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Abstract—Flow network decomposition is a natural model for problems
where we are given a flow network arising from superimposing a set
of weighted paths and would like to recover the underlying data, i.e.,
decompose the flow into the original paths and their weights. Thus,
variations on flow decomposition are often used as subroutines in mul-
tiassembly problems such as RNA transcript assembly. In practice, we
frequently have access to information beyond flow values in the form
of subpaths, and many tools incorporate these heuristically. But despite
acknowledging their utility in practice, previous work has not formally
addressed the effect of subpath constraints on the accuracy of flow
network decomposition approaches. We formalize the flow decompo-
sition with subpath constraints problem, give the first algorithms for it,
and study its usefulness for recovering ground truth decompositions. For
finding a minimum decomposition, we propose both a heuristic and an
FPT algorithm. Experiments on RNA transcript datasets show that for in-
stances with larger solution path sets, the addition of subpath constraints
finds 13% more ground truth solutions when minimal decompositions
are found exactly, and 30% more ground truth solutions when minimal
decompositions are found heuristically.

Index Terms—Flow decomposition, subpath constraints, RNA-Seq.

1 INTRODUCTION

Flow networks are useful models in many domains, from
transportation planning to computational biology. In some
cases, the flow on a graph arises as the superposition of
some set of weighted paths, such as trips through a road
network, routing of information through a communication
network, or paths in a graph encoding mixed reads se-
quenced from several biological sequences, as in the case
of RNA transcripts through a splice graph.

In many such applications, we are actually presented
with the inverse problem: given a flow in a graph, we
need to recover the initial paths that made up the flow.
This problem is also referred to as the flow decomposition
(FD) problem. In computational biology, this is a common
subroutine in multiassembly problems, such as RNA tran-
script assembly or viral quasispecies assembly. Prioritizing
parsimonious solutions proved to be an accurate assembly
method, but it can suffer when there are multiple parsimo-
nious solution to choose from. As such, in this paper we
consider a natural generalization of the flow decomposition
problem, by assuming that extra information about the
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initial paths is available in the form of subpath constraints.
These are subpaths in the graph that must be followed
by at least one path in the flow decomposition; thus, we
are looking for flow decompositions with the property that
every constraint is a subpath of some decomposition path.
We call the resulting problem flow decomposition with subpath
constraints (FDSC).

In a version of this work presented at WABI 2021, we
left open the question of whether FDSC (not necessarily
minimal) can be solved in polynomial time. In this updated
work, we give a polynomial time algorithm for FDSC, and
present additional discussion on the hardness of two FDSC
variants.

1.1 Biological setting

Algorithms that solve variations of the flow decomposition
problem are at the heart of most RNA transcript assembly
software, including IsoLasso [1], Traph [2], FlipFlop [3],
Scallop [4] and StringTie [5]. More recently, flow decom-
position methods were used for another multi-assembly
problem, namely strain-aware genome assembly, with ap-
plications to viral quasispecies assembly [6], [7]. Briefly,
flow decomposition methods for sequence assembly work
by using reads and their abundances to first construct a flow
network whose vertices may represent exons (in the case of
an RNA splice graph) or k-mers (in the case of a de Bruijn
graph). Edges in the network are present if there is read
evidence that some sequence followed the edge (e.g. two
exons are consecutive in some transcript). Furthermore, each
edge is weighted by the number of reads that support it.
With perfect data, we might expect the weights to directly
provide a flow in the network; however in practice some
adjustment to the weights may be needed to achieve a flow.
One such method uses a minimum-cost flow approach for
this adjustment [2]. Another approach [8] models the input
as an inexact flow network in which edge flows belong to
intervals, that are estimated from the data. In all cases,
we seek a path decomposition for the flow network that
minimizes the number of paths.

In Kloster et al. [9] it was shown that in the case of
RNA transcripts, most of the time the “true” transcripts also
provide a minimum flow decomposition of the splice graph.
However, there can often be more than one solution to the
minimum flow decomposition problem; indeed, Kloster et
al. found that, when the number of true transcripts is seven,
the minimum flow decomposition found corresponds to the
true paths in only 80% of the instances of that size, with



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2022.3147697, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

2

lower accuracies as the number of true paths increases.
In fact, practical methods for RNA assembly methods also
have a precision of 50%-60% on some human datasets [10],
[5]. Adding subpath constraints to the flow decomposition
problem may further restrict the solution space, thus im-
proving RNA assembly accuracy.

In practice, the subpath constraints can be derived from
reads overlapping three or more nodes of the flow graph.
Long RNA-Seq reads naturally have this property in many
cases; however, also short reads can exhibit this behavior in
the case of short exons. As we review below, other possible
sources of such constraints exist in practice as well, such as
from partial assemblies, or super-reads [5] constructed from
short reads that can be uniquely extended.

Finally, most of the RNA assembly tools cited above
work in a so-called genome-guided setting in which also a
reference genome of the studied species is available. This
makes the splice graph acyclic (i.e. a DAG). While both
the original flow decomposition problem and our variant
with subpath constraints can be defined in flow networks
with cycles (which would correspond to a de novo assembly
setting), in this paper we focus on DAGs only.

1.2 Related work
Finding a flow decomposition with the minimum number
of weighted paths is a well-studied problem in computer
science. Even when restricted to DAGs, the minimum FD
problem is NP-hard [11], and thus various practical ap-
proaches to it exist: approximation algorithms [12], [13], [14],
[15], [16], [17], FPT algorithms [9], greedy algorithms [11],
[18]. By taking the set of subpaths constraints to be empty
(or to correspond to all edges of the graph with non-zero
flow), it follows that also finding a solution to the FDSC
problem with a minimum number of paths is NP-hard.

The idea of improving RNA assembly by multi-edge
subpath information is in fact used by several flow-based
tools, such as Scallop [4] and StringTie [5]. However, both
approaches integrate subpaths in a heuristic manner, with
no overall formulation of the computational problem they
are solving. The same holds also for the viral quasispecies
assembler [6]. Recently, the method TransBorrow [19] uses
partial assemblies from different RNA assembly tools, and
works by heuristically extending the subpaths they corre-
spond to in a splice graph.

Moreover, our FDSC problem generalizes a related prob-
lem on DAGs. Recall that in the minimum path cover (MPC)
problem, we are looking for a minimum-cardinality set of
path that together cover all nodes of a DAG (e.g. “explain”
all exons of a splice graph). The problem is behind early
RNA assembly methods such as Cufflinks [20], and early
virus quasispecies assembly methods such as ShoRAH [21].
The MPC problem has been extended to include subpath
constraints as well [22], [23], [24], [25], by analogously
requiring that each constraint is a subpath of some solution
path. While these generalizations are polynomially-time
solvable, they (together with the initial MPC formulations)
are usually unsatisfactory since they ignore the weights of
the graph (i.e. the abundances of the reads)—recall that
most state-of-the-art RNA assembly methods cited above
are flow-based. Moreover, MPCs and MPCs with subpath

constraints correspond to restricted classes of flows in some
DAG [26], [22], and thus the minimum FDSC problem is
a strict generalization of the MPC problem with subpath
constraints.

