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Abstract

Fish in coastal ecosystems can be exposed to acute variations in CO2 that can
approach 1 kPa CO2 (10,000 patm). Coping with this environmental challenge
will depend on the ability to rapidly compensate the internal acid-base
disturbance caused by sudden exposure to high environmental CO:2 (blood and
tissue acidosis); however, studies about the speed of acid-base regulatory
responses in marine fish are scarce. We observed that upon exposure to ~1 kPa
COg2, European sea bass (Dicentrarchus labrax) completely regulate erythrocyte
intracellular pH within ~40 minutes, thus restoring haemoglobin-O2 affinity to pre-
exposure levels. Moreover, blood pH returned to normal levels within ~2 hours,
which is one of the fastest acid-base recoveries documented in any fish. This was
achieved via a large upregulation of net acid excretion and accumulation of HCO3"
in blood, which increased from ~4 to ~22 mM. While the abundance and
intracellular localisation of gill Na*/K*-ATPase (NKA) and Na*/H* exchanger 3
(NHE3) remained unchanged, the apical surface area of acid-excreting gill
ionocytes doubled. This constitutes a novel mechanism for rapidly increasing acid
excretion during sudden blood acidosis. Rapid acid-base regulation was
completely prevented when the same high CO2 exposure occurred in seawater
with experimentally reduced HCOs and pH, likely because reduced
environmental pH inhibited gill H* excretion via NHE3. The rapid and robust acid-
base regulatory responses identified will enable European sea bass to maintain
physiological performance during large and sudden CO:2 fluctuations that

naturally occur in coastal environments.

Introduction

Increased CO:2 in aquatic environments, or environmental hypercapnia,
causes significant physiological challenges for water breathing animals including
fish. As environmental CO:2 increases, there is a corresponding rise in COz2 within
the fish’s blood, which in turn induces a decrease in blood pH. This condition is
referred to as a respiratory acidosis, and depending on its magnitude, can disrupt
multiple homeostatic processes including gas exchange (Crocker and Cech Jr,
1998; Eddy et al., 1977; Perry and Kinkead, 1989) and cardiovascular function
(Lee et al., 2003; Perry and McKendry, 2001; Perry et al., 1999). Globally, CO2
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levels in the ocean are increasing as a result of anthropogenic climate change,
and are predicted to reach ~0.1 kPa (0.1% COz2, 1,000 patm) by 2100 under a
‘business as usual’ scenario (Orr et al., 2005; Doney et al., 2011; IPCC, 2014).

The increase in oceanic CO2 levels, known as ocean acidification (OA)
(Doney et al., 2009), has renewed interest in acid-base regulatory mechanisms
of aquatic organisms. However, coastal and estuarine environments already
experience much larger variations in COz levels (Sunda and Cai, 2012; Wallace
et al., 2014), which will likely be exacerbated in the future (Cai et al., 2011;
Melzner et al., 2013). These fluctuations may occur rapidly over minutes to hours,
and reach levels as high as ~1 kPa (1% COz, 10,000 patm) (Borges et al., 2006;
Baumann et al., 2015). This type of environmental hypercapnia implies a different
physiological challenge compared to OA. Firstly, as environmental CO:2 levels
increase above COz2 levels in venous blood (typically ~0.3 kPa), CO:2 diffusion
gradients are reversed resulting in net uptake from the environment into the blood
and inducing a much more pronounced respiratory acidosis (Tresguerres and
Hamilton, 2017). Secondly, the sudden and extreme CO: fluctuations must be

met by equally fast, robust, and reversible acid-base regulatory responses.

Fish have a great capacity to restore blood pH to compensate for CO2-induced
respiratory acidosis, which is largely achieved by excreting excess H* and
absorbing HCOs3™ using their gills (Brauner et al., 2019; Claiborne et al., 2002;
Esbaugh, 2017; Evans et al., 2005; Perry and Gilmour, 2006). At the cellular level,
these processes take place in specialized ion-transporting cells, or ionocytes.
However, the underlying ion-transporting proteins and regulatory mechanisms
are intrinsically different between freshwater and marine fishes and may also vary
between species (Brauner and Baker, 2009; Claiborne et al., 2002; Evans et al.,
2005; Perry and Gilmour, 2006). The few studies that have investigated acid-
base regulation after acute exposure to ~1 kPa COz2 in marine fish have reported
large variation of responses, with full blood pH compensation occurring between
~2 and 24 hours depending on the species (Hayashi et al., 2004; Larsen et al.,
1997; Perry, 1982; Toews et al., 1983). Given the exquisite sensitivity of most
proteins to changes in pH, variation in the time course of acid-base regulatory
responses between species has important implications for whole organism
performance. Haemoglobins (Hb) of fish species show strong Bohr and Root

effects (Wells, 2009) which reduces Hb-O2 binding affinity and the O2 carrying
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capacity when erythrocyte intracellular pH (pH? decreases. While fish have
adaptations to regulate pHi of erythrocytes (Cossins and Richardson, 1985;
Nikinmaa and Tufts, 1989; Thomas and Perry, 1992), erythrocyte pHiin many fish
species (particularly marine fish) is closely linked to whole blood pH (Brauner and
Baker, 2009; Shartau et al., 2020). Therefore, adaptations which enhance the
speed of whole blood acid-base regulation will also provide faster restoration of
Oz transport capacity and minimise disruption to energetically expensive activities
such as foraging and digestion. However, little is known about why some species

are able to compensate respiratory acidosis faster than others.

The gill ionocytes of marine fish excrete H* using apical Na*-H* exchangers
(NHEs) driven by basolateral Na*/K*-ATPase (NKAs) (Brauner et al., 2019;
Claiborne et al., 2002; Evans et al., 2005). Theoretically, H" excretion during
sudden exposure to hypercapnia could be upregulated by increased biosynthesis
of NKA and NHE; however, transcriptional and translational responses typically
take at least a few hours (e.g. Tresguerres et al., 2005, 2006). Furthermore,
protein turnover is energetically expensive (Pan et al., 2015), so short-term
regulation of H* excretion by synthesis and degradation of ion-transporting
proteins would not be particularly efficient. Alternatively, the rapid upregulation of
H* excretion may be mediated by post-translational regulatory modifications such
as insertion of pre-existing proteins into the ionocyte membrane, or morphological
adjustments of its apical area, as reported by a variety of fishes in response to
other acid-base disturbances (reviewed in Brauner et al., 2019; Tresguerres et
al., 2019).

