- 1 Rapid blood acid-base regulation by European sea bass (Dicentrarchus
- 2 labrax) in response to sudden exposure to high environmental CO2
- 3 Running title: Rapid acid-base regulation by bass
- 4 Daniel W. Montgomerya*, Garfield T. Kwanb,c, William G. Davisona, Jennifer
- 5 Finlay^a, Alex Berry^a, Stephen D. Simpson^a, Georg H. Engelhard^{d,e}, Silvana N.R.
- 6 Birchenough^b, Martin Tresguerres^b, Rod W. Wilson^{a*}
- ^a Biosciences, Geoffrey Pope Building, University of Exeter, UK
- 8 b Marine Biology Research Division, Scripps Institution of Oceanography,
- 9 University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- ^c National Oceanic and Atmospheric Administration Fisheries Service, Southwest
- Fisheries Science Center, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA
- d Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield
- 13 Road, Lowestoft, UK
- ^e School of Environmental Sciences, University of East Anglia, Norwich, UK
- *corresponding authors: danwmont@gmail.com/R.W.Wilson@exeter.ac.uk
- 17 Summary statement: European sea bass exposed to 1 kPa (10,000 µatm) CO₂
- regulate blood and red cell pH within 2 hours and 40 minutes, respectively,
- protecting O₂ transport capacity, via enhanced gill acid excretion.
- 21 Keywords: hypercapnia, ionocytes, respiratory acidosis, O2 transport, gill
- 22 plasticity

16

20

23

24

25

26

27

Abstract

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Fish in coastal ecosystems can be exposed to acute variations in CO₂ that can approach 1 kPa CO₂ (10,000 µatm). Coping with this environmental challenge will depend on the ability to rapidly compensate the internal acid-base disturbance caused by sudden exposure to high environmental CO2 (blood and tissue acidosis); however, studies about the speed of acid-base regulatory responses in marine fish are scarce. We observed that upon exposure to ~1 kPa CO₂, European sea bass (*Dicentrarchus labrax*) completely regulate erythrocyte intracellular pH within ~40 minutes, thus restoring haemoglobin-O₂ affinity to preexposure levels. Moreover, blood pH returned to normal levels within ~2 hours, which is one of the fastest acid-base recoveries documented in any fish. This was achieved via a large upregulation of net acid excretion and accumulation of HCO₃in blood, which increased from ~4 to ~22 mM. While the abundance and intracellular localisation of gill Na⁺/K⁺-ATPase (NKA) and Na⁺/H⁺ exchanger 3 (NHE3) remained unchanged, the apical surface area of acid-excreting gill ionocytes doubled. This constitutes a novel mechanism for rapidly increasing acid excretion during sudden blood acidosis. Rapid acid-base regulation was completely prevented when the same high CO₂ exposure occurred in seawater with experimentally reduced HCO₃- and pH, likely because reduced environmental pH inhibited gill H⁺ excretion via NHE3. The rapid and robust acidbase regulatory responses identified will enable European sea bass to maintain physiological performance during large and sudden CO2 fluctuations that naturally occur in coastal environments.

52

53

54

55

56

57

58

59

60

61

Introduction

Increased CO₂ in aquatic environments, or environmental hypercapnia, causes significant physiological challenges for water breathing animals including fish. As environmental CO₂ increases, there is a corresponding rise in CO₂ within the fish's blood, which in turn induces a decrease in blood pH. This condition is referred to as a respiratory acidosis, and depending on its magnitude, can disrupt multiple homeostatic processes including gas exchange (Crocker and Cech Jr, 1998; Eddy et al., 1977; Perry and Kinkead, 1989) and cardiovascular function (Lee et al., 2003; Perry and McKendry, 2001; Perry et al., 1999). Globally, CO₂

levels in the ocean are increasing as a result of anthropogenic climate change, and are predicted to reach \sim 0.1 kPa (0.1% CO₂, 1,000 μ atm) by 2100 under a 'business as usual' scenario (Orr et al., 2005; Doney et al., 2011; IPCC, 2014).

The increase in oceanic CO₂ levels, known as ocean acidification (OA) (Doney et al., 2009), has renewed interest in acid-base regulatory mechanisms of aquatic organisms. However, coastal and estuarine environments already experience much larger variations in CO₂ levels (Sunda and Cai, 2012; Wallace et al., 2014), which will likely be exacerbated in the future (Cai et al., 2011; Melzner et al., 2013). These fluctuations may occur rapidly over minutes to hours, and reach levels as high as ~1 kPa (1% CO₂, 10,000 µatm) (Borges *et al.*, 2006; Baumann *et al.*, 2015). This type of environmental hypercapnia implies a different physiological challenge compared to OA. Firstly, as environmental CO₂ levels increase above CO₂ levels in venous blood (typically ~0.3 kPa), CO₂ diffusion gradients are reversed resulting in net uptake from the environment into the blood and inducing a much more pronounced respiratory acidosis (Tresguerres and Hamilton, 2017). Secondly, the sudden and extreme CO₂ fluctuations must be met by equally fast, robust, and reversible acid-base regulatory responses.

Fish have a great capacity to restore blood pH to compensate for CO₂-induced respiratory acidosis, which is largely achieved by excreting excess H+ and absorbing HCO₃- using their gills (Brauner et al., 2019; Claiborne et al., 2002; Esbaugh, 2017; Evans et al., 2005; Perry and Gilmour, 2006). At the cellular level, these processes take place in specialized ion-transporting cells, or ionocytes. However, the underlying ion-transporting proteins and regulatory mechanisms are intrinsically different between freshwater and marine fishes and may also vary between species (Brauner and Baker, 2009; Claiborne et al., 2002; Evans et al., 2005; Perry and Gilmour, 2006). The few studies that have investigated acid-base regulation after acute exposure to ~1 kPa CO₂ in marine fish have reported large variation of responses, with full blood pH compensation occurring between ~2 and 24 hours depending on the species (Hayashi et al., 2004; Larsen et al., 1997; Perry, 1982; Toews et al., 1983). Given the exquisite sensitivity of most proteins to changes in pH, variation in the time course of acid-base regulatory responses between species has important implications for whole organism performance. Haemoglobins (Hb) of fish species show strong Bohr and Root effects (Wells, 2009) which reduces Hb-O₂ binding affinity and the O₂ carrying

capacity when erythrocyte intracellular pH (pHi) decreases. While fish have adaptations to regulate pHi of erythrocytes (Cossins and Richardson, 1985; Nikinmaa and Tufts, 1989; Thomas and Perry, 1992), erythrocyte pHin many fish species (particularly marine fish) is closely linked to whole blood pH (Brauner and Baker, 2009; Shartau et al., 2020). Therefore, adaptations which enhance the speed of whole blood acid-base regulation will also provide faster restoration of O₂ transport capacity and minimise disruption to energetically expensive activities such as foraging and digestion. However, little is known about why some species are able to compensate respiratory acidosis faster than others.

The gill ionocytes of marine fish excrete H⁺ using apical Na⁺-H⁺ exchangers (NHEs) driven by basolateral Na⁺/K⁺-ATPase (NKAs) (Brauner et al., 2019; Claiborne et al., 2002; Evans et al., 2005). Theoretically, H⁺ excretion during sudden exposure to hypercapnia could be upregulated by increased biosynthesis of NKA and NHE; however, transcriptional and translational responses typically take at least a few hours (e.g. Tresguerres *et al.*, 2005, 2006). Furthermore, protein turnover is energetically expensive (Pan et al., 2015), so short-term regulation of H⁺ excretion by synthesis and degradation of ion-transporting proteins would not be particularly efficient. Alternatively, the rapid upregulation of H⁺ excretion may be mediated by post-translational regulatory modifications such as insertion of pre-existing proteins into the ionocyte membrane, or morphological adjustments of its apical area, as reported by a variety of fishes in response to other acid-base disturbances (reviewed in Brauner et al., 2019; Tresguerres et al., 2019).

In the present study we investigated acid-base regulation of European sea bass, *Dicentrarchus labrax*, an active predator which seasonally inhabits shallow coastal, estuarine and saltmarsh environments (Doyle et al., 2017) where rapid and large fluctuations in CO₂ levels occur (Borges et al., 2006). Specifically, we characterised blood acid-base regulation, erythrocyte intracellular pH (pH_i) and O₂ affinity, effects of seawater chemistry on speed of acid-base regulation, and changes in ionocyte NKA and NHE3 abundance, intracellular localisation, and apical surface area during acute exposure to ~1 kPa CO₂.

Methods

Capture and Pre-Experimental Condition

Juvenile European sea bass were obtained by seine netting in estuaries and salt marshes from Dorset and the Isle of Wight on the south coast of the United Kingdom. Sea bass were transferred to the Aquatic Resources Centre of the University of Exeter where they were held in ~500 L tanks in a recirculating aquaculture system (RAS, total volume ~ 2500 L) at temperatures between 14 and 22°C. Sea bass were fed three times a week with commercial pellet (Horizon 80, Skretting) with a supplement of chopped frozen mussel (*Mytilus* edulis) once a week. For ~6 months before experiments sea bass were maintained at a temperature of 14°C and seawater CO₂ levels of ~0.05-0.06 kPa (pH~8.10). Prior to all experimental procedures, sea bass were withheld food for a minimum of 72 hours. Animal collections were conducted under appropriate permits (Marine Management Organisation permit #030/17 & Natural England permit #0LD1002654) and all experimental procedures were carried out under home office licence P88687E07 and approved by the University of Exeter's Animal Welfare and Ethical Review Board.

Hypercapnia exposure

Individual sea bass were moved to isolation tanks (~20 L) and left to acclimate overnight for a minimum of 12 hours before exposure to hypercapnia. During the acclimation period isolation tanks were fed by the RAS at a rate of ~4 L min⁻¹; with overflowing water recirculated back to the RAS. After overnight acclimation, hypercapnia exposure began by switching inflow of water from low CO₂ control conditions to high CO₂ seawater delivered from a header tank (~150 L) in which pCO₂ levels had already been increased to ~1 kPa using an Agua Medic pH computer (AB Aqua Medic GmbH). The pH computer maintained header tank pCO₂ levels using an electronic solenoid valve which fed CO₂ to a diffuser in the header tank if pH rose above 6.92 and stopped CO₂ flow if pH dropped below 6.88. Additionally, to reduce CO₂ fluctuation in isolation tanks during exposures, the gas aerating each tank was switched from ambient air to a gas mix of 1% CO₂, 21% O₂ and 78% N₂ (G400 Gas mixing system, Qubit Biology Inc.). During exposures overflowing water from each isolation tank recirculated to the header tank creating an isolated experimental system of ~250 L. The experimental system was maintained at 14°C using a heater/chiller unit (Grant TX150 R2, Grant Instruments) attached to a temperature exchange coil in the header tank. To characterise the time course of acid-base regulation sea bass were exposed

to hypercapnia (~1 kPa CO₂) for either ~10 minutes, ~40 minutes, or ~135 minutes before measurements were taken. pH of isolation tanks was monitored with a separate pH probe and matched the header tank ~5 minutes after initial exposure. Measurements of an additional group of sea bass were obtained at normocapnic CO₂ levels (~0.05 kPa CO₂) to act as a pre-exposure control (hereafter this group is referred to as time = 0). At the time of sampling measurements of seawater pH (NBS scale), temperature and salinity, as well as samples of seawater to measure total CO₂ (TCO₂)/Dissolved Inorganic Carbon (DIC), were taken from each isolation tank. DIC analysis was conducted using a custom built system described in detail by Lewis *et al.* (2013). Measurements of pH, salinity, temperature and DIC were then input into CO2SYS (Pierrot et al., 2006) to calculate pCO₂ and total alkalinity (TA) based on the equilibration constants refitted by Dickson and Millero (1987).

