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Abstract

When navigating in urban environments, many of the objects that need to be tracked
and avoided are heavily occluded. Planning and tracking using these partial scans can
be challenging. The aim of this work is to learn to complete these partial point clouds,
giving us a full understanding of the object’s geometry using only partial observations.
Previous methods achieve this with the help of complete, ground-truth annotations of
the target objects, which are available only for simulated datasets. However, such ground
truth is unavailable for real-world LiDAR data. In this work, we present a self-supervised
point cloud completion algorithm, PointPnCNet, which is trained only on partial scans
without assuming access to complete, ground-truth annotations. Our method achieves
this via inpainting. We remove a portion of the input data and train the network to
complete the missing region. As it is difficult to determine which regions were occluded
in the initial cloud and which were synthetically removed, our network learns to complete
the full cloud, including the missing regions in the initial partial cloud. We show that our
method outperforms previous unsupervised and weakly-supervised methods on both the
synthetic dataset, ShapeNet, and real-world LiDAR dataset, Semantic KITTI.

1 Introduction
Autonomous vehicles often understand the world around them using depth sensors such as
LiDAR. However, the LiDAR point clouds are often incomplete even when recorded from
multiple viewpoints over time. To accurately track objects and plan routes to avoid collisions,
it is important for autonomous vehicles to understand the complete shape of surrounding
objects.

Previous methods [14, 18, 20, 21, 27] have learned to complete partial point clouds but
they strongly rely on the availability of ground truth complete shapes as supervision. Since
complete point clouds are costly to obtain for real-world scenarios, these methods typically
train only from simulated data where ground-truth completions are available. This limitation
motivates our approach to learn only from partial point clouds to complete shapes without
ever observing the ground-truth completed point clouds during training.
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Figure 1: We adopt an inpainting-based approach for self-supervised point cloud completion
to train our network using only partial point clouds. Given a partial point cloud as input, we
randomly remove regions from it and train the network to complete these regions using the
input as the pseudo-ground truth. The loss is only applied to the regions which have points in
the observed input partial point cloud (red). Since, the network cannot differentiate between
synthetic and natural occlusions, the network predicts a complete point cloud.

To this end, our method leverages self-supervision via an inpainting-based approach
where we randomly remove regions from the partial point clouds and train the network to
complete the entire point cloud. Across multiple training examples, different regions will be
occluded and varying regions will be synthetically removed. Because the network does not
know which regions were artificially removed and which were naturally occluded in each
original partial point cloud, the network learns to attempt to complete the entire point cloud.

In contrast to images, where a mask can specify the region to inpaint [7, 11, 13, 23, 24],
the unstructured nature of point clouds makes it challenging to define which regions the
network needs to inpaint. We solve this using a region-aware loss which penalizes only
the regions where the original point cloud was present. Additionally, we partition the point
cloud into local regions using intersecting half-spaces and encode/decode them separately.
This allows the network to learn data-driven embeddings separately for each local region
that specialize in individual region-level object parts. We also encode/decode at the global
point cloud level to further allow the network focus on each region jointly with each other.
Previous works [6, 10] depend on aligning multiple viewpoints of an object during training
which can be sensitive to pose alignment errors. While we also incorporate a multi-viewpoint
loss, we show that our use of inpainting allows our method to be robust to alignment errors.

The key contributions of this paper are as follows: 1). We present a novel inpainting-
based self-supervised algorithm that learns to complete missing local regions in an incom-
plete point cloud without the need for ground truth point cloud completions, 2). Our multi-
level encoder-decoder based architecture, PointPnCNet, partitions the point clouds to learn
local and global embeddings to obtain improved completion performance, 3).Our approach
outperforms existing methods for unsupervised point cloud completion [6, 10] when evalu-
ated on the standard completion benchmarks of ShapeNet [2] and SemanticKITTI [1].

2 Related Work
Supervised Point Cloud Completion Most of the existing 3D shape completion methods [9,
14, 18, 19, 20, 21, 27] make use of complete ground-truth shape labels. A common approach
for point cloud completion is to use an encoder-decoder style architecture [12, 17, 21, 27].
On the other hand, Tchapmi et al. [14] proposed to generate a point cloud using a hierarchical
rooted tree structure. Our architecture builds on the typical encoder-decoder style of previous
work [27]. In contrast to the above supervised methods, our proposed approach does not
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require ground truth annotations. This allows our method to be trained using LiDAR data in
the wild, as opposed to the previous methods which are trained only with simulated data.

Weakly-Supervised Methods Recently, Gu et al. [6] proposed a weakly-supervised ap-
proach for point cloud completion where the pose of the input partial point cloud and 3D
canonical shape are jointly optimized. Their method is weakly-supervised via multi-view
consistency among the multiple partial observations of the same instance. Our method also
uses partial point clouds, however, using our inpainting-based approach, our method is able
to learn a more accurate completion and is robust to view alignment errors. Other meth-
ods also learn 3D shape reconstruction using weak supervision [16, 22, 30]. Among these,
Differentiable Point Clouds (DPC) [10] jointly predicts camera poses and a 3D shape repre-
sentation given two image views of the same instance. The geometric consistency between
the estimated 3D shape and the input images is enforced using an end-to-end differentiable
point cloud projection. We show in the results that we significantly outperform this method.

Image Inpainting In the area of image inpainting [7, 11, 13, 23, 24, 28], Zhan et al. [28]
proposed self-supervised partial completion networks (PCNets) to complete an occluded
object’s mask and content in the input image. Our method takes inspiration from Zhan et
al. [28] for shape completion in 3D point clouds. However, due to the structured nature of
images, often a mask can be used to specify the region to inpaint. In 3D point clouds, where
the data is unstructured and sparse in nature, it is difficult to specify a “mask" for the regions
to inpaint. There is ambiguity between regions that have been “masked out" and regions that
are naturally occluded, making the task of inpainting challenging for point cloud data.