In the present study we investigated acid-base regulation of European sea
bass, Dicentrarchus labrax, an active predator which seasonally inhabits shallow
coastal, estuarine and saltmarsh environments (Doyle et al., 2017) where rapid
and large fluctuations in COz2 levels occur (Borges et al., 2006). Specifically, we
characterised blood acid-base regulation, erythrocyte intracellular pH (pHi) and
O:2 affinity, effects of seawater chemistry on speed of acid-base regulation, and
changes in ionocyte NKA and NHE3 abundance, intracellular localisation, and

apical surface area during acute exposure to ~1 kPa COo..
Methods

Capture and Pre-Experimental Condition
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Juvenile European sea bass were obtained by seine netting in estuaries and
salt marshes from Dorset and the Isle of Wight on the south coast of the United
Kingdom. Sea bass were transferred to the Aquatic Resources Centre of the
University of Exeter where they were held in ~500 L tanks in a recirculating
aquaculture system (RAS, total volume ~ 2500 L) at temperatures between 14
and 22°C. Sea bass were fed three times a week with commercial pellet (Horizon
80, Skretting) with a supplement of chopped frozen mussel (Mytilus edulis) once
a week. For ~6 months before experiments sea bass were maintained at a
temperature of 14°C and seawater COz2 levels of ~0.05-0.06 kPa (pH~8.10). Prior
to all experimental procedures, sea bass were withheld food for a minimum of 72
hours. Animal collections were conducted under appropriate permits (Marine
Management Organisation permit #030/17 & Natural England permit
#0OLD1002654) and all experimental procedures were carried out under home
office licence P88687E07 and approved by the University of Exeter's Animal

Welfare and Ethical Review Board.
Hypercapnia exposure

Individual sea bass were moved to isolation tanks (~20 L) and left to acclimate
overnight for a minimum of 12 hours before exposure to hypercapnia. During the
acclimation period isolation tanks were fed by the RAS at a rate of ~4 L min’;
with overflowing water recirculated back to the RAS. After overnight acclimation,
hypercapnia exposure began by switching inflow of water from low CO2 control
conditions to high CO2 seawater delivered from a header tank (~150 L) in which
pCO2 levels had already been increased to ~1 kPa using an Aqua Medic pH
computer (AB Aqua Medic GmbH). The pH computer maintained header tank
pCO2 levels using an electronic solenoid valve which fed CO: to a diffuser in the
header tank if pH rose above 6.92 and stopped COz2 flow if pH dropped below
6.88. Additionally, to reduce CO2 fluctuation in isolation tanks during exposures,
the gas aerating each tank was switched from ambient air to a gas mix of 1%
CO2, 21% O2 and 78% N2 (G400 Gas mixing system, Qubit Biology Inc.). During
exposures overflowing water from each isolation tank recirculated to the header
tank creating an isolated experimental system of ~250 L. The experimental
system was maintained at 14°C using a heater/chiller unit (Grant TX150 R2,
Grant Instruments) attached to a temperature exchange coil in the header tank.

To characterise the time course of acid-base regulation sea bass were exposed



163  to hypercapnia (~1 kPa COz2) for either ~10 minutes, ~40 minutes, or ~135
164  minutes before measurements were taken. pH of isolation tanks was monitored
165 with a separate pH probe and matched the header tank ~5 minutes after initial
166  exposure. Measurements of an additional group of sea bass were obtained at
167 normocapnic CO2 levels (~0.05 kPa COz2) to act as a pre-exposure control
168  (hereafter this group is referred to as time = 0). At the time of sampling
169 measurements of seawater pH (NBS scale), temperature and salinity, as well as
170 samples of seawater to measure total CO2 (TCOz2)/Dissolved Inorganic Carbon
171 (DIC), were taken from each isolation tank. DIC analysis was conducted using a
172 custom built system described in detail by Lewis et al. (2013). Measurements of
173 pH, salinity, temperature and DIC were then input into CO2SYS (Pierrot et al.,
174  2006) to calculate pCO2 and total alkalinity (TA) based on the equilibration
175  constants refitted by Dickson and Millero (1987).

176  Blood sampling and analysis

177 Following hypercapnia exposures (Table 1), sea bass were individually
178  anaesthetised in-situ with a dose of 100 mg L-! benzocaine. Blood samples were
179 then obtained following the methodology outlined by Montgomery et al. (2019).
180 The gill irrigation tank used was filled with water from the header tank and
181  maintained at an appropriate COz2 level by aeration with the same gas mix feeding
182 the isolation tanks. The water chemistry of the gill irrigation chamber was
183 measured following the same procedures outlined for the isolation chambers,

184  with one DIC sample taken at the end of blood sampling (Table S1).

185 Table 1: Mean + s.e.m. of water chemistry parameters within isolation tanks

186  during hypercapnia exposures prior to blood sampling.

Duration

0 min ~10 min ~40 min ~135 min

(Control) (10.8 £0.26 min)  (41.0£2.82min)  (133.9 £ 2.27 min)
Temperature (°C)  13.94 £ 0.04 13.90 £ 0.03 13.94 £ 0.02 13.89 £ 0.04
pH (NBS) 8.15+ 0.01 6.98 + 0.01 6.96 £ 0.01 6.95 £ 0.01
Salinity 34.1+0.1 34.1+0.1 34.7+0.2 34.0+0.1
pCO: (kPa) 0.059 + 0.001  0.898 + 0.022 0.944 + 0.072 0.945 + 0.017
TA (uM) 3,251+ 20 2,804 + 16 2,833 + 11 2,777 £ 29

187



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

217

218
219
220
221

Immediately after sampling, extracellular pH was measured on 30 yL of whole
blood using an Accumet micro pH electrode and Hanna HI8314 pH meter
calibrated to 14 °C using pHnes 7.04 and 9.21 appropriate buffers. Measurements
of blood pH were made in a temperature-controlled water bath. Three 75 yL micro
capillary tubes were then filled with whole blood and anaerobically sealed with
Critoseal capillary tube sealant (Fisher) and paraffin oil and centrifuged for 2
minutes at 10,000 rpm. Haematocrit (Hct) was measured using a Hawksley
micro-haematocrit reader. Plasma was then extracted from capillary tubes for
analysis of TCOz2 using a Mettler Toledo 965D carbon dioxide analyser. Plasma
pCO2 and HCO3 were then calculated from TCO2, temperature and blood pH
using the Henderson-Hasselbalch equation with values for solubility and pK'app
based on Boutilier et al. (1984, 1985). Haemoglobin (Hb) content of 10 pL of
whole blood was also assessed by the cyanmethemoglobin method (after
addition to 2.5 mL of Drabkin’s reagent, Sigma). Half the remaining whole blood
was centrifuged at 10,000 rpm for 2 minutes at 4°C. The resulting plasma was
separated and 10 pyL was diluted in ultrapure water, snap frozen in liquid N2, and
stored at -80°C before later being used to measure plasma cation and anion
concentrations using ion chromatography (Dionex ICS 1000 & 1100, Thermo-
Scientific, UK). The remaining plasma was snap frozen in liquid N2 and stored at
-80°C before measurements of plasma lactate and glucose were made (YSI
2900D Biochemistry Analyzer, Xylem Analytics). After separating the plasma, the
surface of the leftover erythrocyte pellet was blotted to remove the leukocyte
layer. The erythrocyte pellet was then snap frozen in liquid nitrogen for 10
seconds and thawed in a 37°C water bath for 1 minute prior to intracellular pH
(pHi) measurements as described by Zeidler and Kim (1977), and validated by
Baker et al. (2009). All measurements or storage of blood occurred within 10
minutes of blood sampling. Finally, Hb-O2 affinity was measured following the
methods outlined in Montgomery et al. ( 2019) using a Blood Oxygen Binding
System (BOBS, Loligo systems), as detailed by Oellermann et al. (2014).

