
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3131203, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Safety in multi-assembly via
paths appearing in all path covers of a DAG
Manuel Cáceres, Brendan Mumey, Edin Husić, Romeo Rizzi, Massimo Cairo, Kristoffer Sahlin,

and Alexandru I. Tomescu

Abstract—A multi-assembly problem asks to reconstruct multiple genomic sequences from mixed reads sequenced from all of them.
Standard formulations of such problems model a solution as a path cover in a directed acyclic graph, namely a set of paths that
together cover all vertices of the graph.
Since multi-assembly problems admit multiple solutions in practice, we consider an approach commonly used in standard genome
assembly: output only partial solutions (contigs, or safe paths), that appear in all path cover solutions. We study constrained path
covers, a restriction on the path cover solution that incorporate practical constraints arising in multi-assembly problems. We give
efficient algorithms finding all maximal safe paths for constrained path covers.
We compute the safe paths of splicing graphs constructed from transcript annotations of different species. Our algorithms run in less
than 15 seconds per species and report RNA contigs that are over 99% precise and are up to 8 times longer than unitigs. Moreover,
RNA contigs cover over 70% of the transcripts and their coding sequences in most cases. With their increased length to unitigs, high
precision, and fast construction time, maximal safe paths can provide a better base set of sequences for transcript assembly programs.

Index Terms—Graph algorithms, Network problems, Analysis of Algorithms and Problem Complexity, Biology and genetics

F

1 INTRODUCTION

MANY real-world problems require to reconstruct an
unknown object from partial data observed from it.

Genome assembly is a typical instance of such problem in
Bioinformatics: given a set of high-throughput sequencing
reads obtained from some genomic sequence, we need to
reconstruct the sequence from which the reads originate.
A major issue in such problems is that multiple solutions
(reconstructions) can explain the observed data, making it
difficult to distinguish the correct solution. As such, report-
ing one arbitrary solution may easily lead to an incorrect
answer to the problem. An established way of coping with
this issue is to report only partial solutions about which
we are “confident” that they are correct. For example, state-
of-the-art genome assemblers do not output entire chromo-
somes, but only contigs, namely genomic fragments that are
promised to occur in the original genome.

An algorithmic way of formalizing such “reliable” par-
tial solutions is through the notion of safety, introduced in [1]
to model contig assembly. Given a problem P , we say that
a partial solution to P is safe if it is common to all solutions
to P . Assuming that the real solution is among the solutions
to our computational problem P , then safe partial solutions

• M. Cáceres, M.Cairo and A.I.Tomescu are with the Depart-
ment of Computer Science, University of Helsinki, Finland;
emails: {manuel.caceresreyes,alexandru.tomescu}@helsinki.fi

• B.Mumey is with the School of Computer Science, Montana State Uni-
versity, USA; email: brendan.mumey@montana.edu

• E.Husić is with the Department of Mathematics, London School of
Economics and Political Science, UK; email: e.husic@lse.ac.uk

• R.Rizzi is with the Department of Computer Science, University of
Verona, Italy; email: romeo.rizzi@univr.it

• K.Sahlin is with the Department of Mathematics, Science for Life
Laboratory, Stockholm University, 106 91 Stockholm, Sweden; email:
ksahlin@math.su.se

Manuscript received April 19, 2005; revised August 26, 2015.

are common also to the real solution, and therefore correct.
We would like to report all such safe partial solutions, and in
fact, it suffices to focus on all maximal safe partial solutions,
namely those such that any other safe partial solution is
contained in a maximal one. Safety has precursors in Bioin-
formatics (reliable regions in sequence alignments [2]), but
also in combinatorial optimization (persistency in bipartite
matchings [3]). Safety has also been applied to other genome
assembly sub-problems such as gap filling [4].

The algorithmic toolkit for safety in genome assembly
is quite developed by now. Indeed, a typical computational
solution to a genome assembly problem is some type of walk
in an assembly graph. For example, if we are sequencing a
single bacteria and building an edge-centric de Bruijn graph
from the reads, then the solution is a circular edge-covering
walk [1]. A safe partial solution (i.e. contig) is thus a walk
appearing as a subwalk of all such circular edge-covering
walks. This graph-theoretic problem has been shown to
admit efficient algorithms computing all their maximal safe
walks [5], [6]. These run in time O(|V ||E|), where V and
E are sets of vertices and edges, respectively, of the as-
sembly graph. Recently, these results were generalized for a
plethora of different genome assembly models in a common
framework known as the hydrostructure [7].

Over the last decade, sequencing technologies have been
applied to mixed settings, where a sample contains mul-
tiple distinct genomic sequences, that may differ in vary-
ing degrees. Genome assembly has thus been extended to
multi-assembly problems [8] asking to reconstruct all such
individual genomic sequences from mixed reads sequenced
from all of them. Popular instances of such multi-assembly
problems ask to reconstruct e.g. the RNA transcripts present
in a cell population [8], or the quasi-species of a virus
present in infected cells [9]. Although the of concept safety



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3131203, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

is implicitly used in current multi-assemblers, there exists a
lack of formal treatment of this notion, despite its relevance
and widespread adoption in the standard genome assembly
problem.

1.1 Path covers and multi-assembly
Given a directed acyclic graph G (or DAG, for short), we
consider a solution to the multi-assembly problem to be a
set of paths in G such that every vertex of G appears in at
least one path. Such a set of paths is called a path cover of G,
and it is present at the core of practical tools for both RNA
transcript assembly and viral quasi-species assembly, as we
review next.

A common graph used in the multi-assembly of RNA
transcripts is a splicing graph, obtained by first identifying
exons from the RNA read alignments to the reference. Every
exon is then added as a vertex, and every read overlapping
two exons indicates a possible splicing junction and is added
as an edge between the two exons. The edges are directed
“from left to right” (in the reference genome), making the
graph a DAG.

An RNA transcript naturally corresponds to a path in
such a DAG, thus the set of all RNA transcripts (solution to
the RNA transcript assembly) corresponds to a path cover
of the DAG. Various criteria have been proposed to define
what path covers are actually a solution, e.g. those optimal
with respect to some combinatorial optimization problem,
or some statistical model. While state-of-the-art methods
also include many practical steps and heuristics, they have
one of two main approaches at their core. The first approach,
used up to some variations and constraints by [10], [11], [12],
[13], [14], define a solution as a path cover with a minimum
number of paths (minimum path cover, or MPC), or with a
number of paths smaller than an upper bound. The second
approach, used up to some variations by [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], is based on finding a
flow in the splicing graph best explaining the observed read
coverage, and then on decomposing the flow into a small
number of paths. Such paths also form a path cover, which
is now optimal with respect to some flow criteria, not just
cardinality.

Path cover models are also used in the assembly of
reads sequenced from all viral quasi-species in a sample.
Minimum path cover-like methods include [27], [28], and
methods based on path covers optimal to some flow criteria
include [29], [30].

1.2 Our contributions
We give the first algorithms outputting all maximal safe
paths for a natural notion of path cover, which we call
constrained path cover. A constrained path cover can have
at most a given number ` � k = width(G)1 of paths, and
its paths are now required to start and end in given vertex
sets, S and T , respectively. This notion generalizes that of an
MPC2, which is a classical combinatorial object, dating back
to Dilworth’s and Fulkerson’s results in the 1950s [31], [32],

1. Given a DAG G, its width, denoted width(G), equals the minimum
size of a path cover of G.

2. An MPC is a constrained path cover with ` = k and S = T = V .

Fig. 1. An DAG G, safe paths (highlighted) and an example path cover
(long arrows) for G, S = {s}, T = {t}, ` = 3 (top) and ` = 4 (bottom).
The path cover P on the top is the unique constrained path cover for
` = 3, therefore safe paths are exactly the paths of P. The path cover
on the bottom does not have the path P = s, u, v, t, therefore P is not
safe for ` = 4.

and appearing in standard textbooks such as [33]. More
formally, given a DAG G, sets S, T ✓ V , and an integer
` � k, we say that a path P is safe for G,S, T, `, if for every
constrained path cover P of G, P is a subpath of some path
of P . When G,S, T and ` are clear from the context, we just
say that P is safe. Figure 1 illustrates these concepts.

Our safe algorithms are obtained using a general “avoid-
and-test” approach. Intuitively, given a structure to be
checked for safety, we transform the graph so that no
solution can use the structure fully, while not changing
the other properties of the graph. If a solution still exists,
then it must avoid the structure, proving it is unsafe. This
general approach dates back to finding edges present in all
maximum matchings of a bipartite graph [3]. However, safe
paths can contain more than one edge, which requires a
more complex approach to “avoid-and-test”.