Point Cloud Inpainting Some of the previous methods [3, 4, 5, 8, 25, 29] have also
explored inpainting in the point cloud domain. However, these methods either use ground
truth during training [25, 29], rely on template-matching within a data sample [4, 5, 8], or
project a point cloud into 2D structured representation [3]. Our method is novel in the sense
that it uses inpainting directly on the point clouds without any ground truth information while
leveraging large datasets to learn domain-specific priors.

3 Method
The point cloud completion problem can be defined as follows: given an incomplete set of
sparse 3D points X , sampled from a partial view of an underlying dense object geometry G,
the goal is to predict a new set of points Y , which mimics a uniform sampling of G.

3.1 Self-supervised Inpainting
In our self-supervised inpainting-based approach to learn to complete full point clouds using
only partial point clouds, we randomly remove regions of points from a given partial point
cloud and train the network to inpaint these synthetically removed regions. The original
partial point cloud is then used as a pseudo-ground truth to supervise the completion. Since
we do not have the complete ground-truth point cloud, supervision is only applied to the
regions of the original point cloud that contain points (i.e. unoccluded regions).

The network leverages the information of available regions across samples and embeds
each region separately that can generalize across partially occluded samples with different
missing regions. Further, due to the stochastic nature of region removal, the network cannot
easily differentiate between the synthetic and original occlusions of the input partial point
cloud, making the network learn to complete the point cloud. Thus, the combination of
inpainting, random-region removal, and region-specific embeddings enables the model to
generate all the regions and create a complete point cloud.
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Figure 2: PointPnCNet Architecture: Our method first estimates a canonicalized orienta-
tion of a partial point cloud, which has some regions missing due to natural occlusions. We
then randomly drop one or more of the regions to create additional synthetic occlusions. We
compute global features eg and local features Pℓ which we combine into an encoding P. Our
multi-level decoder uses the encoding P to generate a completed point cloud. The global
shape loss and local shape loss are only applied to the regions of the output where points
are present in the original cloud (before synthetic occlusions) which are shown in red in X ,
Yg, and Yℓ. The blue points in Yg and Yℓ are not present in the original cloud, so we have no
ground truth about their positions; thus they are not penalized in the loss. The final output of
the network is the concatenation of the outputs from Yg and Yℓ.

3.2 Network Architecture
Figure 2 depicts the architecture and training flow of our network, Point Cloud Partition-and-
Completion Network (PointPnCNet). We use a multi-level encoder-decoder architecture to
allow the network to focus on different parts of an object. We present the evaluations of
various alternate designs of our method in the appendix.

3.2.1 Multi-Level Encoder
Our encoder consists of multiple, parallel encoder streams that encode the input partial point
cloud at global and local levels. The global-level encoder operates on the full-scope of
the object while a local-level encoder focuses on a particular region of the object. Since
a local encoder only sees points in a given local region and is invariant to other parts of
the shape which may be missing, local encoders make the network robust to occlusions
by focusing on individual object parts separately. Global encoder further enhances shape
consistency by focusing on regions jointly with each other. Given a partial point cloud, we
estimate its canonical frame using a learned method (Sec. 4) and transform it to obtain a
canonicalized partial point cloud X . We show that our method is robust to errors in this
canonicalization (Sec. 4.6). We then partition the canonicalized partial point cloud using
intersecting half-spaces that are produced by the coordinate planes after canonicalization.
This effectively separates the space into eight 3D octants as shown in Figure 2. While other
types of partitioning could be used, we found this subdivision to be simple and reasonably
effective. Rather than a strict partitioning, we allow a small overlap between neighboring
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regions such that points in the overlap are present in both regions. This helps to avoid seams
at boundaries. Let Xi consist of the points in the region i. After partitioning, we remove
points of any particular region with a probability p to simulate a synthetic occlusion. We use
this synthetically occluded point cloud X̂ as input to our inpainting network.

The points in the remaining regions are aggregated together and passed as input to the
global encoder, Eg, to give a global embedding eg (Figure 2). In parallel, each remaining
region Xi is separately encoded by a local encoder, Eℓ to obtain a local embedding for that
region, ei

ℓ. To aggregate the local feature embeddings, each embedding ei
ℓ is fed as input into

an attention module, consisting of an MLP layer, that generates a set of weights wi = φ(ei
ℓ).

These weights are used to weigh each of the embeddings ei
ℓ in a linear combination to form

the aggregate embedding Pℓ = ∑i1iwi ei
ℓ, where 1i is an indicator function which equals 1

if region i is present (i.e. present in the original partial point cloud X and not randomly
removed) and 0 otherwise. We then perform a channel-wise max-pooling across the global
encoding eg and the attention-weighted local encoding Pℓ, as P = max(eg,Pℓ).

3.2.2 Multi-Level Decoder
Our decoder consists of multiple decoder streams that work in parallel to decode the fused
embedding P (Figure 2). The global decoder Dg takes the embedding P as input and at-
tempts to generate an entire completed point cloud Yg. In parallel, we use a local decoder
Dℓ to decode the points in each region of the input space. The embedding P is concatenated
with a one-hot vector indicating each region’s location and create a region-specific embed-
ding. Through one-hot encoding, each decoder specializes in completing a certain region
and learns a region-specific embedding. The decoder takes as input these region-specific
embeddings and generates a subset of the output point cloud localized to the respective re-
gion Y i

ℓ . The generated local regions are combined together to obtain the full point cloud Yℓ.
The multi-level output generated by the network captures the details of the object at global
and local levels. The outputs of the multi-level decoder streams, Dℓ and Dg, are concatenated
to form the final prediction of our network as Y .

