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Grounding lines exist where land-based glacial ice flows on to a body of water. Accurately
modelling grounding-line migration at the ice–ocean interface is essential for estimating
future ice-sheet mass change. On the interior of ice sheets, the shores of subglacial lakes
are also grounding lines. Grounding-line positions are sensitive to water volume changes
such as sea-level rise or subglacial-lake drainage. Here, we introduce numerical methods
for simulating grounding-line dynamics in the marine ice sheet and subglacial-lake
settings. Variational inequalities arise from contact conditions that relate normal stress,
water pressure and velocity at the base. Existence and uniqueness of solutions to these
problems are established using a minimisation argument. A penalty method is used to
replace the variational inequalities with variational equations that are solved using a
finite-element method. We illustrate the grounding-line response to tidal cycles in the
marine ice-sheet problem and filling–draining cycles in the subglacial-lake problem. We
introduce two computational benchmarks where the known lake volume change is used to
measure the accuracy of the numerical method.
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1. Introduction

In Antarctica, grounded ice goes afloat on the ocean to create a series of ice shelves. The
characterisation and health of these ice shelves has received intense study because they
can restrain the flow of grounded ice through buttressing (Paolo, Fricker & Padman 2015;
Fürst et al. 2016; Pegler 2018). The transition from ice being in contact with the bed to
floating on water is called the grounding line. Grounding-line dynamics are closely tied to
the stability and evolution of marine ice sheets (Schoof 2007a, 2012; Gudmundsson et al.
2012). For example, satellite data show that rapid grounding-line retreat is occurring at
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Pine Island Glacier and Thwaites Glacier in the Amundsen Sea region of West Antarctica,
probably owing to sub-shelf melting and unstable bed geometry (Rignot et al. 2014; Milillo
et al. 2019). While models predict that this rapid migration will result in accelerated mass
loss in the future, the timing and magnitude of such change is uncertain (Favier et al.
2014; Joughin, Smith & Medley 2014). Accurately modelling grounding-line response to
climatic forcings is essential for forecasting land-ice contributions to sea-level rise.

Sea-level change causes grounding-line migration on both long and short time scales.
Satellite altimetry shows that ocean tides cause diurnal cycles in ice-shelf surface elevation
and flexure near the grounding line (Fricker & Padman 2006; Sykes, Murray & Luckman
2009; Brunt et al. 2010). Variability in the inland limit of elevation change over time
suggests that grounding-line positions are also sensitive to tidal cycles (Brunt, Fricker &
Padman 2011). Tidal flexure and grounding-line migration can cause variations in ice-flow
speed by modulating stresses and friction at the base (Gudmundsson 2007; Sergienko,
MacAyeal & Bindschadler 2009; Robel et al. 2017; Rosier & Gudmundsson 2020).

A similar setting where grounding lines occur is on the shores of subglacial lakes.
Numerous subglacial lakes have been identified beneath the Antarctic ice sheet through
a variety of geophysical methods (Wright & Siegert 2012). When the water volume of a
subglacial-lake changes, the ice surface above the lake responds accordingly. Anomalies in
surface-elevation changes have been to used to detect over one hundred actively filling or
draining subglacial lakes (Smith et al. 2009). Observations of subglacial-lake filling and
draining events provide information about the dynamics of the subglacial hydrological
system (Fricker & Scambos 2009; Smith et al. 2017; Siegfried & Fricker 2018). Modelling
the ice response to lake volume change requires consideration of grounding-line migration,
but this has not been included in previous studies (Pattyn 2008; Gudlaugsson et al. 2016).

