Figure 1G). We find that BCC responders are more heavily
represented amongst B cells and T cells, whereas BCC
nonresponders have greater numbers of stromal, myeloid, and
malignant cells, recapitulating previous analyses (Dollinger et al.,
2020) (Yost et al., 2019). Meanwhile, PDAC tumors have very low
numbers of B cells and T cells in comparison to all BCC tumors,
but have much larger populations of macrophages and
endothelial cells. This highlights the challenges of using
immunotherapy in PDAC; it also justifies the comparison of
two different cancers due to the similarities in cell population
between non-responders in BCC and PDAC.

2.2 CD8+ T Cells Are More Active in BCC
Than PDAC
One of the main functions of PD-1 blockade is to reinvigorate
exhausted CD8+ T cells, leading to a stronger anti-tumor
response and eventual tumor regression (Verma et al.,
2019); thus, the altered function and composition of T cells
is a primary suspect in the nonresponse of PDAC to
immunotherapies. Due to the absence of data on PDAC
responders, in this section we compare T cells in PDAC to
those in BCC responders and nonresponders. Similarities in
composition or gene expression between the T cells of PDAC
and BCC nonresponders, as well as commonalities in the
differences between BCC responders and nonresponders
and the differences between BCC responders and PDAC,
provide potential factors for further study.

Comparing the T cell populations in PDAC tumor sites and
adjacent samples, we find significant differences in relative
subpopulation sizes – in particular, there are virtually no
regulatory T cells (Tregs), memory CD8+ T cells, or
exhausted CD8+ T cells in adjacent samples (Figure 2A).
This suggests that a subset of effector CD8+ T cells in the
PDAC TME enter an exhausted phenotype or differentiate into
memory cells after prolonged exposure to cancer (Xia et al.,

2019). Furthermore, we unexpectedly find a substantially
larger population of CD8+ exhausted and memory cells in
BCC responders and a diminished number of CD8+ effector
cells. Therefore, it is possible that BCC responders benefit
more from PD-1 therapy due to greater potential for
phenotypic shifts on the cellular level, or simply that T cells
in responders have experienced prolonged exposure to the
malignancy. Both PDAC populations lack proliferating T cells,
supporting its reputation as extremely immunosuppressive
(Foucher et al., 2018).

To determine whether these trends are patient-specific, we
first compared the fraction of all cells in each pre-treatment
sample that are identified as T cells (Figure 2B). As expected,
pre-treatment responders have a greater proportion of T cells
than nonresponders, although the difference is statistically
insignificant (p > 0.05). However, both BCC responders and
nonresponders have significantly higher T cell proportions
than both malignant and adjacent PDAC samples by a factor of
4–8. Comparing the proportion of T cells classified as activated
and exhausted, we find that the proportions are similar
between all patients, with the unexpected exception that the
vast majority of T cells in the adjacent pancreas samples are
effector CD8+ T cells (Figures 2C, D). This may indicate that
adjacent samples may not reflect a true negative control, as is
often used in the literature.

Identification of the top 2,000 genes with the most similar
gene expression between BCC and PDAC unsurprisingly
reveal no notable gene groups, supporting the theory that
the two cancers rely on different systems of immune
activation. However, we notice that HLA genes are amongst
the most highly enriched genes in both cancers; furthermore,
they are consistently overexpressed in BCC compared to
PDAC by a factor of 2-10 with the exception of HLA-E and
HLA-F, suggesting that PDAC suffers from much more severe
MHC-I suppression (Figure 2E). To confirm whether these
differences hold on a patient level, we constructed a MHC-I
and MHC-II score (Methods). Comparison of the per-patient
MHC-I scores between BCC and PDAC for each of the CD8+

T cell subclusters shows that regardless of the subcluster, BCC
CD8+ T cells have significantly elevated MHC-I expression in
comparison to PDAC; this discrepancy is most pronounced in
memory CD8+ T cells, where MHC-I scores are on average
4 times higher (Figure 2F). Similarly, per-patient comparison
of MHC-II scores show that all three groups of CD8+ T cells
have significantly lower expression in PDAC than BCC - in
particular, the majority of effector and memory CD8+ T cells in
PDAC exhibit virtually no MHC-II expression (Figure 2G).
This supports prior research demonstrating that MHC-I
molecules are degraded by autophagy-dependent
mechanisms in PDAC, thereby facilitating impaired antigen
presentation and resistance to checkpoint therapies (Johnson
et al., 2016); no such mechanisms have been implicated in BCC
and this provides evidence against such a mechanism existing
in the BCC TME.