3.3 Point Cloud Completion Losses
The standard loss used for comparing two point clouds is the Chamfer Distance (CD). It
is a bi-directional permutation invariant loss over two point clouds representing the nearest
neighbor distance between each point and its closest point in the other cloud. In our method,
we use an asymmetric Weighted Chamfer Distance loss, Lwcd , defined as,

Lwcd(X ,Y ) =
(1−β )

|X | ∑
x∈X

min
y∈Y

∥x− y∥2 +
β

|Y | ∑
y∈Y

min
x∈X

∥y− x∥2 (1)

where X is the original partial point cloud used here as pseudo-ground truth and Y is the
output. Importantly, we only compute the loss for the regions that are present in X . A weight
of (1−β ) is applied to the first term in Eqn. 1 which penalizes the distance from each point
in X to its nearest neighbor in Y . This term enforces that the output point cloud Y should
contain points that are close to those in X . Note that the input to the network is X̂ , which
has synthetic occlusions, not X , which is the original partial point cloud. A weight of β

is applied to the second term in Eqn. 1 to penalize the distance from each point in Y to its
nearest neighbor in X . We do not expect this term to reach 0 for a well-trained network since
X only contains a partial point cloud, while output Y contains the entire point cloud; we still
find it a helpful regularization. We impose the following variants of Lwcd on the model,
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Figure 3: Qualitative results on the ShapeNet dataset compared with our baseline, DPC [10].
Our method is better able to reconstruct fine-grained object details (back portion of the car
and engines on the airplane), produces fewer noisy points for the airplane and produces more
uniformly distributed points in the chairs than the baseline.

Inpainting-Global Loss: This loss acts as a global shape loss, focusing on the over-
all shape of an object. We impose it as the Weighted Chamfer Distance (Eqn. 1) between
original partial point cloud X and output of the global decoder Yg and define it as Lwcd(X ,Yg).

Inpainting-Local Loss: We impose Inpainting-Local loss as the Weighted Chamfer dis-
tance between each region output Y i

ℓ from local decoder Dℓ and corresponding partitioned
region Xi in the original partial point cloud X where i indexes over regions. While Inpainting-
Global loss considers the entire X to find the nearest neighbor, Inpainting-Local loss differs
in that it only considers the partitioned region Xi to find the nearest neighbor. Thus, it acts as
a local shape loss that enables the network to learn region-specific shapes and embeddings
and focus on the finer details of an object. We do not penalize regions that are missing in X
where a region is considered missing if the number of points in that region is below a certain
threshold. The Inpainting-Local Loss is therefore defined as, ∑i1i · Lwcd(Xi,Y i

ℓ ) where the
indicator function 1i equals one if region i is present in X and zero otherwise.

Multi-View Consistency: Similar to Gu et al. [6], our method uses multi-view consis-
tency as an auxiliary loss. Their method explicitly performs pose estimation. Similarly, we
perform an estimated pose canonicalization (weakly supervised, Sec. 4.2). We also show
later (Sec. 4.6) that our method is robust to canonicalization errors. During training, we
sample a view k from V partial views of an object X given as X1, . . . ,XV . Since all the views
of an object correspond to the same object, for input partial point cloud Xk, the loss is com-
puted with all views X1, . . . ,XV . We define a global inpainting multi-view consistency loss
as ∑

V
j=1Lwcd(X j,Y k

g ) where X j is the jth view of X and Y k
g is the global output from decoder

Dg. We also define local inpainting multi-view consistency loss as ∑i ∑
V
j=11

j
i ·Lwcd(X

j
i ,Y

i,k
ℓ )

where i indexes over regions, X j
i is the ith region of view X j, Y i,k

ℓ is the region output from
local decoder Dℓ for input Xk

i , and 1 j
i is 1 if region i is present in X j and 0 otherwise. During

training, we sum the losses as, ∑
V
j=1Lwcd(X j,Y k

g )+∑i ∑
V
j=11i · Lwcd(X

j
i ,Y

i,k
ℓ ). This multi-

view information is only available at training time.

4 Experiments
4.1 Implementation Details
During test-time, we use a single view of an object. The multiple views are only available
during training. To get the final completed point cloud, we concatenate the output from
multi-level decoders Dg and Dℓ. We do not remove regions at inference time. Otherwise,
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the network during inference is the same as described above. For consistency with prior
work [6], we resample each partial point cloud X to have a total of 3096 points. PointPnCNet
uses architecture from PCN [27] for encoder and decoder blocks. The model is trained from
scratch for 400K iterations with batch size of 32, learning rate of 5e-4 decayed by 0.5 after
every 100K iterations and β = 0.25 in Lwcd . Please refer to appendix for more details.

4.2 Experimental Setup
Following the evaluation protocol of Gu et al. [6], we test our approach on ShapeNet [2]
and Semantic KITTI [1]. ShapeNet has ground truth annotations for each object class which
allows us to evaluate how well our method generates completed shape. On the other hand,
Semantic KITTI allows us to evaluate the robustness of our method on real LiDAR data.

The observations are transformed to a canonical frame (a shared reference frame which
aligns all instances of a class) using canonical frame predictions generated via IT-Net [26]
for ShapeNet and predicted bounding boxes obtained from OpenPCDet [15] for Semantic
KITTI. We use IT-Net for ShapeNet as it is trained in a weakly-supervised manner from
only classification labels and learns to align the instances of each class, without any pose
supervision. In general, any pose estimator can be used here. We evaluate the robustness of
our method to this canonical frame estimation in Sec. 4.6.