1.3 Contributions
In this work, we initiate the formal study of the FDSC prob-
lem. This is a natural model for multiassembly problems, as
seen by the abundance of methods and tools that incorpo-
rate subpath information for improving RNA and viral qua-
sispecies assemblies. However, because finding a minimum
solution to the FDSC problem is NP-hard, these methods
and tools have focused on either heuristic approaches or a
polynomial-time solvable particular version of the problem
(MPC) that ignores valuable edge weight information. Here,
we make two advances that bring us closer to being able
to use the complete version of the problem in practical
tools. On the theoretical side, we formalize the problem and
give the first algorithm to determine whether an instance
is feasible (Theorem 18), and produce a solution if it is.
The algorithm works via a reduction to the standard flow
decomposition problem where any solution must translate
to a solution in the original graph that satisfies all of the
subpath constraints. Based on this reduction, in Section 3.2
we also propose a “bridge-reweighting” heuristic algorithm
to solve the minimum FDSC problem. Additionally, we
give an FPT algorithm for the minimum FDSC problem
(Theorem 20), extending the one of Kloster et al. [9]. Finally,
in Section 4, to add to the complexity picture around the
FDSC problem, we show that two application-oriented FD
problems related to FDSC are NP-hard in the strong sense,
even without requiring a solution with a minimum number
of paths.

We implement both algorithms for FDSC, and perform a
proof-of-concept study of their usefulness in RNA assembly.
We experiment on a dataset developed by Shao et al. [18]
to study their heuristic for the minimum FD problem. The
same dataset was then used by Kloster et al. [9], who
focused on studying the usefulness of standard minimum
flow decompositions in RNA assembly, as explained above.
We find that our FDSC algorithms increase our ability to
uncover the ground truth RNA transcripts, as more and
longer subpath constraints are included in the input. This
holds both when minimality is enforced, through our FPT
algorithm, and when it is only heuristically sought, through
the flow decomposition reduction and an associated path
reduction heuristic. For example, when there are seven
ground truth transcripts, we increase the accuracy by 13%
when an optimal solution is found (via FPT) and 30% when
a heuristic solution is found.

Our FDSC algorithm runs in polynomial time (i.e. al-
ways finds a solution to the FDSC problem, not necessarily
minimum). Though we desire a minimum such path de-
composition, algorithms that guarantee such solutions in
general may be too slow to be used in practice. Despite a
lack of minimality guarantees in our heuristic FDSC algo-
rithm, our experiments show that the addition of subpath
constraints yields solutions that approach the accuracy of a
minimum decomposition without subpath constraints; thus,
our results show that heuristic FDSC is a practical substitute
for minimum FD without subpath constraints.
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Fig. 1. An example FDSC flow network with the flow values of the edges
being 1 or x; the dashed paths indicate the subpath constraints. If x = 1,
then the instance is infeasible. If x = 2, then the instance is feasible
and requires three paths to decompose (whereas the associated FD
instance without subpath constraints can be decomposed with two paths
in both cases).

2 PRELIMINARIES

Since flow weights represent read counts, we restrict atten-
tion to integral flow networks and flow decompositions.

Definition 1. A flow network G = (V,E, f) is a directed
acyclic graph (DAG) comprised of a set of vertices V con-
taining a source s and sink t, a set of directed edges E, and
a flow function f : E ! N, such that for v 2 V \ {s, t},

X

u:(u,v)2E

f(u, v) =
X

w:(v,w)2E

f(v, w). (1)

Finally, for each v 2 V , there is an s-t path in G that includes
v.

Definition 2 (Flow decomposition). A flow decomposition for
a flow network G = (V,E, f) consists of a set of s-t paths
P = (P1, . . . , Pk) and associated integral flow weights w =
(w1, . . . , wk) with wi 2 N such that for each edge e 2 E,

X

i:e2Pi

wi = f(e). (2)

We define several problems concerning finding decom-
positions of flow networks into paths.

Problem 3 (MFD). Given a flow network G = (V,E, f), the
minimum flow decomposition problem is to find a decomposi-
tion (P, w) such that |P| is minimized.

Definition 4 (Flow decomposition with subpath con-
straints). Let G = (V,E, f) be a flow network. Subpath
constraints are simple paths R = {R1, . . . , R`} in G such
that no Ri ✓ Rj . A flow decomposition (P, w) satisfies the
subpath constraints if and only if

8Ri 2 R 9Pj 2 P such that Ri is a subpath of Pj

(in short, Ri 2 Pj).
(3)

Figure 1 shows an example of a flow network with
subpath constraints.

Problem 5 (FDSC). Given a flow network G = (V,E, f) and
subpath constraints R, the flow decomposition with subpath
constraints problem is to determine if there exists, and if so,
find a flow decomposition (P, w) satisfying (3).

Problem 6 (MFDSC). Given a flow network G = (V,E, f)
and subpath constraints R, the minimum flow decomposition
with subpath constraints problem is to determine if there
exists, and if so, find a flow decomposition (P, w) satisfying
(3) such that |P| is minimized.

3 FDSC ALGORITHMS

3.1 FDSC reduces to FD
We now describe a reduction from the FDSC problem to the
FD problem. The idea is to convert subpath constraints into
edges in an FD instance so that any path decomposition of
the FD instance translates into a path decomposition for the
FDSC instance that covers the subpath constraints.

Given a flow network G = (V,E, f) with subpath
constraints R, we define the overdemand of an edge as

do(e) = max(0, |{i : e 2 Ri}|� f(e)), (4)

and say that e is overdemanded if do(e) > 0. The FDSC prob-
lem (G,R) may be feasible if multiple subpaths covering e

are satisfied by a single path in a path decomposition.
If no edges are overdemanded, we can give a simple

reduction from FDSC to FD by transforming all subpath
constraints in the FDSC instance into edges in the FD
instance. We address this case in Section 3.1.1 and the case
with overdemanded edges in Section 3.1.2.

3.1.1 Instances without overdemanded edges
Lemma 7. Let G = (V,E, f) be a flow network with
subpath constraints R such that no edge is overdemanded.
Let G0 = (V,E0

, f
0) be the flow network that results from

converting every subpath constraint Ri = [v1, v2, . . . , v|Ri|]
to a bridge edge ei = (v1, v|Ri|) with f

0(ei) = 1 and
subtracting one from the flow values on the edges it covers.
That is, for all e 2 E, f 0(e) = f(e) � |{i : e 2 Ri}|. G0 is a
flow network.

Proof. Consider building G
0 from G iteratively by convert-

ing each subpath constraint into a new edge and subtracting
its flow from the edges it covers. At each step, conservation
of flow holds. Thus, after the final step, f 0 is a flow on G

0.
Additionally, because no edge is overdemanded, all flow
values in f

0 are nonnegative. Thus, G0 is a flow network.