We start with an arbitrary minimum-sized constrained
path cover P , and we test the safety of every subpath P of a
path in P . By definition, all safe paths are subpaths of some
path of P . We introduce the reduction of G with respect
to P , GP , and we show that P is a safe path if and only
if width(GP ) > ` and the subpath formed by excluding
the last vertex of P is safe. A naive implementation of
these ideas leads to a running time of O(k|V |2mpc(G))
for computing maximal safe paths, where mpc(G) denotes
the running time of computing an MPC of G. However,
we improve these running times by using two additional
ingredients. First, since we need to output only maximal safe
paths, it suffices to do a two-finger scan over each path of
P . The scan advances the right finger if the path P between
them is safe, or the left finger otherwise. Second, to avoid
recomputing an MPC of GP for each different P , we build



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3131203, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

a flow data structure on top of G, which allows determining
whether width(GP ) > ` in time O(max(1, k + µ � `)|E|),
where µ is the number of paths of P containing the last edge
of P . Our data structure is based on the concept of “shrink-
ing”, previously used to obtain efficient parameterized solu-
tions for the problem of computing an MPC [34], [35]. The
application of these two ideas improves the running time of
our solution to O(k2|V ||E|).

To test our solution and provide a proof-of-concept
study highlighting the potential usefulness of safe paths
in RNA transcript assembly, we consider splicing graphs
constructed from transcript annotation of different species,
including human. As such, the splicing graphs used in our
experiments correspond to work in perfect conditions, re-
moving the biases introduced by errors prior to the splicing
graph construction [36]. We denote the maximal safe paths
in this application as RNA contigs. As a comparison baseline,
we also consider a basic notion of safe paths, namely those
maximal paths whose internal vertices have in-degree and
out-degree equal to one. These are called unitigs and are
commonly used in genome assembly [37], [38], [39]. On
these datasets, RNA contigs for constrained path covers are
up to 8 times longer than unitigs, while being over 99%
precise, and take less than 15 seconds to be found. Moreover,
if we define the maximum relative coverage of a transcript
as the length of the longest RNA contig segment inside
it, divided by the length of the transcript, then transcripts
have maximum relative coverage up to 80%. Moreover,
RNA contigs cover over 70% of the coding sequences of
transcripts in most cases.

We hope that our findings introduce a new toolkit and
perspective on the notoriously hard transcript assembly
problem. We envision that, after enhancements dealing with
real data issues, safe paths could be applied into RNA
assembly (or multi-assembly) pipelines as follows:

• By outputting only RNA contigs, in the same way
as state-of-the-art genome assemblers output contigs.
Our initial results support this, since RNA contigs,
albeit not being full transcripts, still have significant
length, and at the same time are correct (partial)
transcript assembly results.

• As a preprocessing step to methods that extend given
strings into full transcripts. For example, [12], [18]
first conservatively assemble the RNA-Seq reads into
some longer sequences, and use these to guide the
(more heuristic) assembly of full RNA transcripts.

• By taking the RNA transcripts output by any existing
RNA transcript assembler, and marking the maximal
transcript substrings that match a safe path. In this
way, our method could indicate some parts of an
RNA assembly solution that are likely to be correct.

The rest of this paper is structured as follows. In Section 2
we develop the theory behind our algorithms reporting safe
paths for constrained path covers. In Section 3 we discuss
the RNA transcript assembly problem in more detail. We
also present the experimental setup and results for RNA
contigs, as an application of safe paths. We conclude the
paper in Section 4.

2 SAFE PATHS FOR CONSTRAINED PATH COVERS

As previously discussed, a solution to a multi-assembly
problem can be seen as a path cover of a DAG G. Therefore,
safe paths are paths in G that are common to all path covers
of G. However, this definition of safety is too permissive in
formal terms, since it allows for P = {(v) : v 2 V } (one
path for each vertex v, consisting only of vertex v) to be a
solution (path cover), thus yielding maximal safe paths to
be isolated vertices3.

To overcome this problem, we restrict the solution space
by including further practical information. We formalize this
in the concept of a constrained path cover.

Definition 1 (Constrained path cover). Let G = (V,E) be a
DAG, S, T ✓ V be two sets of vertices such that sources(G) ✓
S, sinks(G) ✓ T

4, and let ` � width(G). We say that a path
cover P of G is a constrained path cover (for G,S, T, `) if:

(a) Every path P 2 P starts at some vertex in S and ends
at some vertex in T .

(b) The number of paths of P is at most `, |P|  `.

Constraint (a) restricts the paths of P to start and end
with some of the vertices of given sets of vertices S and T ,
respectively. We say that the paths of P go from S to T . This
restriction incorporates the fact that in some contexts, such
as RNA transcript assembly, some candidates of the starting
/ ending vertices may be identified, e.g. as those vertices
whose read coverage present an initial upward / final
downward slope [21], [22]. On the other hand, constraint
(b) restricts the solution to contain at most ` paths, which is
used to relax the minimality condition present in minimum
path cover-like multi-assemblers as previously reviewed.

Note that, if S = T = V and ` = 1, then we remove
both restrictions and recover the classical definition of path
cover. Besides, if instead ` = k, then the constrained path
covers correspond to the MPCs of G.

The conditions sources(G) ✓ S, sinks(G) ✓ T are
necessary to ensure that at least one constrained path cover
exists (otherwise there exists a vertex that is not reached
from S or does not reaches T , which cannot be covered). On
the other hand, the condition ` � width(G) is also necessary,
since a constrained path cover is, in particular, a (classical)
path cover of G, thus of size at least width(G).

Moreover, these three conditions (on S, T and `) com-
bined suffice to ensure that at least one constrained path
cover exists, which follows from the following lemma.

Lemma 1. Let G be a DAG, S, T ✓ V be two sets of vertices
such that sources(G) ✓ S, sinks(G) ✓ T . Then, the minimum
number of paths of a path cover with paths from S to T is
width(G).

The proof of Lemma 1 (see Supplemental material 1 for
the proofs of our lemmas and theorems) also give us a way
to compute our initial solution: we first compute an MPC of
G and then extend their paths to S and T .

Next, we observe that it is sufficient to consider |S| =
|T | = 1 by using the following reduction. We build the
graph G

0 = (V 0
, E

0), such that, V
0 = V [ {s, t} (with

3. In particular, maximal safe path must be subpaths of P = V , thus
isolated vertices.

4. sources(G)/sinks(G) are the vertices of in/out-degree zero.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3131203, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

{s, t}\V = ;), and E
0 = E[{(s, u), u 2 S}[{(v, t), v 2 T}.

That is, we add a new unique source vertex pointing to ev-
ery vertex of S, and a new unique sink vertex pointed from
every vertex of T . Note that, there is a one-to-one correspon-
dence between constrained path covers for G,S, T, ` and
constrained path covers for G0

, {s}, {t}, ` (or just G0
, s, t, `),

since we can obtain one from the other by adding/removing
s and t to/from the paths. As such, we can reduce the
computation of safe paths for constrained path covers for
G,S, T, ` (or just safe paths for G,S, T, `) by computing
safe paths for G, s, t, ` (we abuse of the notation and use
G instead of G0 for simplicity).

To decide whether a path P is safe (for G, s, t, `) we
introduce the construction G

P , which we call the reduction of
G with respect to P .

Definition 2. Given a DAG G = (V,E) and a path P =
x1, . . . , xp of G, we define GP = (V,EP ), where

E
P = (E \ {(xp�1, xp)}) [

p[

i=2

�
(u, xp) | u 2 N

�(xi) \ {xi�1}
 
.

Figure 2 illustrates G
P . The main idea behind this con-

struction is that no path of GP can contain P entirely, since
(xp�1, xp) is removed. However, the usage of every proper
suffix of P , except if this is used as the beginning of a
path, is emulated by the transitive edges drawn from the
in-neighbors of the vertices of the paths (except from the
previous vertex on the path, and not for the first vertex) to
xp. Proper suffixes of P (except xp) used as the beginning of
a path are not emulated in G

P , and adding transitive edges
from arbitrary vertices of P to represent these suffixes will
ultimately emulate P . To solve this issue we incorporate to
our hypothesis the safety of subpaths of P . Specifically, we
obtain the following theorem.