We then compared the distribution of PD-1 and PD-L1/PD-
L2 expression in BCC and PDACCD8+ T cells (Figures 2H, I). In
both cancers, the vast majority (>95%) of cells exhibit zero
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FIGURE 2 |CD8+ T cells in BCCexhibit higher signaling strength andMHC-I/PD-1 pathway expression compared to PDAC. (A)Proportion of T cell subclusters in BCC (R�
Responsive, NR � Nonresponsive) and PDAC (Can. � Cancerous, Adj. � Adjacent) samples. (B) Per-patient comparison of the proportion of all cells that are T cells. (C, D) Per-
patient comparison of the proportion of T cells that are (C) CD8+ effector and (D) CD8+ exhausted. (E) Differential gene expression in CD8+ T cells, BCC vs PDAC (positive fold
change indicates higher expression in BCC); the top 2000 genes with the lowest absolute value normalized fold change in expression are highlighted in red. (F-I) Per-cell
comparison between BCC and PDAC CD8+ T cell subclusters on (F)meanMHC-I, (G)meanMHC-II, (H) PD-1, and (I)mean PD-L1/PD-L2 gene expression. (J)Comparison of
fold change between average PD-1 pathway gene expression of BCC and PDAC T cell subclusters; positive values indicate greater expression in BCC. (K) Comparison of
aggregate outgoing and incoming signaling strength between BCC and PDAC T cell subclusters.
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expression in all subclusters; the only exception is exhausted
CD8+ T cells in BCC. Thus, no significant difference (p > 0.01) is
detected between BCC and PDAC in the expression distribution
of the PD-1 pathway. Due to the exceptionally low expression in
all clusters, we examined the mean expression of all cells in each
T cell subcluster (Figure 2J). We find that with the exception of
NK cells and Tregs in the expression of PD-1, BCC T cells are also
upregulated in PD-1/PD-L1/PD-L2 in all subclusters by a factor
of 3–7. These results imply that a combination of immune
suppression and low expression of the MHC-I and PD-1 gene
pathway in CD8+ T cells contribute to decreased response to PD-
1 blockade in PDAC, as there is not sufficient expression of the
PD-1 pathway to induce significant change in T cell activity with
PD-1 blockade.

Lastly, we compared the aggregate signaling strength of each
BCC and PDAC T cell subcluster to determine their level of inter-
cellular communication (Figure 2K, Methods). Signaling strength
was inferred using the CellChat package by considering multiple
measures of network centrality for each cluster, utilizing a
manually-curated database of hundreds of ligand-receptor
interactions (Jin et al., 2021). We find that nearly all BCC T cell
subclusters aremore dominant “senders” and “receivers” than their
PDAC counterparts. In particular, due to the small size of the CD8+

memory T cell population in PDAC, it exhibits negligible inter-
cellular communication, whereas CD8+ memory T cells in PDAC
are extremely active. Additionally, proliferating T cells in BCC are
the dominant senders and receivers, despite constituting 4% of the
BCC T cell population; no equivalent subcluster was identified in
the PDAC samples. Altogether, these results demonstrate that
CD8+ T cells in BCC are substantially more active than their
counterparts, both in aggregate and in the MHC and PD-1
pathways.

2.3 Differential Expression of MHC-I in
Malignant Cells Is Associated With
Response to PD-1 Therapy
Multiple distinct subtypes of PDAC have been defined on the
basis of significant inter-tumoral and intra-tumoral heterogeneity
to develop personalized treatment strategies (Moffitt et al., 2015).
To determine whether the two distinct malignant ductal cell
subpopulations in our clustering (see Figure 1E) represent
unique subtypes, we compared the marker genes for each
PDAC ductal cell subcluster (Figure 3A). We find that the
majority of the top markers for normal ductal cells in
cancerous patients are mitochondrial genes (MT-ND2, MT-
ND1, MT-ND4, MT-CO1, MT-ND5, MT-ATP6, MT-CO3, MT-
CYB, MT-ND3, MT-CO2, MTRNR2L12, MT-ND6, and MT-
ND4L), supporting previous research that mitochondrial
metabolic reprogramming may be crucial to the progression of
pancreatic cancers (Reyes-Castellanos et al., 2020). The
Malignant 2 cluster was characterized by upregulation of
several ribosomal protein (RP) genes, corroborating
hypotheses that unique RP transcript expression can be
utilized in defining unique cancer subtypes (Dolezal et al.,
2018). Interestingly, ductal cells from adjacent samples
exhibited elevated expression of marker genes for the

Malignant 1 subcluster in comparison to ductal cells from
cancerous samples. Although each malignant cell subcluster is
dominated by a subset of the cancerous samples (Supplementary
Figure S3A), suggesting that inter-tumoral heterogeneity led to
the presence of two distinct PDAC subtypes in the dataset, we fail
to identify concrete evidence linking either malignant cluster to
the cancer subtypes defined in (Moffitt et al., 2015) and (Bailey
et al., 2016).