Figure 3 shows an example of the reduction of an FDSC
instance to a FD instance with a bridge edge.

Lemma 8. Let G and G
0 be as described in Lemma 7. Let

(P 0
, w) be a size k solution to the FD problem on G

0. There
exists a size k solution to the FDSC problem on G.

Proof. We show how to construct a size k solution to FDSC
on G from (P 0

, w). For each path P
0 2 P 0, create a new path

P by replacing all bridge edges e0
i

with the original sequence
of nodes Ri. By construction, Ri must form a path from the
start node of ei to the end node of ei in P , and so P is a
valid path from s to t in G. We take P to be the set of all k
such paths P . We now must show that (P, w) forms a flow
decomposition with subpath constraints for G.

Let e be any edge in G and let R0 ✓ R be the set of
subpath constraints containing e. We can divide the paths
in P that cover e into two disjoint sets: PB , those that
covered bridge edges ei : Ri 2 R0, and PO , those those
that covered the original edge e in G

0. Because (P 0
, w) is a

flow decomposition for G0, each path in PB must have unit
weight. Thus, paths in PB contribute |{i : Ri 2 R0}| to e’s
flow. On the other hand, paths in PO must cover e’s flow
in G

0, which is f(e) � |{i : Ri 2 R0}|. Thus, paths from
PB and PO together cover e with exactly f(e) units of flow.
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Additionally, PB must satisfy all of the subpath constraints
R0, so together PB and PO do as well.

Because any FDSC instance without overdemanded
edges can be solved by reduction to FD, it follows that all
FDSC instances without overdemanded edges are feasible.

Corollary 8.1. Let G = (V,E, f) be a flow network with
subpath constraints R. A sufficient condition for a flow
decomposition to exist is that no edge is overdemanded.

3.1.2 Resolving overdemanded edges
When an FDSC instance has an overdemanded edge, the
reduction given above fails, because any overdemanded
edge would have a negative flow value after subtracting all
of its demands from its original flow. However, if the FDSC
instance (G,R) is feasible, it is possible to first transform
(G,R) to an FDSC instance (G,R⇤), where no edge is
overdemanded and any path decomposition for (G,R⇤)
also provides a feasible path decomposition for (G,R). By
Lemma 7, (G,R⇤) can be solved via reduction to an FD
instance. We now show how to obtain (G,R⇤), if it exists.

Lemma 9. Let (G,R) be a feasible FDSC instance with
overdemanded edge e and (P, w) be a path decomposi-
tion for (G,R). Let R0 ✓ R be the set of subpath con-
straints that contain e. There is some P 2 P such that
|{Ri : Ri 2 R0

, Ri 2 P}| � 2.

Proof. Suppose not. That is, suppose (P, w) is a path decom-
position for (G,R) but no path in P covers two or more
subpath constraints in R0 completely. This means that every
subpath constraint in R0 must be satisfied by a different
path; call this set of paths P 0 and let the total weight
assigned to these paths be w

0 � |P 0| = |R0| = |{i : e 2 Ri}|.
As e is overdemanded, we have |{i : e 2 Ri}| > f(e). But
then w

0
> f(e), contradicting the fact that (P, w) is a path

decomposition for (G,R).

Inspired by the above lemma, we consider pairs of
subpath constraints that may be satisfied by the same path
in a decomposition.

Definition 10 (Compatible subpaths). Two subpaths
Ri, Rj 2 R are compatible if and only if Ri and Rj have
a suffix-prefix overlap (so that Ri [ Rj forms a simple path
in G).

Definition 11 (Directly-compatible subpaths). Two sub-
paths Ri, Rj 2 R are directly compatible if and only if Ri

and Rj are compatible and there does not exist a subpath
Rk such that Ri and Rk are compatible and Rk and Rj are
compatible.

We remark that the directly-compatible relation is just
the transitive reduction of the compatible relation.

Lemma 12. Let (G,R) be an FDSC instance with some
overdemanded edge e. Then (P, w) is a solution for (G,R)
if and only if there exist directly-compatible subpaths Ri

and Rj , each containing e, such that (P, w) is a solution for
(G,R [ {Ri [Rj} \ {Ri, Rj}).

Proof. (!) Let (G,R) be a feasible FDSC instance with
overdemanded edge e. Let (P, w) be a path decomposition
for (G,R). Let R0 ✓ R be the set of subpath constraints that

contain e. By Lemma 9, there exists a P 2 P and Ri, Rj 2 R0

such that Ri 6= Rj and Ri, Rj 2 P . Since Ri and Rj

both belong to P and overlap (since they each contain e),
it follows that they are compatible. If Ri and Rj are not
directly compatible, there must exist some Rk such that Ri

and Rk both contain e and are directly compatible. In this
case, take Rj to be Rk. Furthermore, the path P satisfies the
subpath constraint Ri [ Rj , so (P, w) is a feasible solution
for (G,R [ {Ri [Rj} \ {Ri, Rj}).

( ) Let Ri and Rj be directly-compatible subpaths that
both contain e. Let (P, w) be a feasible solution to (G,R [
{Ri [ Rj} \ {Ri, Rj}). It follows that there exists a path
P 2 P that covers Ri [ Rj . Clearly, P also covers Ri and
Rj , so (P, w) is also a feasible solution for (G,R).

Corollary 12.1. Let (G,R) be an FDSC instance. If there
are no compatible subpaths Ri and Rj containing some
overdemanded edge e, then (G,R) is infeasible.

Lemma 12 suggests that we can determine feasibility
by finding combinations of subpath constraints that are
satisfied by the same paths. We can then think of merging
these subpath constraints together to form an equivalent
instance without overdemanded edges. One way to deter-
mine feasibility, then, would be to consider every possible
way of merging subpaths; however, there are an exponential
number of such possibilities.

To do this it polynomial time, we define a new graph
built from the subpath constraints, and show that certain
path coverings in this graph correspond to valid ways to
merge the subpath constraints. If no such path cover exists,
then the instance is infeasible.

We first define the new graph.

Definition 13 (Constraint graph). Let (G,R) be an FDSC
instance. We define its constraint graph G

c as the graph
where the vertices are constraints in R and an edge (Ri, Rj)
indicates that Ri and Rj are directly compatible.

An example constraint graph for an FDSC instance is
shown in Fig. 2.

Let L be the total length of all subpath constraints and
recall that ` denotes the number of subpath constraints.
We can construct the constraint graph G

c in O(L + `
3)

time by first using Gusfield’s algorithm for all pairs suffix-
prefix overlaps in O(L + `

2) time [27] and then finding
the transitive reduction of this relation in O(`3) time using
Aho’s algorithm with standard matrix multiplication [28].
(Note that the original all pairs suffix-prefix overlap relation
is acyclic since no subpath constraint is properly contained
inside another, and G is a DAG.)

Remark 14. G
c is a DAG.

Definition 15 (Edge-induced subgraph). Let e be an edge
in G. The edge-induced subgraph G

c(e) is the subgraph of Gc

consisting of all vertices Ri in G
c (and induced edges) such

that e 2 Ri.