Flux measurements

The flux of acid-base relevant ions between sea bass and seawater was
measured over a ~135 minute time period in normocapnic conditions (n = 7) and
immediately following exposure to hypercapnia (n = 8, Table 2). At the start of

the measurements the flow to the isolation tanks was stopped and water



222 chemistry maintained at the desired pCO2 by gassing the tanks with either
223 ambient air (control) or a 1% COz2 gas mix (hypercapnia). Seawater samples for
224 measuring TA were taken at the beginning and end of the ~135 minute flux
225  period, preserved by adding 40 pL of 4% (w/v) mercuric chloride per 10 mL of
226  seawater, and stored at 4 °C (Dickson et al., 2007) prior to analysis by double
227  titration using an autotitrator (Metrohm 907 Titrando with 815 Robotic USB
228 Sample Processor XL, Metrohm). TA measurements were made using a double
229 titration method modified from Cooper et al. (2010) as detailed by Middlemiss et
230 al. (2016). Briefly, 20 mL samples were titrated to pH 3.89 using 0.02 M HCI whilst
231 gassing with CO2-free N2, pH was then returned to starting values by titrating with
232 0.02 M NaOH. Samples for measuring total ammonia were frozen at -20°C before
233 ammonia concentration was measured using a modified version of the
234  colourimetric method of Verdouw et al. (1978) at 660 nm using a microplate
235 reader (NanoQuant infinite M200 pro, Tecan Life Sciences). A calibration curve

236  was constructed using NH4Cl standards in seawater.

237 Table 2: Mean * s.e.m. of water chemistry parameters within individual tanks

238  during flux measurements.

Treatment Duration (min) pH (NBS) Temperature (°C) Salinity pCO: (kPa) TA (uM)

Normocapnia 132.3+0.9 7.96+0.01 14.03+0.04 33.6+0.2 0.072+0.002 2395 + 21
Hypercapnia 123.6+24 6.91+£0.03 13.90+0.12 33.6+0.0 0.862+0.056 2299 + 33
239
240 Acid-base relevant fluxes (umol kg h-') were then calculated using the

241  following equation:

242 Je = [([X]; = [X1;) x V]/(M xt)

243  as described by Wilson and Grosell (2003), where V is the volume of water (L) in
244  the isolation tank (after the initial sample is taken), M is the mass of the sea bass
245  (kg), t is the duration of the flux period (h) and [X]i and [X]r are the ion
246  concentrations in the chamber water (umol L") at the beginning and end of the
247  flux period. By reversing the initial and final values titratable acid, instead of base,
248  fluxes can be calculated so that a positive value equals acid uptake (i.e. HCO3"
249  excretion) and a negative value equals acid excretion (i.e. HCOs™ uptake). We
250  then calculated net acid-base fluxes (ueq kg™ h-') as the sum of titratable acid
251  and total ammonia (Tamm) flux (McDonald and Wood, 1981).
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Exposure to Low Total Alkalinity

Sufficient 1 M HCI was added to ~250 L seawater to reduce TA by over 90%
from ~2,800 uM to ~200 uM, followed by overnight aeration to equilibrate CO2
with atmospheric levels. We then adjusted the pCO:2 of the low TA seawater to
the desired level of ~1 kPa as described above, and a pH set point of 5.75. Sea
bass were placed in the individual isolation boxes (fed by the RAS as detailed for
normal TA hypercapnia exposures) and left to acclimate overnight before being
exposed to the combined low TA and hypercapnia treatment. Flow to individual
isolation boxes was stopped, and ~75% of the water from the isolation box was
drained and refilled with low TA, hypercapnic water. This process was repeated
3 times over a period of ~5 minutes. The gas mix aerating each isolation box was
switched from ambient air to a 1% COz2 gas mix to maintain the desired pCOz2
levels. After ~135 minutes exposure, each seabass was anaesthetised and
sampled for blood acid-base measurements as detailed previously. The water
chemistry of isolation boxes (Table S2) and gill irrigation chambers (Table S3)

was measured at the time of blood sampling.
Gill sampling

Gill tissue was sampled from sea bass exposed to ambient CO2 conditions (n
= 5) and to hypercapnia for ~135 minutes (n=5, taken immediately after the flux
measurements) in normal TA seawater (Table S4). Mean water chemistry
conditions during flux measurements (Table 2) and experienced by sea bass prior
to gill sampling (Table S4) differ because gill samples were only collected from 5
of the 8 sea bass used for flux measurements. After euthanizing the sea bass in
an anaesthetic bath (benzocaine, 1 g L"), gills were dissected and rinsed in
phosphate buffered saline (PBS). The first gill arch on the left side was flash
frozen in liquid N2 and stored at -80°C for Western blotting, and the first gill arch
on the right side was fixed in 4% paraformaldehyde in 0.1 M phosphate buffer
saline (PBS) (diluted from 16% electron microscopy grade paraformaldehyde.
Electron Microscope Science catalogue # 15710), overnight at 4°C for
immunohistochemistry. Following a ~10-hour fixation, gill samples were
transferred to 50% ethanol for ~10 hours at 4 °C, and then stored in 70% ethanol
at 4°C.