Blood sampling and analysis

Following hypercapnia exposures (Table 1), sea bass were individually anaesthetised in-situ with a dose of 100 mg L⁻¹ benzocaine. Blood samples were then obtained following the methodology outlined by Montgomery *et al.* (2019). The gill irrigation tank used was filled with water from the header tank and maintained at an appropriate CO₂ level by aeration with the same gas mix feeding the isolation tanks. The water chemistry of the gill irrigation chamber was measured following the same procedures outlined for the isolation chambers, with one DIC sample taken at the end of blood sampling (Table S1).

Table 1: Mean ± s.e.m. of water chemistry parameters within isolation tanks during hypercapnia exposures prior to blood sampling.

	Duration					
	0 min	~10 min	~40 min	~135 min		
	(Control)	(10.8 ± 0.26 min)	(41.0 ± 2.82 min)	(133.9 ± 2.27 min)		
Temperature (°C)	13.94 ± 0.04	13.90 ± 0.03	13.94 ± 0.02	13.89 ± 0.04		
pH (NBS)	8.15 ± 0.01	6.98 ± 0.01	6.96 ± 0.01	6.95 ± 0.01		
Salinity	34.1 ± 0.1	34.1 ± 0.1	34.7 ± 0.2	34.0 ± 0.1		
<i>p</i> CO₂ (kPa)	0.059 ± 0.001	0.898 ± 0.022	0.944 ± 0.072	0.945 ± 0.017		
TA (μM)	3,251 ± 20	2,804 ± 16	2,833 ± 11	2,777 ± 29		

Immediately after sampling, extracellular pH was measured on 30 µL of whole blood using an Accumet micro pH electrode and Hanna HI8314 pH meter calibrated to 14 °C using pH_{NBS} 7.04 and 9.21 appropriate buffers. Measurements of blood pH were made in a temperature-controlled water bath. Three 75 µL micro capillary tubes were then filled with whole blood and anaerobically sealed with Critoseal capillary tube sealant (Fisher) and paraffin oil and centrifuged for 2 minutes at 10,000 rpm. Haematocrit (Hct) was measured using a Hawksley micro-haematocrit reader. Plasma was then extracted from capillary tubes for analysis of TCO2 using a Mettler Toledo 965D carbon dioxide analyser. Plasma pCO₂ and HCO₃- were then calculated from TCO₂, temperature and blood pH using the Henderson-Hasselbalch equation with values for solubility and pK¹_{app} based on Boutilier et al. (1984, 1985). Haemoglobin (Hb) content of 10 µL of whole blood was also assessed by the cyanmethemoglobin method (after addition to 2.5 mL of Drabkin's reagent, Sigma). Half the remaining whole blood was centrifuged at 10,000 rpm for 2 minutes at 4°C. The resulting plasma was separated and 10 µL was diluted in ultrapure water, snap frozen in liquid N2, and stored at -80°C before later being used to measure plasma cation and anion concentrations using ion chromatography (Dionex ICS 1000 & 1100, Thermo-Scientific, UK). The remaining plasma was snap frozen in liquid N₂ and stored at -80°C before measurements of plasma lactate and glucose were made (YSI 2900D Biochemistry Analyzer, Xylem Analytics). After separating the plasma, the surface of the leftover erythrocyte pellet was blotted to remove the leukocyte layer. The erythrocyte pellet was then snap frozen in liquid nitrogen for 10 seconds and thawed in a 37°C water bath for 1 minute prior to intracellular pH (pH_i) measurements as described by Zeidler and Kim (1977), and validated by Baker et al. (2009). All measurements or storage of blood occurred within 10 minutes of blood sampling. Finally, Hb-O₂ affinity was measured following the methods outlined in Montgomery et al. (2019) using a Blood Oxygen Binding System (BOBS, Loligo systems), as detailed by Oellermann et al. (2014).

Flux measurements

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212213

214

215

216

217

218

219

220

221

The flux of acid-base relevant ions between sea bass and seawater was measured over a \sim 135 minute time period in normocapnic conditions (n = 7) and immediately following exposure to hypercapnia (n = 8, Table 2). At the start of the measurements the flow to the isolation tanks was stopped and water

chemistry maintained at the desired *p*CO₂ by gassing the tanks with either ambient air (control) or a 1% CO₂ gas mix (hypercapnia). Seawater samples for measuring TA were taken at the beginning and end of the ~135 minute flux period, preserved by adding 40 μL of 4% (w/v) mercuric chloride per 10 mL of seawater, and stored at 4 °C (Dickson et al., 2007) prior to analysis by double titration using an autotitrator (Metrohm 907 Titrando with 815 Robotic USB Sample Processor XL, Metrohm). TA measurements were made using a double titration method modified from Cooper *et al.* (2010) as detailed by Middlemiss *et al.* (2016). Briefly, 20 mL samples were titrated to pH 3.89 using 0.02 M HCl whilst gassing with CO₂-free N₂, pH was then returned to starting values by titrating with 0.02 M NaOH. Samples for measuring total ammonia were frozen at -20°C before ammonia concentration was measured using a modified version of the colourimetric method of Verdouw *et al.* (1978) at 660 nm using a microplate reader (NanoQuant infinite M200 pro, Tecan Life Sciences). A calibration curve was constructed using NH₄Cl standards in seawater.

Table 2: Mean \pm s.e.m. of water chemistry parameters within individual tanks during flux measurements.

Treatment	Duration (min)	pH (NBS)	Temperature (°C)	Salinity	pCO ₂ (kPa)	TA (µM)
Normocapnia	132.3 ± 0.9	7.96 ± 0.01	14.03 ± 0.04	33.6 ± 0.2	0.072 ± 0.002	2395 ± 21
Hypercapnia	123.6 ± 2.4	6.91 ± 0.03	13.90 ± 0.12	33.6 ± 0.0	0.862 ± 0.056	2299 ± 33

Acid-base relevant fluxes (μ mol kg⁻¹ h⁻¹) were then calculated using the following equation:

$$J_x = \left[\left([X]_i - [X]_f \right) \times V \right] / (M \times t)$$

as described by Wilson and Grosell (2003), where V is the volume of water (L) in the isolation tank (after the initial sample is taken), M is the mass of the sea bass (kg), t is the duration of the flux period (h) and [X]_i and [X]_f are the ion concentrations in the chamber water (µmol L⁻¹) at the beginning and end of the flux period. By reversing the initial and final values titratable acid, instead of base, fluxes can be calculated so that a positive value equals acid uptake (i.e. HCO₃⁻ excretion) and a negative value equals acid excretion (i.e. HCO₃⁻ uptake). We then calculated net acid-base fluxes (µeq kg⁻¹ h⁻¹) as the sum of titratable acid and total ammonia (T_{amm}) flux (McDonald and Wood, 1981).

Exposure to Low Total Alkalinity

Sufficient 1 M HCl was added to ~250 L seawater to reduce TA by over 90% from ~2,800 μ M to ~200 μ M, followed by overnight aeration to equilibrate CO₂ with atmospheric levels. We then adjusted the pCO₂ of the low TA seawater to the desired level of ~1 kPa as described above, and a pH set point of 5.75. Sea bass were placed in the individual isolation boxes (fed by the RAS as detailed for normal TA hypercapnia exposures) and left to acclimate overnight before being exposed to the combined low TA and hypercapnia treatment. Flow to individual isolation boxes was stopped, and ~75% of the water from the isolation box was drained and refilled with low TA, hypercapnic water. This process was repeated 3 times over a period of ~5 minutes. The gas mix aerating each isolation box was switched from ambient air to a 1% CO₂ gas mix to maintain the desired pCO₂ levels. After ~135 minutes exposure, each seabass was anaesthetised and sampled for blood acid-base measurements as detailed previously. The water chemistry of isolation boxes (Table S2) and gill irrigation chambers (Table S3) was measured at the time of blood sampling.

Gill sampling

Gill tissue was sampled from sea bass exposed to ambient CO₂ conditions (n = 5) and to hypercapnia for ~135 minutes (n=5, taken immediately after the flux measurements) in normal TA seawater (Table S4). Mean water chemistry conditions during flux measurements (Table 2) and experienced by sea bass prior to gill sampling (Table S4) differ because gill samples were only collected from 5 of the 8 sea bass used for flux measurements. After euthanizing the sea bass in an anaesthetic bath (benzocaine, 1 g L⁻¹), gills were dissected and rinsed in phosphate buffered saline (PBS). The first gill arch on the left side was flash frozen in liquid N₂ and stored at -80°C for Western blotting, and the first gill arch on the right side was fixed in 4% paraformaldehyde in 0.1 M phosphate buffer saline (PBS) (diluted from 16% electron microscopy grade paraformaldehyde. Electron Microscope Science catalogue # 15710), overnight at 4°C for immunohistochemistry. Following a ~10-hour fixation, gill samples were transferred to 50% ethanol for ~10 hours at 4°C, and then stored in 70% ethanol at 4°C.

Antibodies

NKA was immunodetected using α5, a mouse monoclonal antibody against the α-subunit of chicken NKA (a5, Developmental Studies Hybridoma Bank, Iowa City, IA, USA; Lebovitz et al., 1989). This antibody universally recognizes NKA in teleost fishes including yellowfin tuna (Thunnus albacares; Kwan et al., 2019), Pacific chub mackerel (Scomber japonicus; Kwan et al., 2020), and California killifish (Fundulus parvipinnis; Nadler et al., 2021). Rabbit anti-NHE3 polyclonal antibodies were generously donated by Dr Junya Hiroi (St. Marianna University School of Medicine, Kawaski, Japan); they target two epitope regions within rainbow trout (Oncorhynchus mykiss) NHE3b (GDEDFEFSEGDSASG and PSQRAQLRLPWTPSNLRRLAPL), and recognize NHE3 of multiple teleost species including European sea bass (D. labrax; Blondeau-Bidet et al., 2019). The secondary antibodies were goat anti-mouse HRP-linked and goat anti-rabbit HRP-linked (Bio-Rad, Hercules, CA, USA) for immunoblotting, and goat anti-mouse Alexa Fluor 546 and goat anti-rabbit Alexa Fluor 488 (Invitrogen, Grand Island, USA) for immunohistochemistry.