ShapeNet: ShapeNet [2] is a synthetic dataset with 3D CAD models. We report our
results on three categories, airplanes, cars, and chairs, that are commonly used in the related
works [6, 10]. We use the same data split provided by DPC [10], where RGB-D data is
generated for random camera views with fixed translation, similar to Gu et al. [6]. For eval-
uation, we use ground truth point clouds provided by DPC [10] which are densely sampled
from ShapeNet meshes and downsampled to 8192 points.

Semantic KITTI: We evaluate our method for a real-world scenario using KITTI [1].
Previous methods [6, 20, 21, 27] have a standard protocol of evaluation on real-world data
by testing on the cars of KITTI only. We adopt the same protocol in our work. Following Gu
et al. [6], we train over the parked car instances (which have multiple views captured when
a LiDAR sensor moves through the scene and scans a parked car from different locations)
with sequences 00 to 10 (excluding 08) as train set and sequence 08 as test set. The train
set consists of 507 parked car instances and 46152 observations, while the test set has 229
parked car instances and 16296 observations.

Although having no complete ground truth information in KITTI creates some limita-
tions in its evaluation, testing on this dataset shows the ability of our method to handle
real-world LiDAR data. By combining the evaluations on a real-world dataset (KITTI) and
a synthetic dataset (ShapeNet), which has ground truth annotations, we are able to present a
more thorough evaluation. This is the standard evaluation procedure following Gu et al. [6].

Metrics: Our primary metric for quantitatively evaluating shape completion is the Cham-
fer Distance (CD), as is used in previous works [6, 18, 27]. We define this metric in its
weighted form in Equation 1. For evaluation, to compare with the ground-truth completed
point cloud, we equally weight each component with a β of 0.5. Additionally, we follow
Gu et al. [6] and report each component of the Chamfer distance independently: the mean
distance from each predicted point to its nearest true point described as Precision, and the
mean distance from each true point to its nearest predicted point described as Coverage.
Precision describes how well the predicted points match the local shape, while Coverage is
related to how much of the shape is completed. We also evaluate the Earth Mover’s Dis-
tance (EMD) [27], which finds a bijection between the predicted point cloud and the ground
truth point cloud that minimizes the average distance between corresponding points. Like
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Method Airplane Car Chair
CD Precision Coverage CD Precision Coverage CD Precision Coverage

DPC [10] 3.91 - - 3.47 - - 4.30 - -
Gu et al. [6] 1.95 0.91 1.05 2.68 1.27 1.41 3.33 1.69 1.64
PointPnCNet (Ours) 1.66 0.79 0.87 2.48 0.99 1.49 2.70 1.36 1.34

Table 1: Quantitative results on the Airplane, Cars, and Chairs categories of the ShapeNet
dataset. All results are multiplied by a factor of 100, following Gu et al. [6].

Method CD Precision Coverage
Gu et al. [6] 0.194 0.087 0.107
Densified Input 0.130 0.025 0.105
PointPnCNet (Ours) 0.095 0.045 0.050

Model without
Dataset Inpainting Multi-View Loss Global Loss Local Loss
ShapeNet +0.98 +0.27 +0.50 +0.32
KITTI +0.05 +0.03 +0.30 +0.24

(a) (b)
Table 2: (a). Quantitative results on the Semantic KITTI dataset, (b). Increase in mean
Chamfer distance on ShapeNet and KITTI datasets for various ablations of our method.
ShapeNet results are averaged across each object category.

previous work, we also evaluate the F-score@1% [21].

4.3 Point Cloud Completion Results
We compare with the current state-of-the-art unsupervised methods, DPC [10] and Gu et
al. [6]. Table 1 shows our method outperforming the baseline methods on the synthetic
ShapeNet dataset, producing lower Chamfer distances across all shape categories. Precision
and Coverage metrics also improve, showing that our method produces more accurate points
and better covers the full object shape. Our method is also able to outperform DPC [10] as
per the Earth Mover Distance (EMD) metric (Table 3b). Since the code for [6] is not publicly
available, the EMD metric on that method cannot be evaluated.

We further show in Table 2a that our method outperforms the previous state-of-the-
art [6] on the Semantic KITTI dataset, generating outputs that are significantly more accurate
than [6]. The KITTI dataset is more realistic than ShapeNet. With samples having a range of
sparsity (since real-world LIDAR gets sparse with distance), it represents the data available
in self-driving scenarios. We also show improvement compared to a simple densification
baseline (Densified Input in Table 2a) which suggests that our method is indeed complet-
ing the partial point clouds rather than simply densifying them. This densification baseline
uniformly samples points within the volume of a local surface that is approximated as an
ellipsoid, formed using eigenvalues for 10 nearest neighbors of each point in input partial
point cloud. We also conduct a uniformity analysis whose results we report in the appendix.
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Training Method Airplane Car Chair
DPC [10] 0.146 0.160 0.194
PointPnCNet (Ours) 0.108 0.120 0.140

(b)

Training Method F-score@1% ↑ EMD ↓
PointPnCNet (Ours) 0.67 0.45
Ours w/o inpainting 0.44 0.62

(a) (c)
Table 3: (a). Mean of the chamfer distance across ShapeNet categories (Airplane, Car,
Chair). Our method is trained with noisy poses, with & without inpainting, shown in green
and red, respectively. Baseline Gu et al. [6] has no added noise, (b). Earth Mover Distance
(EMD) metric on Shapenet. Lower EMD is better, (c). F-Score@1% and EMD metrics on
Semantic KITTI. We evaluate them on our method vs our ablation of without inpainting.
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Input Without inpainting Without Local
LossGT Ours Without Global

Loss
Without Multi-View

loss

Figure 4: Qualitative results for ablation study on ShapeNet and KITTI. Without inpainting,
local loss, global loss, and multi-view loss, the network yields noisy output.