We now show that a certain path cover of the constraint
graph corresponds to a valid way to merge subpath con-
straints.

Lemma 16. Let (G,R) be an FDSC instance and let Gc be
its constraint graph. (G,R) is feasible if and only if there
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is a vertex-disjoint path cover Pc of Gc such that, for every
edge e in G, at most f(e) paths in Pc visit Gc(e).

Proof. (!) Assume (G,R) is feasible. By Lemma 12 and
Corollary 12.1, it is possible to merge subpath constraints
until no edge is overdemanded. The resulting constraint
subpaths are each formed from the union of original con-
straint subpaths in G that were directly compatible, so each
resulting subpath corresponds to a path in G

c. Since each
original subpath belongs to exactly one of the final subpaths,
all such paths provide a vertex-disjoint path cover Pc of Gc.
Let e 2 G. Since e is not overdemanded, the number of
paths from Pc that visit Gc(e) is at most f(e).

( ) Let Pc be a vertex-disjoint path cover for G
c such

that, for every edge e in G, at most f(e) paths in Pc visit
G

c(e). Create a new FDSC instance (G,R0) as follows: For
each path in Pc, add a single subpath constraint to R0 that
corresponds to union of the subpath constraints in the path.
In (G,R0) no edge is overdemanded, since no edge in G had
more associated paths in P

c than its flow. Thus (G,R0) is
feasible and has a solution (P, w). Since any path covering
a merged subpath constraint must cover the original un-
merged subpath constraints it contains, (P, w) also provides
a solution to (G,R).

There is a simple greedy strategy (Algorithm 1
and Fig. 2) to find a vertex-disjoint path cover Pc of G

c

that minimizes the number of paths intersecting G
c(e) for

all edges e in G.

Algorithm 1 Greedy algorithm to find a vertex-disjoint path
cover for G

c such that for all edges e in G, the minimum
possible number of paths in the cover visit Gc(e).

1: function PATHCOVER((G,R), Gc)
2: V  topological sorting R1, . . . , R` of vertices of Gc

3: Pc  ;
4: for Ri 2 V do
5: U  all in-neighbors of Ri

6: if |U | > 0 then
7: ui  the u 2 U with greatest number of edges

in suffix-prefix overlap with Ri

8: Extend the path ending at ui to end at Ri

9: else
10: Add new path starting and ending at Ri to Pc

11: end if
12: end for
13: return Pc

14: end function

Lemma 17. In O(`2) time, Algorithm 1 finds a vertex-
disjoint path cover for G

c such that for every edge e in G,
the minimum possible number of paths in the cover visit
G

c(e).

Proof. Consider any vertex R in G
c, with incoming edges

from R1, . . . , Ra. Clearly, at most one such edge (Ri, R) can
belong to any vertex-disjoint path cover. Observe that for
any edge e in G, whether (Ri, R) belongs to a path in the
cover only affects the number of cover paths visiting G

c(e)
provided both Ri and R belong to G

c(e); in other words, e
belongs to both Ri and R. For each incoming edge (Ri, R)

a

c
b

d e f

(a) FDSC instance

R1

R2
R3

(b) Constraint graph

Fig. 2. Illustration of the greedy choice for extending paths used in
Algorithm 1. When processing node R3 in the constraint graph in Fig-
ure 2b, the path from R2 is extended because the overlap between R2’s
subpath constraint and R3’s subpath constraint is greater than R1’s and
R3’s.

in G
c, consider the set of e 2 G for which e belongs to both

Ri and R; these edges form a path in G that is a prefix of
R. Thus, choosing (Ri, R) will benefit — i.e., not increase
— the visitation counts to exactly those edges in this prefix
of R. It follows that simply choosing the (Ri, R) that has
the longest suffix-prefix overlap will minimize all visitation
counts. By considering the vertices in topological order, we
can extend paths in O(1) time.

Since G
c has ` vertices, we can perform the topological

sort in O(`2) time. Each edge is examined once during the
algorithm, and we assume that suffix-prefix overlaps have
been pre-computed during the construction of G

c, so the
total running time of this step is O(`2).

Because we can find an optimal path cover in polynomial
time, we can check the feasibility of an FDSC instance (and,
if it is feasible, find a solution) in polynomial time.

Theorem 18. Let (G,R) be an FDSC instance with |R| = `,
total length of all subpath constraints L, and at least one
overdemanded edge. In O(L + `

3) time, we can determine
whether (G,R) is feasible, and if so, reduce (G,R) to an
equivalent FD instance with at most ` additional edges.

Proof. As discussed above, Gc and the suffix-prefix overlaps
can be found in O(L+`

3) time. We can then use Algorithm 1
to find an optimal vertex-disjoint path cover P

c of G
c in

O(`2) time. Because the path cover is optimal, Lemma 16
tells us that (G,R) is feasible if and only if for every
edge e of G, at most f(e) paths in P

c visit G
c(e); this

can be checked in O(L) time. If the instance is feasible, by
Lemma 16, we can merge the subpath constraints in each
path found by Algorithm 1, yielding an equivalent FDSC
instance with no overdemanded edges. Then, we can use
the method of Lemma 7 to transform that FDSC instance
into an equivalent FD instance with at most ` additional
edges.

3.2 A heuristic algorithm for MFDSC

In practice, we can run an MFD heuristic algorithm to deter-
mine a solution to the FD instance found via the reduction
in the previous section. We use greedy-width, first proposed
in [11], which greedily chooses the heaviest (“widest”) paths
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Fig. 3. Demonstration of reduction and bridge reweighthing procedure
used in the heuristic MFDSC algorithm. The resulting FD instance in
Figure 3b is solved using greedy-width. The dashed edge is a bridge
edge for the corresponding subpath constraint. Weights in parentheses
are the weights before bridge reweighting.

in order to decompose the flow1. As G0 is a DAG, a greedy-
width path can found in O(|V |+ |E|+ `) time, by standard
dynamic programming. In [11] it is shown that at most
|E| � |V | + 2 greedy-width paths can be found, so the
total time to find an FD solution is O(|E|(|V | + |E| + `)).
Translating the FD solution back to the original graph (fol-
lowing Lemma 8) yields a path decomposition for the FDSC
problem. However, in applications, we are often interested
in finding solution to the MFDSC problem, i.e. finding a so-
lution with the minimum number of paths. The introduction
of bridge edges in the reduction described above may lead
to more paths being required to decompose the reduced FD
instance than the original FDSC instance. This is because
we now must find paths through bridge edges, as well as
in the original flow network. For this reason, we apply a
bridge reweighting heuristic before decomposing the network
in order to reduce the number of paths. For some arbitrary
ordering of the bridge edges, we do the following:

1) For each bridge edge, find the minimum flow fmin

over the flow values on the edges of its correspond-
ing subpath constraint in the original network. Since
the FDSC is feasible, fmin � 0.