Antibodies
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NKA was immunodetected using a5, a mouse monoclonal antibody against
the a-subunit of chicken NKA ( a5, Developmental Studies Hybridoma Bank, lowa
City, IA, USA; Lebovitz et al., 1989). This antibody universally recognizes NKA in
teleost fishes including yellowfin tuna (Thunnus albacares; Kwan et al., 2019),
Pacific chub mackerel (Scomber japonicus; Kwan et al., 2020), and California
killifish (Fundulus parvipinnis; Nadler et al., 2021). Rabbit anti-NHE3 polyclonal
antibodies were generously donated by Dr Junya Hiroi (St. Marianna University
School of Medicine, Kawaski, Japan); they target two epitope regions within
rainbow trout (Oncorhynchus mykiss) NHE3b (GDEDFEFSEGDSASG and
PSQRAQLRLPWTPSNLRRLAPL), and recognize NHE3 of multiple teleost
species including European sea bass (D. labrax; Blondeau-Bidet et al., 2019).
The secondary antibodies were goat anti-mouse HRP-linked and goat anti-rabbit
HRP-linked (Bio-Rad, Hercules, CA, USA) for immunoblotting, and goat anti-
mouse Alexa Fluor 546 and goat anti-rabbit Alexa Fluor 488 (Invitrogen, Grand

Island, USA) for immunohistochemistry.
Western Blotting

Western blotting followed the procedures outlined in Kwan et al., (2019, 2020).
While frozen on dry ice, the gill filament and lamellae were separated from the
gill arch using a razor blade. The excised tissue was then immersed in liquid N2
and pulverized in a porcelain grinder, then submerged within an ice-cold,
protease inhibiting buffer (250 mmol L' sucrose, 1 mmol L™ EDTA, 30 mmol L™
Tris, 10 mmol L' benzamidine hydrochloride hydrate, 1 mmol L™
phenylmethanesulfonyl fluoride, 1 mmol L™ dithiothreitol, pH 7.5). Samples were
further homogenized using a handheld VWR Pellet Mixer (VWR, Radnor, PA,
USA) for 15 second intervals (3 times) while on ice. Next, samples were
centrifuged (3,000 g, 4°C; 10 minutes), and the resulting supernatant was
considered the crude homogenate. An aliquot of the crude homogenate was
further subjected to a higher speed centrifugation (21,130xg, 4°C; 30 minutes),
and the pellet was saved as the membrane-enriched fraction. Bradford assay was
used to determine protein concentration (Bradford, 1976), which was used to

normalize protein loading.

On the day of Western blotting, samples were mixed with an equal volume of
90% 2x Laemmli buffer and 10% B-mercaptoethanol. Samples were then heated

at 70°C for 5 minutes, and the proteins (20 ug per lane) were loaded onto a
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polyacrylamide mini gel (4% stacking; 10% separating) — alternating between
control and high COz2 treatments to avoid possible gel lane effects. The gel ran at
60 volts for 15 minutes, then 100 V for 1.5 hours, and proteins were transferred
onto a polyvinylidene difluoride (PVDF) membrane using a wet transfer cell (Bio-
Rad) at 70 volts for 2 hours at 4 °C. PVDF membranes were then incubated in
Tris-buffered saline with 1% tween (TBS-T) with milk powder (0.1 g/mL) at room
temperature for 1 hour, then incubated with primary antibody (NKA: 10.5 ng/ml;
NHE3: 1:1,000) in blocking buffer at 4°C overnight. On the following day, PVDF
membranes were washed in TBS-T (three times; 10 minutes each), incubated in
blocking buffer with secondary antibodies (1:10,000) at room temperature for 1
hour, and washed again in TBS-T (three times; 10 minutes each). Bands were
made visible through addition of ECL Prime Western Blotting Detection Reagent
(GE Healthcare, Waukesha, WI) and imaged with the Universal Il Hood
(BioRad). Following imaging, the PVDF membrane was incubated in Ponceau
stain (10 minutes, room temperature) to estimate protein loading. Relative NKA
and NHE protein abundance (n = 5 per treatment) was quantified using the Image
Lab software (version 6.0.1; BioRad) and normalized by the protein content in

each lane.
Immunohistochemistry

Immunohistochemistry was performed as described in Kwan et al., (2020).
Fixed gill tissue stored in 70% ethanol was rehydrated in PBS + 0.1% tween
(PBS-T) for 10 minutes, and gill flaments were dissected out to ease subsequent
imaging. Autofluorescence was quenched by rinsing in ice-cold PBS with sodium
borohydride (1.0 — 1.5 mg mL""; six times; 10 minutes each), followed by
incubation in blocking buffer (PBS-T, 0.02% normal goat serum, 0.0002%
keyhole limpet haemocyanin) at room temperature for one hour. Samples were
incubated with blocking buffer containing primary antibodies (NKA: 40 ng/mL;
NHES3: 1:500 [c.f. Seo et al., (2013)]) at 4°C overnight. On the following day,
samples were washed in PBS-T (three times at room temperature; 10 min each),
and incubated with the fluorescent secondary antibodies (1:500) counterstained
with DAPI (1 ug mL") at room temperature for 1 hour. Samples were washed
again in PBS-T as before, then placed on a concave slide for imaging using an
inverted confocal microscope (Zeiss LSM 800 with Zeiss ZEN 2.6 blue edition
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software; Cambridge, United Kingdom). Samples incubated without primary

antibodies had no signal (Fig. S1).
Quantification of lonocyte Apical Surface Area

The apical surface area of gill ionocytes were quantified through a
combination of whole-mount imaging (40X objective lens with deionized water
immersion), optical sectioning, and XZ- and YZ-plane analysis. A relatively flat
surface on the gill filament was selected under 0.5x scanning confocal
magnification to ensure imaging would be performed on ionocytes in an upright
position thus minimizing errors in apical surface area quantification due to angle
distortion. After locating an ionocyte by its distinctive NKA signal, the scanning
confocal magnification was increased to 5.0X and the entire cell was Z-stack
imaged (optimal interval automatically selected: 0.07-0.12 um per slice).
Subsequent viewing of the Z-stack from the X-Z and Y-Z planes allowed us to
assess intracellular localisation, and to identify the image slice that captured the
entire apical surface (typically, the second slice from the top of the cell). Next, the
ionocyte’s apical surface area (identified by NHE3 immunofluorescence signal)
was quantified using FIJI (Schindelin et al., 2012). For each sea bass (n=5 per
treatment), the average apical surface area was calculated from three ionocytes

from different gill filaments.

Statistical Analysis

All statistical analysis was performed using R v3.6.3 (R Core Team, 2020).
Changes in blood chemistry parameters over time in response to hypercapnia
exposure were analysed using one-way ANOVA before assumptions of equal
variances of data and normality of model residuals were checked. Post-hoc tests
were conducted on least-square means generated by package ‘emmeans’
(Lenth, 2020), with Tukey adjusted p-values for multiple comparisons. Some data
did not meet required assumptions for one-way ANOVA. Unequal variances were
observed in measurements of pCO2 between treatments, as such we used
Welch’s ANOVA with Tukey’s pairwise comparisons using Benjamini-Hochberg
corrections for post-hoc testing. Measurements of blood pH and Pso did not meet
assumptions of normality and were analysed using the Kruskal-Wallis test with
post-hoc comparisons made with Dunn’s test from package ‘FSA’ (Ogle et al.,
2020), using Benjamini-Hochberg corrections for multiple comparisons. As a