Theorem 2. Let G = (V,E) be a DAG, s 2 V the unique
source of G, t 2 V the unique sink of G, and let P = x1, . . . , xp

be a proper path of G, such that x1, . . . , xp�1 is a safe path for
G, s, t, `. Then we have one of two cases:

1) xp�1 2 sinks(GP ) _ xp 2 sources(GP ), in which
case P is a safe path for G, s, t, `.

2) otherwise, P is a safe path for G, s, t, ` if and only if
width(GP ) > `.

Our first algorithm for computing maximal safe paths
(for G, s, t, `) uses Theorem 2 to test the safety of each of
the O(k|V |2) subpaths of the paths of an initial minimum-
sized constrained path cover P of G (O(|V |2) subpaths for
each of the k (by Lemma 1) paths of length O(|V |) each). We
process these subpaths in increasing order of their lengths.
When processing a subpath P = x1, . . . , xp we inductively
know whether x1, . . . , xp�1 is safe, and we can proceed
accordingly. If x1, . . . , xp�1 is not safe then P is not safe
either (by definition of safety). Otherwise, if x1, . . . , xp�1 is
safe we use Theorem 2 to test whether P is safe. We build
G

P , if xp�1 2 sinks(GP ) _ xp 2 sources(GP ) we report
P as safe, otherwise, we compute an MPC P 0 of G

P and
report P as safe if and only if |P 0| = width(GP ) > `. If P
is safe we add it to a set of maximal safe paths and remove
x1, . . . , xp�1 and x2, . . . , xp from this set since P invalidates

their maximality. Note that with this rule every maximal
safe path is captured and every non-maximal safe path is
removed at some point. We call this approach unoptimized,
and it runs in time O(k|V |2mpc(G)), where mpc(G) denotes
the running time of computing an MPC.

By running a two-finger algorithm on every path P of
P , we can compute the maximal safe paths inside P in time
O(|P |) = O(|V |). We maintain pointers x and y on vertices
of P , and the invariant that the subpath of P between x

and y is a safe path. First, we try to extend this subpath
by moving y to the next vertex of P . Since we know that
our current subpath is safe we use Theorem 2 (as previously
explained) to test if the extension is safe. If it is not, we move
x (and also y, if x = y) to the next vertex of P and try again.
Maximal safe paths reported by this approach are only guar-
anteed to be maximal within P (the path from which they
were reported), but not necessarily maximal in the whole G.
To efficiently report all maximal safe paths of G, we collect
the maximal safe paths inside each P 2 P , and then filter
those that are subpaths of already reported paths. For this
we apply the generalized suffix tree approach used in Step 3
of [40]. This lets us filter the paths contained in another path
in total time O(N) where N is the sum of the lengths of all
paths. Here, N = O(k|V |2), since the two-finger algorithm
reports O(|V |) safe paths each of length O(|V |), for each
path the k paths of P . As such, this approach runs in time
O(k|V |2 + k|V |mpc(G)) = O(k|V |mpc(G)).

Our last optimization consists in speeding up the second
case of the safety test of Theorem 2. Each such test involves
computing an MPC of GP , taking mpc(G) time. Instead, we
use our initial solution P to compute a flow data structure
at the beginning of the algorithm. This data structure takes
additional O(k|V |+ |E|) time to construct, but allows us to
test whether width(GP ) > ` in time O(max(1, k+µ�`)|E|),
where µ is the number of paths of P containing the last edge
of P . In broad terms, the data structure corresponds to a
reduction of path cover to a flow network, which has been
used before for finding an MPC [34], [35], [41], [42], [43], and
the answer to the queries “width(GP ) > `?” are based on
the concept of shrinking of a flow in this flow reduction [34],
[35].

Lemma 3. Let G = (V,E) be a DAG of width k, and P an
MPC of G. We can build a data structure in time O(k|V |+ |E|),
answering whether width(GP ) > ` in time O(max(1, k + µ �
`)|E|), for every ` � k, P = x1, . . . , xp proper path of G, with
µ = |{P 2 P | (xp�1, xp) 2 P}|.

The proof of Lemma 3 (see Supplemental material 1)
shows us that if we are in the second case of Theorem 2,
then width(GP )  k + µ  2k. As such, if ` � 2k, then
width(GP ) > ` will always be false.

Observation 4. If ` � 2k, safe paths for G, s, t, ` are the same
as safe paths for G, s, t,1.

Using the two-finger algorithm and the flow data struc-
ture, we obtain the main theoretical result of this paper.

Theorem 5 (Safe paths for constrained path covers). The
maximal safe paths for constrained path covers (for an input
G = (V,E), s, t, `), can be computed in time O(max(1, 2k �
`)k|V ||E|), where k = width(G).



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3131203, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 2. The construction G
P from Definition 2, for P = x1, . . . , xp: the edge (xp�1, xp) is removed, and (transitive) edges are added from the

in-neighbors (except from the path predecessor) of the path vertices (except x1) to xp, shown as dashed.

3 APPLICATION TO RNA TRANSCRIPT ASSEMBLY

The functioning of the cell is based on the transcription of
genes into transcripts, followed by the translation of the
transcripts into proteins. This makes the set of transcripts
present in a cell (the transcriptome) an important link be-
tween DNA and phenotype, and can give information of the
current and future state of a cell. High-throughput sequenc-
ing of transcripts (RNA-seq) started in 2008 [44], [45], and
later proved essential in characterizing gene regulation and
function, development and diseases, including cancer [46],
[47], [48], [49]. In complex organisms, one gene can produce
different transcripts, each in a different number of copies.
For example, about 95% of multi-exon genes in humans
produce multiple transcripts through alternative splicing
[50]. Alternative splicing alters the set of exons transcribed
by the gene, but different transcripts can still share exons.

The transcript assembly problem aims to reconstruct
the set of transcripts present in a set of RNA-seq reads.
While long reads hold the potential to sequence through the
full transcripts, thus resolving the full transcript structure,
there are inherent biases in the protocols which makes them
unable to sequence longer transcripts [51], [52]. In addition,
long-read alignment software have been shown to produce
inaccurate alignments [53], [54] on which the assembly
methods rely on. Moreover, current state-of-the-art long-
read transcript assembly methods are still in active develop-
ment, with precision below 50% on biological data [55]. Due
to these limitations, short-read RNA-seq assembly remains
a viable option.

While the transcript assembly problem has attracted
great interest from the community, with a proliferation of
methods proposed [10], [11], [15], [16], [17], [18], [19], [20],
[23], [56], [57], [58], [59], [60], [61], assembling RNA-seq
reads remains a challenge, with RNA assembly methods
having a precision under 50%-60% on human data [18], [62].
In addition, current algorithms that aim to produce full-
length transcripts employ various heuristics and thresholds
to increase contiguity of the transcript under assembly,
which makes results vary significantly in quality with dif-
ferent parameter settings [63].

The importance of having reliable transcript assembly re-
sults is further underlined by two recent related works [64],
[65]. However, they tackle the reliability issue with a sig-
nificantly different approach, as they provide methods to
calculate a “confidence” range for the abundance in the
sample of a given candidate transcript. In Figure 3 we show
an example of our safety approach applied to an RNA splic-
ing graph of the human transcriptome built from genome
annotation. We call RNA contigs the maximal safe path in
this context.

3.1 Implementation and experiments

We aim to motivate the use of safe paths as an alternative
construct to unitigs for transcript assembly. Therefore, the
main purpose of our experiments is to evaluate the construc-
tion time, correctness, and length of sequences produced by
maximal safe paths compared to the sequences produced
by unitigs. We compare the two approaches for RNA of
real organisms, but avoid external artifacts introduced by
aligning the RNA-seq reads, unsequenced regions, inferring
exons from alignments, and constructing the splicing graph,
which introduces many biases [36]. We instead build the
splicing graph directly from gene annotation As such, the
splicing graph used in our experiments corresponds to work
in perfect conditions. Removing the biases introduced by
errors prior to the splicing graph construction provides us
a preliminary evaluation of RNA contigs in the transcript
assembly problem. It is also worth noting that our datasets
(annotated transcripts) as well as our algorithm are read
coverage agnostics. Since the main objective of safe paths is
to output information about the transcripts but not about
their abundances, we do not consider this characteristic in
our evaluation.

Datasets and input. We started from gene annotation,
by considering all transcript annotation from the Ensembl
database [66] for different species as detailed in Table 1.