While numerous studies have been conducted on the genetic
markers of BCC and PDAC individually (Pellegrini et al., 2017)
(Liu et al., 2020) (Tang et al., 2018) (Kunovsky et al., 2018), we
present here the first direct comparison between the expression
patterns of malignant cells in the two cancers (Figure 3B). We
find that unsurprisingly keratins (namely KRT5, KRT14, and
KRT17) which are marker genes for keratinocytes are
overexpressed in BCC compared to PDAC by approximately
an order of magnitude. Furthermore, many HSP genes are
unexpectedly upregulated in BCC malignant cells, despite their
well-known association with carcinogenesis and metastasis
(Ciocca and Calderwood, 2005) (Wu et al., 2017). Expression
of HLA genes (MHC-I and MHC-II) are slightly upregulated in
PDAC malignant cells. The most upregulated genes in PDAC
include SPINK1, known for contributing towards increased
tumor proliferation and poor cancer prognosis (Mehner and
Radisky, 2019); TFF1, which facilitates PDAC metastasis
(Arumugam et al., 2011); and S100A6, a key diagnostic marker
for PDAC (Leclerc and Vetter, 2015).

As the role of MHC-I and MHC-II in both BCC and PDAC
tumors are well-established, we sought to compare the
distribution of HLA gene expression between the two cancers.
Using the same calculation for the MHC-I and MHC-II scores as
Figures 2F–H, we find that on a cellular level, MHC-I expression
is significantly upregulated in PDACmalignant cells compared to
normal ductal cells from both cancerous and adjacent samples
(Figure 3C). Interestingly, ductal cells from adjacent samples also
had significantly higher MHC-I expression than those from
normal samples. This provides more evidence that adjacent
samples are not true negative controls. MHC-II expression
followed the same trends, notably with a majority of non-
cancerous ductal cells having zero expression (Figure 3D).

Looking at average MHC-I and MHC-II expression per
patient between malignant and normal ductal cells, similar
trends emerge. Whereas MHC-I expression is significantly
elevated in malignant cells, no significant difference exists
between average MHC-II scores, with the distribution of
scores for normal ductal cells actually possessing a higher
median and much greater variance (Supplementary Figure
S3C). This suggests that there exists significant inter-tumoral
variability in MHC-II expression, with the larger tumor samples
having lower expression and therefore disproportionately shifting
the cellular distribution downwards.

It appears that PDAC is non-responsive to treatment despite
having already-elevated levels of MHC-I expression. To
determine the relationship between MHC-I expression and
response, we turned our attention to analyzing differences in
MHC expression between BCC responders and nonresponders,
both before and after treatment. Surprisingly, we find that

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 12 | Article 8064576

Liu et al. BCC/PDAC: Response to PD-1 Blockade

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


regardless of response status, MHC-I expression slightly
decreased post-treatment; however, nonresponders overall had
higher expression (Figure 3E). This is likely due to a combination
of greater initial tumor malignancy in non-responders and T cell
exhaustion over time. Meanwhile, responders had significantly
higher MHC-II expression pre-treatment, but both responders
and non-responders experienced drastic reductions in expression
post-treatment (Figure 3F). Whereas PDAC malignant cells
exhibited greater similarities in MHC-I expression to BCC

non-responders, MHC-II expression was more similar to BCC
responders.

2.4 Machine Learning Reveals Divergent
Immune Mechanisms in Response to PD-1
Blockade
With stark differences in immunogenicity, TMB, and tumor
progression between BCC and PDAC, it is hardly surprising