result of unusually high measurements of plasma [CI] and [Na*] in some samples
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a ROUT test was conducted (Q = 0.5%) in Graphpad Prism 9 to identify potential
outliers (Motulsky and Brown, 2006). Samples in which plasma [CI] and [Na*]
were both identified as outliers by the ROUT test were excluded from the dataset
prior to subsequent statistical analysis. Flux measurements were analysed using
Student’s t-test after checking data met assumptions of normality and equal
variance. Relative protein abundance and ionocyte apical area met both
assumptions of normality and equal variance and were analysed using one-tailed

t-test (control response < CO2-exposed response).
Results
Blood chemistry

Exposure to environmental hypercapnia caused significant changes in blood
pH of sea bass over time (Kruskal-Wallis test, x? = 25.0, df = 3, p < 0.001). There
was a pronounced acidosis of the blood from pH 7.84 (+ 0.02) in control
conditions (normocapnia, time = 0) to 7.50 (x 0.03) after exposure to hypercapnia
for ~10 minutes (Fig. 1A, D). Following this initial acidosis sea bass completely
restored blood pH to control levels after ~135 minutes (Fig. 1A, D). Blood pH
regulation was accompanied by a ~5-fold increase in plasma HCOs", from 4.5 +
0.3 to 21.9 + 0.7 mM, over the ~135 minute exposure (Fig. 1C, D, One-way
ANOVA, F =203.3, df = 3, p < 0.001).

Plasma pCO2 showed significant changes during exposure to hypercapnia
(Fig. 1B, D, Welch’s ANOVA, F = 202.5, df = 3, p < 0.001). The initial decrease
in blood pH of sea bass was driven by a rapid and large (~6-fold) increase in
plasma pCOz2, from 0.200 + 0.016 to 1.185 + 0.049 kPa COz2, within the first 10
minutes of exposure. There was a small but significant decline in plasma pCO:2
between sea bass sampled ~10 minutes after exposure and sea bass sampled
~135 minutes after exposure (Fig. 1B). There were no significant differences in
plasma glucose or lactate levels between any treatment groups with values for
all sea bass of 5.90 + 0.43 mM and 0.45 + 0.05 mM respectively.
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Figure 1: Changes in A. blood pH, B. plasma pCO2, and C. plasma HCOs
between European sea bass in control conditions (~0.05 kPa COz2, Time =0, n=
10) and after exposure to ~0.9 kPa CO2 for ~10 minutes (n = 8), ~40 minutes (n
= 9), and ~135 minutes (n = 9). Significant differences between parameters at
each time point are indicated by different lower case letters (A. Dunn’s test, p <
0.05; B. Pairwise comparison using Benjamini-Hochberg correction, P < 0.05 C.
Pairwise comparison of least square means, p < 0.05) D. Combined changes of
all three acid-base parameters are expressed as a pH/HCO37/pCO2 diagram (blue
dashed line indicates estimated non-bicarbonate blood buffer line based on

equations from Wood et al. (1982)) values represent mean £ s.e.m.
Flux measurements

Sea bass switched from slight net base excretion under control normocapnic
conditions to net acid excretion that was ~2.5-fold larger in magnitude during 135
minutes of hypercapnia (Fig. 2C, Student’s t-test, t = -2.25, df = 13, p = 0.042).
This was driven by a switch from a small apparent HCO3™ excretion to a large
apparent HCOs™ uptake (Fig. 2A). There were no significant differences in Tamm

excretion (Fig. 2B).

Plasma pCO, (kPa)
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Figure 2: Changes in A. excretion of HCOs3", B. excretion of total ammonia (Tamm)
and C. net acid-base flux between European sea bass in control conditions (n =
7,~0.07 kPa COz2) and after ~135 minutes exposure to hypercapnia (n = 8, ~0.84
kPa COz). Significant difference in parameters are indicated by different lower-

case letters (Student’s t-test, p < 0.05).
Oxygen transport capacity

The initial drop in blood pH during hypercapnia exposure was reflected in
changes in erythrocyte pHi (Fig. 3A, One-way ANOVA, F = 12.34, df = 3, p <
0.001) and erythrocyte [H*] (Fig. 3B, One-way ANOVA, F = 14.64, df = 3, P <
0.001). However, erythrocyte pHi and [H*] returned to control levels after ~40
minutes of exposure to hypercapnia (Fig. 3A, B). As expected, the significant

changes in erythrocyte pHi and [H*] affected haemoglobin-O2 binding affinity
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leading to a ~3-fold increase in Pso after 10 minutes, from 1.78 kPa O2 (+ 0.30
kPa Oz2) in control sea bass to 5.60 kPa Oz (+ 0.36 kPa O2) (Kruskall-wallis test,
x? = 17.4, df = 3, p < 0.001). There were no changes in Hills’ number across
hypercapnia exposure (One-way ANOVA, F =1.48, df = 3, p = 0.248). The rapid
recovery of erythrocyte pHi and [H*] after ~40 minutes led to Pso returning to pre-

exposure levels (Fig. 3B).

Sea bass exposed to hypercapnia also experienced a ~25% increase in
haemoglobin levels (Fig. 3D), at ~10 minutes and ~ 135 minutes compared to
control sea bass (One-way ANOVA, F = 4.60, df = 3, p = 0.009). In addition, sea
bass exposed to hypercapnia exhibited an ~8-10% increase in haematocrit (Fig.
3C), although this increase was marginally non-significant (One-way ANOVA, F
=2.40, df = 3, 0.086).
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Figure 3: Changes in A. erythrocyte intracellular pH (erythrocyte pHi), B.
erythrocyte [H*], C. haemoglobin-O2 binding affinity (Pso0), D. haematocrit and E.
haemoglobin level between European sea bass in control conditions (~0.05 kPa
COg2, Time = 0) and after exposure to ~0.9 kPa COz2 for ~10 minutes, ~40 minutes,
and ~135 minutes. Significant differences between parameters at each time point
are indicated by different lowercase letters (A., B., D. and E. Pairwise

comparisons of least square means, p < 0.05, C. Dunn’s test, p < 0.05).
Response to Hypercapnia in Seawater with Low Total Alkalinity