2) Subtract fmin from each of the subpath constraint
edges, and add fmin to the bridge edge.

Since the bridge edge starts at the first node of the subpath
constraint and ends at the last, flow conservation holds
and the mapping of the bridge paths back to the original
network again provides a solution to the FDSC instance.
Figure 3 demonstrates the reduction to an FD instance and
the bridge reweighting step on an example FDSC instance.

3.3 An FPT scheme for MFDSC
In this section, we describe an extension of Toboggan [9],
an FPT algorithm for decomposing DAG flows, to also
handle subpath constraints. Toboggan is able to find a k-
path decomposition for a flow network G = (V,E, f),
if one exists, in 2O(k2) · (|V | + �)) time, where � is the

1. Greedy-width is a common heuristic algorithm for MFD. Other
heuristics such as Catfish [18] could also be substituted.

logarithm of the largest flow value present. To solve MFD,
Toboggan tests increasing k values until a solution is found.
We briefly describe Toboggan’s approach and then discuss
how to modify the algorithm so that it can also check if an
FD solution satisfies subpath constraints.

Toboggan considers the vertices of G in topological order
and computes a table Ti for each vertex vi using dynamic
programming. Table entries are of the form (g, L), where
g indicates how paths from the previous table Ti�1 are
extended, and L is a linear system indicating how the
weights of these paths are constrained to satisfy the flow
requirements on all edges encountered so far. This linear
system can be written as Aw = b, where A is a binary
matrix of k columns representing whether each row’s edge
is covered by each column’s path, w is the length k solution
vector, and b is the flow on the row’s edge. Because there
are k weights and all coefficients are integers, each linear
system can be reduced to k linearly independent rows. As
noted in [9], testing an integer linear system L for feasibility
and finding a solution can be done in O(k2.5k+o(k)|L|) time,
where |L| is shown to be k

O(1)
�.

When the final vertex in the order is reached, these linear
systems indicate the path flow constraints on all edges in G,
and so, if a particular system is feasible, the corresponding
paths and weights provide an FD solution.

To modify Toboggan to also consider the subpath con-
straints, for the final table T|V |, we add a second linear
system to simultaneously satisfy of the form Aw � b,
where A is an ` ⇥ k binary matrix and bT = (d1, . . . , d`).
Here A(i, j) 2 {0, 1} indicates whether path Pj contains Ri.
We give an updated version of a lemma [9, Lemma 5] that
bounds the number of distinct linear systems in the final
table.

Lemma 19. The final table has at most 4k
2+ k`

2

k!kk distinct linear
systems.

Proof. We follow the proof of [9, Lemma 5]. Since A is
an ` ⇥ k binary matrix, there are 2k` possible systems of
the second form. We must multiply this by the number of
flow matching systems which was bounded ([9, Lemma 5])
by 4k

2

k!kk . So, the total number of possible combined linear

systems is 2k` 4k
2

k!kk = 4k
2+ k`

2

k!kk .

Theorem 20. Let (G,R) be an FDSC instance with |R| = `

and � is the logarithm of the largest flow value in the input.
Modifying the Toboggan algorithm as described provides
an FPT algorithm for MFDSC with running time 2O(k2)|V |+
2O(k2+k`)(k + `)O(1)

�.

Proof. Kloster et al. prove ([9, Lemma 4]), that in any table
Ti, the number of distinct g values present is at mostp
k(0.649k)k. This implies (following [9, Theorem 7]) that

there are at most

4k
2+ k`

2

k!kk
·
p
k(0.649k)k =

p
k
4k

2+ k`
2 0.649k

k!

final linear systems L to check for integer solutions. The
encoding size of a linear system L is now bounded by (k +
`)O(1)

�, where � is the logarithm of the largest flow value
in the input. Checking feasibility and finding a solution for
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L can now be done in O(k2.5k+o(k)(k+ `)O(1)
�) time, so the

total time needed to check all such linear systems is at most

p
k
4k

2+ k`
2 0.649k

k!
·O(k2.5k+o(k)(k + `)O(1)

�)

 O(4k(k+
`
2 )k

1.5k1.765kko(k)(k + `)O(1)
�), (5)

using the fact that k
k

k!  e
k. The total running time of the

algorithm becomes 2O(k2)|V |+ 2O(k2+k`)(k + `)O(1)
�.

4 HARDNESS OF RELATED FLOW DECOMPOSI-
TION PROBLEMS

In this section we add to the computational complexity
picture around the FDSC problem by studying two natural
application-oriented variants of it. In contrast to the FDSC
problem, where deciding if the instance is feasible can be
done in polynomial time (recall Theorem 18), for both of
these problems feasibility checking is NP-complete in the
strong sense (i.e. even if the input flow values are bounded
by a polynomial in the size of the input; in fact, the former
one is NP-complete even when all flow values equal 1).
Since their application setting is slightly different from the
one of the FDSC problem (see our FDSC experiments in
Section 5), in this paper we do not give algorithms for them,
and leave that for future work.

First, we consider the version of the problem where the
subpath constraints have associated demands that must be
met by the flow assigned to a path that covers them. This
problem could arise if we would like a subpath constraint to
be covered by at least one flow path of higher weight, since
a more heavily-weighted path may be less likely to be result
of noisy data.

Definition 21 (Flow decomposition with subpath con-
straints and demands). Let G = (V,E, f) be a flow net-
work. Let R = {R1, . . . , R`} be a set of subpath constraints
in G, and let D = {d1, . . . , d`} be a set of demands, where
each di is associated to subpath constraint Ri. We say that a
flow decomposition (P, w) of G satisfies subpath constraints
R and demands D if and only if

8Ri 2 R 9Pj 2 P such that Ri 2 Pj and di  wj . (6)

Problem 22 (FDSCD). Given a flow network G = (V,E, f)
and subpaths constraints R and demands D, the flow decom-
position with subpaths constraints and demands problem is to
determine if there exists, and if so, find a flow decomposi-
tion (P, w) satisfying (6).

We note that FDSC is a special case of FDSCD, where
all demands are equal to one. The following proof is very
similar to the NP-completeness proof of [11] for MFD.

Theorem 23. FDSCD is NP-complete in the strong sense.

Proof. Clearly, FDSCD belongs to NP. For NP-hardness,
we reduce from the 3-PARTITION problem. The input of
this problem consists of a set of positive integers A =
{a1, a2, . . . , a3q}, where

P
a2A

a = qB and B/4 < a < B/2
for all a 2 A. The question is whether there exists a partition
of A into q disjoint subsets, each with exactly three elements
summing up to B.

s t

f(e1) = a1

f(e2) = a2

f(e3q) = a3q

f(b1) = B

f(b2) = B

f(bq) = B

Fig. 4. Given an instance of 3-PARTITION A = {a1, a2, . . . , a3q} withP
a2A a = qB , we construct the flow network with edges e1, . . . , e3q ,

b1, . . . , bq . For all i 2 {1, . . . , 3q}, we set f(ei) = ai, and for all
j 2 {1, . . . , q} we set f(bj) = B. For each ei we add the single-edge
subpath constraint [ei] with demand di = ai.