FIGURE 3 | Increased MHC-I expression is associated with nonresponse to PD-1 therapy in BCC and PDAC. (A) Single-cell-resolution heatmap of top 20 most
differentially expressed genes in each PDAC ductal cell subcluster. (B) Differential gene expression between BCC and PDAC malignant cells; higher gene expression in
PDAC is denoted by a positive log2 fold change. (C) Violin plot of MHC-I score by cell in ductal cells. (D)Differential gene expression in malignant cells, PDAC vs BCC. (E,
F) Violin plot of the (E) MHC-I and (F) MHC-II scores per cell in BCC malignant cells, classified by response (R/NR) and treatment (Pre/Post).
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that the immune mechanisms implicated through PD-1 blockade
in the two cancers are completely divergent. However, there exists
greater similarity in the immunosuppressivity and
immunogenicity between PDAC and melanoma, which
exhibits a relatively high response rate to PD-1 blockade of
30–45% (Sun et al., 2020) (Ribas and Wolchok, 2018). To test
whether the immune response of PDAC is more similar to BCC
or melanoma, and whether differential gene expression can
recapitulate these differences, we turn to machine learning.
CD8+ cytotoxic T cells are most directly responsible for killing
tumor cells and constitute the largest cluster in our datasets.
Therefore, in this section we attempt to construct a supervised
learning algorithm to predict whether individual CD8+ T cells
originate from a patient responsive or nonresponsive to
treatment. Patients with a high percentage of CD8+ T cells
predicted to be responsive will therefore have a higher
likelihood of response to PD-1 blockade.

Separate supervised learning algorithms were trained on both
BCC and melanoma CD8+ pretreatment T cells, subsetted from
(Yost et al., 2019) and (Sade-Feldman et al., 2018) respectively.
The BCC dataset consists of 4,311 cells (229 effector, 1,104
exhausted, and 2,978 memory) from five responders and 1,571
cells (73 effector, 2,439 exhausted, 4,156 memory) from six
nonresponders; the melanoma dataset consists of 1,512 cells
from 17 responsive samples and 1,239 cells from 31
nonresponsive (32 total patients). The cells from (Sade-
Feldman et al., 2018) were FACS sorted on CD45 + before
plating and sequencing. Identification of CD8+ T cells in the
melanoma dataset were taken directly from (Sade-Feldman et al.,
2018) and (Dollinger et al., 2020).

Each dataset was first filtered to include only genes with
expression detected in all three datasets (BCC, melanoma, and
PDAC). Classifiers were then constructed on the BCC and
melanoma CD8+ T cells through the sci-kit learn pipeline
(Pedregosa et al., 2011), using only the top 2,000 highly
variable genes in each dataset respectively (Figures 4A, B,
Methods). Through benchmarking multiple classifiers against
one another, we are able to identify the classification
algorithm which most accurately responds to the features
present in our datasets. With the exception of Naive Bayes, all
classifiers demonstrated high training accuracy (>73%) on the
BCC dataset; the best model was the multilayer perceptron (MLP)
neural network, which achieved 96.7% testing accuracy on the
original dataset after parameter optimization. Classifiers trained
on the melanoma dataset were noticeably weaker, with training
accuracy between 50 and 62%; after optimization, the best model
was the AdaBoost, which achieved 60.7% testing accuracy. This
could stem from the extremely high intratumor and intertumor
heterogeneity observed in melanoma, which lowers predictive
power (Grzywa et al., 2017). In addition, many of the melanoma
patients were previously treated with other chemotherapeutics,
potentially altering the immune environment and confounding
the classification of responders.

To guard against overfitting, classifiers utilizing a lower
number of most highly variable genes were constructed for
both BCC and melanoma. Remarkably, in both datasets,
predictive power remained notably strong until using just 20

or less genes. In particular, the 20-gene BCC classifier with 81%
accuracy utilized CXCL13, HSPA1A, HSPA6, HSPA1B, G0S2,
XCL1, CCL4, FOS, GNLY, TRBV11-2, XCL2, KRT86, NMB,
DNAJB1, CCL4L2, SOX4, ID3, HSP90AA1, NR4A1, and MT1G
(Supplementary Figure S4A, B). This suggests that traditional
gene expression tests may be used as a quick predictor of response
to PD-1 blockade with reasonably accuracy (60–80%) in BCC and
melanoma.

Melanoma and BCC are known to exhibit very different
immune mechanisms: whereas melanoma is immunogenic and
demonstrates resistance to immunotherapy, BCC is relatively
non-immunogenic and suffers from low immune cell
recruitment and activation (Dollinger et al., 2020). To confirm
these differences on a transcriptomic level, we tested the BCC
classifier on the melanoma dataset and vice versa. As expected,
both classifiers performed similarly to random chance (AUC �
0.501 and 0.486 respectively), providing support for the different
immune evasive and suppressive mechanisms of the cancers’
response to PD-1 blockade (Figure 4C).