Models for marine ice sheets based on approximations to the Stokes equations have
been developed, analysed and supported by laboratory experiments (Weertman 1974;
Muszynski & Birchfield 1987; MacAyeal 1989; Schoof 2007a,b; Robison, Huppert &
Worster 2010; Schoof 2012; Pegler & Worster 2013; Pegler et al. 2013; Seroussi et al.
2014). More recently, the full Stokes equations have been used to simulate the dynamics
of marine ice sheets (Durand et al. 2009a,b; Favier et al. 2012; Gudmundsson et al.
2012; Gagliardini et al. 2016; Cheng, Lötstedt & von Sydow 2020). On tidal time scales,
nonlinear viscoelastic models have been used (Rosier, Gudmundsson & Green 2014;
Rosier & Gudmundsson 2020). In these models, conditions on the normal stress and
velocity at the lower boundary determine whether ice remains in contact with the bed or
goes afloat. However, previous methods consider the contact conditions after discretisation
rather than include them in the variational problem.

While the marine ice sheet and subglacial-lake problems are similar, there are two
important differences. The first difference is that subglacial lakes have finite volume,
whereas the ocean volume is unbounded relative to the sub-shelf cavity volume. The
second difference is that the normal-stress boundary condition at the ice–water interface
can be well approximated a priori in the marine ice-sheet problem because sub-shelf water
is connected to the sea surface. In contrast to previous studies, we do not assume that the
subglacial-lake water pressure equals the cryostatic pressure (Pattyn 2008; Gudlaugsson
et al. 2016). Instead, we show later that the mean water pressure is part of the solution to
the problem and is constrained by water volume conservation.

In this paper, we derive and test numerical methods for grounding-line dynamics
in the marine ice sheet and subglacial-lake settings. In contrast to previous studies,
we incorporate the contact conditions directly into the variational formulations of the
problems. After describing the domain and governing equations (§§ 2.1 and 2.2), we
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derive expressions for water pressure (§ 2.3) and discuss the boundary conditions (§ 2.4).
Following a standard approach in contact mechanics, we show that the problems may
be cast as variational inequalities posed over a set of admissible velocity fields (§ 3.1).
We introduce minimisation formulations of the problems to establish well-posedness and
justify the penalty method (§ 3.2). We then derive the penalty formulations (§ 3.3) that
are solved numerically with a finite-element method (§ 3.4). To illustrate the numerical
method, we provide examples of grounding-line response to tidal cycles in the marine
ice-sheet problem (§ 4.1) and filling–draining cycles in the subglacial-lake problem (§ 4.2).

2. Model description

2.1. Domain
We consider a body of water beneath an ice sheet in the plane. We denote the spatial
coordinate by x = (x, z). We assume the lower boundary of the ice is described by a
function s(x, t) that is bounded below by the bed, β(x). We define h(x, t) to be the surface
elevation of the ice sheet. The ice-filled domain is defined by

Ω = {(x, z) : |x| < L/2, s(x, t) < z < h(x, t)} , (2.1)

for a constant length L. As we are mainly concerned with modelling ice flow near the
grounding lines, the length L is arbitrary but much smaller than the length of the ice sheet.
We let Γw and Γb be the ice–water and ice–bed surfaces, respectively. These boundaries
are defined by

Γw = {(x, z) ∈ ∂Ω : z = s(x, t) > β(x)}, (2.2)

Γb = {(x, z) ∈ ∂Ω : z = s(x, t) = β(x)}, (2.3)

Γs = Γw ∪ Γb, (2.4)

where Γs denotes the entirety of the lower boundary. Grounding lines exist where
the ice–water and ice–bed boundaries meet. We let the minimum and maximum
grounding-line positions be x−(t) and x+(t), respectively. We use x± to collectively refer
to both grounding lines. We assume that the subglacial-lake water is not connected to the
surface, although this is not true for all glacial lakes. The model geometry for both settings
is illustrated in figure 1.