Given an input for 3-PARTITION, we construct the flow
network G = (V,E, f) with subpath constraints R with de-
mands D as in Figure 4. We claim that this is a YES instance
for 3-PARTITION if and only if the reduction creates a YES-
instance for FDSCD.

(!) Assume
�
{aj1 , aj2 , aj3 | j 2 {1, . . . , q}}

 
is a proper

3-partition of A. For each j 2 {1, . . . , q}, we build the
three flow paths (ej1 , bj), (ej2 , bj), (ej3 , bj), with weights
aj1 , aj2 , aj3 , respectively. This is possible since f(bj) = B =P3

k=1 ajk . As such, each subpath constraint [ei] of demand
ai is satisfied.

( ) Let (P, w) be a flow decomposition with subpath
constraints R and demands D of G as indicated. Since
the demand of each constraint [ei] is ai, and f(ei) = ai

it follows that each edge ei is used by exactly one flow
path of weight ai, and thus that P consists of exactly 3q
paths P1, . . . , P3q , with weights a1, a2, . . . , a3q , respectively.
For each j 2 {1, . . . , q}, consider the flow paths passing
thorough bj . Since B/4 < a < B/2 holds for all a 2 A,
there are exactly 3 such paths, say Pj1 , Pj2 , Pj3 , each of
weight aj1 , aj2 , aj3 respectively, passing through bj . As
such, {{aj1 , aj2 , aj3 | j 2 {1, . . . , q}}} is a proper 3-partition
of A.

Finally, since 3-PARTITION is NP-complete in the strong
sense [29], it follows that FDSCD is as well.

Our second problem variant is motivated by paired-end
reads, which naturally induce pairs of subpath constraints
that must be covered by the same flow path (since e.g. they
are sequenced from the same RNA transcript).

Definition 24 (Flow decomposition with paired subpath
constraints). Let G = (V,E, f) be a flow network. Paired
subpaths constraints are defined to be a set of pairs of simple
paths R = {(R1, R

0
1), . . . , (R`, R

0
`
)} in G. A flow decompo-

sition (P, w) satisfies the paired subpaths constraints if and
only if

8(Ri, R
0
i
) 2 R 9Pj 2 P such that Ri 2 Pj and R

0
i
2 Pj .

(7)

Problem 25 (FDPSC). Given a flow network G = (V,E, f)
and paired subpaths constraints R, the flow decomposition
with paired subpaths constraints problem is to determine if
there exists, and if so, find a flow decomposition (P, w)
satisfying (7).

Our NP-completeness proof below is similar to the NP-
completeness proof of the minimum path cover problem
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with paired subpath constraints from [30]. Note that hard-
ness holds even if all flow values equal 1.

Theorem 26. FDPSC is NP-complete even when all flows
values are 1.

Proof. Clearly, FDPSC belongs to NP. For NP-hardness, we
reduce from the problem of deciding whether the chromatic
number of an undirected graph G = (V,E) is 3. Given
G, we construct the flow network G

⇤ = (V ⇤
, E

⇤
, f), with

paired subpaths constraints R, as in Figure 5. We claim that
the chromatic number of G is 3 if and only if (G⇤

,R) is a
feasible FDPSC instance.

(!) Let V1, V2, V3 be a partition of V such that no edge
of G has endpoints in the same Vk. Then, we can construct
a flow decomposition (P1, P2, P3) of G

⇤, where each path
has weight 1, as follows. In the vertex part of G⇤, suppose
vi 2 Vk; Pk follows the edge labeled vi, and the other two
paths follow the other two edges parallel to it, respectively.
In the edge part of G

⇤, for each edge e = (vi, vj), where
vi 2 Vki and vj 2 Vkj , path Pki follows the edge labeled
v
0
i

and path Pkj follows the edge labeled v
0
j
. The remaining

path follows the middle unlabeled edge. Clearly, all subpath
constraint pairs are satisfied.

( ) Any flow decomposition of G⇤ has exactly 3 paths,
each of weight 1. Let P1, P2, P3 be a flow decomposition
with paired subpaths constraints of (G⇤

,R). We construct a
partition V1, V2, V3 of V : in the vertex part of G⇤, an edge
labeled vi belongs exactly to one Pk, and we assign vi to Vk.
Assume for a contradiction that some edge e = (vi, vj) of G
has endpoints in the same Vk. Recall that for e, R contains
a constraint pairing the edge labeled vi with the one labeled
v
0
i
, and one constraint pairing the edge labeled vj with the

one labeled v
0
j
. Because of these constraints, since Pk passes

through both vi and vj (in the vertex part of G
⇤), in the

edge part of G⇤ corresponding to e we have that Pk passed
through both the edge labeled v

0
i

and the one labeled v
0
j
,

which is a contradiction.

5 EXPERIMENTS

The algorithms described in Section 3 were implemented
in Python in a package called Coaster2. We refer to the
algorithm of Section 3.2 as heuristic MFDSC and Section 3.3
as FPT MFDSC. Experiments were performed on a high
performance research cluster, where each run was executed
on a single Intel Xeon Ivy Bridge E (3.4 Ghz) or similar
CPU. We denote the number of groundtruth paths for an
instance by k, and set a CPU time limit of 30 seconds for
smaller instances (2  k  8) and 1 hour for larger instances
(k = 9, 10). For fairness of comparison, we report only on
graph instances that ran to completion for all algorithm
and parameter combinations, unless otherwise mentioned.
Overall, we find that heuristic MFDSC completes for all test
instances in under one second, and FPT MFDSC completes
in under 30 seconds for all instances with k  5, which
includes the majority of instances. We give additional details
and results in the following sections.

2. Coaster is based on the codebase for Toboggan [31] and is available
at github.com/msu-alglab/coaster.

5.1 Datasets
As in previous studies on flow decomposition methods
for RNA-Seq assembly [9], [18], [8], we use a simulated
RNA-Seq dataset from [18] where each instance is a flow
network generated by simulating RNA transcripts and their
abundances with Flux-Simulator [32]. The original dataset
includes human, mouse, and zebrafish genes, but we restrict
our attention to instances in the human dataset, which
contains 100 independently generated transcriptomes. As
in [9], [8], we use only instances with at least two ground
truth paths (since a single ground truth path is trivial to
decompose). We also restrict the dataset to instances with 10
ground truth paths or fewer, yielding a total of 528,544 in-
stances. Because the transcripts and abundances are known,
we have ground truth paths and weights for each splice
graph instance. We measure accuracy as the proportion of
instances for which the algorithm returns the ground truth
set of paths and weights exactly.

5.2 Simulating subpath constraints
In order to simulate subpath constraints, we take subpaths
of the ground truth paths according to two parameters: the
number of subpaths `, and a fixed length for all subpaths
|R|. As noted in [9, Lemma 8], we can simplify the graph
by bypassing any vertex with out-degree or in-degree equal
one. We set |R| as the length of subpaths in this contracted
graph. To generate subpath constraints that are consistent
across experiments, we fix an arbitrary ordering for the
ground truth paths for each instance, and take the first
|R| edges of the first ` (contracted) paths as the subpaths.
We note that the method of generating subpath constraints
described here does not yield any overdemanded edges.