On a per-patient resolution, the vast majority of BCC CD8+

T cells from responders or nonresponders are classified as
responsive or nonresponsive by the BCC neural net
respectively (Figure 4D) – there exists a significant difference
in the proportion of cells that are responsive between responders
and nonresponders (p � 0.004 35). However, when applied to
PDAC cells, slightly over half of the cells were declared
responsive. Meanwhile, surprisingly no significant distinction
(p � 0.13) can be made in comparing the percentage of cells
classified as responsive between melanoma responders and
nonresponders (Figure 4E), with several responders having
only a small fraction of cells being classified as such. This
indicates that construction of the classifier was likely biased
towards samples with larger numbers of CD8+ T cells. The
melanoma classifier furthermore identifies a mean of 33% of
cells in a PDAC patient as nonresponsive, similar to melanoma
nonresponders (p � 0.46) and significantly lower than responders
(p � 0.099), although there exists significantly inter-patient
variability. Under the assumption that the vast majority of
PDAC patients would not respond to PD-1 blockade, it is
evident that the melanoma classifier performs markedly better
on the PDAC dataset than the BCC classifier. This suggests that
similarities between resistance mechanisms between melanoma
and PDAC may extend to CD8+ T cells in addition to
macrophages (Zhu et al., 2014).

3 DISCUSSION

To date, multiple studies of BCC have established its relative ease
in prognosis and treatment; meanwhile, PDAC continues to
evade early-stage detection and exhibits uniformly poor
response to existing checkpoint immunotherapies. Consistent
with existing literature, our direct comparison of the BCC and
PDAC TMEs reveal that PDAC tumors foster a more
immunosuppressive microenvironment compared to BCC
(Foucher et al., 2018). In particular, although BCC is known
to downregulate MHC-I expression (Dhatchinamoorthy et al.,
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FIGURE 4 | BCC, PDAC, and melanoma exhibit different immune mechanisms in response to PD-1 blockade. (A,B) Dot plot of average gene expression vs
standardized variance of all CD8+ T cells in (A) BCC pre-treatment and (B) melanoma samples. (C) ROC and PR curve of a neural net (MLP) and AdaBoost classifier
trained on the top 2000 highly variable genes in BCC andmelanoma CD8+ T cells respectively; both models were subsequently tested on each dataset separately. (D, E)
Proportion of CD8+ T cells classified as responsive to PD-1 blockade per patient by the (D) BCC neural net and (E) melanoma AdaBoost classifier.
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2021), we find that PDAC suppresses both MHC-I and MHC-II
expression in CD8+ T cells even more severely by a factor of 2–5.
This further reinforces prevailing beliefs that BCC and PDAC
utilize divergent immune mechanisms in combating tumor
progression. However, through our novel identification of
malignant ductal cells in the PDAC TME, we find that the
two cancers exhibit similar expression of MHC genes,
although MHC-I and MHC-II expressions are slightly elevated
in PDAC.

Strikingly, we were able to construct a classifier to predict
response to PD-1 blockade in BCCCD8+ T cells with near-perfect
accuracy (97%). Even when considering data from only a handful
of highly variable genes, responders and nonresponders were
clearly distinguished. These results may suffer from overfitting
due to the lack of suitable testing data: it is unknown whether the
accuracy is artificially high due to the relative homogeneity of the
TMEs of the 11 patients studied, or that the classifier will remain
as successful in predicting the outcomes of other BCC cases. It is
very likely that these models neglected to encompass the full
spectrum of BCC subtypes, particularly nodular types with a high
rate of heterogeneous morphological features both intra- and
inter-tumorally (Pirie et al., 2018). However, our results strongly
support that rapid and affordable testing of BCC patients,
focusing on a small number (10–20) of genes, can accurately
predict their response to checkpoint immunotherapies.
Unfortunately, such clean results were not attained when
training classifiers on the melanoma dataset or when testing
either on PDAC; in these cases, our classifiers did not perform
significantly better than random chance, mirroring previous
efforts in the field (Banchereau et al., 2021).

The dearth of clinical data on the positive response of PDAC
patients to PD-1 blockade leaves open multiple avenues of
exploration. While the present study offers convincing
evidence that PDAC, BCC, and melanoma lie in unique
positions on the spectrum of immunogenicity, little is known
of the exact changes in the immune landscape triggered by PD-1
blockade treatment, even in responders. A recent study on the
same BCC dataset focusing on cell-cell communications offers
several possible avenues of investigation, including the role of
multiple tumor necrosis factor (TNF) pathways and a unique
subtype of CD8+ T cells characterized by high expression of
suppressive, cytotoxic, and heat shock protein genes (Jiang et al.,
2021). Furthermore, there is a crucial need for further research
into actionable mechanisms to overcome resistance to immune
checkpoint inhibitors – current studies point to the potentiality of
combination therapies in delivering individualized, multi-faceted
remodeling of the TME (Ott et al., 2017) (Drake, 2012). Other
hypothesized factors for immune resistance include tumor
exploitation of the PD-1/PD-L axis, immuno-editing in tumor
cells, the immunosuppressive effects of long non-coding RNAs
(lncRNAs), and insufficient re-invigoration of exhausted CD8+