4.4 Qualitative Results
We present the qualitative results of our method for each category of ShapeNet in Figure 3
and KITTI in Figure 4. In comparison to the baseline DPC [10], we observe that our method
is able to better cover the target object with a more uniform distribution over the target
surface and accurately reconstructs the fine-grained object details. For example, our method
is able to complete the back of the car and the side mirror whereas the baseline outputs noisy
points. For chairs, our method generates more uniformly distributed points whereas the
baseline outputs patches/clusters of points in that location. This highlights the fact that our
method is better able to generalize and complete the unseen regions of incomplete shapes.

4.5 Ablation Study
Inpainting Loss: Region removal to create synthetic occlusions and the task of inpainting
are removed, Multi-View Loss: The multi-view loss is removed from our training method.
Each partial point cloud is used to supervise its own, synthetically occluded completion,
Global Level: We remove the Inpainting-Global Loss, global encoder Eg and global decoder
Dg from our completion pipeline. Local Level: The Inpainting-Local loss, local encoder Eℓ

and local decoder Dℓ are removed from our method. The number of output points for the
global ghape and local shape ablations are kept consistent with our full method.

We report the ablation results in Table 2b on ShapeNet, as an average over all categories,
and on Semantic KITTI. We find that all components of our system are crucial for optimal
performance across both datasets. We further report the F-score@1% [21] and the EMD
metric on the Semantic KITTI dataset with the ablation of removing inpainting in Table 3c.
We find that inpainting greatly improves our results across both of these metrics.

The qualitative effects of our ablation study can be seen in Figure 4. We observe that in-
painting generates an object-specific, less noisy output, when comparing "Ours" and "With-
out Inpainting". Our method without local loss fails to complete local details of an object
such as back of a car or wings of a plane and without the global loss predicts a generic, noisy
shape of an object. Since each local encoder and decoder only observe the points within that
region and not the points in the other potentially occluded regions, they allow the network to
focus on individual parts of an object and be robust to different occlusion patterns. The local
loss helps in creating a more uniform completion, since it completes its associated region
and the global loss reasons about the entire shape of the object. Finally, without multi-view
loss, the output point cloud is noisy and incomplete as can be seen in all shapes.
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4.6 Robustness to Canonical Frame Estimation
Previous work [6] depends on multiple views which can be sensitive to the pose align-
ment errors. While we also use a multi-view loss, our inpainting losses make the model
robust to noisy alignment allowing it to learn from poorly aligned data. The mean rota-
tion/translation difference, after using IT-Net for pose canonicalization, between the multiple
partially observed shapes during both training and inference is 5.46◦/ 0.008, 12.33◦/ 0.013
and 7.12◦/ 0.010 for Car, Chair, and Plane, respectively (unit of translation is object di-
ameter). This shows that even the canonicalized poses are not perfectly aligned and due to
inpainting, our method is still able to learn from this poorly aligned data (particularly with
respect to rotation). To further highlight the contribution of inpainting to this robustness, we
add noise to the predicted IT-Net poses with rotations and translations sampled uniformly
with a maximum displacement of 5°/ 0.01, 10°/ 0.05, and 15°/ 0.10. Figure in Table 3a
shows that without inpainting (in red), our method is extremely sensitive to alignment noise
but with inpainting (in green), our method only degrades slightly with higher noise, and
remains more accurate at all levels of noise than the baseline [6] with no noise added.

4.7 Impact of β in the Weighted Chamfer Distance loss
β Airplane Car Chair KITTI

0 2.10 2.63 3.02 0.132
0.25 1.66 2.48 2.70 0.095
0.5 2.31 3.00 3.28 0.121

0.75 2.59 3.50 3.78 0.142
1 3.83 4.72 4.95 0.196

Table 4: Performance analysis on different
values of hyperparameter β used in Equa-
tion 1.

We present an analysis in Table 4 in which we
train PointPnCNet with different values of β to
understand the contribution of the second term
in the asymmetric Weighted Chamfer Distance
loss (Eqn. 1), Lwcd .

From Table 4, we can observe that the op-
timal performance occurs at β = 0.25 across
both the ShapeNet and KITTI datasets. Our
intuition is that a larger value of β imposes a
penalty for generating points in Y in the regions that were occluded in the input; this con-
tradicts our goal of completing those missing regions. Nonetheless, setting β = 0 also leads
to worse performance because the second term in Eqn. 1 is needed to (minimally) penalize
the network for predicting points in Y that are far from the original partial point cloud X .
Setting β = 0.25 provides the appropriate balance between these competing objectives. As
explained in Section 3.3, this tradeoff only occurs for the global loss; the local loss uses
a regional indicator that only applies the loss to regions for which we have ground truth
information.

5 Conclusion
We propose a self-supervised method for point cloud completion via inpainting and random
region removal that can be trained using only LiDAR-based partial point clouds. Our method
produces significantly more accurate point cloud completions and outperforms the previous
unsupervised methods on ShapeNet and Semantic KITTI. Through exhaustive ablation, we
show the importance of each component of our method and the robustness to alignment
errors. While the current method uses intersecting half-spaces defined by coordinate planes,
other methods for point cloud partitioning can be explored in future work. We hope that our
method will improve real-world 3D object understanding.
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7 Appendix