In case two exons E = E1E2 and E
0 = E2E3 from

different transcripts have a suffix-prefix overlap E2, we
replace each occurrence of E in a transcript with E1, E2,
and similarly for E

0. This is common in splicing graph
construction (see e.g. [17], [67]); the resulting exons are
usually called pseudo-exons, but for simplicity we refer to
them as exons. Graph vertices correspond to annotated
(pseudo-)exons, and edges correspond to exons consecutive
in some annotated transcript. Each weakly connected com-
ponent of this graph is a splicing graph. For each dataset we
considered all transcripts on the forward strand and build
the corresponding splicing graphs. We also store the coding
sequences on each transcript annotated by the correspond-
ing Ensembl dataset. We say that a splicing graph is a trivial
instance if it is formed by less than 3 exons or less than 2
transcripts. We filter out trivial graph instances from the
dataset for our experiments.

To correlate the results with the complexity of the data,
we partitioned all the annotated transcripts based on their
length, into small (1-2000 bases), medium (2001-5000 bases)
and large (> 5000 bases). We also partitioned coding se-
quences (1-1000, 1001-2500, > 2500 bases) and splicing
graphs (3-15, 16-50, > 50 vertices) in these three categories5.

5. The grouping was made so that approximately matches the 60%
smallest part of the data (small) the next 30% (medium) and the
remaining 10% largest part of the data.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3131203, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

19 45 44 79 118 109 219 153 216 444 180 127 205

3

14 95 19 45 44 79 118 70 109 219 153 216 444 180 127 205 171

108

14 3

T1

T2

T3

T4

U1 U2 U3
C1

C2C3
C4

U4

C4

U3

U4

U2U1
T4

C2
C3

C1

14 95

108

70

14

14

Fig. 3. Top: A splicing graph built from four annotated transcripts from human chr 18; vertex labels denote exon lengths. The transcripts form a
constrained path cover with ` = 4. Middle: The ST -unitigs of the graph, and the maximal safe paths (i.e. RNA contigs) w.r.t. constrained path covers
of it, for ` = 4, and S and T being the set of start exons (as circle vertices) and end exons (as diamond vertices), respectively, of the transcripts.
For unitig U2, contained in RNA contig C4 we have a relative improvement of 3.2⇥ exons, and of 7.2⇥ bases. Bottom: Transcript T4 and all the
longest RNA contig segments inside it. For its unitig segments, the maximum coverage is 10 exons, and 1841 bases. For its RNA contig segments,
the maximum coverage is larger by 6 exons, and by 361 bases. See Section 3.1 for definitions of these metrics.

TABLE 1
Datasets/species considered in our experiments: two mammals (including human), two plants, one insect and one fungus. The table also shows

the number of transcripts, coding sequences and splicing graphs after filtering trivial graph instances of the problem (see Section 3.1).

Dataset Assembly Transcripts Coding sequences Splicing graphs
Homo sapiens

(Human) GRCh38.p13 104552 52711 11337
Mus musculus

(Mouse) GRCm39 55281 31593 10346

Triticum aestivum
(Wheat) IWGSC 21225 21141 8468

Hordeum vulgare
(Barley) IBSC v2 111695 106219 12835

Drosophila melanogaster
(Fruit fly) BDGP6.32 12815 11585 3608

Magnaporthe oryzae
(Rice blast) MG8 407 365 196

Implementations. For each splicing graph, we fixed the
sets S and T as the set of exons appearing as first, or as
last, respectively, in some annotated transcript. We assume
that such S and T can be detected at the splicing graph
construction phase6. In practice, this could be done as stated
in Section 2. The algorithm from Theorem 5 (optimized) was
implemented in C++, and uses an implementation of the
Edmons-Karp algorithm [68], [69] from the LEMON graph
library [70] for theoretical guarantees. To implement the un-
optimized version (not two-fingers, nor the flow data struc-
ture) we used the LEMON’s implementation of the Network
simplex algorithm [71], [72] (for better performance). The
input data manipulation and evaluation code was written

6. This assumption is also part of the perfect conditions in which we
ran our experiments.

in Python, including the computation of the ST -unitigs dis-
cussed later. Our entire code and input datasets are publicly
available at https://github.com/algbio/SafePathsRNAPC.
Our C++ code was compiled with optimization flag -O9

using compiler gcc version 8.3.0. The experiments ran on
a single thread in a Linux machine (Debian GNU/Linux 10,
kernel 4.19.0-10-amd64), with processor Intel (R) Core
(TM) i7-8750H @ 2.2 GHz and 16 GB of RAM.

Choice of parameter ` and its effect on correctness.

For a splicing graph, let us denote by t the number of
true transcripts. By construction and definition, the RNA
transcripts of a splicing graph correspond to a constrained
path cover with at most ` = t paths. Thus, safe paths for
such constrained path covers are also correct, in the sense
that they appear in the true RNA transcripts (because they

https://github.com/algbio/SafePathsRNAPC


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3131203, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

appear in any constrained path cover with at most ` = t

paths). However, safe paths for constrained path covers with
` < t may not be correct (i.e. may not appear in some
true RNA transcript). As such, for each splicing graph, we
first compute the smallest size (i.e. number of paths) of a
constrained path cover, for the fixed S and T , and we denote
this size by k. Since t is unknown in practice, we perform
experiments for ` 2 {k, k + 1, . . . , 2k}, to evaluate which is
a good choice for the parameter `. Note that maximal safe
paths for ` = 2k are common to all path covers (of any size)
as stated in Observation 4, thus if t > 2k we can interpret
the results for ` = t using the results for ` = 2k (even when
we did not run the algorithm for ` = t).

Baseline comparison with ST -unitigs. We also imple-
mented a standard strategy used by genome assemblers
to compute contigs. This involves reporting those paths
whose internal vertices have in-degree and out-degree equal
to 1 (and with at least one internal vertex), also called
unitigs [37]. If no vertex of S or of T appears in a unitig,
then the unitig is safe for constrained path covers, for any `.
Intuitively, to cover an internal vertex v of a unitig P (which
exists by definition), one must arrive from some vertex of S,
then entirely traverse the prefix of P until v, and then arrive
to some vertex in T , thus entirely traverse the suffix P from
v. However, if e.g. some vertex of T appears in P after v,
the path in the constrained path cover covering v may stop
before reaching the end of P . As such, we say that an ST -
unitig is a unitig containing no vertex of S and T as internal.
It holds that ST -unitigs are safe and correct for constrained
path covers, for any `.

Evaluation metrics. To evaluate the performance of RNA
contig we report several metrics computed in vertex length,
that is, number of exons, and in base length, that is, the total
number of bases in all the exons considered.

Our first two metrics show the improvement of RNA
contigs with respect to ST -unitigs. Since ST -unitigs must
be covered by one path, they are subpaths of some maximal
safe path. As such, for every ST -unitig we compute its
improvement as the longest RNA contig containing it, and
report the difference and ratio of their lengths.

From this point onward, by contig we denote both an
RNA contig, and an ST -unitig. Our second set of metrics
measure the sensitivity of both approaches from different
perspectives. First, for every transcript (and every approach)
we compute the longest contig segment inside the transcript,
that is, the longest path that is a common subpath of
the transcript and of some contig. We say that the length
of this subpath is the maximum coverage of the transcript.
To specifically measure the coverage of coding sequences,
we also compute their maximum coverage, and we call
it maximum coding coverage. Besides, for every transcript
we compute a standard metric used in genome assembly,
namely, the e-size [73] of the transcript. In this case, the e-
size is the average length of all contigs inside the transcript
overlapping a random location of it. More precisely, for
every position in a transcript T , we take the average length
over all contig segments inside T overlapping that position.
The e-size of the transcript is obtained as the average of
such averages, over all positions of the transcript. Finally,
to normalize our results, we report our sensitivity metrics
divided by the length of the corresponding transcript.

Our final metric computes the precision of contigs per
splicing graph. We classify a contig as correct if it is a subpath
of at least one annotated transcript. The precision over a
splicing graph is the total length of the correct contigs,
divided by the total contig length. Concrete examples of
some of these metrics can be found in Figure 3.

Safe paths of a variation graph. To demonstrate the
time scalability of our algorithms, we computed safe paths
of a variation graph common to all path covers (` = 1).
Note that this is not related to multi-assembly, the main
application envisioned by this paper. However, safe paths in
this context can be interpreted as genomic regions common
to all individuals represented by the variation graph. We
used a variation graph built from the Leukocyte Receptor
Complex (LRC) [74], which constitutes one of the most
diverse variant spots. We extracted subgraphs of different
sizes of the LRC variation graph and run the optimized
and unoptimized versions of our algorithm. Sugraphs were
taken as subgraphs induced by a consecutive segment of
vertices in a topological order, which guarantees the width
of the resulting subgraph to be at most the width of the
original graph [75].