To test the influence of environmental availability of [HCO3] on acid-base
regulation, a group of sea bass were exposed to hypercapnia in low alkalinity
seawater. These sea bass were unable to compensate for a respiratory acidosis
when exposed to acute hypercapnia for ~135 minutes (Fig. 4A). Blood pH was
0.37 units (95 % Cl = 0.33-0.41) lower than sea bass exposed to hypercapnia in
normal alkalinity seawater for the same length of time and the same blood pH as
we recorded in sea bass ~10 minutes after exposure to hypercapnia in normal
seawater. Additionally, sea bass in low alkalinity seawater did not actively
accumulate HCOs~ when exposed to environmental hypercapnia for ~135
minutes (Fig. 4C). Indeed, the 11.8 mM increase in plasma [HCOz37] (95% CI =
10.6-12.9 mM ) followed the predicted non-bicarbonate buffering line (Fig. 4D).
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Figure 4: Comparison of A. blood pH, B. plasma pCO:2 and C. plasma HCOs"
between European sea bass in control conditions (n = 10, Time = 0), exposed to
hypercapnia for ~10 minutes (n = 8) in normal (~2800 uM) total alkalinity (TA)

seawater, exposed to hypercapnia for ~135 minutes in normal (~2800 pM) TA
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seawater (n = 9), and exposed to hypercapnia for ~135 minutes in low (~200 uM)
TA seawater (n =8). Significant differences between parameters at each time
point are indicated by different lower-case letters (Pairwise comparison of least
squares means, p<0.05). For measurements taken after ~135 minutes of
exposure to hypercapnia the colour indicates the TA treatment (i.e. black =
normal TA, red = low TA). D. Combined changes of all three acid-base
parameters are expressed as a pH/HCOs/pCO2 diagram (blue dashed line
indicates estimated non-bicarbonate blood buffer line based on equations from

Wood et al. (1982)) values represent mean + s.e.m.
Plasma lon Concentrations

Plasma [CI] significantly decreased by 13.1 mM (95% CI = 10.1-16.2 mM)
from 134.9 mM (£ 5.1) in sea bass in normocapnia to 121.7 mM (x 1.3) in sea
bass exposed to hypercapnia for ~135 minutes (Kruskall-Wallis test, x? = 11.1, df
=4, p = 0.025). This decrease in plasma [CI] was not seen in sea bass exposed
to hypercapnia in low alkalinity water (Fig. 5A). Decreases in plasma [CI-] showed
a correlation with increasing bicarbonate (Figure 5A inset, Kendall's tau
correlation, 1 = -0.32, p = 0.005). Plasma [Na*] showed no significant changes
over the time course of hypercapnia exposure (One-way ANOVA, F =1.063, p =
0.391), and there were no differences in [Na*] after ~135 minutes of exposure to
hypercapnia between sea bass in normal and low TA seawater (Fig. 5B). As such,
there was no correlation between plasma [Na*] and [H*] (Fig. 5B inset, Kendall’s

tau correlation, 1= 0.08, p = 0.471).
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Figure 5: Comparison of A. plasma [CI]and B. plasma [Na*] between European
sea bass in control conditions (n = 7, Time = 0), exposed to hypercapnia for ~10
minutes (n = 8), ~40 minutes in or ~135 minutes in normal (~2800 uM) TA
seawater (n = 7), and exposed to hypercapnia in low (~200 uM) TA seawater (n
= 6). Significant differences between [CI] at each time point are indicate by
different lower-case letters (Pairwise comparison of least squares means,
p<0.05). Insets show correlation between A. plasma [CI] and [HCOs]. B. plasma
[Na*] and [H*]. T and p value shown represent results of Kendall’s tau correlation.
Shaded area represents 95% CI of linear regression between measures. For
insets and measurements taken after ~135 minutes of exposure to hypercapnia

the colour indicates the TA treatment (i.e. black = normal TA, red = low TA).
NKA and NHE3 Protein Abundance

Exposure to hypercapnia did not induce significant changes in the abundance
of NKA or NHE3 in crude homogenates (indicative of total protein abundance) or
the abundance of NKA and NHE3 in membrane-enriched fractions (indicative of
protein that was present in the apical or basolateral plasma membranes) (One-
tailed t-test, P > 0.05; Fig. 6).
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Figure 6: Comparison of gill A. Na*/K*-ATPase (NKA) in crude homogenates
(CH), B. NKA in the membrane-enriched fraction (MEF) as well as C. Na*/H*
Exchanger 3 (NHE3) CH, and D. NHE3 MEF abundance between European sea
bass exposed to control conditions (~0.06 kPa COz2) and to hypercapnia (~0.77
kPa COz2) for ~135 minutes (n = 5 per treatment, 1-tailed t-test). Bars show mean
+ s.e.m., points show raw data; there were no significant differences between any

measurements (1-tailed t-tests, p > 0.05).

lonocyte Intracellular Localisation and Apical Surface Area

NKA-rich ionocytes were primarily localised on the gill filament trailing edges
and the basal portion of the gill lamellae (Fig. S1), all NKA-rich ionocytes also
expressed NHE3 in their apical region (Fig. 7A). Despite analysis using high
magnification imaging, optical sectioning, and XZ- and YZ-plane visualization, we
found no evidence of NHES3 intracellular localisation (Figure 7B, B', C, C'). The
ionocyte’s apical surface area (based on the NHE3 signal) significantly increased,
almost doubling from 3.38 + 0.41 to 6.45 + 0.64 um?, after exposure to ~135 min
of hypercapnia (one-tailed t-test, t = 4.048, df = 6.828, p = 0.003; Fig. 7D).
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Figure 7: A. The European sea bass’ gill ionocytes express abundant A'.
basolateral Na*/K*-ATPase (NKA, red) and A". apical Na*/H* Exchanger 3
(NHE3, green). Comparison of gill ionocytes between European sea bass
exposed to B, B'. control conditions (~0.06 kPa CO2) and C, C'. to ~0.77 kPa COz2
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for ~135 minutes revealed no changes in intracellular localisation, but determined
D. hypercapnia-exposed sea bass had significantly wider apical surface area (n
= 5 per treatment, 1-tailed t-test, p = 0.003). The purple line in B and C denotes

the slice at which B' and C' were imaged. Nuclei (blue) are stained with DAPI.
Discussion

Our results indicate that European sea bass are able to rapidly compensate
for hypercapnia-induced blood acidosis when the environmental CO:2 is at the
extreme high end of the spectrum encountered in their natural habitat. Complete
restoration of blood pH after exposure to ~1 kPa CO2 was achieved within ~2
hours via a switch from net base excretion to net acid excretion and a subsequent
accumulation of HCO3 in plasma. In addition, erythrocyte pHi and Hb-O2 affinity
were restored to pre-exposure levels after just ~40 min, and there was a 20%
increase in the blood haemoglobin concentration together with a trend for ~10%
haematocrit increase. These results suggest an adrenergic response that
stimulates a B-NHEs in the erythrocytes (Nikinmaa, 2012), and contracts the
spleen resulting in the release of erythrocytes into the circulation (Crocker and
Cech, 1997; Lee et al., 2003; Perry and Kinkead, 1989; Vermette and Perry,
1988). The end result is a boost in blood O2 transport capacity that counteracts

the reduced Hb-O:2 affinity induced by the initial hypercapnia-induced acidosis.