Western Blotting

Western blotting followed the procedures outlined in Kwan *et al.*, (2019, 2020). While frozen on dry ice, the gill filament and lamellae were separated from the gill arch using a razor blade. The excised tissue was then immersed in liquid N_2 and pulverized in a porcelain grinder, then submerged within an ice-cold, protease inhibiting buffer (250 mmol L^{-1} sucrose, 1 mmol L^{-1} EDTA, 30 mmol L^{-1} Tris, 10 mmol L^{-1} benzamidine hydrochloride hydrate, 1 mmol L^{-1} phenylmethanesulfonyl fluoride, 1 mmol L^{-1} dithiothreitol, pH 7.5). Samples were further homogenized using a handheld VWR Pellet Mixer (VWR, Radnor, PA, USA) for 15 second intervals (3 times) while on ice. Next, samples were centrifuged (3,000 g, 4°C; 10 minutes), and the resulting supernatant was considered the crude homogenate. An aliquot of the crude homogenate was further subjected to a higher speed centrifugation (21,130xg, 4°C; 30 minutes), and the pellet was saved as the membrane-enriched fraction. Bradford assay was used to determine protein concentration (Bradford, 1976), which was used to normalize protein loading.

On the day of Western blotting, samples were mixed with an equal volume of 90% 2x Laemmli buffer and 10% β -mercaptoethanol. Samples were then heated at 70°C for 5 minutes, and the proteins (20 μ g per lane) were loaded onto a

polyacrylamide mini gel (4% stacking; 10% separating) – alternating between control and high CO₂ treatments to avoid possible gel lane effects. The gel ran at 60 volts for 15 minutes, then 100 V for 1.5 hours, and proteins were transferred onto a polyvinylidene difluoride (PVDF) membrane using a wet transfer cell (Bio-Rad) at 70 volts for 2 hours at 4 °C. PVDF membranes were then incubated in Tris-buffered saline with 1% tween (TBS-T) with milk powder (0.1 g/mL) at room temperature for 1 hour, then incubated with primary antibody (NKA: 10.5 ng/ml; NHE3: 1:1,000) in blocking buffer at 4°C overnight. On the following day, PVDF membranes were washed in TBS-T (three times; 10 minutes each), incubated in blocking buffer with secondary antibodies (1:10,000) at room temperature for 1 hour, and washed again in TBS-T (three times; 10 minutes each). Bands were made visible through addition of ECL Prime Western Blotting Detection Reagent (GE Healthcare, Waukesha, WI) and imaged with the Universal III Hood (BioRad). Following imaging, the PVDF membrane was incubated in Ponceau stain (10 minutes, room temperature) to estimate protein loading. Relative NKA and NHE protein abundance (n = 5 per treatment) was quantified using the Image Lab software (version 6.0.1; BioRad) and normalized by the protein content in each lane.

Immunohistochemistry

Immunohistochemistry was performed as described in Kwan *et al.*, (2020). Fixed gill tissue stored in 70% ethanol was rehydrated in PBS + 0.1% tween (PBS-T) for 10 minutes, and gill filaments were dissected out to ease subsequent imaging. Autofluorescence was quenched by rinsing in ice-cold PBS with sodium borohydride (1.0 – 1.5 mg mL⁻¹; six times; 10 minutes each), followed by incubation in blocking buffer (PBS-T, 0.02% normal goat serum, 0.0002% keyhole limpet haemocyanin) at room temperature for one hour. Samples were incubated with blocking buffer containing primary antibodies (NKA: 40 ng/mL; NHE3: 1:500 [c.f. Seo *et al.*, (2013)]) at 4°C overnight. On the following day, samples were washed in PBS-T (three times at room temperature; 10 min each), and incubated with the fluorescent secondary antibodies (1:500) counterstained with DAPI (1 µg mL⁻¹) at room temperature for 1 hour. Samples were washed again in PBS-T as before, then placed on a concave slide for imaging using an inverted confocal microscope (Zeiss LSM 800 with Zeiss ZEN 2.6 blue edition

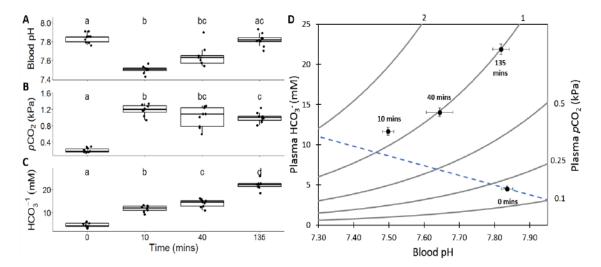
software; Cambridge, United Kingdom). Samples incubated without primary antibodies had no signal (Fig. S1).

Quantification of Ionocyte Apical Surface Area

The apical surface area of gill ionocytes were quantified through a combination of whole-mount imaging (40X objective lens with deionized water immersion), optical sectioning, and XZ- and YZ-plane analysis. A relatively flat surface on the gill filament was selected under 0.5x scanning confocal magnification to ensure imaging would be performed on ionocytes in an upright position thus minimizing errors in apical surface area quantification due to angle distortion. After locating an ionocyte by its distinctive NKA signal, the scanning confocal magnification was increased to 5.0X and the entire cell was Z-stack imaged (optimal interval automatically selected: 0.07-0.12 µm per slice). Subsequent viewing of the Z-stack from the X-Z and Y-Z planes allowed us to assess intracellular localisation, and to identify the image slice that captured the entire apical surface (typically, the second slice from the top of the cell). Next, the ionocyte's apical surface area (identified by NHE3 immunofluorescence signal) was quantified using FIJI (Schindelin et al., 2012). For each sea bass (n=5 per treatment), the average apical surface area was calculated from three ionocytes from different gill filaments.

Statistical Analysis

All statistical analysis was performed using R v3.6.3 (R Core Team, 2020). Changes in blood chemistry parameters over time in response to hypercapnia exposure were analysed using one-way ANOVA before assumptions of equal variances of data and normality of model residuals were checked. Post-hoc tests were conducted on least-square means generated by package 'emmeans' (Lenth, 2020), with Tukey adjusted p-values for multiple comparisons. Some data did not meet required assumptions for one-way ANOVA. Unequal variances were observed in measurements of pCO_2 between treatments, as such we used Welch's ANOVA with Tukey's pairwise comparisons using Benjamini-Hochberg corrections for post-hoc testing. Measurements of blood pH and P₅₀ did not meet assumptions of normality and were analysed using the Kruskal-Wallis test with post-hoc comparisons made with Dunn's test from package 'FSA' (Ogle et al., 2020), using Benjamini-Hochberg corrections for multiple comparisons. As a result of unusually high measurements of plasma [Cl¹] and [Na⁴] in some samples


a ROUT test was conducted (Q = 0.5%) in Graphpad Prism 9 to identify potential outliers (Motulsky and Brown, 2006). Samples in which plasma [Cl⁻] and [Na⁺] were both identified as outliers by the ROUT test were excluded from the dataset prior to subsequent statistical analysis. Flux measurements were analysed using Student's t-test after checking data met assumptions of normality and equal variance. Relative protein abundance and ionocyte apical area met both assumptions of normality and equal variance and were analysed using one-tailed t-test (control response < CO₂-exposed response).

Results

Blood chemistry

Exposure to environmental hypercapnia caused significant changes in blood pH of sea bass over time (Kruskal-Wallis test, χ^2 = 25.0, df = 3, p < 0.001). There was a pronounced acidosis of the blood from pH 7.84 (± 0.02) in control conditions (normocapnia, time = 0) to 7.50 (± 0.03) after exposure to hypercapnia for ~10 minutes (Fig. 1A, D). Following this initial acidosis sea bass completely restored blood pH to control levels after ~135 minutes (Fig. 1A, D). Blood pH regulation was accompanied by a ~5-fold increase in plasma HCO₃-, from 4.5 ± 0.3 to 21.9 ± 0.7 mM, over the ~135 minute exposure (Fig. 1C, D, One-way ANOVA, F = 203.3, df = 3, p < 0.001).

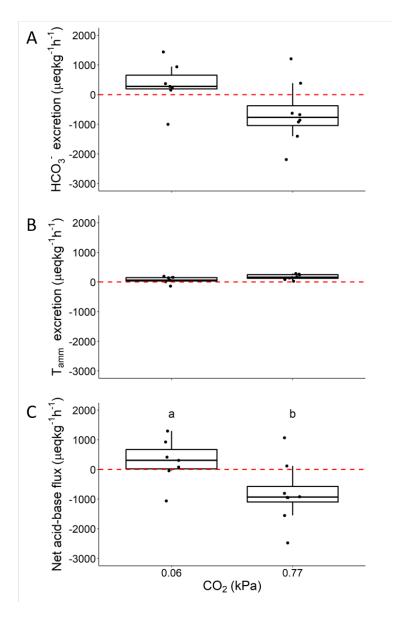
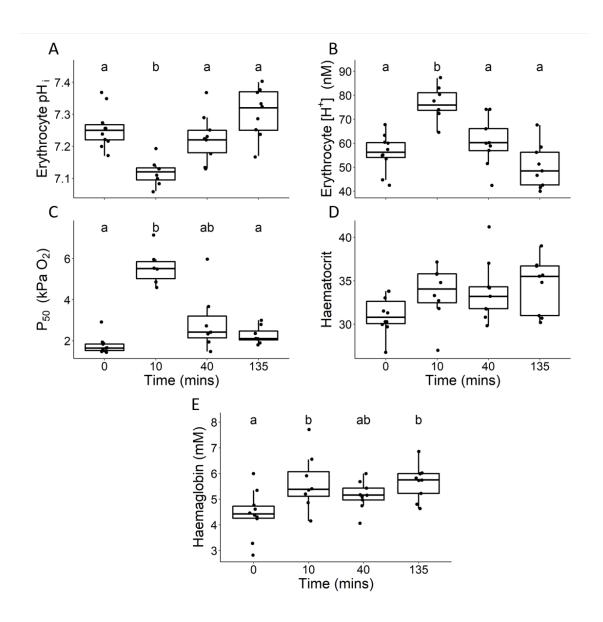

Plasma pCO_2 showed significant changes during exposure to hypercapnia (Fig. 1B, D, Welch's ANOVA, F = 202.5, df = 3, p < 0.001). The initial decrease in blood pH of sea bass was driven by a rapid and large (~6-fold) increase in plasma pCO_2 , from 0.200 ± 0.016 to 1.185 ± 0.049 kPa CO_2 , within the first 10 minutes of exposure. There was a small but significant decline in plasma pCO_2 between sea bass sampled ~10 minutes after exposure and sea bass sampled ~135 minutes after exposure (Fig. 1B). There were no significant differences in plasma glucose or lactate levels between any treatment groups with values for all sea bass of 5.90 ± 0.43 mM and 0.45 ± 0.05 mM respectively.