3.2 Results

In this section we show a summary of the results of the
metrics described in Section 3.1 across the different datasets.
A detailed breakdown of the metrics and running times for
each dataset can be found in the Supplemental material 2.
For the metrics maximum coverage, e-size and precision, we
only show them in base length. We observed that average
precision for ` = k is over 75% for every dataset except
barley (over 60%) and rice blast (over 44%). On the other
hand, the average precision for ` = k + 1 is over 99% for
all species and 100% for ` = t and ` = 2k as expected.
Moreover, in general, all metrics are very close (less than 1%
of difference at most) for ` = k + 1, ` = t and ` = 2k,
suggesting that safe paths derived with prior knowledge
of the number of transcripts (` = t) can be reasonably
approximated as safe paths for ` = k + 1 or safe paths
common to all path covers (` = 2k), with a small tradeoff of
precision versus coverage. In the next results we fix ` = k+1
for RNA contigs.

Table 2 shows the improvement of RNA contigs with re-
spect to ST -unitigs. Large graphs have longer RNA contigs,
suggesting that maximal safe paths manage to connect paths
in different sectors that ST -unitigs are not able to capture
with their simple rule. Overall, RNA contigs are from 1.4
(small graphs, human) to 8.1 (large graphs, wheat) times
longer in terms of bases, and from 1.17 to 5.6 times longer
in terms of vertices (i.e. exons). The most improvement with
respect to ST -unitigs occurs in wheat and fruit fly, whereas
the least improvement in human, mouse and rice blast, the
latter with just a few graphs (see Table 1) with no more than
15 vertices each.

In Table 3 we show e-size and maximum coverage
(normalized by transcript length) at transcript level, and
in Table 4 we show them at splicing graph level. In terms
of precision (Table 4), as discussed before, RNA contigs
reach over 99% on average for ` = k + 1 for all datasets
and size of splicing graphs, while ST -unitigs are 100%



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3131203, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 2
Absolute (first line) and relative (second line) improvement of RNA contigs (` = k+ 1) over ST -unitigs, in terms of base and vertex lengths. Values

are averages over all ST -unitigs in the respective dataset and group.

small (3-15 vertices) medium (16-50 vertices) large (51-725 vertices)
Dataset bases vertices bases vertices bases vertices

Human 160.95
1.41⇥

0.58
1.18⇥

245.65
1.80⇥

1.53
1.45⇥

233.60
1.96⇥

1.93
1.55⇥

Mouse 202.29
1.47⇥

0.72
1.23⇥

334.33
1.95⇥

2.02
1.57⇥

425.96
2.30⇥

3.13
1.81⇥

Wheat 765.49
2.84⇥

3.29
1.96⇥

1078.49
4.07⇥

6.74
2.81⇥

3103.23
8.14⇥

19.84
5.62⇥

Barley 150.79
1.89⇥

0.64
1.21⇥

192.70
2.56⇥

1.42
1.44⇥

162.73
2.91⇥

2.05
1.62⇥

Fruit fly 662.90
2.09⇥

1.59
1.48⇥

1339.42
3.20⇥

3.61
2.07⇥

3049.40
5.33⇥

5.97
2.67⇥

Rice blast 281.37
1.57⇥

0.55
1.17⇥ – – – –

TABLE 3
Metrics e-size and maximum coverage, divided by transcript length, for RNA contigs (` = k + 1, first row) and ST -unitigs (second row), in base

length. Values are averages over all annotated transcripts in the respective dataset and group.

small (1-2000 bases) medium (2001-5000 bases) large (5001-205012 bases)
Dataset e-size max-cov e-size max-cov e-size max-cov

Human 0.49
0.33

0.63
0.49

0.41
0.33

0.56
0.48

0.43
0.37

0.58
0.52

Mouse 0.58
0.40

0.72
0.55

0.51
0.37

0.66
0.51

0.50
0.41

0.64
0.55

Wheat 0.72
0.49

0.81
0.63

0.64
0.46

0.74
0.60

0.63
0.49

0.74
0.62

Barley 0.43
0.35

0.57
0.48

0.28
0.23

0.42
0.37

0.22
0.19

0.37
0.33

Fruit fly 0.83
0.66

0.90
0.74

0.70
0.55

0.80
0.67

0.58
0.46

0.70
0.60

Rice blast 0.88
0.69

0.94
0.76

0.89
0.77

0.94
0.84

0.72
0.47

0.79
0.56

precise as expected (as well as RNA contigs for ` = 2k,
see Supplemental material 2). At transcript level (Table 3)
e-size of RNA contigs is over 40% for human, meaning
that at a random position on the transcript, the average
length of all the safe “stretches” inside that transcript, and
overlapping that location, is about 40% of the length of the
transcript length, whereas for wheat and rice blast the e-size
is over 60% and 70% respectively and only 22% for barley.
At graph level, on small graphs, the longest RNA contig of
a transcript is on average over 80% of the transcript length
in all species. Table 5 shows maximum coding coverage
(normalized by coding sequence length) at coding sequence
level. RNA contigs cover over 70% of the coding sequences
of transcripts in most cases. and over 48% in general. In
terms of these global metrics, RNA contigs are typically
between 10-20 percentage points over ST -unitigs. These
results suggest that RNA contigs can provide significantly
long and correct information about the RNA transcripts of a
splicing graph, without any heuristic or complex assembly
model.

Finding ST -unitigs takes less than 2 seconds, whereas
RNA contigs are reported in 32 seconds for the unopti-
mized variant, and less than 12 seconds for the optimized
in the slowest dataset (human, see Table 6). As such, the

unoptimized algorithm, being the simplest, is a good initial
candidate to be adapted and extended by future practical
RNA contig assemblers. The difference of running times
between both algorithms becomes clear when working in
the subgraph of the variation graph LRC (see Table 7). When
considering a subgraph of 10000 vertices the optimized
version takes less than two minutes while the unoptimized
more than 20 minutes. Finally, for the subgraph of 50000 ver-
tices the optimized version takes less than 1 hour whereas
the unoptimized runs in more than 17 hours.

4 CONCLUSIONS

The results of this paper are two-fold. On the theory side,
we considered a natural generalization of the classical
problem of minimum path cover, including more practical
constraints, which we called constrained path covers. We
devised the first algorithms finding all maximal safe paths
for them, through a general “avoid-and-test” framework,
that could have applications in other safety problems. We
showed how the direct versions of these algorithms can be
improved by reusing computation, with the help of a flow
data structure and a two-finger computation of maximal
safe paths.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3131203, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 4
Precision (prec) and, e-size and maximum coverage, divided by transcript length, for RNA contigs (` = k + 1, first row) and ST -unitigs (second

row), per splicing graph, in base length. Values are averages over all splicing graphs in the respective dataset and group.

small (3-15 vertices) medium (16-50 vertices) large (51-725 vertices)
Dataset prec e-size max-cov prec e-size max-cov prec e-size max-cov

Human 1.00
1.00

0.68
0.49

0.81
0.62

0.99
1.00

0.48
0.35

0.63
0.51

0.99
1.00

0.37
0.27

0.52
0.42

Mouse 1.00
1.00

0.71
0.51

0.83
0.64

0.99
1.00

0.51
0.36

0.66
0.51

0.99
1.00

0.44
0.29

0.58
0.44

Wheat 1.00
1.00

0.72
0.49

0.80
0.63

1.00
1.00

0.58
0.44

0.70
0.58

1.00
1.00

0.51
0.40

0.62
0.52

Barley 0.99
1.00

0.68
0.54

0.80
0.66

0.99
1.00

0.39
0.33

0.54
0.47

0.99
1.00

0.23
0.18

0.36
0.32

Fruit fly 1.00
1.00

0.81
0.65

0.89
0.74

1.00
1.00

0.51
0.38

0.65
0.54

1.00
1.00

0.50
0.41

0.67
0.58

Rice blast 1.00
1.00

0.88
0.71

0.93
0.79

– – – – – –

TABLE 5
Metric maximum coding coverage, divided by transcript length, for RNA contigs (` = k + 1, first row) and ST -unitigs (second row), in base length.

Values are averages over all coding sequences in the respective dataset and group.