7.1 Architecture Details
For all results and ablations, we keep the output size of our network as 8192 points, where
the global decoder Dg generates 4096 points and the local decoder Dℓ generates 512 points
for each region, to make an overall size of 4096 points across all local regions. Similarly,
the input size is kept consistent for all the ablations; that is, the input size is 3096 and 387
for global encoder Eg and local encoder Eℓ respectively. Each region in X is dropped with
a probability of removal of 20% and the resulting synthetically occluded point cloud X̂ is
passed to the global encoder Eg. In parallel, the input partial point cloud is subdivided into
8 regions along the axial planes of the canonical frame. Each region not artificially removed
or marked as missing is then independently encoded using the local encoder, Eℓ. When
encoding each region of the input cloud, regions that are marked as missing based on the
threshold number of points are replaced with zeros equal to the threshold. In our method, we
set this threshold as 4. We allow a small overlap of 0.02 cm between neighboring regions for
the ShapeNet dataset and 0.02m for the KITTI dataset. The architecture of local encoder Eg
and global decoder Dg are similar to the PCN [27]. For local encoder Eℓ and local decoder
Dℓ, we use the architecture of PCN [27], but reduce the number of hidden units to 1/8th of
the original number. We use Adam optimizer with a learning rate of 1×10−4 and train our
network for 400K iterations.

7.2 Data preparation
Shapenet: We obtain a point cloud from the RGB-D data by backprojecting 2.5D depth
images to 3D similar to Gu et al. [6]. In contrast to DPC [10], we do not use the color in-
formation. The centers of the oriented clouds are then shifted to the origin before passing
it to our shape completion network. Specifically, we use the 3D partial shape classification
branch of IT-net pre-trained on ModelNet40 to generate the pose transformations, as it does
not require the ground-truth pose annotations for training. Since our method does not re-
quire perfect pose alignment, using IT-Net pretrained on ModelNet40 instead of ShapeNet is
sufficient for our purpose, as it represents an off-the-shelf canonical frame estimator for our
model classes. We refer the reader to IT-Net [26] for details on this pose canonicalization
method.

Originally, the ShapeNet [2] dataset has 5 views. When training on N views, we only
consider a fixed set of N random views, which is chosen at the beginning of training; the
network is only trained on these N views and the other views of an object are discarded.

Semantic KITTI: At training time, we subdivide the observations of a single instance
into groups of 20 sequential observations and randomly sample a set of four views for multi-
view training. When evaluating accuracy on this dataset, all 20 frames are combined using
ground truth odometry to form the ground truth shape of each instance. This merged cloud is
only used for evaluation and is not present during training. At inference time, only a single
view is used.

7.3 Ablation Studies
In this section, we present a more exhaustive ablation study focusing on the number of views,
architecture changes, number of input points used for training and mention the details of the
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ablation of densification of input point clouds for the KITTI dataset.

7.3.1 Number of views

We evaluate the sensitivity of our method to the number of views available at training time in
Supplementary Figure 5. We show the results both with and without inpainting in green and
red lines respectively. It can be observed that our model is able to outperform the baseline
with 2 views and 3 views, even though the baseline Gu et al. [6] is trained with 4 views. This
demonstrates that our method is able to take advantage of a reduced number of views, due to
our use of inpainting. We also show the qualitative results with varying numbers of training
views in the Supplementary Figure 6; as can be seen, the results of 2 views and 3 views are
qualitatively very similar to the results with 4 views.

7.3.2 Architecture Changes

Global and Local Encoders and Decoders We analyze whether to use both global and
local encoders and decoders in our network. The results can be found in Supplementary
Table 5. It can be observed that a combination of global and local encoders and decoders
gives the best performance among all the possible combinations.

Number of levels In addition to the two levels in our parallel model (global and local),
we experiment with adding another branch where the partial point cloud is partitioned into
3× 3× 3 regions. For this branch, we use an independent local encoder and decoder. The
input size of a region to the encoder is taken as 115 points (to maintain a total input size of
3096) and the size of the predicted point cloud is 152 points for each region (to maintain
a total output size of 4096 for the local decoder). For computing the loss, we divide the
original input (before dropping points) into regions and subsample the points to have at most
304 points in each region. The results are in Supplementary Table 7. We notice that further
partitioning of the partial point cloud and the additional branch do not give a significant
improvement in the performance.

7.3.3 Number of input points

We evaluate the effect of the number of points in the point cloud on the performance of our
method. To test this, we create new versions of the test set with varying numbers of points;
for each object, we resample the point cloud (without replacement) from the input point
cloud with a varying number of sampled points. We evaluate the Chamfer Distance metric
as a function of the number of points in the input point cloud on the ShapeNet and KITTI [1]
dataset during testing. We evaluate our method on the number of points ranging from 100 to
4000 and present the results in Figure 7. As expected, performance degrades as we reduce
the number of available points.

7.3.4 Densification of KITTI point clouds

To evaluate the quantitative effects of simply densifying the input point cloud without com-
pleting occluded regions, we design a simple densification method. For each point in the
input partial point cloud, we find its 10 nearest neighbors and estimate the eigenvalues of
this local neighborhood. An ellipsoid is formed using these values and points are uniformly
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sampled within this volume. This approximates the local surface. From Table 2 of the main
paper, the improvement of our method over the results of this densification method demon-
strates that our model is completing the partial point clouds rather than simply densifying
the partial input cloud.

7.3.5 Performance Analysis with respect to Occlusions

We conduct an experiment to assess the impact of occlusions in the input partial point clouds
on the ability of the model to complete the given shape. To do so, we introduce artificial
occlusions by removing a certain number of regions from the input during testing (we have
divided the input into 8 total regions). Given that the original input is already naturally
occluded, we artificially remove at most three regions because beyond that, the input is barely
visible. The results are shown in Table 6; we can observe that as the number of artificial
occlusions in the input increases, there is a slight drop in performance for all categories.
However, the model is considerably robust to the additional occlusions.

7.4 Metrics

In this section, we report different metrics for further analysis of our method.