Figure 1: Changes in **A.** blood pH, **B.** plasma pCO_2 , and **C.** plasma HCO_3^- between European sea bass in control conditions (~0.05 kPa CO_2 , Time = 0, n= 10) and after exposure to ~0.9 kPa CO_2 for ~10 minutes (n = 8), ~40 minutes (n = 9), and ~135 minutes (n = 9). Significant differences between parameters at each time point are indicated by different lower case letters (**A.** Dunn's test, p < 0.05; **B.** Pairwise comparison using Benjamini-Hochberg correction, P < 0.05 **C.** Pairwise comparison of least square means, p < 0.05) **D.** Combined changes of all three acid-base parameters are expressed as a pH/HCO₃-/ pCO_2 diagram (blue dashed line indicates estimated non-bicarbonate blood buffer line based on equations from Wood *et al.* (1982)) values represent mean ± s.e.m.

Flux measurements

Sea bass switched from slight net base excretion under control normocapnic conditions to net acid excretion that was ~2.5-fold larger in magnitude during 135 minutes of hypercapnia (Fig. 2C, Student's t-test, t = -2.25, df = 13, p = 0.042). This was driven by a switch from a small apparent HCO_3^- excretion to a large apparent HCO_3^- uptake (Fig. 2A). There were no significant differences in T_{Amm} excretion (Fig. 2B).

Figure 2: Changes in **A.** excretion of HCO_3^- , **B.** excretion of total ammonia (T_{amm}) and **C.** net acid-base flux between European sea bass in control conditions (n = 7, ~0.07 kPa CO_2) and after ~135 minutes exposure to hypercapnia (n = 8, ~0.84 kPa CO_2). Significant difference in parameters are indicated by different lower-case letters (Student's t-test, p < 0.05).


Oxygen transport capacity

The initial drop in blood pH during hypercapnia exposure was reflected in changes in erythrocyte pH $_{\rm i}$ (Fig. 3A, One-way ANOVA, F = 12.34, df = 3, p < 0.001) and erythrocyte [H $^{+}$] (Fig. 3B, One-way ANOVA, F = 14.64, df = 3, P < 0.001). However, erythrocyte pH $_{\rm i}$ and [H $^{+}$] returned to control levels after ~40 minutes of exposure to hypercapnia (Fig. 3A, B). As expected, the significant changes in erythrocyte pH $_{\rm i}$ and [H $^{+}$] affected haemoglobin-O₂ binding affinity

leading to a ~3-fold increase in P_{50} after 10 minutes, from 1.78 kPa O_2 (± 0.30 kPa O_2) in control sea bass to 5.60 kPa O_2 (± 0.36 kPa O_2) (Kruskall-wallis test, χ^2 = 17.4, df = 3, p < 0.001). There were no changes in Hills' number across hypercapnia exposure (One-way ANOVA, F = 1.48, df = 3, p = 0.248). The rapid recovery of erythrocyte pH_i and [H⁺] after ~40 minutes led to P_{50} returning to preexposure levels (Fig. 3B).

Sea bass exposed to hypercapnia also experienced a \sim 25% increase in haemoglobin levels (Fig. 3D), at \sim 10 minutes and \sim 135 minutes compared to control sea bass (One-way ANOVA, F = 4.60, df = 3, p = 0.009). In addition, sea bass exposed to hypercapnia exhibited an \sim 8-10% increase in haematocrit (Fig. 3C), although this increase was marginally non-significant (One-way ANOVA, F = 2.40, df = 3, 0.086).

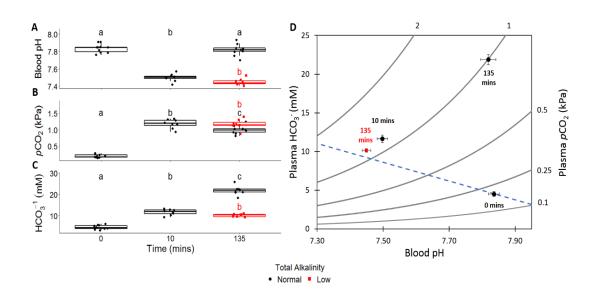


Figure 3: Changes in **A.** erythrocyte intracellular pH (erythrocyte pH_i), **B.** erythrocyte [H⁺], **C.** haemoglobin-O₂ binding affinity (P₅₀), **D.** haematocrit and **E.** haemoglobin level between European sea bass in control conditions (\sim 0.05 kPa CO₂, Time = 0) and after exposure to \sim 0.9 kPa CO₂ for \sim 10 minutes, \sim 40 minutes, and \sim 135 minutes. Significant differences between parameters at each time point are indicated by different lowercase letters (**A.**, **B.**, **D.** and **E.** Pairwise comparisons of least square means, p < 0.05, **C.** Dunn's test, p < 0.05).

Response to Hypercapnia in Seawater with Low Total Alkalinity

To test the influence of environmental availability of [HCO₃-] on acid-base regulation, a group of sea bass were exposed to hypercapnia in low alkalinity seawater. These sea bass were unable to compensate for a respiratory acidosis when exposed to acute hypercapnia for ~135 minutes (Fig. 4A). Blood pH was 0.37 units (95 % CI = 0.33-0.41) lower than sea bass exposed to hypercapnia in normal alkalinity seawater for the same length of time and the same blood pH as we recorded in sea bass ~10 minutes after exposure to hypercapnia in normal seawater. Additionally, sea bass in low alkalinity seawater did not actively accumulate HCO₃- when exposed to environmental hypercapnia for ~135 minutes (Fig. 4C). Indeed, the 11.8 mM increase in plasma [HCO₃-] (95% CI = 10.6-12.9 mM) followed the predicted non-bicarbonate buffering line (Fig. 4D).

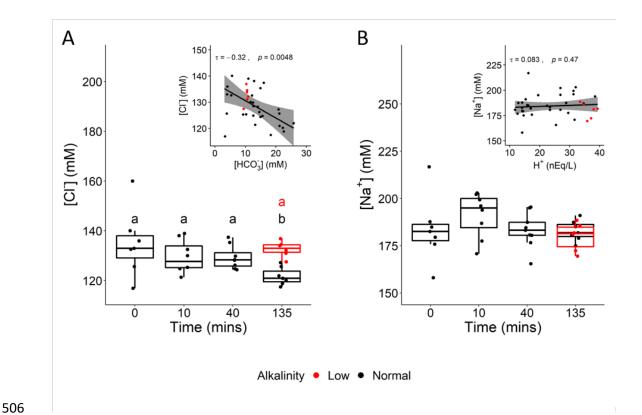


Figure 4: Comparison of **A.** blood pH, **B.** plasma pCO_2 and **C.** plasma HCO_3 between European sea bass in control conditions (n = 10, Time = 0), exposed to hypercapnia for ~10 minutes (n = 8) in normal (~2800 µM) total alkalinity (TA) seawater, exposed to hypercapnia for ~135 minutes in normal (~2800 µM) TA

seawater (n = 9), and exposed to hypercapnia for ~135 minutes in low (~200 μM) TA seawater (n =8). Significant differences between parameters at each time point are indicated by different lower-case letters (Pairwise comparison of least squares means, p<0.05). For measurements taken after ~135 minutes of exposure to hypercapnia the colour indicates the TA treatment (i.e. black = normal TA, red = low TA). **D.** Combined changes of all three acid-base parameters are expressed as a pH/HCO₃-/pCO₂ diagram (blue dashed line indicates estimated non-bicarbonate blood buffer line based on equations from Wood *et al.* (1982)) values represent mean ± s.e.m.

Plasma Ion Concentrations

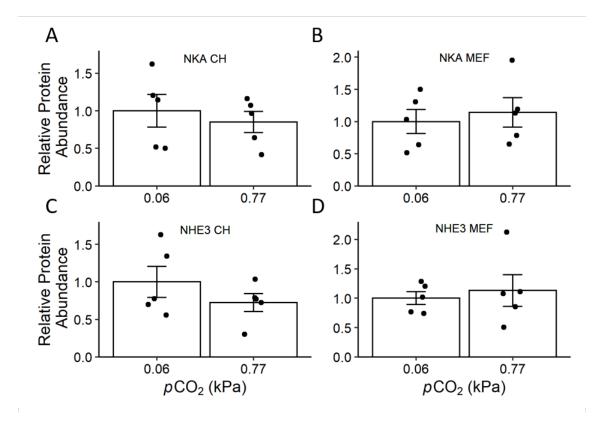

Plasma [Cl⁻] significantly decreased by 13.1 mM (95% CI = 10.1-16.2 mM) from 134.9 mM (\pm 5.1) in sea bass in normocapnia to 121.7 mM (\pm 1.3) in sea bass exposed to hypercapnia for ~135 minutes (Kruskall-Wallis test, χ^2 = 11.1, df = 4, p = 0.025). This decrease in plasma [Cl⁻] was not seen in sea bass exposed to hypercapnia in low alkalinity water (Fig. 5A). Decreases in plasma [Cl⁻] showed a correlation with increasing bicarbonate (Figure 5A inset, Kendall's tau correlation, τ = -0.32, p = 0.005). Plasma [Na⁺] showed no significant changes over the time course of hypercapnia exposure (One-way ANOVA, F = 1.063, p = 0.391), and there were no differences in [Na⁺] after ~135 minutes of exposure to hypercapnia between sea bass in normal and low TA seawater (Fig. 5B). As such, there was no correlation between plasma [Na⁺] and [H⁺] (Fig. 5B inset, Kendall's tau correlation, τ = 0.08, p = 0.471).

Figure 5: Comparison of **A.** plasma [Cl⁻] and **B.** plasma [Na⁺] between European sea bass in control conditions (n = 7, Time = 0), exposed to hypercapnia for ~10 minutes (n = 8), ~40 minutes in or ~135 minutes in normal (~2800 μ M) TA seawater (n = 7), and exposed to hypercapnia in low (~200 μ M) TA seawater (n = 6). Significant differences between [Cl⁻] at each time point are indicate by different lower-case letters (Pairwise comparison of least squares means, p<0.05). Insets show correlation between **A.** plasma [Cl⁻] and [HCO₃-]. **B.** plasma [Na⁺] and [H⁺]. T and p value shown represent results of Kendall's tau correlation. Shaded area represents 95% Cl of linear regression between measures. For insets and measurements taken after ~135 minutes of exposure to hypercapnia the colour indicates the TA treatment (i.e. black = normal TA, red = low TA).