Dataset small (1-1000 bases) medium (1001-2500 bases) large (2501-40620 bases)

Human 0.70
0.59

0.54
0.45

0.48
0.41

Mouse 0.79
0.69

0.67
0.56

0.57
0.49

Wheat 0.85
0.67

0.83
0.68

0.77
0.65

Barley 0.70
0.59

0.56
0.49

0.50
0.43

Fruit fly 0.94
0.79

0.90
0.77

0.80
0.68

Rice blast 0.95
0.80

0.98
0.91

0.96
0.82

TABLE 6
Running times for our two implementations finding all RNA contigs in all

splicing graphs, for constrained path covers with ` = k + 1. The
Unoptimized column corresponds to the algorithm not using the

two-finger approach nor the flow data structure. The Optimized column
corresponds to our algorithm using these optimizations.

Dataset Unoptimized (secs) Optimized (secs)
Human 32.55 11.29
Mouse 12.34 4.78
Wheat 2.88 0.82
Barley 29.13 10.95
Fruit fly 0.52 0.30
Rice blast 0.01 0.01

On the practical side, we implemented our algorithms
and offer these implementations in publicly available repos-
itories for practitioners and further development of our
ideas. As an application of our algorithmic ideas, we pro-
posed safe paths for constrained paths covers as a contig
model in RNA transcript assembly.

We evaluated the benefits of RNA contigs on transcript
annotation (perfect conditions) of various species and ob-
served for the first time that RNA contigs contain signifi-
cantly long parts of the transcripts. This fact was not obvious
from the outset, because in practice the problems may admit

TABLE 7
Running times for our two implementations of maximal safe paths

(` = 1) on subgraphs of a variation graph built from the Leukocyte
Receptor Complex (LRC). The number in the graph name indicates the

number of vertices in the subgraph.

Graph Unoptimized (hh:mm:ss) Optimized (hh:mm:ss)
LRC 10000 00:22:27 00:01:52
LRC 20000 02:25:33 00:10:38
LRC 30000 03:59:03 00:20:18
LRC 40000 10:57:50 00:35:10
LRC 50000 17:45:48 00:57:05

many different path covers, which have very little subpaths
in common, and thus very short safe paths overall. How-
ever, our results show that RNA contig assembly is indeed a
valid approach in transcriptome assembly. We also provided
several key computational techniques that can lay at the
core of future practical tools. As such, once RNA contigs are
possibly enhanced with heuristics (for example from [12],
[16], [18], [20], [57]), RNA contig assembly could enjoy the
same success as contig assembly does in genome assembly.

Finally, our results are not limited to RNA transcript
assembly but to any multi-assembly problem whose solu-
tion can be modeled with a path cover. For example, in the
assembly of reads sequenced from all viral quasi-species in a



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3131203, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

sample there exist minimum path cover-like methods [27],
[28], and methods based on path covers optimal to some
flow criteria [29], [30].

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their useful sug-
gestions to improve this work. This work was partially
funded by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 851093, SAFEBIO) by the
Academy of Finland (grants No. 322595, 328877), by US
Fulbright program, the Fulbright Finland Foundation, the
Helsinki Institute for Information Technology (HIIT), as well
as NSF grant DBI-1759522.

REFERENCES

[1] A. I. Tomescu and P. Medvedev, “Safe and complete contig assem-
bly through omnitigs,” Journal of Computational Biology, vol. 24,
no. 6, pp. 590–602, 2017.

[2] M. Vingron and P. Argos, “Determination of reliable regions
in protein sequence alignments,” Protein Engineering, Design and
Selection, vol. 3, no. 7, pp. 565–569, 1990.

[3] M.-C. Costa, “Persistency in maximum cardinality bipartite
matchings,” Operations Research Letters, vol. 15, no. 3, pp. 143–149,
1994.

[4] L. Salmela and A. I. Tomescu, “Safely filling gaps with partial
solutions common to all solutions,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 16, no. 2, pp. 617–626,
2018.

[5] M. Cairo, P. Medvedev, N. O. Acosta, R. Rizzi, and A. I. Tomescu,
“An optimal O(nm) algorithm for enumerating all walks common
to all closed edge-covering walks of a graph,” ACM Transactions
on Algorithms, vol. 15, no. 4, pp. 1–17, 2019.

[6] M. Cairo, R. Rizzi, A. I. Tomescu, and E. C. Zirondelli,
“Genome assembly, from practice to theory: safe, complete
and linear-time,” in Proceedings of the 48th International
Colloquium on Automata, Languages, and Programming, ser.
LIPIcs, vol. 198, 2021, pp. 43:1–43:18. [Online]. Available:
https://doi.org/10.4230/LIPIcs.ICALP.2021.43

[7] M. Cairo, S. Khan, R. Rizzi, S. Schmidt, A. I. Tomescu, and E. C.
Zirondelli, “Genome assembly, a universal theoretical framework:
unifying and generalizing the safe and complete algorithms,”
CoRR, vol. abs/2011.12635, 2020.

[8] Y. Xing, A. Resch, and C. Lee, “The multiassembly problem:
reconstructing multiple transcript isoforms from EST fragment
mixtures,” Genome Research, vol. 14, no. 3, pp. 426–441, 2004.

[9] N. Beerenwinkel, H. Günthard, V. Roth, and K. Metzner, “Chal-
lenges and opportunities in estimating viral genetic diversity from
next-generation sequencing data,” Frontiers in Microbiology, vol. 3,
p. 329, September 2012.

[10] C. Trapnell, B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J.
Van Baren, S. L. Salzberg, B. J. Wold, and L. Pachter, “Transcript
assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation,”
Nature Biotechnology, vol. 28, no. 5, p. 511, 2010.

[11] L. Song and L. Florea, “CLASS: constrained transcript assembly of
RNA-Seq reads,” BMC Bioinformatics, vol. 14, no. 5, pp. 1–8, 2013.

[12] E. Bao, T. Jiang, and T. Girke, “BRANCH: boosting RNA-Seq
assemblies with partial or related genomic sequences,” Bioinfor-
matics, vol. 29, no. 10, pp. 1250–1259, 2013.

[13] J. Liu, T. Yu, T. Jiang, and G. Li, “TransComb: genome-guided
transcriptome assembly via combing junctions in splicing graphs,”
Genome Biology, vol. 17, no. 1, pp. 1–9, 2016.

[14] T. Yu, Z. Mu, Z. Fang, X. Liu, X. Gao, and J. Liu, “Transborrow:
genome-guided transcriptome assembly by borrowing assemblies
from different assemblers,” Genome Research, vol. 30, no. 8, pp.
1181–1190, 2020.

[15] J. Feng, W. Li, and T. Jiang, “Inference of isoforms from short
sequence reads,” Journal of Computational Biology, vol. 18, no. 3,
pp. 305–321, 2011.

[16] W. Li, J. Feng, and T. Jiang, “IsoLasso: a LASSO regression
approach to RNA-Seq based transcriptome assembly,” Journal of
Computational Biology, vol. 18, no. 11, pp. 1693–1707, 2011.

[17] S. Mangul, A. Caciula, S. Al Seesi, D. Brinza, A. R. Banday,
and R. Kanadia, “An integer programming approach to novel
transcript reconstruction from paired-end RNA-Seq reads,” in
Proceedings of the ACM Conference on Bioinformatics, Computational
Biology and Biomedicine, 2012, pp. 369–376.

[18] M. Pertea, G. M. Pertea, C. M. Antonescu, T.-C. Chang, J. T.
Mendell, and S. L. Salzberg, “StringTie enables improved recon-
struction of a transcriptome from RNA-seq reads,” Nature Biotech-
nology, vol. 33, no. 3, pp. 290–295, 2015.

[19] E. Bernard, L. Jacob, J. Mairal, and J.-P. Vert, “Efficient RNA
isoform identification and quantification from RNA-Seq data with
network flows,” Bioinformatics, vol. 30, no. 17, pp. 2447–2455, 2014.

[20] J. J. Li, C.-R. Jiang, J. B. Brown, H. Huang, and P. J. Bickel, “Sparse
linear modeling of next-generation mRNA sequencing (RNA-Seq)
data for isoform discovery and abundance estimation,” Proceedings
of the National Academy of Sciences, vol. 108, no. 50, pp. 19 867–
19 872, 2011.

[21] A. I. Tomescu, A. Kuosmanen, R. Rizzi, and V. Mäkinen, “A
novel combinatorial method for estimating transcript expression
with RNA-Seq: bounding the number of paths,” in Proceedings
of the 13th International Workshop on Algorithms in Bioinformatics.
Springer, 2013, pp. 85–98.