2.2. Ice flow
Here, we outline the ice-flow component of the model. We let u be the ice velocity, p
the ice pressure, ρi the ice density and η the ice viscosity. We denote the horizontal and
vertical components of a vector v by vx and vz, respectively. We assume that ice deforms
as an incompressible viscous fluid subject to the Stokes equations

−∇ · σ (u, p) = ρig, (2.5)

∇ · u = 0, (2.6)

where g = g[0, −1]T is gravitational acceleration with magnitude g. Momentum
conservation and incompressibility are ensured through (2.5) and (2.6), respectively.
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Figure 1. (a) Model geometry for the marine ice-sheet problem, highlighting the boundaries defined in §§ 2.1
and 2.4. The horizontal inflow speed is noted by u0 > 0. (b) Model geometry for the subglacial-lake problem.
We consider zero inflow and outflow (u0 = 0) in this setting.

The stress is related to pressure and velocity through

σ (u, p) = −pI + 2η(u)D(u), (2.7)

where

D(u) = 1
2

[∇u + (∇u)T]
(2.8)

is the strain rate and I is the identity matrix. Throughout, we use the Frobenius norm
|D| = √

D : D for tensors. Defining n � 1 to be the stress exponent and A > 0 the ice
softness, we use Glen’s law to relate the viscosity to the strain rate through the equation

η(u) = 1
2 B(|D(u)|2 + δ)(r−2)/2, (2.9)

where r = 1 + 1/n and B = 2(n−1)/2nA−1/n are flow law parameters (Glen 1955; Cuffey
& Paterson 2010). The parameter δ � 1 is used to prevent infinite viscosity at zero strain
rate in numerical simulations (Jouvet & Rappaz 2011; Helanow & Ahlkrona 2018). While
ice has a viscoelastic rheology on the tidal time scales explored in § 4.1, we consider the
purely viscous rheology here to illustrate the numerical method and provide a point of
comparison for studies that include elasticity.
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The evolution of the upper and lower surfaces are governed by the kinematic equations

∂h
∂t

(x, t) =
√

1 +
(

∂h
∂x

)2

un(x, h, t), (2.10)

∂s
∂t

(x, t) = −
√

1 +
(

∂s
∂x

)2

un(x, s, t), (2.11)

where
un = u · n|∂Ω (2.12)

is the normal component of the velocity on the boundary and n is the outward-pointing
unit normal to the boundary (Durand et al. 2009a; Schoof 2011). We neglect mass change
at the surface (e.g. accumulation or ablation) and bed (e.g. melting or freezing) in (2.10)
and (2.11), respectively, in order to focus on the mechanical contact problems.

2.3. Water pressure and volume change
We assume that both the ocean and subglacial lake are hydrostatic. We let pw be the water
pressure at the ice–water interface, with po

w and pl
w denoting the particular expressions

for the ocean and subglacial lake, respectively. For marine ice sheets, the hydrostatic water
pressure is po

w = ρwg(	 − s), where 	 is sea level. However, using the elevation s computed
from the velocity solution at the previous time step is numerically unstable (Durand et al.
2009a). We approximate s at the current time step by applying the backward Euler method
to (2.11) under the assumption of small gradients, (∂s/∂x)2 � 1, to yield

s∗(x, t) = s(x, t − 
t) − (
t)un(x, s, t), (2.13)

where 
t is the time-step size. Using the approximation s∗, the sub-shelf water pressure
becomes

po
w(x, s, t) = ρwg(	(t) − s∗(x, t)). (2.14)

Subglacial lakes have finite volume that can change considerably over time. The
subglacial-lake volume V evolves according to

V̇(t) = −
∫

Γs

un ds. (2.15)

For a prescribed volume change rate, equation (2.15) acts as an integral constraint on the
normal component of the velocity at the base. In contrast, the marine ice-sheet problem
does not have a constraint such as (2.15) because the ocean volume is larger than the
sub-shelf cavity volume. In the marine case, the water volume change is instead controlled
by the ice-flow response to water pressure variations, analogous to models of subglacial
cavitation (Schoof 2005; Gagliardini et al. 2007).