5.3 Accuracy results
To study the effect of the subpath constraints on the accu-
racy of the RNA-Seq assembly, we vary ` and |R| indepen-
dently, letting ` 2 [0, 4] and |R| 2 {3, 4}. Because instances
become more difficult to solve correctly as the number of
ground truth paths increases, we separate results by k.
Accuracy results for both algorithms are reported in Table 1.
For each k value, we also report the percentage of instances
that completed for all parameter combinations tested. As
already shown by Kloster et al. [9], the MFD solutions found
by Coaster for ` = 0 (for them, Toboggan) do correspond to
the the ground truth paths and weights most of the time.
However, for larger k values, we can see that FPT MFD
solutions (without subpath constraints) do not necessarily
recover the correct set of paths and weights. For k = 7, for
example, only 81% of the optimal decompositions produced
by Coaster are the ground truth decomposition that we
are seeking. Similarly, we see that FPT MFDSC solutions
tend to be correct, with accuracy decreasing as k increased.
However, FPT MFDSC has higher accuracy for all parameter
combinations than FPT MFD at the same k value. For k = 7,
when we add four subpath constraints of length four each,
the ground truth decomposition is found 91% of the time, a
13% increase over FPT MFD.

When ` = 0, our heuristic MFDSC algorithm is equiva-
lent to the often-used greedy-width heuristic for MFD; our
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s t

e = (vi, vj)

v� i

v� j

v1 v2 vn

Edge partVertex part

Fig. 5. Given an undirected graph G = (V,E), with V = {v1, v2, . . . , vn}, we construct a flow network G⇤ as illustrated. For every vertex vi we add
three parallel edges, labelling one of them with vi. For every edge e = (vi, vj) of G, we add three parallel edges, one labeled v0i and one labeled
v0j . For e we also add one constraint pairing the edge labeled vi from the vertex part, with the edge labeled v0i, and one constraint pairing the edge
labeled vj from the vertex part with the edge labeled v0j . The flow value of every edge is 1.

results show that adding subpath constraints to greedy-
width increases its accuracy considerably for larger k values,
for example, by 30% when k = 7. The increased accuracy of
heuristic MFDSC is also good news for the use of MFDSC in
practical methods, since heuristic MFD methods are already
commonly used in RNA-Seq tools. In fact, the inclusion
of many long subpath constraints makes heuristic MFDSC
more accurate than FPT MFD for k values up to 5, which
account for 95.6% of the full dataset studied (all k � 2).

Part of the success of the heuristic MFDSC can be
attributed to the fact that it finds optimal solutions in
most cases. Without subpath constraints, heuristic MFDSC
(i.e. greedy-width MFD) finds an optimal solution in 98.0%
and the ground truth solution in 95.3% of instances in
our dataset. With two subpath constraints of length 4, that
increases to 99.0% and 98.1%, respectively. (For ` > 2, small
k values are excluded, so results are not comparable with
` = 0 experiments.)

With and without subpath constraints, the vast majority
of incorrectly predicted path decompositions are due to the
algorithm returning an optimal decomposition of the same
size as the ground truth one, but different from it, rather
than a too-small optimal decomposition. As found in [9], in
nearly all instances, the ground truth path decomposition
is also an optimal decomposition. (They find that 0.043% of
instances of all ground truth k that ran to completion in 50
seconds had non-optimal ground truth decompositions; we
find that 0.100% of instances that completed in 30 seconds
for all parameter combinations and had ground truth k

less than 9 had non-optimal ground truth decompositions.)
However, most instances are solved correctly, so it could be
the case that the few instances that are not solved correctly
are those that had non-optimal ground truths. This tends
not to be the case. Overall, only 0.027% of instances for
which the FPT for MFD yields incorrect solutions have non-
optimal ground truth path decompositions. This is domi-
nated by the k = 2 instances, however, for which no instance
had a non-optimal ground truth; for k = 3 through k = 8,
between 0.1% and 0.3% of instances that were predicted
incorrectly had non-optimal ground truths. With many and
longer subpath constraints (|R| = 4 and ` = 4), it is still
only a very small number – 0.052% – of incorrect solutions
that have non-optimal ground truth path decompositions.
Thus, this implies that the addition of subpath constraints
restricts the solution space, allowing the algorithm to return
the correct one more frequently and explaining the increase
in accuracy when they are included.

5.4 Effect of the bridge reweighting
To confirm the effectiveness of the bridge reweighting
heuristic for MFDSC, as opposed to simply using a path
decomposition found by the method of Lemma 8, we mea-
sured the accuracy of the FDSC algorithm without bridge
reweighthing on the same dataset studied above. In that
case, the addition of subpath constraints in our experiments
reduces the accuracy of the path decompositions returned,
as shown in Table 2. Bridge reweighting allows the max-
imum flow that can cover a subpath constraint to do so,
without introducing extra weight-one paths.

5.5 Performance results
We measured CPU runtime of the implementation for both
algorithms using all instances for the given k range, even
those that timed out for some experimental conditions. For
heuristic MFDSC on 2  k  8 instances, the average, mini-
mum, and maximum runtimes were 0.0059s, 0.00096s, and
0.977s. For FPT instances, they were 0.076s, 0.001s, and 30s
(the maximum time allowed). On k = 9, 10 instances, the
average, minimum, and maximum runtimes were 0.018s,
0.004s, 0.155s for heuristic MFDSC and 289.3s, 0.932s, and
3600s (the maximum time allowed) for FPT FDSC.

Because of the optimizations made in Toboggan [9] on
which our FPT MFDSC implementation is based, memory
use is generally very limited even as k increases. We mea-
sured the peak memory use for large instances (k = 9, 10)
with a timeout limit of 1 hour for all experimental combi-
nations (` and |R| values) for the FPT MFDSC algorithm.
All but four instances used under 100MB of memory in
all experimental combinations; the average memory use
over all instances and all experimental combinations, even
those that timed out after an hour, was 47MB. For most
instances, the memory use is dominated by loading the
required Python packages (about 40MB).