[22] ——, “A novel min-cost flow method for estimating transcript
expression with RNA-Seq,” BMC Bioinformatics, vol. 14, no. 5, pp.
1–10, 2013.

[23] Y.-Y. Lin, P. Dao, F. Hach, M. Bakhshi, F. Mo, A. Lapuk, C. Collins,
and S. C. Sahinalp, “CLIIQ: Accurate Comparative Detection
and Quantification of Expressed Isoforms in a Population,” in
Proceedings of the 12th International Workshop on Algorithms in
Bioinformatics. Springer, 2012, pp. 178–189.

[24] T. Gatter and P. F. Stadler, “Ryūtō: network-flow based transcrip-
tome reconstruction,” BMC Bioinformatics, vol. 20, no. 1, pp. 1–14,
2019.

[25] S. Mao, L. Pachter, D. Tse, and S. Kannan, “Refshannon: A
genome-guided transcriptome assembler using sparse flow de-
composition,” PloS One, vol. 15, no. 6, p. e0232946, 2020.

[26] L. Williams, A. I. Tomescu, and B. Mumey, “Flow Decomposition
with Subpath Constraints,” in Proceeding of the 21st International
Workshop on Algorithms in Bioinformatics. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2021.

[27] N. Eriksson, L. Pachter, Y. Mitsuya, S.-Y. Rhee, C. Wang,
B. Gharizadeh, M. Ronaghi, R. W. Shafer, and N. Beerenwinkel,
“Viral population estimation using pyrosequencing,” PLoS Com-
putational Biology, vol. 4, no. 5, p. e1000074, 2008.

[28] O. Zagordi, A. Bhattacharya, N. Eriksson, and N. Beerenwinkel,
“ShoRAH: estimating the genetic diversity of a mixed sample from
next-generation sequencing data,” BMC Bioinformatics, vol. 12,
no. 1, pp. 1–5, 2011.

[29] J. A. Baaijens, L. Stougie, and A. Schönhuth, “Strain-aware as-
sembly of genomes from mixed samples using flow variation
graphs.” in Proceedings of the 24th Annual Conference on Research
in Computational Molecular Biology, 2020, pp. 221–222.

[30] J. A. Baaijens, B. Van der Roest, J. Köster, L. Stougie, and
A. Schönhuth, “Full-length de novo viral quasispecies assem-
bly through variation graph construction,” Bioinformatics, vol. 35,
no. 24, pp. 5086–5094, 2019.

[31] R. P. Dilworth, “A decomposition theorem for partially ordered
sets,” Annals of Mathematics, vol. 51, no. 1, pp. 161–166, 1950.
[Online]. Available: http://www.jstor.org/stable/1969503

[32] D. R. Fulkerson, “Note on Dilworth’s decomposition theorem for
partially ordered sets,” Proceedings of the American Mathematical
Society, vol. 7, no. 4, pp. 701–702, 1956.

[33] J. Bang-Jensen and G. Z. Gutin, Digraphs: theory, algorithms and
applications. Springer Science & Business Media, 2008.

[34] V. Mäkinen, A. I. Tomescu, A. Kuosmanen, T. Paavilainen,
T. Gagie, and R. Chikhi, “Sparse Dynamic Programming on DAGs
with Small Width,” ACM Transactions on Algorithms, vol. 15, no. 2,
pp. 1–21, 2019.

[35] M. Cáceres, M. Cairo, B. Mumey, R. Rizzi, and A. I. Tomescu,
“Sparsifying, Shrinking and Splicing for Minimum Path Cover in
Parameterized Linear Time,” CoRR, vol. abs/2107.05717, 2021.

[36] A. Srivastava, L. Malik, H. Sarkar, M. Zakeri, F. Almodaresi,
C. Soneson, M. I. Love, C. Kingsford, and R. Patro, “Alignment

https://doi.org/10.4230/LIPIcs.ICALP.2021.43
http://www.jstor.org/stable/1969503


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3131203, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

and mapping methodology influence transcript abundance esti-
mation,” Genome Biology, vol. 21, no. 1, pp. 1–29, 2020.

[37] J. D. Kececioglu and E. W. Myers, “Combinatorial algorithms for
DNA sequence assembly,” Algorithmica, vol. 13, no. 1, pp. 7–51,
1995.

[38] D. Li, C.-M. Liu, R. Luo, K. Sadakane, and T.-W. Lam, “MEGAHIT:
an ultra-fast single-node solution for large and complex metage-
nomics assembly via succinct de Bruijn graph,” Bioinformatics,
vol. 31, no. 10, pp. 1674–1676, 2015.

[39] J. Ruan and H. Li, “Fast and accurate long-read assembly with
wtdbg2,” Nature Methods, vol. 17, no. 2, pp. 155–158, 2020.

[40] R. Rizzi, A. I. Tomescu, and V. Mäkinen, “On the complexity
of minimum path cover with subpath constraints for multi-
assembly,” BMC Bioinformatics, vol. 15, no. 9, pp. 1–11, 2014.

[41] S. C. Ntafos and S. L. Hakimi, “On path cover problems in
digraphs and applications to program testing,” IEEE Transactions
on Software Engineering, vol. 5, no. 5, pp. 520–529, 1979.

[42] H. V. Jagadish, “A compression technique to materialize transitive
closure,” ACM Transactions on Database Systems, vol. 15, no. 4, pp.
558–598, 1990.

[43] W. Pijls and R. Potharst, “Another note on Dilworth’s decomposi-
tion theorem,” Journal of Discrete Mathematics, vol. 2013, 2013.

[44] N. Cloonan, A. R. Forrest, G. Kolle, B. B. Gardiner, G. J. Faulkner,
M. K. Brown, D. F. Taylor, A. L. Steptoe, S. Wani, G. Bethel
et al., “Stem cell transcriptome profiling via massive-scale mRNA
sequencing,” Nature Methods, vol. 5, no. 7, pp. 613–619, 2008.

[45] A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold,
“Mapping and quantifying mammalian transcriptomes by RNA-
Seq,” Nature Methods, vol. 5, no. 7, pp. 621–628, 2008.

[46] P. M. Kim, H. Y. Lam, A. E. Urban, J. O. Korbel, J. Affourtit,
F. Grubert, X. Chen, S. Weissman, M. Snyder, and M. B. Gerstein,
“Analysis of copy number variants and segmental duplications
in the human genome: Evidence for a change in the process of
formation in recent evolutionary history,” Genome Research, vol. 18,
no. 12, pp. 1865–1874, 2008.

[47] N. López-Bigas, B. Audit, C. Ouzounis, G. Parra, and R. Guigó,
“Are splicing mutations the most frequent cause of hereditary
disease?” FEBS Letters, vol. 579, no. 9, pp. 1900–1903, 2005.

[48] Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolutionary
tool for transcriptomics,” Nature Reviews Genetics, vol. 10, no. 1,
pp. 57–63, 2009.

[49] S. P. Shah, A. Roth, R. Goya, A. Oloumi, G. Ha, Y. Zhao,
G. Turashvili, J. Ding, K. Tse, G. Haffari et al., “The clonal and
mutational evolution spectrum of primary triple-negative breast
cancers,” Nature, vol. 486, no. 7403, pp. 395–399, 2012.

[50] Q. Pan, O. Shai, L. J. Lee, B. J. Frey, and B. J. Blencowe, “Deep sur-
veying of alternative splicing complexity in the human transcrip-
tome by high-throughput sequencing,” Nature Genetics, vol. 40,
no. 12, pp. 1413–1415, 2008.

[51] A. Byrne, C. Cole, R. Volden, and C. Vollmers, “Realizing the
potential of full-length transcriptome sequencing,” Philosophical
Transactions of the Royal Society B, vol. 374, no. 1786, p. 20190097,
2019.

[52] S. L. Amarasinghe, S. Su, X. Dong, L. Zappia, M. E. Ritchie, and
Q. Gouil, “Opportunities and challenges in long-read sequencing
data analysis,” Genome Biology, vol. 21, no. 1, pp. 1–16, 2020.

[53] A. Kuosmanen, T. Norri, and V. Mäkinen, “Evaluating approaches
to find exon chains based on long reads,” Briefings in Bioinformatics,
vol. 19, no. 3, pp. 404–414, 2018.