We assume that subglacial-lake water is not connected to the surface, so there is no
datum where water pressure is known a priori. Assuming hydrostatic balance (∇pw =
ρwg), the expression for water pressure is only determined up to a constant. Therefore,
we choose to express the subglacial-lake water pressure as pl

w = ρwg(s̄ − s) + p̄w, where
s̄ and p̄w are the means of s and pl

w over (x−, x+). Although we expect that the water
pressure is near the cryostatic pressure as assumed in previous models, determining p̄w is
part of the solution to the problem (Pattyn 2008; Gudlaugsson et al. 2016). In the following,
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we show that approximating p̄w by the mean cryostatic pressure is accurate within a few
kilopascals. However, the utility of leaving p̄w undetermined is that it acts as a Lagrange
multiplier that enforces the volume-change constraint (§ 3.1).

We also require a numerically stable approximation of the subglacial-lake water
pressure. We may replace Γs with Γw in (2.15) by applying Leibniz’s rule to V =∫ x+

x− s − b dx if x−(t) and x+(t) are continuously differentiable. Although this smoothness
assumption may not hold in general, we use it as an approximation in the stabilising
scheme. Taking the mean of (2.13), we approximate s̄(t) at the current time step by

s̄∗(t) = s̄(t − 
t) + (
t)V̇/|Γw|, (2.16)

where we have assumed − ∫
Γw

un ds ≈ V̇ and denoted the measure of Γw by |Γw|. Using
the approximations (2.13) and (2.16), we arrive at the expression for subglacial-lake water
pressure

pl
w(x, s, t) = ρwg(s̄∗(t) − s∗(x, t)) + p̄w(t). (2.17)

We omit time arguments for brevity.

2.4. Boundary conditions
Stress continuity at the ice–water boundary implies

σn = −pwn on Γw, (2.18)

where pw is given by either (2.14) or (2.17), depending on the setting. Equation (2.18)
implies that the shear stress vanishes on the ice–water boundary. We assume a stress-free
condition at the ice–air interface, which requires that

σn = 0 on z = h(x, t). (2.19)

On the inflow and outflow boundaries, we consider two types of boundary conditions
(figure 1). First, we prescribe a uniform horizontal velocity and zero vertical shear stress

ux = u0

Tσn = 0

}
on ΓD, (2.20)

where u0 � 0 is the horizontal flow speed and T = I − nnT is an orthogonal projection on
to the boundary. Here ΓD coincides with the inflow boundary in the case u0 > 0 (marine
case), or both the inflow and outflow boundaries when u0 = 0 (subglacial-lake case). In
the marine case (u0 > 0), we assume a cryostatic normal-stress condition of the form

σn = −ρig(h − z)n on ΓN, (2.21)

where ΓN coincides with the outflow boundary. These inflow and outflow conditions are
noted in figure 1.

In the marine case, equating the normal stresses

σn = −n · σn|∂Ω (2.22)

associated with (2.18) and (2.21), where ΓN and Γw meet (see figure 1a) leads to the
flotation condition

h = s + ρw

ρi
(	 − s) (≡hf ) (2.23)

in the limit 
t → 0 (s∗ → s). We confirm in what follows that the ice-surface elevation
near the outflow boundary remains close to hf (§ 4.1).
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On the ice–bed boundary, we assume a sliding law of the form

Tσn + α(u)T u = 0 on Γb (2.24)

with friction α given by

α(u) = C(|T u|2 + δ)(r−2)/2, (2.25)

where C > 0 is the friction coefficient and |a| denotes the Euclidean norm of a vector a
(Weertman 1957; Kamb 1970). In the friction law (2.25), we assume the same value of
regularisation parameter δ as in the flow law (2.9).