6 DISCUSSION

In this work, we initiate the formal study of the MFDSC
problem, which is used as a model in applications such as
RNA sequencing and viral quasispecies assembly. We give
both a heuristic algorithm, based on a novel reduction to
flow decomposition, and an FPT algorithm, which extends
the FPT MFD algorithm of Kloster et al. [9]. Through exper-
iments on a previously-studied simulated transcriptomics
dataset, we verify the base assumption underlying the use of
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TABLE 1
Accuracy results using the MFDSC with bridge-reweighting heuristic algorithm (labeled “H-br”) and the MFDSC FPT algorithm (labeled “FPT”). For
k = 2 through k = 8 we use a CPU time limit of 30 seconds; for k = 9, 10 we use 1 hour. We only report instances that finished in the time limit for
all `, |R|, and for both algorithms for each k; the “pc” column reports the percentage of instances that completed for all runs for each k value. The

italicized values agree with the ones reported in [9, Figure 3], with some slight differences due to the fact that we restrict to the human dataset
(they studied two additional datasets) and timeout differences.

|R| = 3 |R| = 4

k n pc alg ` = 0 ` = 1 ` = 2 ` = 3 ` = 4 ` = 1 ` = 2 ` = 3 ` = 4

2 291734 100% H-br 0.992 0.999 0.999 1.000 1.000
FPT 0.991 0.999 0.999 1.000 1.000

3 130867 100% H-br 0.961 0.977 0.983 0.986 0.985 0.993 0.994
FPT 0.969 0.983 0.990 0.994 0.986 0.996 0.998

4 58167 100% H-br 0.901 0.926 0.941 0.948 0.958 0.942 0.964 0.974 0.979
FPT 0.934 0.952 0.964 0.974 0.983 0.958 0.976 0.987 0.995

5 25933 100% H-br 0.822 0.853 0.873 0.887 0.900 0.876 0.911 0.930 0.944
FPT 0.892 0.913 0.928 0.940 0.953 0.922 0.944 0.962 0.976

6 11774 99.6% H-br 0.727 0.763 0.784 0.805 0.816 0.787 0.831 0.862 0.883
FPT 0.849 0.870 0.885 0.898 0.911 0.881 0.906 0.928 0.944

7 5095 94.6% H-br 0.617 0.659 0.692 0.706 0.729 0.681 0.738 0.775 0.802
FPT 0.810 0.835 0.855 0.871 0.883 0.845 0.872 0.894 0.912

8 2109 83.7% H-br 0.495 0.523 0.558 0.589 0.611 0.545 0.607 0.664 0.702
FPT 0.787 0.808 0.822 0.833 0.845 0.819 0.840 0.863 0.884

9 1323 83.14% H-br 0.455 0.495 0.527 0.565 0.592 0.522 0.582 0.643 0.698
FPT 0.714 0.731 0.742 0.762 0.781 0.745 0.769 0.795 0.821

10 699 69.53% H-br 0.420 0.442 0.459 0.484 0.508 0.465 0.506 0.541 0.578
FPT 0.726 0.747 0.757 0.772 0.784 0.757 0.776 0.807 0.825

TABLE 2
Accuracy values for FD heuristic with (“H-br”) and without (“H-b”) bridge reweighthing, averaged over all instances with k  2  10. If all bridges

are kept at weight one, subpath constraints reduce the accuracy of the path decomposition, though less if they are longer.

|R| = 3 |R| = 4

` = 0 ` = 1 ` = 2 ` = 3 ` = 4 ` = 1 ` = 2 ` = 3 ` = 4

H-br 0.951 0.965 0.970 0.942 0.899 0.971 0.979 0.963 0.930
H-b 0.951 0.926 0.809 0.582 0.379 0.945 0.913 0.793 0.633

MFDSC in practical RNA-Seq tools: that the minimum-size
path decomposition should correspond to the ground truth
set of paths and weights. Additionally, we show that the use
of subpath constraints increases accuracy when compared
to MFD without subpath constraints. We also find that
our heuristic algorithm is practical, completing in less than
1 second for all instances studied, and achieves accuracy
levels near those of FPT MFDSC. This is an encouraging
result, because while RNA sequencing data tends toward
very small ground truth path sets, other multiassembly
problems such as viral quasispecies assembly may not –
for example, some benchmarking datasets of [33] contain
10 and 15 strains, meaning that MFDSC (or even MFD
without subpath constraints) would be intractable without
a heuristic.

The research presented here suggests a number of future
directions. One is to develop MFDSC algorithms for graphs
containing cycles. Though splice graphs for RNA assembly
are usually DAGs, graphs for de novo assembly of viral or
other genomes would likely contain cycles due to repeated
sequences. Another is to explore additional methods to
increase the accuracy of the decompositions found. Our
experiments show that as the size of ground truth gets large,

accuracy decreases because there are multiple optimal solu-
tions to choose from, even with the maximum length and
number of subpath constraints that we tested. To increase
accuracy, either more subpath constraints are needed (which
may be possible, depending on the domain), or additional
optimality criteria could be used. For example, the two
FDSC variants considered in Section 4 (together with yet
to be discovered algorithms for them and possible problem
generalizations) could guide the search for such optimality
criteria.
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and A. Schönhuth, “Full-length de novo viral quasispecies
assembly through variation graph construction,” Bioinform.,
vol. 35, no. 24, pp. 5086–5094, 2019. [Online]. Available:
https://doi.org/10.1093/bioinformatics/btz443

[8] L. Williams, G. Reynolds, and B. Mumey, “RNA transcript assem-
bly using inexact flows,” in 2019 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), 2019, pp. 1907–1914.

[9] K. Kloster, P. Kuinke, M. P. O’Brien, F. Reidl, F. S. Villaamil, B. D.
Sullivan, and A. van der Poel, “A practical FPT algorithm for
flow decomposition and transcript assembly,” in 2018 Proceedings
of the Twentieth Workshop on Algorithm Engineering and Experiments
(ALENEX). SIAM, 2018, pp. 75–86.

[10] T. Steijger, J. F. Abril, P. G. Engstrom, F. Kokocinski, T. R.
Consortium, T. J. Hubbard, R. Guigo, J. Harrow, and P. Bertone,
“Assessment of transcript reconstruction methods for RNA-Seq,”
Nat Meth, vol. 10, no. 12, pp. 1177–1184, 12 2013. [Online].
Available: http://dx.doi.org/10.1038/nmeth.2714

[11] B. Vatinlen, F. Chauvet, P. Chrétienne, and P. Mahey, “Simple
bounds and greedy algorithms for decomposing a flow into a
minimal set of paths,” European Journal of Operational Research, vol.
185, no. 3, pp. 1390–1401, 2008.

[12] T. Hartman, A. Hassidim, H. Kaplan, D. Raz, and M. Segalov,
“How to split a flow?” in 2012 Proceedings IEEE INFOCOM. IEEE,
2012, pp. 828–836.

[13] V. Suppakitpaisarn, “An approximation algorithm for multiroute
flow decomposition,” Electronic Notes in Discrete Mathematics,
vol. 52, pp. 367 – 374, 2016, iNOC 2015 – 7th International
Network Optimization Conference. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S1571065316300531

[14] K. Pieńkosz and K. Kołtyś, “Integral flow decomposition with
minimum longest path length,” European Journal of Operational
Research, vol. 247, no. 2, pp. 414–420, 2015.

[15] B. Mumey, S. Shahmohammadi, K. McManus, and S. Yaw, “Parity
balancing path flow decomposition and routing,” in 2015 IEEE
Globecom Workshops (GC Wkshps). IEEE, 2015, pp. 1–6.
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