NKA and NHE3 Protein Abundance

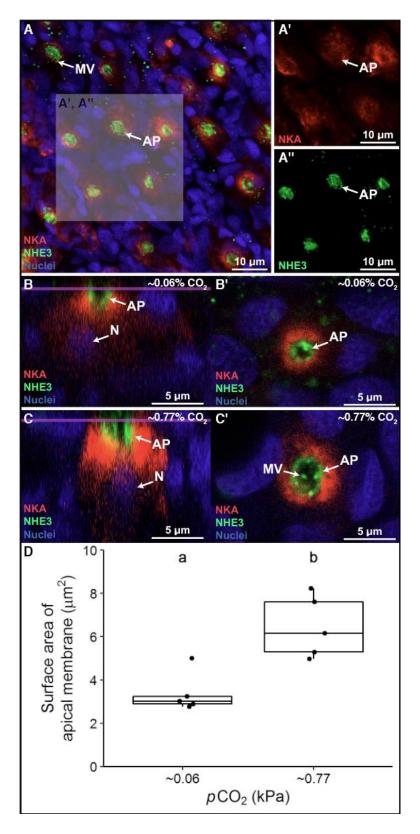

Exposure to hypercapnia did not induce significant changes in the abundance of NKA or NHE3 in crude homogenates (indicative of total protein abundance) or the abundance of NKA and NHE3 in membrane-enriched fractions (indicative of protein that was present in the apical or basolateral plasma membranes) (One-tailed t-test, P > 0.05; Fig. 6).

Figure 6: Comparison of gill **A.** Na⁺/K⁺-ATPase (NKA) in crude homogenates (CH), **B.** NKA in the membrane-enriched fraction (MEF) as well as **C.** Na⁺/H⁺ Exchanger 3 (NHE3) CH, and **D.** NHE3 MEF abundance between European sea bass exposed to control conditions (\sim 0.06 kPa CO₂) and to hypercapnia (\sim 0.77 kPa CO₂) for \sim 135 minutes (n = 5 per treatment, 1-tailed t-test). Bars show mean \pm s.e.m., points show raw data; there were no significant differences between any measurements (1-tailed t-tests, p > 0.05).

Ionocyte Intracellular Localisation and Apical Surface Area

NKA-rich ionocytes were primarily localised on the gill filament trailing edges and the basal portion of the gill lamellae (Fig. S1), all NKA-rich ionocytes also expressed NHE3 in their apical region (Fig. 7A). Despite analysis using high magnification imaging, optical sectioning, and XZ- and YZ-plane visualization, we found no evidence of NHE3 intracellular localisation (Figure 7B, B', C, C'). The ionocyte's apical surface area (based on the NHE3 signal) significantly increased, almost doubling from 3.38 ± 0.41 to 6.45 ± 0.64 µm², after exposure to ~135 min of hypercapnia (one-tailed t-test, t = 4.048, df = 6.828, p = 0.003; Fig. 7D).

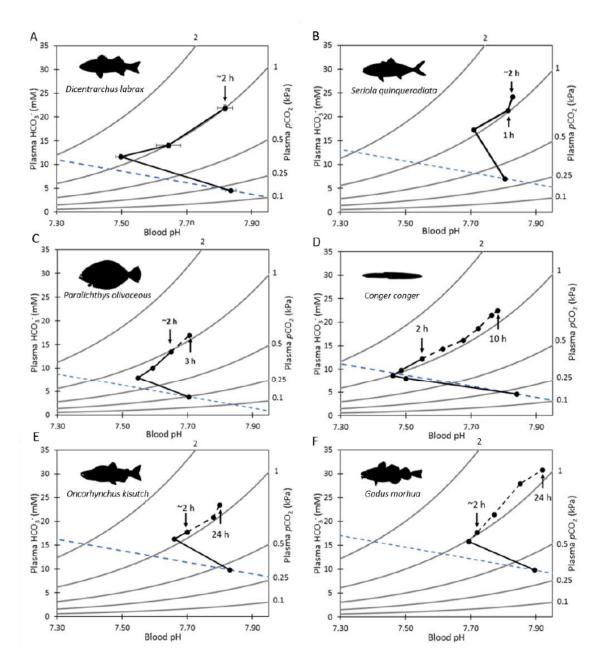
Figure 7: A. The European sea bass' gill ionocytes express abundant **A'.** basolateral Na⁺/K⁺-ATPase (NKA, red) and **A''.** apical Na⁺/H⁺ Exchanger 3 (NHE3, green). Comparison of gill ionocytes between European sea bass exposed to **B, B'.** control conditions (~0.06 kPa CO₂) and **C, C'.** to ~0.77 kPa CO₂

for ~135 minutes revealed no changes in intracellular localisation, but determined **D.** hypercapnia-exposed sea bass had significantly wider apical surface area (n = 5 per treatment, 1-tailed t-test, p = 0.003). The purple line in **B** and **C** denotes the slice at which **B'** and **C'** were imaged. Nuclei (blue) are stained with DAPI.

Discussion

Our results indicate that European sea bass are able to rapidly compensate for hypercapnia-induced blood acidosis when the environmental CO_2 is at the extreme high end of the spectrum encountered in their natural habitat. Complete restoration of blood pH after exposure to ~1 kPa CO_2 was achieved within ~2 hours via a switch from net base excretion to net acid excretion and a subsequent accumulation of HCO_3 in plasma. In addition, erythrocyte pHi and Hb-O2 affinity were restored to pre-exposure levels after just ~40 min, and there was a 20% increase in the blood haemoglobin concentration together with a trend for ~10% haematocrit increase. These results suggest an adrenergic response that stimulates a β -NHEs in the erythrocytes (Nikinmaa, 2012), and contracts the spleen resulting in the release of erythrocytes into the circulation (Crocker and Cech, 1997; Lee et al., 2003; Perry and Kinkead, 1989; Vermette and Perry, 1988). The end result is a boost in blood O_2 transport capacity that counteracts the reduced Hb-O2 affinity induced by the initial hypercapnia-induced acidosis.

Regulation of respiratory acidosis by sea bass exposed to hypercapnia in normal alkalinity sea water (TA ~2,800 µM) resulted in an elevation of plasma [HCO3-] by ~18 mM, which was correlated with a decrease in plasma [Cl-] of ~13 mM. In comparison, while we saw a slight rise in plasma [Na+] on initial exposure to hypercapnia, this was transient, and there was no overall correlation between plasma [Na+] and [H+] during the whole 135 minute experiment. However, a lack of increase in plasma [Na+] during acid-base regulation does not preclude increased Na+ uptake (to facilitate H+ excretion) during acid-base regulation. Instead, a lack of increased plasma [Na+] may simply reflect upregulation of the hypo-ionoregulatory mechanism for NaCl excretion in marine teleosts (Liu et al., 2016), which would presumably occur to compensate for enhanced uptake of Na+ to facilitate H+ excretion by NHE. This would also help explain the observed reduction in plasma [Cl-] in fish exposed to hypercapnia.


In comparison, sea bass exposed to hypercapnia in low alkalinity sea water (TA ~200 μM) showed no ability to accumulate HCO₃-, to compensate for respiratory acidosis, and did not experience a decrease in plasma [Cl-]. At face value, these results may support potential direct uptake of HCO₃- from seawater in exchange for blood Cl⁻ through HCO₃-/Cl⁻ exchange across the gills (Esbaugh et al., 2012; Perry and Gilmour, 2006; Tovey and Brauner, 2018). However, the thermodynamics of this proposed mechanism are not clear, as [Cl-] is much higher in seawater than in internal fluids of fish, and the opposite is true for [HCO₃-]. This implies that both counterions would have to be transported against their concentration gradients, and furthemore, these gradients would become increasingly unfavourable as blood acidosis is compensated. Importantly, our hypercapnic low alkalinity seawater had a pH of ~5.7, which was ~1.2 pH units lower than hypercapnic normal alkalinity seawater (a 15-fold increase in [H⁺]). Based on nominal values of [Na+] and [H+] inside fish gill ionocytes and calculations in Parks et al. (2008), the low alkalinity seawater would not sustain H⁺ excretion via NHEs (Table S5). Interestingly, as Na⁺ excretion is coupled to Cl⁻ excretion (via pathways independent of NHE), inactivation of NHE would also explain the lack of increase of plasma [Cl-] in low alkalinity sea water. Overall, this evidence supports enhanced NHE mediated H⁺ excretion (resulting in retention of metabolically produced HCO₃⁻ in the blood), rather than direct HCO₃⁻ uptake from sea water, as the primary mechanism underlying regulation of respiratory acidosis in sea bass.

To investigate the mechanisms used by sea bass to enhance acid-excretion, we examined whether changes in gill NKA and NHE3 occur after acute (~135 minute) exposure to hypercapnia. Gill NKA and NHE3 protein abundance did not change, ruling out increased protein synthesis as the mechanism responsible for the observed upregulation in acid-excretion; this is not surprising considering the short timeframe of our experiments. We also examined the potential translocation of pre-existing NKA and NHE3 to the ionocyte basolateral and apical membranes, respectively. Such mechanisms upregulate acid-base regulatory ion transport in elasmobranchs (Roa et al., 2014; Tresguerres et al., 2005; Tresguerres et al., 2006; Tresguerres et al., 2007b) and hagfish (Parks et al., 2007; Tresguerres et al., 2007a); however, NKA and NHE3 protein abundance in the gill membrane fraction of European sea bass gills was also unchanged, ruling out NKA and NHE3 translocation in our experiments. Finally, we hypothesized that sea bass

could have remodelled the apical membrane of ionocytes to increase the sites for H⁺ excretion in contact with seawater. Indeed, this was the case as the surface area of the NHE3-abundant apical membrane of NKA-rich ionocytes roughly doubled in response to hypercapnia.

Previous studies on freshwater fishes have also documented morphological adjustments in gill ionocytes upon comparable hypercapnic exposures. However, the responses were the opposite to our study, as those freshwater fishes experienced a significant reduction in ionocyte apical surface area (Baker et al., 2009a; Goss et al., 1992b; Leino and McCormick, 1984). In some cases, the apical membrane retracted into a more pronounced apical pit (Goss et al., 1992a; Goss et al., 1994), which was suggested to create a microenvironment with higher [Na⁺] compared to the bulk freshwater and facilitate Na⁺/H⁺ exchange (Kumai and Perry, 2012). However, exposure to more pronounced hypercapnia (8 kPa CO₂ over four days) induced an increase in gill ionocyte apical surface area in freshwater catfish (Ictalurus punctatus) (Cameron and Iwama, 1987). This response was similar to the seabass in our study; however, the longer time frame likely allowed for additional responses that were not investigated, such as increased synthesis of ion-transporting proteins or a change in the H+ excreting mechanism. In any case, the ability of seabass to rapidly compensate a blood respiratory acidosis by increasing gill ionocyte apical surface area is in large part possible due to the overabundance of Na⁺ in sea water, which establishes favourable conditions for NHE-mediated H⁺ excretion.