There are three possibilities for the normal stress σn and normal component of the
velocity un at the ice–bed boundary. The first possibility is that the normal stress exceeds
the water pressure (σn > pw) and the ice is not lifted off of the bed (un = 0). The second
possibility is that the ice is lifted from the bed (un < 0) and the normal stress equals the
water pressure (σn = pw) (Durand et al. 2009a; Schoof 2011). The third possibility is that
the normal stress reaches the water pressure (σn = pw), but the ice is not lifted from the
bed (un = 0). These three cases are represented by either

σn � pw

un = 0

}
or

σn = pw

un � 0

}
on Γb. (2.26)

The two sets of conditions in (2.26) are equivalent to

σn � pw

un � 0
(σn − pw)un = 0

⎫⎪⎬
⎪⎭ on Γb. (2.27)

The contact conditions (2.27) are analogous to those in the Signorini problem from
elasticity (Kikuchi & Oden 1988). We refer to the condition un � 0 as bed impenetrability.

3. Weak formulations

3.1. Derivation of mixed formulations
We now derive weak formulations of the models. We let V and Q be appropriate function
spaces for the velocity and pressure, respectively (Appendix A.1). We define the set of
admissible velocity fields by

K = {v ∈ V : vn|Γb � 0 and vx|ΓD = u0}, (3.1)

which is a closed, convex subset of V . We let v ∈ K be an arbitrary test function, multiply
(2.5) by v − u and integrate by parts to obtain

∫
Ω

2η(u)D(u) : D(v − u) − ρig · (v − u) − p∇ · (v − u) dx −
∫

∂Ω

σn · (v − u) ds = 0,

(3.2)
where we used the identity D(u) : ∇(v − u) = D(u) : D(v − u).

We turn our attention to the boundary integral over Γb. Using σn = Tσn − σnn, the
sliding law (2.24) and the identity T u · (v − u) = T u · T (v − u) (since T is an orthogonal
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projection), we obtain

−
∫

Γb

σn · (v − u) ds =
∫

Γb

α(u)T u · T (v − u) ds +
∫

Γb

σn(vn − un) ds. (3.3)

The contact conditions (2.27) and vn|Γb � 0 imply that∫
Γb

σn(vn − un) ds �
∫

Γb

pw(vn − un) ds. (3.4)

Combining inequality (3.4) with (3.2)–(3.3) and the boundary conditions (2.18)–(2.21),
we obtain the variational inequality∫

Ω

[
2η(u)D(u) : D(v − u) − ρig · (v − u) − p∇ · (v − u)

]
dx +

∫
Γs

pw(vn − un) ds

+
∫

Γb

α(u)T u · T (v − u) ds +
∫

ΓN

ρig(h − z)(vn − un) ds � 0. (3.5)

To simplify notation, we write

F(u, v) =
∫

Ω

[
2η(u)D(u) : D(v) − ρig · v] dx +

∫
Γb

α(u)T u · Tv ds

+
∫

ΓN

ρig(h − z)vn ds (3.6)

bΩ(q, u) =
∫

Ω

q∇ · u dx, (3.7)

for u, v ∈ V and q ∈ Q, which constitute the usual weak forms in Stokes ice-flow models.
We also define

Po
w(u, v) = ρwg

∫
Γs

[	 − s + (
t)un] vn ds, (3.8)

P l
w(u, v) = ρwg

∫
Γs

[s̄ − s + (
t)(un + V̇/|Γw|)]vn ds, (3.9)

bΓ (qw, u) = −
∫

Γs

qwun ds, (3.10)

for u, v ∈ V and qw ∈ R, which originate from the weak forms of the ocean water pressure
(2.14), subglacial-lake water pressure (2.17) and lake volume-change constraint (2.15),
respectively. In (3.8) and (3.9), s and s̄ are known from the previous time step (§ 2.3).