7.4.1 Precision and Coverage of observed and unobserved regions

For a detailed analysis, we compute the precision and coverage of the observed and unob-
served regions of the input point cloud. To categorize points as observed or unobserved, we
compute the distance between each point in the predicted point cloud and its nearest neighbor
in the input point cloud. We compute the mean and standard deviation of these distances for
each point cloud and use 1 standard deviation over this mean as a threshold. Points with the
nearest neighbor distance greater than this threshold are considered as unobserved, while all
other points are considered observed. The precision and coverage are computed separately
for each of these types of points and we report the results in the Supplementary Table 8. As
expected, we find that the precision and coverage of the observed regions are slightly better
than that of unobserved regions in the input partial point cloud; however, the results are rela-
tively similar for the observed and unobserved regions, which provides further evidence that
we are completing (and not just densifying) the input (see also Section 7.3.4).

7.4.2 F1-Score

Following Xie et al [21], we evaluate the F1-score@1%, which is the harmonic mean be-
tween precision and recall, on the ShapeNet dataset. In this context, “precision" is the
percentage of the points in the predicted point cloud which are within a specified distance
threshold with the ground truth. “Recall" is the percentage of the points in the ground truth
point cloud that are within a distance threshold with the predicted point cloud. Precision
helps to measure the accuracy of the prediction and recall measures the coverage of the pre-
diction. In this metric, we use d = 1% of the side length of the predicted point cloud. It
can be observed from the Supplementary Table 9 that our method is able to outperform the
baseline DPC [10] when evaluated on this metric. We do not report the results on Gu et
al. [6] since their code is not open-source.
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Figure 5: Quantitative Results on the number of views (1, 2, and 3) (with green and without
inpainting red) used during network training. Our original method trains on 4 views. All
the values reported are average Chamfer Distance metric over the ShapeNet (Airplane, Car,
Chair) and KITTI dataset. We are able to outperform the baseline using a limited number of
views due to our use of inpainting.

7.4.3 Uniformity Metric

We also evaluate the uniformity metric following Xie et al [21] on the ShapeNet and KITTI
datasets. In the Supplementary Table 10, we compare our method with the baseline DPC on
the ShapeNet dataset. Our method gives a similar performance with the baseline with respect
to this metric, revealing that both methods have similar uniformity of predicted points.

For the KITTI dataset, we compare our method with the ablation of our method without
inpainting, as DPC does not train and evaluate on KITTI and Gu et al. [6] do not have
open-source code. We report the results on KITTI in Supplementary Table 11 and show the
improvement in the performance of our model when using inpainting.

7.5 Qualitative Results

We present additional visualizations of the complete predicted point cloud generated by our
network, PointPnCNet.

Cars: As can be observed from the Supplementary Figure 8, our model is able to com-
plete the finer details of a car such as the headlight of a car and generates a more defined
outer boundary in comparison to DPC [10]. We also show that our network has the ability
to not only complete the shapes of general cars, but also the shape of a truck as shown in
the third row of Supplementary Figure 8. We show a few failure cases as well on the car
category in the Supplementary Figure 9. Our method is unable to create detailed shapes of
various sports cars. Further, for the truck in the second row, our method fails to create a gap
between the front and back of a truck.

Chairs: We present in Supplementary Figure 10 that our method is able to generate finer
completion results on different types of chairs such as a sofa and desk chair than DPC [10].
It is able to complete the front, back, and arms of the chair. There are also a few failure
cases where the network generates noisy results especially near the legs of a chair as seen in
Supplementary Figure 11.

Airplanes: From Supplementary Figure 12, we observe that the network is able to com-
plete the front, back, and wings of the planes. Supplementary Figure 13 shows some failure
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Input GT Ours (2 views) Ours (3 views) Ours (4 views)Ours (1 view)

Figure 6: Qualitative results on varying the number of views given as input to the PointP-
nCNet. The first, second, third, and fourth row shows the results on the ShapeNet test set of
car, chair, plane, and Semantic KITTI [1] dataset respectively. As can be seen, the results of
2 views and 3 views are qualitatively very similar to the results with 4 views. This demon-
strates that our method is able to take advantage of a reduced number of views, due to our
use of inpainting.
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Figure 7: Quantitative Results of the Chamfer Distance metric with respect to the number of
points in the input point cloud during testing.

cases in which it also generates some noisy points near the wings of the planes.
KITTI: We show the visualizations where our network is able to complete the partial

point cloud cars from the LiDAR scans of the Semantic KITTI dataset in the first and sec-
ond row of Supplementary Figure 14. Additionally, there are a few failure cases where the
network is unable to generate the details in a fine manner such as the tire of a car as seen in
the third and fourth row of Supplementary Figure 14. We also show the completion results
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of the partial point clouds in a scene in the Supplementary Figure 15.
ShapeNet Categories: We present the qualitative results on the 5 other categories of

the ShapeNet dataset - Cabinet, Lamp, Sofa, Table, and Vessel in the Figure 16. We compare
the results of our method with our ablation of without inpainting. It can be observed that our
method is able to complete the shape of the incomplete point clouds whereas our method
without inpainting outputs noisy points.

7.6 Comparison with supervised method
To analyze the performance gap between self-supervised method and supervised method,
we compare the performance of our method with a fully supervised method, PCN [27] on
8 categories of the ShapeNet dataset and present the results in Table 12. Since our method
builds on the architecture of PCN, we compare our method to fully-supervised PCN; the
choice of architecture is somewhat orthogonal to our proposed method of inpainting. We
observe that the fully supervised PCN outperforms our self-supervised method, as expected.
However, our results indicate that our method has reduced the gap between self-supervised
and fully supervised approaches. In Table 12, we also compare our method to the ablation
of “no inpainting" across 8 object categories of ShapeNet and show consistent improvement
in performance.