Regulation of respiratory acidosis by sea bass exposed to hypercapnia in
normal alkalinity sea water (TA ~2,800 pM) resulted in an elevation of plasma
[HCOs3] by ~18 mM, which was correlated with a decrease in plasma [CI] of ~13
mM. In comparison, while we saw a slight rise in plasma [Na*] on initial exposure
to hypercapnia, this was transient, and there was no overall correlation between
plasma [Na*] and [H*] during the whole 135 minute experiment. However, a lack
of increase in plasma [Na*] during acid-base regulation does not preclude
increased Na* uptake (to facilitate H+ excretion) during acid-base regulation.
Instead, a lack of increased plasma [Na*] may simply reflect upregulation of the
hypo-ionoregulatory mechanism for NaCl excretion in marine teleosts (Liu et al.,
2016), which would presumably occur to compensate for enhanced uptake of Na*
to facilitate H* excretion by NHE. This would also help explain the observed

reduction in plasma [CI] in fish exposed to hypercapnia.
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In comparison, sea bass exposed to hypercapnia in low alkalinity sea water
(TA ~200 uM) showed no ability to accumulate HCOs, to compensate for
respiratory acidosis, and did not experience a decrease in plasma [CI]. At face
value, these results may support potential direct uptake of HCOs™ from seawater
in exchange for blood CI- through HCO37/Cl- exchange across the gills (Esbaugh
et al., 2012; Perry and Gilmour, 2006; Tovey and Brauner, 2018). However, the
thermodynamics of this proposed mechanism are not clear, as [CI] is much
higher in seawater than in internal fluids of fish, and the opposite is true for [HCO3"
]. This implies that both counterions would have to be transported against their
concentration gradients, and furthemore, these gradients would become
increasingly unfavourable as blood acidosis is compensated. Importantly, our
hypercapnic low alkalinity seawater had a pH of ~5.7, which was ~1.2 pH units
lower than hypercapnic normal alkalinity seawater (a 15-fold increase in [H"]).
Based on nominal values of [Na*] and [H*] inside fish gill ionocytes and
calculations in Parks et al. (2008), the low alkalinity seawater would not sustain
H* excretion via NHEs (Table S5). Interestingly, as Na* excretion is coupled to
CI- excretion (via pathways independent of NHE), inactivation of NHE would also
explain the lack of increase of plasma [CI] in low alkalinity sea water. Overall, this
evidence supports enhanced NHE mediated H* excretion (resulting in retention
of metabolically produced HCOs" in the blood), rather than direct HCO3™ uptake
from sea water, as the primary mechanism underlying regulation of respiratory

acidosis in sea bass.

To investigate the mechanisms used by sea bass to enhance acid-excretion,
we examined whether changes in gill NKA and NHE3 occur after acute (~135
minute) exposure to hypercapnia. Gill NKA and NHE3 protein abundance did not
change, ruling out increased protein synthesis as the mechanism responsible for
the observed upregulation in acid-excretion; this is not surprising considering the
short timeframe of our experiments. We also examined the potential translocation
of pre-existing NKA and NHE3 to the ionocyte basolateral and apical membranes,
respectively. Such mechanisms upregulate acid-base regulatory ion transport in
elasmobranchs (Roa et al., 2014; Tresguerres et al., 2005; Tresguerres et al.,
2006; Tresguerres et al., 2007b) and hagfish (Parks et al., 2007; Tresguerres et
al., 2007a); however, NKA and NHES3 protein abundance in the gill membrane
fraction of European sea bass gills was also unchanged, ruling out NKA and

NHES3 translocation in our experiments. Finally, we hypothesized that sea bass
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could have remodelled the apical membrane of ionocytes to increase the sites for
H* excretion in contact with seawater. Indeed, this was the case as the surface
area of the NHE3-abundant apical membrane of NKA-rich ionocytes roughly

doubled in response to hypercapnia.

Previous studies on freshwater fishes have also documented morphological
adjustments in gill ionocytes upon comparable hypercapnic exposures. However,
the responses were the opposite to our study, as those freshwater fishes
experienced a significant reduction in ionocyte apical surface area (Baker et al.,
2009a; Goss et al., 1992b; Leino and McCormick, 1984). In some cases, the
apical membrane retracted into a more pronounced apical pit (Goss et al., 1992a;
Goss et al., 1994), which was suggested to create a microenvironment with
higher [Na*] compared to the bulk freshwater and facilitate Na*/H* exchange
(Kumai and Perry, 2012). However, exposure to more pronounced hypercapnia
(8 kPa COz2 over four days) induced an increase in gill ionocyte apical surface
area in freshwater catfish (/ctalurus punctatus) (Cameron and lwama, 1987). This
response was similar to the seabass in our study; however, the longer time frame
likely allowed for additional responses that were not investigated, such as
increased synthesis of ion-transporting proteins or a change in the H* excreting
mechanism. In any case, the ability of seabass to rapidly compensate a blood
respiratory acidosis by increasing gill ionocyte apical surface area is in large part
possible due to the overabundance of Na* in sea water, which establishes

favourable conditions for NHE-mediated H* excretion.

Freshwater species typically take from 24 h to > 72 h to regulate blood pH
after exposure to 1 kPa CO:2 (Baker et al., 2009a; Claiborne and Heisler, 1984;
Claiborne and Heisler, 1986; Damsgaard et al., 2015; Larsen and Jensen, 1997;
Perry, 1982; Perry et al., 1981; Smatresk and Cameron, 1982). While it is
generally believed that marine teleosts can regulate their blood acid-base status
at a faster rate than freshwater species (Brauner et al., 2019), relatively little
research has been conducted to characterise the speed of acid-base regulation
in marine fish. A bibliography search revealed four previous studies on five
marine teleost species that characterized the time course of the acid-base
regulatory response after exposure to 1 kPa COz2 (Fig. 8). Of these species, only
the Japanese amberjack (Seriola quinqueradiata) was able to restore blood pHe



649 faster than sea bass (~60 min vs ~135 min; Fig. 8B). The remaining four species

650 regulated blood pHe between 3 and 24 h post CO2 exposure (Figure 8C, D, E, F).
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652 Figure 8: Blood pH/HCO3/pCO2 plots for A. European sea bass,

653  Dicentrarchus labrax (Present study), B. Japanese amberjack, Seriola
654 quinqeradiata (Hayashi et al., 2004, re-plotted raw data provided by pers. comm.
655 with Dr Atsushi Ishimatsu, Can Tho University), C. Japanese flounder,
656  Paralichthys olivaceus (Hayashi et al., 2004), D. conger eel, Conger conger
657 (Toews et al., 1983), E. coho salmon, Oncorhynchus kisutch (Perry, 1982), and
658 F. Atlantic cod, Gadus morhua (Larsen et al., 1997). The corresponding blood pH
659 and HCOs3 of each species at a time ~2 h after 1 kPa CO2 exposure is indicated

660 to allow direct comparisons with European sea bass. Times below the relevant
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point indicate when blood pH was not statistically different from pre-exposure
levels for each species. The time course of the acid-base response after 2 h is
indicated by a dashed black line. The dashed blue line is an approximated non-
HCOs" buffer line based on the mean haematocrit of sea bass from the present

study and calculated using the equation for rainbow trout from Wood et al. (1982).