We supplement inequality (3.5) with the weak form of incompressibility (3.7) and
sub-shelf water pressure (3.8) to arrive at the mixed variational problem for marine ice
sheets. We seek (u, p) ∈ K × Q such that{F(u, v − u) + Po

w(u, v − u) − bΩ( p, v − u) � 0
bΩ(q, u) = 0

(3.11)

for all (v, q) ∈ K × Q. Similarly, the variational problem for subglacial lakes is to find
(u, p, p̄w) ∈ K × Q × R such that{

F(u, v − u) + P l
w(u, v − u) − bΩ( p, v − u) − bΓ (p̄w, v − u) � 0

bΩ(q, u) + bΓ (qw, u) = qwV̇
(3.12)
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for all (v, q, qw) ∈ K × Q × R. In deriving (3.12), we used the subglacial-lake
volume-change constraint (2.15) and the expression for water pressure (2.17). The form
of (3.12) shows that the mean water pressure p̄w acts as a Lagrange multiplier that enforces
the volume-change constraint, analogous to p enforcing incompressibility; we elaborate on
this in the context of the penalty formulation in § 3.3.

3.2. Minimisation formulation
We now introduce minimisation formulations of problems (3.11) and (3.12) that justify the
penalty methods discussed in the following section. We denote the set of divergence-free
admissible velocity fields that obey the volume-change constraint by

K
={u ∈ K : bΩ(q, u) + bΓ (qw, u) = qwV̇ for all (q, qw) ∈ Q × R}, (3.13)

which is a closed, convex subset of V (Appendix A.2). On this subset, the mixed variational
problem (3.12) reduces to finding u ∈ K
 such that

F(u, v − u) + P l
w(u, v − u) � 0 (3.14)

for all v ∈ K
. For the sake of clarity, we set the regularisation parameter to δ = 0 in the
flow law (2.9) and sliding law (2.25). The results below still hold for δ > 0 (Jouvet &
Rappaz 2011). The left side of (3.14) is the Gâteaux derivative of the functional

J (v) =
∫

Ω

B
r
|D(v)|r − ρig · v dx +

∫
Γb

C
r
|Tv|r ds +

∫
ΓN

ρig(h − z)vn ds

+ ρwg
∫

Γs

γ1v
2
n + (γ2 − s) vn ds (3.15)

in the direction v − u, where γ1 = 
t/2 and γ2 = V̇
t/|Γw| + s̄.
The problem of minimising J (3.15) over K
 is equivalent to solving variational

inequality (3.14) (Kikuchi & Oden 1988, Theorem 3.7). The functional J is convex,
continuous and coercive (Appendix A.2). These properties ensure that a minimiser u ∈ K


of J exists (Ekeland & Temam 1999, Proposition 1.2). Uniqueness follows from the strict
convexity of J (Chen, Gunzburger & Perego 2013, Lemmas 9 and 12). Therefore, there
exists a unique solution u to the reduced problem (3.14). Existence and uniqueness of
the corresponding pressures p and p̄w in the mixed formulation (3.12) follow from an
inf–sup condition on the constraint operators bΩ and bΓ (Appendix A.3). Existence and
uniqueness of solutions to the marine ice-sheet problem follows the same argument applied
to the functional J , with γ2 = 	, over the set of divergence-free admissible velocity fields.

3.3. Penalty formulation
Working with the set K is inconvenient for arbitrary bed geometry. Instead, we introduce
a penalty formulation that is posed over V . To enforce the impenetrability constraint, we
introduce the penalty functional

Π(v) =
∫

Γb

1
2

(
v2

n + vn|vn|
)

ds. (3.16)

The Gâteaux derivative of Π at u in a direction v is

Π ′(u, v) =
∫

Γb

(un + |un|) vn ds. (3.17)
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Π and Π ′ are non-zero only when impenetrability is violated (i.e.when un > 0). Therefore,
(1/ε)Π (and (1/ε)Π ′) penalises un > 0 when the penalty parameter ε is chosen to be
small. We seek u ∈ V that minimises the penalised functional

Jε(v) = J (v) + 1
ε
Π(v), (3.18)

and satisfies the relevant equality constraints, depending on the problem. Minimisers of Jε

converge weakly to minimisers of J as ε → 0, justifying the numerical method (Kikuchi
& Oden 1988, Theorem 3.15).