[54] K. Sahlin and V. Mäkinen, “Accurate spliced alignment of long
RNA sequencing reads,” Bioinformatics, 07 2021, btab540. [Online].
Available: https://doi.org/10.1093/bioinformatics/btab540

[55] S. Kovaka, A. V. Zimin, G. M. Pertea, R. Razaghi, S. L. Salzberg,
and M. Pertea, “Transcriptome assembly from long-read RNA-Seq
alignments with StringTie2,” Genome Biology, vol. 20, no. 1, pp.
1–13, 2019.

[56] M. Guttman, M. Garber, J. Z. Levin, J. Donaghey, J. Robinson,
X. Adiconis, L. Fan, M. J. Koziol, A. Gnirke, C. Nusbaum et al.,
“Ab initio reconstruction of cell type–specific transcriptomes in
mouse reveals the conserved multi-exonic structure of lincRNAs,”
Nature Biotechnology, vol. 28, no. 5, pp. 503–510, 2010.

[57] A. M. Mezlini, E. J. Smith, M. Fiume, O. Buske, G. L. Savich,
S. Shah, S. Aparicio, D. Y. Chiang, A. Goldenberg, and M. Brudno,
“iReckon: simultaneous isoform discovery and abundance estima-
tion from RNA-Seq data,” Genome Research, vol. 23, no. 3, pp. 519–
529, 2013.

[58] Z. Xia, J. Wen, C.-C. Chang, and X. Zhou, “NSMAP: a method for
spliced isoforms identification and quantification from RNA-Seq,”
BMC Bioinformatics, vol. 12, no. 1, pp. 1–13, 2011.

[59] D. Hiller and W. H. Wong, “Simultaneous isoform discovery and
quantification from RNA-Seq,” Statistics in Biosciences, vol. 5, no. 1,
pp. 100–118, 2013.

[60] L. Maretty, J. A. Sibbesen, and A. Krogh, “Bayesian transcriptome
assembly,” Genome Biology, vol. 15, no. 10, pp. 1–11, 2014.

[61] M. Shao and C. Kingsford, “Accurate assembly of transcripts
through phase-preserving graph decomposition,” Nature Biotech-
nology, vol. 35, no. 12, pp. 1167–1169, 2017.

[62] T. Steijger, J. F. Abril, P. G. Engström, F. Kokocinski, T. J. Hubbard,
R. Guigó, J. Harrow, and P. Bertone, “Assessment of transcript re-
construction methods for rna-seq,” Nature Methods, vol. 10, no. 12,
pp. 1177–1184, 2013.

[63] D. Deblasio, K. Kim, and C. Kingsford, “More accurate transcript
assembly via parameter advising,” Journal of Computational Biology,
vol. 27, no. 8, pp. 1181–1189, 2020.

[64] C. Ma, H. Zheng, and C. Kingsford, “Finding ranges of optimal
transcript expression quantification in cases of non-identifiability,”
bioRxiv, pp. 2019–12, 2020.

[65] ——, “Exact transcript quantification over splice graphs,” Algo-
rithms for Molecular Biology, vol. 16, no. 1, pp. 1–15, 2021.

[66] A. D. Yates, P. Achuthan, W. Akanni, J. Allen, J. Allen, J. Alvarez-
Jarreta, M. R. Amode, I. M. Armean, A. G. Azov, R. Bennett et al.,
“Ensembl 2020,” Nucleic Acids Research, vol. 48, no. D1, pp. D682–
D688, 2020.

[67] V. Mäkinen, D. Belazzougui, F. Cunial, and A. I. Tomescu, Genome-
Scale Algorithm Design. Cambridge University Press, 2015.

[68] E. A. Dinic, “Algorithm for solution of a problem of maximum
flow in networks with power estimation,” in Soviet Mathematics
Doklady, vol. 11, 1970, pp. 1277–1280.

[69] J. Edmonds and R. M. Karp, “Theoretical improvements in algo-
rithmic efficiency for network flow problems,” Journal of the ACM,
vol. 19, no. 2, pp. 248–264, 1972.

[70] B. Dezső, A. Jüttner, and P. Kovács, “LEMON–an open source C++
graph template library,” Electronic Notes in Theoretical Computer
Science, vol. 264, no. 5, pp. 23–45, 2011.

[71] K. Damian, B. Comm, and M. Garret, “The minimum cost flow
problem and the network simplex method,” Ph.D. dissertation,
Ph. D. Dissertation, University College Dublin, Ireland, 1991.

[72] G. B. Dantzig, Linear programming and extensions. Princeton
University Press, 1998, vol. 48.

[73] S. L. Salzberg, A. M. Phillippy, A. Zimin, D. Puiu, T. Magoc,
S. Koren, T. J. Treangen, M. C. Schatz, A. L. Delcher, M. Roberts
et al., “GAGE: A critical evaluation of genome assemblies and
assembly algorithms,” Genome Research, vol. 22, no. 3, pp. 557–567,
2012.

[74] C. Jain, S. Misra, H. Zhang, A. Dilthey, and S. Aluru, “Accelerating
sequence alignment to graphs,” in Proceedings of the International
Parallel and Distributed Processing Symposium. IEEE, 2019, pp. 451–
461.

[75] M. Cáceres, M. Cairo, B. Mumey, R. Rizzi, and A. I. Tomescu, “A
linear-time parameterized algorithm for computing the width of
a DAG,” in International Workshop on Graph-Theoretic Concepts in
Computer Science. Springer, 2021, pp. 257–269.

Manuel Cáceres is a second year Doctoral
student of computer science at University of
Helsinki, Finland. His main research interests in-
clude graph algorithms, algorithmic bioinformat-
ics and compressed data structures.

https://doi.org/10.1093/bioinformatics/btab540


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2021.3131203, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Brendan Mumey earned his Ph.D. in Computer
Science and Engineering at the University of
Washington in 1997 and joined the faculty at
Montana State University in 1998 where he cur-
rently serves as Professor of Computer Science.
In the spring of 2020, he held a visiting Fulbright-
Nokia Distinguished Chair position at the Univer-
sity of Helsinki. He served as the Editor of ACM
SIGACT News, a quarterly periodical for the the-
oretical computer science community, from 2008
to 2015.

Edin Husić is a fourth year PhD student of math-
ematics at The London School of Economics
and Political Science, UK. His main research
interests include algorithmic game theory, com-
binatorial optimization, and graph theory.

Romeo Rizzi was born in 1967. He received
the Laurea degree in Electronic Engineering
from the Politecnico di Milano in 1991, and in
1997 received a Ph.D. in Computational Math-
ematics and Informatics from the University of
Padova, Italy. Afterwards, he held Post-Doc and
other temporary positions at research centers
like CWI (Amsterdam, Holland), BRICS (Aarhus,
Denmark) and FBK (Trento, Italy). In 2001, he
became Assistant Professor by the University of
Trento. In 2005, he became Associate Professor

by the University of Udine. Currently, he is full professor in Operations
Research at the University of Verona, Italy. His main interests are in
Combinatorial Optimization and Algorithms. He is an Area Editor of
4OR and acts as a Reviewer for the American Mathematical Society.
His papers cover the areas of Discrete Mathematics, Combinatorics,
Algorithms, Bioinformatics, and Artificial Intelligence. Since 2004, he has
intensively acted as a trainer of the Italian team for the iOi.

Massimo Cairo obtained his PhD in Mathemat-
ics in 2019 at the University of Verona, work-
ing on algorithmic problems related to graphs
and temporal planning. During and after his
PhD studies, he collaborated on multiple oc-
casions with the Algorithmic Bioinformatics re-
search group of the University or Helsinki.

Kristoffer Sahlin is an Assistant Professor at
Stockholm University (the Department of Math-
ematics) and SciLifeLab Fellow at the national
center for molecular biosciences, Science for
Life Laboratory. He obtained his PhD in Com-
puter science from KTH Royal institute of Tech-
nology in 2015 and has worked as a Postdoc-
toral researcher at Pennsylvania State University
and at University of Helsinki.

Alexandru I. Tomescu obtained his PhD in
Computer Science in 2012 at the University of
Udine, Italy. Between 2012 and 2020, he worked
at the University of Helsinki in several postdoc-
toral positions on Algorithmic Bioinformatics, in-
cluding Academy of Finland Postdoctoral Fellow
(2014–2017), and Researcher (2019–). In 2020
he was appointed as Associate Professor at the
University of Helsinki, where he currently leads
the Graph Algorithms team, of the wider Algo-
rithmic Bioinformatics research group. In 2019

he obtained the ERC Starting Grant.