Eg Eℓ Dg Dℓ
Airplane Car Chair KITTI

CD CD CD CD
✓ ✓ 1.830 2.710 3.260 0.336
✓ ✓ 1.930 2.560 3.480 1.042
✓ ✓ ✓ 1.820 2.580 3.320 0.357

✓ ✓ 1.950 2.790 3.520 0.329
✓ ✓ 2.010 2.610 3.730 0.392
✓ ✓ ✓ 1.930 2.650 3.610 0.362

✓ ✓ ✓ 1.860 2.840 3.110 0.388
✓ ✓ ✓ 1.850 2.530 3.250 1.131
✓ ✓ ✓ ✓ 1.660 2.480 2.700 0.095

Table 5: We study the performance of the architecture styles through combinations of local
and global encoders and decoders on the Airplane, Car, Chair of the Shapenet dataset and
KITTI dataset via Chamfer Distance metric. It can be observed that a combination of global
and local encoders and decoders gives the best performance among all the possible combi-
nations.

Number of regions
removed Airplane Car Chair KITTI

0 1.66 2.48 2.70 0.095
1 1.67 2.50 2.73 0.097
2 1.76 2.60 2.79 0.100
3 1.89 2.67 2.95 0.102

Table 6: Chamfer Distance onShapenet and KITTI with varying numberof removed regions
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Ablation Airplane Car Chair KITTI
CD CD CD CD

Adding third level 2.070 2.550 3.030 0.123
Our method (2 levels) 1.660 2.480 2.700 0.095

Table 7: Quantitative Results on the architecture changes in our method. All the Chamfer
Distance metric values reported for Shapenet are multiplied with 100. It can be observed
that adding a third level does not give a significant improvement in the performance.

Region Airplane Car Chair KITTI
Observed Precision 0.771 1.113 1.767 0.625

Unobserved Precision 0.824 1.127 1.844 0.640
Observed Coverage 0.848 1.490 1.344 0.531

Unobserved Coverage 0.857 1.496 1.355 0.648
Table 8: Precision and Coverage for the observed and unobserved regions on the Shapenet
and KITTI dataset.

Method Airplane Car Chair
DPC[10] 0.423 0.364 0.315

Ours 0.626 0.450 0.409
Table 9: F1-Score@1% on the Shapenet dataset.

Airplane Cars Chairs
p DPC [10] Ours DPC Ours DPC Ours

0.4% 0.775 0.775 0.758 0.757 0.785 0.787
0.6% 0.674 0.673 0.646 0.647 0.664 0.664
0.8% 0.490 0.490 0.489 0.489 0.498 0.497
1.0% 0.395 0.394 0.388 0.389 0.385 0.385
1.2% 0.256 0.257 0.246 0.245 0.265 0.264

Table 10: Uniformity Metric on the Shapenet dataset compared with the baseline DPC [10].

p w/o inpainting Ours
0.4% 0.815 0.750
0.6% 0.773 0.658
0.8% 0.697 0.527
1.0% 0.588 0.496
1.2% 0.517 0.384

Table 11: Uniformity Metric on the KITTI dataset compared with our baseline of our model
without inpainting.

Airplane Cabinet Car Chair Lamp Sofa Table Vessel
Ours (w/o inpainting) 0.026 0.045 0.031 0.039 0.041 0.039 0.040 0.033
Ours (Self-Supervised) 0.016 0.027 0.024 0.027 0.030 0.029 0.025 0.026
PCN (Fully
Supervised)[27]

0.005 0.010 0.008 0.010 0.011 0.011 0.008 0.009

Table 12: Quantitative results of comparison of our self-supervised method (Ours) with fully
supervised method, PCN [27], and ablation of our method without inpainting.
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Input Input (DPC) GT DPC Ours

Figure 8: Success cases on the Car category of the ShapeNet dataset. It can be observed that
our model is able to complete the finer details of a car such as the headlight of a car and
generates a detailed outer boundary in comparison to DPC [10] in all the rows. It is also able
to generate the shape of a truck as can be seen in the third row.

Input Input (DPC) GT DPC Ours

Figure 9: Failure cases on the Car category of the ShapeNet dataset. We compare our method
with the results of DPC [10]. Our method fails to create the detailed shapes of various sports
cars. Further, for the truck in the second row, our method fails to create a gap between the
front and back of a truck.
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Input Input (DPC) GT DPC Ours

Figure 10: Success cases on the Chair category of the ShapeNet dataset. We compare our
method with the results of DPC [10]. Our method is able to show finer completion results on
different types of chairs such as a sofa and desk chair than DPC [10]. It is able to complete
the front, back, and arms of the chair.

Input Input (DPC) GT DPC Ours

Figure 11: Failure cases on the Chair category of the ShapeNet dataset. We compare our
method with the results of DPC [10]. It can be observed in these cases that the network
generates noisy results especially near the legs of a chair.
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Input Input (DPC) GT DPC Ours

Figure 12: Success cases on the Plane category of the ShapeNet dataset. We compare our
method with the results of DPC [10]. It can be observed that the network is able to complete
the front, back and wings of the planes.

Input Input (DPC) GT DPC Ours

Figure 13: Failure cases on the Plane category of the ShapeNet dataset. We compare our
method with the results of DPC [10]. The network generates some noisy points near the
wings of the planes.
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Input GT Ours

Figure 14: Completion of partial point cloud cars from the LiDAR scans of the Semantic
KITTI dataset (first and second row). The third and fourth row show some failure cases of
the network where the network is unable to generate the smaller details such as a tire of a
car.

Figure 15: Completion of partial point cloud of cars in a LiDAR scan of the Semantic KITTI
dataset.
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Figure 16: Qualitative Results on five categories of Shapenet compared to our ablation of
without inpainting.