T cells (Drake et al., 2006) (Sun et al., 2020).
We chose to focus on the role of MHC-I and MHC-II

expression in this investigation due to its well-established role
in stimulating immune responses, as well as the obvious choice of
PD-1/PD-L. However, various other genes and pathways
associated with resistance to PD-1 blockade, such as LAG-3

and the IDO pathway, were not studied in-depth (LaFleur
et al., 2018) (Chocarro de Erauso et al., 2020). Additionally,
recent studies have suggested that M2 macrophages and memory
B cells play vital roles in directly affecting cancer cells (Dollinger
et al., 2020) (Drake et al., 2006). With only six responders and five
nonresponders in our BCC dataset, it is also likely that many
cancer subtypes and diverse response mechanisms were not
detected.

Despite the purely computational nature of the present study,
our novel attempt to carry out quantitative comparisons of
completely different cancers using scRNA-seq will facilitate a
greater understanding of the immune landscape through the
identification of both differences and similarities across
different TMEs. Fundamentally, studying the activities of the
same celltype in different TMEs serves an equivalent purpose to
investigating the role of the same genes in different cancers.
Although BCC and PDAC reside on opposite extremes of the
spectrum of immunogenicity, the parallels that can be drawn
between them will point the way towards establishing new
immuno-oncology paradigms for more personalized and
sophisticated immunotherapies.

4 MATERIALS AND METHODS

4.1 Clustering
All clustering analyses were performed using Seurat (version 3.6)
(Stuart et al., 2019). The UMI matrices for the BCC dataset (Yost
et al., 2019) and PDAC dataset (Steele et al., 2020) were
downloaded from GEO accession GSE123813 and GSE155698
respectively; the count matrix for the melanoma dataset (Sade-
Feldman et al., 2018) was personally contributed by the authors of
(Dollinger et al., 2020). No clinical trials were performed in the
data acquisition or any other part of the preparation of this paper.
The following procedures were applied to both the BCC and
PDAC dataset; preparation and analysis of the melanoma dataset
is separately dealt with in Section 4.4.

To exclude low-quality cells and empty droplets, we excluded
all cells with less than 200 features detected; furthermore, we
excluded all features that were not present in at least three cells. In
preparation for clustering, we then followed the preprocessing
steps detailed in (Stuart et al., 2019). Briefly, we first normalized
the feature expression using the Seurat LogNormalization
method with defaults, then applied linear transformation to
shift the mean expression of each gene to 0 and the variance
to 1. We then identified the top 2000 highly variable genes
through calculating the “standardized variance” of each
feature, which captures single-cell dispersion in the context of
mean expression. Using these features, linear dimensional
reduction was conducted on the normalized through PCA.
The first 50 PCs for the BCC dataset and first 20 PCs for the
PDAC dataset were used to construct a KNN graph; the number
of PCs used was determined using the Seurat ElbowPlot
function by identifying the cutoff at which the percentage of
variance explained by each additional PC dropped significantly.
The Louvian algorithm was then applied on the KNN graph to
group cells together. The “granularity” of the clustering was
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determined by a resolution parameter which was set to 0.4 for
BCC and 0.5 for PDAC (Seurat default � 0.3, higher resolutions
correspond with a greater number of clusters).

To identify clusters, differential expression was performed to
identify the top upregulated features in each cluster in
comparison to all other clusters. Features were considered to
be upregulated if at least 25% of cells in the cluster expressed the
gene, the mean expression was greater by at least a factor of 20.25,
and the p-value was less than 0.05. The top 25 DEGs were then
recorded and entered into Enrichr for gene enrichment analysis
(Xie et al., 2021). Using a combination of different gene datasets
(e.g. Human Gene Atlas and Mouse Gene Atlas) and common
celltype marker genes, clusters were holistically identified. To
ensure that equally-named clusters between BCC and PDAC (e.g.
CD4+ T cells) were identified similarly and were suitable for
downstream comparison, cluster identification was checked using
marker genes identified in both (Yost et al., 2019) and (Steele
et al., 2020).