Freshwater species typically take from 24 h to > 72 h to regulate blood pH after exposure to 1 kPa CO_2 (Baker et al., 2009a; Claiborne and Heisler, 1984; Claiborne and Heisler, 1986; Damsgaard et al., 2015; Larsen and Jensen, 1997; Perry, 1982; Perry et al., 1981; Smatresk and Cameron, 1982). While it is generally believed that marine teleosts can regulate their blood acid-base status at a faster rate than freshwater species (Brauner et al., 2019), relatively little research has been conducted to characterise the speed of acid-base regulation in marine fish. A bibliography search revealed four previous studies on five marine teleost species that characterized the time course of the acid-base regulatory response after exposure to 1 kPa CO_2 (Fig. 8). Of these species, only the Japanese amberjack (*Seriola quinqueradiata*) was able to restore blood pHe

Figure 8: Blood pH/HCO₃-/pCO₂ plots for **A.** European sea bass, *Dicentrarchus labrax* (Present study), **B.** Japanese amberjack, *Seriola quinqeradiata* (Hayashi *et al.*, 2004, re-plotted raw data provided by pers. comm. with Dr Atsushi Ishimatsu, Can Tho University), **C.** Japanese flounder, *Paralichthys olivaceus* (Hayashi et al., 2004), **D.** conger eel, *Conger conger* (Toews et al., 1983), **E.** coho salmon, *Oncorhynchus kisutch* (Perry, 1982), and **F.** Atlantic cod, *Gadus morhua* (Larsen et al., 1997). The corresponding blood pH and HCO₃- of each species at a time ~2 h after 1 kPa CO₂ exposure is indicated to allow direct comparisons with European sea bass. Times below the relevant

point indicate when blood pH was not statistically different from pre-exposure levels for each species. The time course of the acid-base response after 2 h is indicated by a dashed black line. The dashed blue line is an approximated non-HCO₃- buffer line based on the mean haematocrit of sea bass from the present study and calculated using the equation for rainbow trout from Wood *et al.* (1982).

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

The robust ability of sea bass to rapidly acid-base regulate in response hypercapnia likely plays a significant role in their natural environment. Specifically, sea bass feed in shallow coastal estuaries and salt marsh habitats during the summer (Doyle et al., 2017), and these habitats typically experience large fluctuations in CO₂ levels over short time periods (Hofmann et al., 2011; Melzner et al., 2013; Wallace et al., 2014). For example, equivalent salt marshes on the US coast regularly experience CO₂ fluctuations of ~0.4 kPa across tide cycles during the summer (Baumann et al., 2015). The fast acid-base regulatory response observed in our study indicates that sea bass would be able to rapidly correct the respiratory blood acidosis caused by this level of CO₂ variation in <1 hour. Critically, regulation of erythrocyte pHi by sea bass was the fastest recorded in any fish species. By rapidly restoring erythrocyte pH_i O₂ transport capacity is maintained, which is crucial for active predatory teleosts. However, environmental CO2 variation cannot be the sole driver for enhanced acid-base regulatory capacities in all species. For example, Japanese amberjack show a similarly fast blood acid-base regulatory response (Hayashi et al., 2004) but primarily inhabit pelagic, offshore ecosystems in which large variation in environmental CO₂ may be less likely to occur. An alternative may be that active, predatory species have developed higher capacities for acid-base regulation to deal with large metabolic acidosis (as a result of anaerobic respiration used during intense exercise involved in prey capture). Understanding the mechanisms that determine species-specific differences in acid-base regulatory capacity will help understand differential impacts of acute exposure to elevated CO₂, both by itself and in combination with other stressors such as hypoxia. For example, we have recently reported that sea bass showed enhanced hypoxia tolerance when exposed to progressive and environmentally relevant hypercapnia and hypoxia over a 6 hour period (Montgomery et al., 2019). In contrast, European plaice (Pleuronectes platessa) and European flounder (Platichthys flesus) exposed to the same conditions showed reduced hypoxia tolerance (Pcrit), which was associated with reduced Hb-O2 affinity and O2 uptake resulting from an uncompensated respiratory acidosis (Rogers, 2015; Montgomery *et al.* unpublished observations). Thus, species with more robust acid-base regulatory mechanisms seem more resilient to interactive effects between hypercapnia and hypoxia.

Conclusion

Overall, our study highlights the capacity of European sea bass to rapidly (2 hours) regulate blood and erythrocyte acid-base status and O₂ transport capacity upon exposure to a pronounced and sudden increase in environmental CO₂ levels. Sea bass' ability to rapidly upregulate H⁺ excretion appears to be mediated via the increased exposure of NHE3-containing apical surface area of gill ionocytes, rather than changes in NHE3 or NKA protein abundance or localisation. Additionally, sea bass erythrocyte pH_i is regulated even more rapidly than blood pH (40 minutes), which enables them to quickly restore the affinity of haemoglobin for O₂, and therefore blood O₂ transport capacity during exposure to elevated CO₂. In conjunction, these acid-base regulatory responses will minimise the impact of pronounced and rapidly fluctuating CO₂ in their natural environments, and so may prevent disruption of energetically costly activities such as foraging or digestion, and may make sea bass more resilient to impacts of hypoxia and additional stressors during acute periods of hypercapnia. This is an avenue where we believe further research effort is necessary.

- **Conflict of Interest:** The authors declare no conflicts of interest.
- Author contributions: D.W.M. designed the experiment, performed all data collection and analysis other than for gill samples, and wrote the manuscript.
- 719 W.D., J.F., and A.B assisted with data collection, data analysis and editing of the
- 720 manuscript. R.W.W. supervised the study and assisted with designing the
- experiments, data collection and analysis, and writing of the manuscript. S.D.S.,
- G.H.E., and S.N.R.B. assisted with data analysis and editing of the manuscript.
- G.T.K. conducted all data analysis of gill samples and assisted with writing the
- manuscript. M.T. assisted with data analysis and writing of the manuscript.
- **Acknowledgements:** This work was supported by a NERC GW4+ Doctoral
- 726 Training Partnership studentship from the Natural Environment Research Council
- 727 [NE/L002434/1] with additional funding from CASE partner, The Centre for
- Environment, Fisheries and Aquaculture Science (Cefas) to D.W.M., and from

- the Biotechnology and Biological Sciences Research Council (BB/D005108/1 729
- and BB/J00913X/1) and NERC (NE/H017402/1) to R.W.W. G.T.K. was funded 730
- 731 by the National Science Foundation (NSF) Postdoctoral Fellowship Program
- (#1907334). M.T. received funding from NSF IOS #1754994. We thank Dr Junya 732
- 733 Hiroi for providing the NHE3 antibodies, and Dr Andrew Esbaugh and Dr Till
- Harter for discussions related to data interpretation. We would similarly like to 734
- thank the aquarium staff, particularly Dr Gregory Paul, Paul Tyson, Rebecca 735
- Turner, Alex Bell, and Richard Silcox, of the Aquatic Resource Centre at the 736
- University of Exeter for assistance with fish husbandry and maintenance of 737
- aguarium facilities. 738

739

- Data availability: Data will be deposited on the University of Exeter's Open 740
- Research Exeter (ORE) depository and a URL to the dataset provided prior to 741
- 742 article acceptance or upon request by reviewers.

743

744

References

- 745 Baker, D. W., Matey, V., Huynh, K. T., Wilson, J. M., Morgan, J. D. and
- Brauner, C. J. (2009a). Complete intracellular pH protection during 746
- extracellular pH depression is associated with hypercarbia tolerance in 747
- 748 white sturgeon, Acipenser transmontanus. Am. J. Physiol. Integr. Comp.
- 749 Physiol. 296, R1868-R1880.
- Baker, D. W., May, C. and Brauner, C. J. (2009b). A validation of intracellular 750 751 pH measurements in fish exposed to hypercarbia: the effect of duration of
- tissue storage and efficacy of the metabolic inhibitor tissue homogenate 752
- method. J. Fish Biol. 75, 268-275. 753
- Baumann, H., Wallace, R. B., Tagliaferri, T. and Gobler, C. J. (2015). Large 754 755
 - Natural pH, CO2 and O2 Fluctuations in a Temperate Tidal Salt Marsh on
- Diel, Seasonal, and Interannual Time Scales. Estuaries and Coasts 38, 756
- 220-231. 757
- Blondeau-Bidet, E., Hiroi, J. and Lorin-Nebel, C. (2019). Ion uptake 758
- 759 pathways in European sea bass Dicentrarchus labrax. Gene 692, 126–137.
- Borges, A. V, Schiettecatte, L.-S., Abril, G., Delille, B. and Gazeau, F. 760
- 761 (2006). Carbon dioxide in European coastal waters. Estuar. Coast. Shelf
- 762 Sci. 70, 375–387.
- Boutilier, R. G., Heming, T. A. and Iwama, G. K. (1984). Appendix: 763
- Physicochemical Parameters for use in Fish Respiratory Physiology**The 764
- authors were supported by N.S.E.R.C. (Canada). In Fish Physiology (ed. 765
- Hoar, W. S.) and Randall, D. J.), pp. 403-430. Academic Press. 766
- 767 Boutilier, R. G., Iwama, G. K., Heming, T. A. and Randall, D. J. (1985). The
- apparent pK of carbonic acid in rainbow trout blood plasma between 5 and 768
- 15°C. Respir. Physiol. 61, 237-254. 769

- 770 Brauner, C. J. and Baker, D. W. (2009). Patterns of Acid-Base Regulation
- During Exposure to Hypercarbia in Fishes BT Cardio-Respiratory Control
- in Vertebrates: Comparative and Evolutionary Aspects. In (ed. Glass, M. L.)
- and Wood, S. C.), pp. 43–63. Berlin, Heidelberg: Springer Berlin
- 774 Heidelberg.
- Brauner, C. J., Shartau, R. B., Damsgaard, C., Esbaugh, A. J., Wilson, R.
- W. and Grosell, M. (2019). 3 Acid-base physiology and CO₂
- homeostasis: Regulation and compensation in response to elevated
- environmental CO₂. In *Carbon Dioxide* (ed. Grosell, M.), Munday, P. L.),
- Farrell, A. P.), and Brauner, C. J. B. T.-F. P.), pp. 69–132. Academic Press.
- Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S.
- 781 E., Chou, W.-C., Zhai, W., Hollibaugh, J. T., Wang, Y., et al. (2011).
- Acidification of subsurface coastal waters enhanced by eutrophication. *Nat.*
- 783 *Geosci* **4**, 766–770.
- Cameron, J. N. and Iwama, G. K. (1987). Compensation of Progressive
- Hypercapnia in Channel Catfish and Blue Crabs. *J. Exp. Biol.* **133**, 183 LP 197.
- 787 Claiborne, J. B. and Heisler, N. (1984). Acid-Base Regulation and Ion
- Transfers in the Carp (*Cyprinus Carpio*) During and After Exposure to
- Environmental Hypercapnia. *J. Exp. Biol.* **108**, 25 LP 43.
- 790 Claiborne, J. B. and Heisler, N. (1986). Acid-base regulation and ion transfers
- in the carp (*Cyprinus carpio*): pH compensation during graded long- and
- short-term environmental hypercapnia, and the effect of bicarbonate
- 793 infusion. *J. Exp. Biol.* **126**, 41 LP 61.
- 794 Claiborne, J. B., Edwards, S. L. and Morrison-Shetlar, A. I. (2002). Acid-
- base regulation in fishes: cellular and molecular mechanisms. *J. Exp. Zool.*
- **293**, 302–319.
- 797 Cooper, C. A., Whittamore, J. M. and Wilson, R. W. (2010). Ca2+-driven
- intestinal HCO3 secretion and CaCO3 precipitation in the European
- flounder in vivo: influences on acid-base regulation and blood gas
- transport. Am. J. Physiol. Integr. Comp. Physiol. 298, R870–R876.
- 801 Cossins, A. R. and Richardson, P. A. (1985). Adrenalin-Induced Na+/H+
- 802 Exchange in Trout Erythrocytes and its Effects Upon Oxygen-Carrying
- 803 Capacity. *J. Exp. Biol.* **118**, 229 LP 246.
- 804 Crocker, C. E. and Cech, J. J. (1997). Effects of environmental hypoxia on
- oxygen consumption rate and swimming activity in juvenile white sturgeon,
- Acipenser transmontanus, in relation to temperature and life intervals.
- 807 Environ. Biol. Fishes **50**, 383–389.
- 808 Crocker, C. E. and Cech Jr, J. J. (1998). Effects of hypercapnia on blood-gas
- and acid-base status in the white sturgeon, Acipenser transmontanus. J.
- 810 *Comp. Physiol. B* **168**, 50–60.
- Damsgaard, C., Gam, L. T. H., Tuong, D. D., Thinh, P. V., Huong Thanh, D.
- 812 T., Wang, T. and Bayley, M. (2015). High capacity for extracellular acid—
- base regulation in the air-breathing fish *Pangasianodon hypophthalmus*. *J.*
- 814 Exp. Biol. **218**, 1290 LP 1294.