The robust ability of sea bass to rapidly acid-base regulate in response
hypercapnia likely plays a significant role in their natural environment.
Specifically, sea bass feed in shallow coastal estuaries and salt marsh habitats
during the summer (Doyle et al., 2017), and these habitats typically experience
large fluctuations in COz2 levels over short time periods (Hofmann et al., 2011;
Melzner et al., 2013; Wallace et al., 2014). For example, equivalent salt marshes
on the US coast regularly experience CO:2 fluctuations of ~0.4 kPa across tide
cycles during the summer (Baumann et al., 2015). The fast acid-base regulatory
response observed in our study indicates that sea bass would be able to rapidly
correct the respiratory blood acidosis caused by this level of CO2 variation in <1
hour. Critically, regulation of erythrocyte pHiby sea bass was the fastest recorded
in any fish species. By rapidly restoring erythrocyte pHi O2 transport capacity is
maintained, which is crucial for active predatory teleosts. However,
environmental CO:2 variation cannot be the sole driver for enhanced acid-base
regulatory capacities in all species. For example, Japanese amberjack show a
similarly fast blood acid-base regulatory response (Hayashi et al., 2004) but
primarily inhabit pelagic, offshore ecosystems in which large variation in
environmental CO2 may be less likely to occur. An alternative may be that active,
predatory species have developed higher capacities for acid-base regulation to
deal with large metabolic acidosis (as a result of anaerobic respiration used
during intense exercise involved in prey capture). Understanding the
mechanisms that determine species-specific differences in acid-base regulatory
capacity will help understand differential impacts of acute exposure to elevated
COz, both by itself and in combination with other stressors such as hypoxia. For
example, we have recently reported that sea bass showed enhanced hypoxia
tolerance when exposed to progressive and environmentally relevant
hypercapnia and hypoxia over a 6 hour period (Montgomery et al., 2019). In
contrast, European plaice (Pleuronectes platessa) and European flounder
(Platichthys flesus) exposed to the same conditions showed reduced hypoxia

tolerance (Pcrit), which was associated with reduced Hb-O2 affinity and O2 uptake
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resulting from an uncompensated respiratory acidosis (Rogers, 2015;
Montgomery et al. unpublished observations). Thus, species with more robust
acid-base regulatory mechanisms seem more resilient to interactive effects

between hypercapnia and hypoxia.
Conclusion

Overall, our study highlights the capacity of European sea bass to rapidly (2
hours) regulate blood and erythrocyte acid-base status and O2 transport capacity
upon exposure to a pronounced and sudden increase in environmental CO:2
levels. Sea bass’ ability to rapidly upregulate H* excretion appears to be mediated
via the increased exposure of NHE3-containing apical surface area of gill
ionocytes, rather than changes in NHE3 or NKA protein abundance or
localisation. Additionally, sea bass erythrocyte pHiis regulated even more rapidly
than blood pH (40 minutes), which enables them to quickly restore the affinity of
haemoglobin for Oz, and therefore blood O:2 transport capacity during exposure
to elevated CO2. In conjunction, these acid-base regulatory responses will
minimise the impact of pronounced and rapidly fluctuating COz2 in their natural
environments, and so may prevent disruption of energetically costly activities
such as foraging or digestion, and may make sea bass more resilient to impacts
of hypoxia and additional stressors during acute periods of hypercapnia. This is

an avenue where we believe further research effort is necessary.
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1035 Figure S1: A. Na*/K*-ATPase (NKA, red) and Na*/H* Exchanger 3 (NHES3,

1036  green) immunostaining within European sea bass gill. lonocytes containing NKA
1037 and NHE3 (NKA-I) were observed on the filament (F) and base of lamellae (L).
1038  B. Negative controls (no primary antibodies) had no discernible signal. Nuclei

1039  (blue) are stained with DAPI.
1040

1041  Table S1: Water chemistry of gill irrigation chambers used while blood sampling

1042  fish
Exposure length
0 min ~10 min ~40 min ~135 min
Temperature (°C) 14.00 £ 0.00 14.05+£0.15 14.00 £ 0.30 13.95+0.15
pH (NBS) 8.14 £ 0.02 6.95 £ 0.02 6.91 £ 0.01 6.91 +£0.04
Salinity 346104 35.6+0.5 34.8+0.7 34.6+0.7
pCO2 (patm) 0.060 £ 0.010 0.965+0.045 1.227 +0.164 1.024 + 0.088
TA (UM) 3120 £ 372 2834 + 36 3301 + 361 2750 + 27
1043

1044 Table S2: Mean * s.e.m. of water chemistry parameters within isolation tanks

1045  during low alkalinity hypercapnia exposure

Duration (min) pH (NBS) Temperature (°C) Salinity pCO: (kPa) TA (uM)

135.0+4.6 5.70+0.03 13.78 £0.07 340+01 1.141+£0.020 188+%12

1046
1047

1048  Table S3: Water chemistry of gill irrigation chambers used while blood sampling

1049 fish in low alkalinity water

pH (NBS) Temperature Salinity pCO2 (patm) TA (UM)
(°C)
5.53+0.31 14.05 £ 0.05 35.05+0.25 1.288 £ 0.104 188 + 129

1050



1051 Table S4: Mean + s.e.m. of water chemistry parameters within isolation boxes
1052  prior to gill sampling. Gill samples from sea bass exposed to hypercapnia were

1053 taken from 5 sea bass immediately after flux measurements were completed.

Treatment Duration (min) pH (NBS) Temperature (°C) Salinity pCO; (kPa) TA (M)

Normocapnia n/a 8.05+0.00 14.12+0.06 33.6+0.0 0.055+0.001 2335%7
Hypercapnia 132.9+2.6 6.97+0.02 14.14+0.02 33.5+0.0 0.770+0.037 2365+9
1054

1055 Table S5: Theoretical calculations of H* excretion by NHE in response to
1056  environmental hypercapnia. Calculations based on Parks et al. 2008. If

1057 Na'i/Na*e > H*i/H'e then H* excretion by NHE is thermodynamically unviable.

Treatment lonocyte Na* Seawater Na* lonocyte H* Seawater H* Na*/Na*c H*/H*.
(Na*i, mM) (Na*e, mM) (H*, mM) (H*e, mM)
Control 140 480 3.98eM08 8.91e7-09 0.292 4.467
Hypercapnia 140 480 5.01e*-08 1.12e7M-07 0.292 0.447
Hypercapnia 140 480 5.01e*-08 2.00e?-06 0.292 0.025
+low TA
1058

1059