To validate the results of our clustering of the BCC dataset, we
constructed a heatmap to compare our cell labels with those
provided in the metadata of GEO accession GSE123813
(Supplementary Figure S2A). Specifically, we calculated the
percentage of cells in each metadata cluster that was classified
into each self-identified cluster. As no celltype identification was
supplied in the PDAC dataset, we were unable to do the same for
this dataset.

4.2 Statistical Analyses of Datasets
All statistical analyses were performed in RStudio version 1.4.
We merged the BCC and PDAC datasets together without
batch correction to compare expression of key marker genes
in each cluster (Figure 1F) and relative population sizes of
each cluster (Figure 1G); integration was not necessary as no
new clustering was conducted. To calculate the breakdown of
each cluster in the merged BCC + PDAC dataset between BCC
responders, BCC nonresponders, PDAC cancerous samples,
and PDAC adjacent samples (Figure 1G), we first normalized
the total size of each of the four batches so that each batch
would appear to have the same total number of cells. We then
determined the normalized proportion of cells in each cluster
that belonged to each batch by dividing the normalized
population size of each batch in each cluster by the total
normalized population of the cluster.

To compare the proportion of all cells that were identified as
T cells (Figure 2B), we first determined the number of cells in
each patient sample. Then, we calculated the fraction of these
cells that were labeled as either CD4+, CD8+ effector, CD8+

memory, CD8+ exhausted, regulatory (Tregs), proliferating,
NK, or miscellaneous T cells for each sample. To determine
whether differences in this percentage between different groups
were statistically significant, we performed Wilcoxon tests
using the stat_compare_means function in the ggpubr
package, version 0.4.0. A p-value lower than 0.05 was
considered to be statistically significant. The same procedure
was repeated for Figure 2C, D.

Comparisons of the distribution of expression of any
particular gene between different clusters and/or categories

(Figures 2F–I) were conducted by first taking the data from
the normalized UMI matrix, then exponentiating all of the values
so that any comparisons occur in non-log space. The distribution
of these values were plotted using the ggviolin function in the
ggpubr package; statistical significance was determined through a
Wilcoxon test. Identical procedures were used in Figures 3C–F.
The same method was also used to determine the p-values in
Figure 2J; however, the log2-fold difference was calculated by
dividing the mean expression of the particular gene of all BCC
cells to the mean expression of all PDAC cells in the particular
cluster. Mean expression was calculated using the
AverageExpression function in Seurat and was therefore
performed on raw data counts, as opposed to scaled/
normalized data.

To perform full differential gene expression between two
clusters (Figure 1E, Figure 2E, and Figure 3B), the Seurat
objects of the clusters of interest were first merged together.
Then, the EnhancedVolcano function from the Bioconductor
package was used to generate the volcano plots in Figure 1E and
Figure 3B. Features that were considered to be differentially
expressed were those with a p-value <0.05 and a log2-fold
absolute change greater than 0.5. For Figure 2E, the log2-fold
change for every gene was ordered and normalized (μ � 0, σ � 1);
then, the 2000 genes with the lowest absolute value normalized
log2-fold change were identified as the genes with most similar
expression.

Heatmaps of gene expression were generated using the
DoHeatmap function from Seurat. The genes displayed are the
top nDEGs per cluster (n � 3 and 25 for Figure 1F and Figure 3A
respectively).

4.3 Inference of Intercellular
Communication Network Strengths
Cell-cell communication was determined using CellChat version
1.1 (Jin et al., 2021). Briefly, the cell-cell communication network
was inferred by calculating the interaction probabilities, which is
directly dependent on average gene expression, for each ligand-
receptor pair in the CellChat database. The sum of
communication probabilities of outgoing signaling from and
incoming signaling to a particular cluster determines its
outgoing and incoming interaction strength respectively, as
plotted in Figure 2K.

4.4 Supervised Learning: Prediction of
Response to PD-1 Blockade in BCC and
Melanoma
Classifiers were constructed on CD8+ T cells in BCC and
melanoma (Figure 4). The BCC dataset consisted of all pre-
treatment cells identified as CD8+ effector, CD8+ memory, or
CD8+ exhausted. The melanoma dataset consisted of all CD8+

T cells as identified in (Dollinger et al., 2020).
All machine learning was conducted in Python using the

scikit-learn package (Pedregosa et al., 2011). Identification of
the top 2000 highly variable genes (Figures 4A, B) recapitulated
the process described in Section 4.1. To determine the best model
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in differentiating cells from responders and nonresponders, nine
separate classifiers were trained separately on the BCC and
melanoma datasets:

• Nearest Neighbors (sklearn.neighbors.KNeighborsClassifier):
three neighbors

• Linear SVM (sklearn.svm.SVC): linear kernal, C � 0.025
• RBF SVM (sklearn.svm.SVC): γ � 2, C � 1
• Gaussian Process (sklearn.Gaussian_process.GaussianProcess
Classifier)

• Decision Tree (sklearn.tree.DecisionTreeClassifier):
max_depth � 5

• Random Forest (sklearn.ensemble.RandomForestClassifier):
max_depth � 5, max_estimators � 10, max_features � 1

• Neural Net (sklearn.neural_network.MLPClassifier): α � 1,
max_iterations � 1000

• AdaBoost (sklearn.ensemble.AdaBoostClassifier)
• Naive Bayes (sklearn.naive_bayes.GaussianNB)
• Quadratic Classifier (sklearn.discriminant_analysis.
QuadraticDiscriminantAnalysis)

All parameters used are the default ones unless listed
explicitly. Models were trained on 80% of the dataset and
tested on the remaining 20%. During parameter optimization,
the mean score from five-fold cross validation was used to
evaluate accuracy. The best classifier was chosen as the one
with the highest accuracy, i.e. proportion of true positives and
true negatives. For BCC CD8+ T cells, this was the neural net
classifier; for melanoma CD8+ T cells, this was the AdaBoost
classifier. After parameter optimization, the BCC classifier
had an architecture of one hidden layer with 20 nodes, a
rectified linear unit (relu) activation function (f(x) � max(0,
x)), and a stochastic-gradient based optimizer (adam); the
learning rate is α � 1 and all other hyperparameters are equal
to function defaults. The melanoma classifier has an
architecture of 500 estimators using the SAMME. R real
boosting algorithm and a learning rate of α � 1. To ensure
consistency, all classifiers trained using a reduced number of
highly variable features (Supplementary Figure S4A, B) used
the same architectures.

To calculate the proportion of cells in each patient that are
classified as responsive (Figures 4D, E), the BCC neural net
classifier was tested on the BCC pretreatment and PDAC
datasets, and the melanoma AdaBoost classifier was tested
on the melanoma and PDAC datasets. The number of CD8+

T cells classified as responsive in each patient was then divided
by the total number of CD8+ T cells in each patient. To
determine whether the results were statistically significant, a
Wilcoxon test was performed using the stat_compare_means
function in ggpubr; p-values less than 0.05 were considered as
significant.
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Supplementary Figure S1 | Visual abstract. (A) BCC and PDAC dataasets are
clustered and labeled through Seurat,resulting in the novel identification of malignant
ductal cells in PDAC (Section 2.1). (B) Several analyseswere performed on T cells
and malignant cells from both datasets, focusing on population subcluster
sizes,differential gene expression, and cell-cell signaling (Section 2.2/Section
2.3). (C) Machine learning classification models were successfully utilized to
predict whether individual CD8+ T cells in BCC and PDAC would respond to
PD-1 blockade; however, these models are not transferrable onto PDAC
(Section 2.4).

Supplementary Figure S2 | Validation of clustering in BCC and PDAC datasets.
(A) Heatmap depicting the proportion of cells in each cluster of the original
paper belonging to each cluster defined in this paper. (B, C) Dot plot of the
expression of (B) CD8+ T cell and (C) ductal cell marker genes in PDAC. Color
denotes the average expression across all cells in a subcluster, scaled per gene;
size denotes the percentage of cells with positive expression within the
subcluster.

Supplementary Figure S3 | MHC expression in malignant cells of BCC and
PDAC. (A, B) Breakdown of (A) PDAC ductal cell and (B) BCC malignant cell
clusters by patient. (C, D) Paired comparison of MHC-I and MHC-II scores per
patient in (C) malignant vs. non-malignant PDAC ductal cells and (D) pre-
treatment vs. post-treatment BCC malignant cells. Horizontal boxplots
represent the log2-fold difference in the MHC score per patient between the
two batches; the T-test calculates the likelihood that on average, there is no
difference in the score.
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Supplementary Figure S4 | Supervised classification of CD8+ T cells in BCC
and melanoma based on the top n highlyvariable genes. (A, B) ROC and PR
curves for classifier (architecture described in Methods) trained on the top n
highly variable genes in (A) BCC and (B) CD8+ T cells. (C) Comparison of the

proportion of top n highly variable genes that are common between BCC and
melanoma CD8+ T cells. (D) Fold change differential expression of MHC and
HSP genes between BCC and melanoma CD8+ T cells; positive values indicate
greater expression in BCC.
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