- Dickson, A. G. and Millero, F. J. (1987). A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. *Deep Sea Res. Part A. Oceanogr. Res. Pap.* **34**, 1733–1743.
- Dickson, A. G., Sabine, C. L. and Christian, J. R. (2007). *Guide to best practices for ocean CO2 measurements*. North Pacific Marine Science Organization.
- Doney, S. C., Fabry, V. J., Feely, R. A. and Kleypas, J. A. (2009). Ocean Acidification: The Other CO₂ Problem. *Ann. Rev. Mar. Sci.* **1**, 169–192.
- Doyle, T. K., Haberlin, D., Clohessy, J., Bennison, A. and Jessopp, M. (2017). Localised residency and inter-annual fidelity to coastal foraging areas may place sea bass at risk to local depletion. *Sci. Rep.* **7**, 45841.
- Eddy, F. B., Lomholt, J. P., Weber, R. E. and Johansen, K. (1977). Blood respiratory properties of rainbow trout (Salmo gairdneri) kept in water of high CO2 tension. *J. Exp. Biol.* **67**, 37 LP 47.
- Esbaugh, A. J. (2017). Physiological implications of ocean acidification for marine fish: emerging patterns and new insights. *J. Comp. Physiol. B* 1–13.
- Esbaugh, A. J., Heuer, R. and Grosell, M. (2012). Impacts of ocean acidification on respiratory gas exchange and acid-base balance in a marine teleost, Opsanus beta. *J. Comp. Physiol. B.* **182**, 921–934.
- Evans, D. H., Piermarini, P. M. and Choe, K. P. (2005). The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste. *Physiol. Rev.* **85**, 97–177.
- Goss, G. G., Laurent, P. and Perry, S. F. (1992a). Evidence for a morphological component in acid-base regulation during environmental hypercapnia in the brown bullhead (Ictalurus nebulosus). *Cell Tissue Res.* 268, 539–552.
- Goss, G. G., Perry, S. F., Wood, C. M. and Laurent, P. (1992b). Mechanisms of ion and acid-base regulation at the gills of freshwater fish. *J. Exp. Zool.*263, 143–159.
- Goss, G. G., Laurent, P. and Perry, S. F. (1994). Gill morphology during hypercapnia in brown bullhead (Ictalurus nebulosus): role of chloride cells and pavement cells in acid-base regulation. *J. Fish Biol.* **45**, 705–718.
- Hayashi, M., Kita, J. and Ishimatsu, A. (2004). Acid-base responses to lethal aquatic hypercapnia in three marine fishes. *Mar. Biol.* **144**, 153–160.
- Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli,
 F., Paytan, A., Price, N. N., Peterson, B. and Takeshita, Y. (2011). High frequency dynamics of ocean pH: a multi-ecosystem comparison. *PLoS* One 6,.
- Kumai, Y. and Perry, S. F. (2012). Mechanisms and regulation of Na+ uptake by freshwater fish. *Respir. Physiol. Neurobiol.* **184**, 249–256.
- Kwan, G. T., Wexler, J. B., Wegner, N. C. and Tresguerres, M. (2019).
 Ontogenetic changes in cutaneous and branchial ionocytes and
- morphology in yellowfin tuna (Thunnus albacares) larvae. *J. Comp. Physiol.*

858 *B* **189**, 81–95.

Kwan, G. T., Smith, T. R. and Tresguerres, M. (2020). Immunological
 characterization of two types of ionocytes in the inner ear epithelium of
 Pacific Chub Mackerel (Scomber japonicus). J. Comp. Physiol. B 190, 419–

862 431.

- Larsen, B. K. and Jensen, F. B. (1997). Influence of ionic composition on acidbase regulation in rainbow trout (Oncorhynchus mykiss) exposed to environmental hypercapnia. *Fish Physiol. Biochem.* **16**, 157–170.
- Larsen, B. K., Pörtner, H. O. and Jensen, F. B. (1997). Extra- and intracellular acid-base balance and ionic regulation in cod (Gadus morhua) during combined and isolated exposures to hypercapnia and copper. *Mar. Biol.* 128, 337–346.
- Lebovitz, R. M., Takeyasu, K. and Fambrough, D. M. (1989). Molecular characterization and expression of the (Na+ + K+)-ATPase alpha-subunit in Drosophila melanogaster. *EMBO J.* **8**, 193–202.
- Lee, K.-S., Kita, J. and Ishimatsu, A. (2003). Effects of Lethal Levels of Environmental Hypercapnia on Cardiovascular and Blood-Gas Status in Yellowtail, *Seriola quinqueradiata*. *Zoolog. Sci.* **20**, 417–422.
- Leino, R. L. and McCormick, J. H. (1984). Morphological and morphometrical changes in chloride cells of the gills of Pimephales promelas after chronic exposure to acid water. *Cell Tissue Res.* **236**, 121–128.
- Lenth, R. (2020). emmeans: Estimated Marginal Means, aka Least-Squares Means.
- Lewis, C., Clemow, K. and Holt, W. V (2013). Metal contamination increases the sensitivity of larvae but not gametes to ocean acidification in the polychaete Pomatoceros lamarckii (Quatrefages). *Mar. Biol.* **160**, 2089– 2101.
- Liu, S.-T., Horng, J.-L., Chen, P.-Y., Hwang, P.-P. and Lin, L.-Y. (2016). Salt secretion is linked to acid-base regulation of ionocytes in seawater-acclimated medaka: new insights into the salt-secreting mechanism. *Sci. Rep.* **6**, 31433.
- McDonald, D. G. and Wood, C. M. (1981). Branchial and Renal Acid and Ion Fluxes in the Rainbow Trout, Salmo Gairdneri, at Low Environmental pH. *J.* Exp. Biol. **93**, 101 LP – 118.
- Melzner, F., Thomsen, J., Koeve, W., Oschlies, A., Gutowska, M. A., Bange,
 H. W., Hansen, H. P. and Körtzinger, A. (2013). Future ocean
 acidification will be amplified by hypoxia in coastal habitats. *Mar. Biol.* 160,
 1875–1888.
- Middlemiss, K. L., Urbina, M. A. and Wilson, R. W. (2016). Effects of seawater alkalinity on calcium and acid–base regulation in juvenile European lobster (Homarus gammarus) during a moult cycle. *Comp.* Biochem. Physiol. Part A Mol. Integr. Physiol. 193, 22–28.
- 900 Montgomery, D. W., Simpson, S. D., Engelhard, G. H., Birchenough, S. N. 901 R. and Wilson, R. W. (2019). Rising CO₂ enhances hypoxia tolerance in a marine fish. *Sci. Rep.* **9**, 15152.
- 903 Motulsky, H. J. and Brown, R. E. (2006). Detecting outliers when fitting data

- with nonlinear regression a new method based on robust nonlinear regression and the false discovery rate. *BMC Bioinformatics* **7**, 123.
- Nadler, L. E., Bengston, E., Eliason, E. J., Hassibi, C., Helland-Riise, S. H., Johansen, I. B., Kwan, G. T., Tresguerres, M., Turner, A. V,
- 908 **Weinersmith, K. L., et al.** (2021). A brain-infecting parasite impacts host
- metabolism both during exposure and after infection is established. *Funct.*
- 910 *Ecol.* **35**, 105–116.
- Nikinmaa, M. (2012). Vertebrate red blood cells: adaptations of function to respiratory requirements. Springer Science & Business Media.
- Nikinmaa, M. and Tufts, B. L. (1989). Regulation of acid and ion transfer across the membrane of nucleated erythrocytes. *Can. J. Zool.* **67**, 3039–3045.
- 916 **Oellermann, M., Pörtner, H. O. and Mark, F. C.** (2014). Simultaneous high-917 resolution pH and spectrophotometric recordings of oxygen binding in 918 blood microvolumes. *J. Exp. Biol.* **217**, 1430 LP – 1436.
- Ogle, D. H., Wheeler, P. and Dinno, A. (2020). FSA: Fisheries Stock Analysis.
- Pan, T.-C. F., Applebaum, S. L. and Manahan, D. T. (2015). Experimental
 ocean acidification alters the allocation of metabolic energy. *Proc. Natl.* Acad. Sci. 112, 4696 LP 4701.
- Parks, S. K., Tresguerres, M. and Goss, G. G. (2007). Blood and gill
 responses to HCl infusions in the Pacific hagfish (Eptatretus stoutii). *Can. J. Zool.* 85, 855–862.
- Parks, S. K., Tresguerres, M. and Goss, G. G. (2008). Theoretical
 considerations underlying Na+ uptake mechanisms in freshwater fishes.
 Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 148, 411–418.
- Perry, S. F. (1982). The regulation of hypercapnic acidosis in two Salmonids, the freshwater trout (Salmo gairdneri) and the seawater salmon (Onchorynchus kisutch). *Mar. Behav. Physiol.* **9**, 73–79.
- Perry, S. F. and Gilmour, K. M. (2006). Acid–base balance and CO2 excretion
 in fish: Unanswered questions and emerging models. *Respir. Physiol. Neurobiol.* 154, 199–215.
- Perry, S. F. and Kinkead, R. (1989). The role of catecholamines in regulating arterial oxygen content during acute hypercapnic acidosis in rainbow trout (Salmo gairdneri). *Respir. Physiol.* **77**, 365–377.
- Perry, S. F. and McKendry, J. E. (2001). The relative roles of external and internal CO<sub>2</sub> versus
 H<sup>+</sup> in eliciting the cardiorespiratory responses of Salmo salar and Squalus acanthias to hyp. *J. Exp. Biol.* 204, 3963 LP 3971.
- Perry, S. F., Haswell, M. S., Randall, D. J. and Farrell, A. P. (1981). Branchial
 lonic Uptake and Acid-Base Regulation in the Rainbow Trout, Salmo
 Gairdneri. J. Exp. Biol. 92, 289 LP 303.
- 946 **Perry, S. F., Fritsche, R., Hoagland, T. M., Duff, D. W. and Olson, K. R.** (1999). The control of blood pressure during external hypercapnia in the

- 948 rainbow trout (Oncorhynchus mykiss). *J. Exp. Biol.* **202**, 2177 LP 2190.
- Pierrot, D., Lewis, E. and Wallace, D. W. R. (2006). CO2SYS DOS Program
 developed for CO2 system calculations. ORNL/CDIAC-105.
- 951 **R Core Team** (2020). R: A language and environment for statistical computing.
- Roa, J. N., Munévar, C. L. and Tresguerres, M. (2014). Feeding induces
 translocation of vacuolar proton ATPase and pendrin to the membrane of
 leopard shark (Triakis semifasciata) mitochondrion-rich gill cells. Comp.
 Biochem. Physiol. Part A Mol. Integr. Physiol. 174, 29–37.
- Rogers, N. J. (2015). The Respiratory and Gut Physiology of Fish: Response to Environmental Change.
- 958 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M.,
 959 Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al.
 960 (2012). Fiji: an open-source platform for biological-image analysis. *Nat. Methods* **9**, 676–682.
- Seo, M. Y., Mekuchi, M., Teranishi, K. and Kaneko, T. (2013). Expression of
 ion transporters in gill mitochondrion-rich cells in Japanese eel acclimated
 to a wide range of environmental salinity. Comp. Biochem. Physiol. Part A
 Mol. Integr. Physiol. 166, 323–332.
- 966 Shartau, R. B., Baker, D. W., Harter, T. S., Aboagye, D. L., Allen, P. J., Val,
 967 A. L., Crossley, D. A., Kohl, Z. F., Hedrick, M. S., Damsgaard, C., et al.
 968 (2020). Preferential intracellular pH regulation is a common trait amongst
 969 fishes exposed to high environmental
 970 CO{\textless}\sub{\textgreater}2{\textless}/\sub{\textgreater}. J. Exp. Biol.
 971 223, jeb208868.
- 972 **Smatresk, N. J. and Cameron, J. N.** (1982). Respiration and Acid-Base 973 Physiology of the Spotted Gar, a Bimodal Breather: II. Responses to 974 Temperature Change and Hypercapnia. *J. Exp. Biol.* **96**, 281 LP – 293.
- 975 **Sunda, W. G. and Cai, W.-J.** (2012). Eutrophication Induced CO₂-Acidification 976 of Subsurface Coastal Waters: Interactive Effects of Temperature, Salinity, 977 and Atmospheric PCO₂. *Environ. Sci. Technol.* **46**, 10651–10659.
- Thomas, S. and Perry, S. F. (1992). Control and consequences of adrenergic activation of red blood cell Na+/H+ exchange on blood oxygen and carbon dioxide transport in fish. *J. Exp. Zool.* **263**, 160–175.
- Toews, D. P., Holeton, G. F. and Heisler, N. (1983). Regulation of the acid base status during environmental hypercapnia in the marine teleost fish
 Conger conger. J. Exp. Biol. 107, 9 LP 20.
- Tovey, K. J. and Brauner, C. J. (2018). Effects of water ionic composition on acid—base regulation in rainbow trout, during hypercarbia at rest and during sustained exercise. *J. Comp. Physiol. B* **188**, 295–304.
- Tresguerres, M. and Hamilton, T. J. (2017). Acid base physiology, neurobiology and behaviour in relation to CO2-induced ocean acidification. *J. Exp. Biol.* **220**, 2136–2148.
- 990 **Tresguerres, M., Katoh, F., Fenton, H., Jasinska, E. and Goss, G. G.** (2005). 991 Regulation of branchial V-H+-ATPase, Na+/K+-ATPase and NHE2 in

- response to acid and base infusions in the Pacific spiny dogfish (Squalus acanthias). *J. Exp. Biol.* **208**, 345–354.
- Tresguerres, M., Parks, S. K., Katoh, F. and Goss, G. G. (2006). Microtubuledependent relocation of branchial V-H+-ATPase to the basolateral membrane in the Pacific spiny dogfish (Squalus acanthias): a role in base secretion. *J. Exp. Biol.* **209**, 599–609.
- Tresguerres, M., Parks, S. K. and Goss, G. G. (2007a). Recovery from blood alkalosis in the Pacific hagfish (Eptatretus stoutii): Involvement of gill V—H+—ATPase and Na+/K+—ATPase. *Comp. Biochem. Physiol. Part A Mol. Integr. Physiol.* 148, 133—141.
- Tresguerres, M., Parks, S. K., Wood, C. M. and Goss, G. G. (2007b). V-H+ATPase translocation during blood alkalosis in dogfish gills: interaction with
 carbonic anhydrase and involvement in the postfeeding alkaline tide. *Am. J. Physiol. Integr. Comp. Physiol.* **292**, R2012–R2019.
- Tresguerres, M., Milsom, W. K. and Perry, S. F. (2019). 2 CO2 and acid-base sensing. In *Carbon Dioxide* (ed. Grosell, M.), Munday, P. L.), Farrell, A. P.), and Brauner, C. J. B. T.-F. P.), pp. 33–68. Academic Press.
- Verdouw, H., Van Echteld, C. J. A. and Dekkers, E. M. J. (1978). Ammonia determination based on indophenol formation with sodium salicylate. *Water Res.* **12**, 399–402.
- Vermette, M. G. and Perry, S. F. (1988). Adrenergic involvement in blood oxygen transport and acid-base balance during hypercapnic acidosis in the Rainbow Trout, Salmo gairdneri. *J. Comp. Physiol. B* **158**, 107–115.
- Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C. and Gobler, C. J.
 (2014). Coastal ocean acidification: The other eutrophication problem.
 Estuar. Coast. Shelf Sci. 148, 1–13.
- Wells, R. M. G. (2009). Chapter 6 Blood-Gas Transport and Hemoglobin
 Function: Adaptations for Functional and Environmental Hypoxia. In *Fish Physiology* (ed. Jeffrey G. Richards, A. P. F. and C. J. B.), pp. 255–299.
 Academic Press.
- Wilson, R. W. and Grosell, M. (2003). Intestinal bicarbonate secretion in marine teleost fish—source of bicarbonate, pH sensitivity, and consequences for whole animal acid–base and calcium homeostasis.
 Biochim. Biophys. Acta Biomembr. 1618, 163–174.
- Wood, C. M., McDonald, D. G. and McMahon, B. R. (1982). The Influence of
 Experimental Anaemia on Blood Acid-Base Regulation In Vivo and In Vitro
 in the Starry Flounder (Platichthys Stellatus) and the Rainbow Trout (Salmo
 Gairdneri). J. Exp. Biol. 96, 221 LP 237.
- **Zeidler, R. and Kim, H. D.** (1977). Preferential hemolysis of postnatal calf red cells induced by internal alkalinization. *J. Gen. Physiol.* **70**, 385–401.

1. Supplementary materials

1032

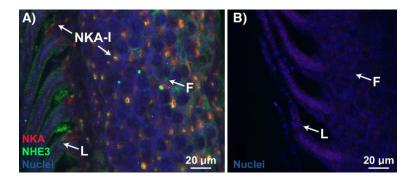


Figure S1: A. Na⁺/K⁺-ATPase (NKA, red) and Na⁺/H⁺ Exchanger 3 (NHE3, green) immunostaining within European sea bass gill. Ionocytes containing NKA and NHE3 (NKA-I) were observed on the filament (F) and base of lamellae (L).

B. Negative controls (no primary antibodies) had no discernible signal. Nuclei (blue) are stained with DAPI.

Table S1: Water chemistry of gill irrigation chambers used while blood samplingfish

	Exposure length				
	0 min	~10 min	~40 min	~135 min	
Temperature (°C)	14.00 ± 0.00	14.05 ± 0.15	14.00 ± 0.30	13.95 ± 0.15	
pH (NBS)	8.14 ± 0.02	6.95 ± 0.02	6.91 ± 0.01	6.91 ± 0.04	
Salinity	34.6 ± 0.4	35.6 ± 0.5	34.8 ± 0.7	34.6 ± 0.7	
<i>p</i> CO₂ (µatm)	0.060 ± 0.010	0.965 ± 0.045	1.227 ± 0.164	1.024 ± 0.088	
TA (µM)	3120 ± 372	2834 ± 36	3301 ± 361	2750 ± 27	

Table S2: Mean ± s.e.m. of water chemistry parameters within isolation tanks during low alkalinity hypercapnia exposure

Duration (min)	pH (NBS)	Temperature (°C)	Salinity	<i>p</i> CO₂ (kPa)	TA (µM)
135.0 ± 4.6	5.70 ± 0.03	13.78 ± 0.07	34.0 ± 0.1	1.141 ± 0.020	188 ± 12

Table S3: Water chemistry of gill irrigation chambers used while blood sampling fish in low alkalinity water

pH (NBS)	Temperature (°C)	Salinity	pCO₂ (µatm)	TA (μM)
5.53 ± 0.31	14.05 ± 0.05	35.05 ± 0.25	1.288 ± 0.104	188 ± 129

Table S4: Mean ± s.e.m. of water chemistry parameters within isolation boxes prior to gill sampling. Gill samples from sea bass exposed to hypercapnia were taken from 5 sea bass immediately after flux measurements were completed.

Treatment	Duration (min)	pH (NBS)	Temperature (°C)	Salinity	<i>p</i> CO₂ (kPa)	TA (μM)
Normocapnia	n/a	8.05 ± 0.00	14.12 ± 0.06	33.6 ± 0.0	0.055 ± 0.001	2335 ± 7
Hypercapnia	132.9 ± 2.6	6.97 ± 0.02	14.14 ± 0.02	33.5 ± 0.0	0.770 ± 0.037	2365 ± 9

1054

Table S5: Theoretical calculations of H⁺ excretion by NHE in response to
environmental hypercapnia. Calculations based on Parks *et al.* 2008. If $Na^{+}_{i}/Na^{+}_{e} > H^{+}_{i}/H^{+}_{e} \text{ then H}^{+} \text{ excretion by NHE is thermodynamically unviable.}$

Treatment	lonocyte Na⁺	Seawater Na ⁺	Ionocyte H⁺	Seawater H ⁺	Na ⁺ _i /Na ⁺ _e	H ⁺ _i /H ⁺ _e
	(Na⁺ _i , mM)	(Na⁺ _e , mM)	(H⁺ _i , mM)	(H⁺ _e , mM)		
Control	140	480	3.98e^-08	8.91e^-09	0.292	4.467
Hypercapnia	140	480	5.01e^-08	1.12e^-07	0.292	0.447
Hypercapnia + Iow TA	140	480	5.01e^-08	2.00e^-06	0.292	0.025