To enforce the equality constraints, we introduce the Lagrangian for the marine problem

Lo(v, q) = Jε(v) − bΩ(q, v), (3.19)

and for lake problem

Ll(v, q, qw) = Jε(v) − bΩ(q, v) − bΓ (qw, v) + qwV̇, (3.20)

where the pressures (q, qw) ∈ Q × R have been reintroduced as Lagrange multipliers. The
solutions (u, p) to the marine problem and (u, p, p̄w) to the lake problem are saddle points
of (3.19) and (3.20), respectively. We obtain the penalty formulations of (3.11) and (3.12)
by taking Gâteaux derivatives of these Lagrangians (Kikuchi & Oden 1988, Theorem
3.13).

For the marine ice-sheet model, the penalised problem is to find (u, p) ∈ V × Q,
satisfying the Dirichlet condition, such that{

F(u, v) + Po
w(u, v) − bΩ( p, v) + 1

ε
Π ′(u, v) = 0

bΩ(q, u) = 0
(3.21)

for all (v, q) ∈ VD × Q, where VD = {v ∈ V : vx|ΓD = 0}. Similarly, the subglacial-lake
problem reduces to finding (u, p, p̄w) ∈ V × Q × R such that⎧⎨

⎩F(u, v) + P l
w(u, v) − bΩ( p, v) − bΓ (p̄w, v) + 1

ε
Π ′(u, v) = 0

bΩ(q, u) + bΓ (qw, u) = qwV̇
(3.22)

for all (v, q, qw) ∈ VD × Q × R. Variational problems (3.21) and (3.22) readily extend to
three spatial dimensions; the details depend on the additional boundary conditions on the
side walls of the domain, that must be chosen.

3.4. Numerical implementation
At each time step, we solve variational problem (3.21) or (3.22) with the finite-element
package FEniCS (Logg, Mardal & Wells 2012; Alnæs et al. 2015). We use the
Taylor–Hood element for velocity and pressure (Jouvet & Rappaz 2011). In the
subglacial-lake case, the Taylor–Hood element is augmented with a Lagrange multiplier
for p̄w, qw ∈ R, constituting a single additional global degree of freedom. We update
the free surfaces h and s using (2.10) and (2.11) and the velocity solution, moving the
boundary nodes of the mesh to obtain the new domain. The geometric constraint s � β

is then enforced explicitly. The interior nodes of the mesh are smoothed using the ALE
(arbitrary Lagrangian–Eulerian) class in DOLFIN (Logg & Wells 2010; Logg et al. 2012).
For the simulations discussed in § 4, we set the element width to 250 m at the upper
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surface and refine it to 
x = 12.5 m at the lower surface. We choose the regularisation
parameter δ = 10−15, flow law coefficient B = 8.6 × 107 Pa s1/3, flow law exponent
r = 4/3, friction coefficient C = 105 Pa s1/3 m−1/3 and penalty parameter ε = 10−13. The
time-step sizes 
t for the different problems are provided subsequently. These parameters
provide well-resolved and converged solutions (Appendix B.1).

In general, the true grounding-line positions exist between the mesh nodes. The
numerical grounding-line positions depend on how the discretised ice–water (2.2) and
ice–bed (2.3) boundaries are defined. Here, the discretised ice–bed boundary is defined
as all element edges satisfying s − β � τ for a specified numerical tolerance τ , 1 mm
for all examples herein. The discretised ice–water boundary includes all edges on the
lower boundary satisfying s − β > τ and the edges where the true grounding lines exist
(i.e. where s − β − τ changes sign). This choice of discretisation corresponds to the
‘last-grounded’ scheme in Gagliardini et al. (2016). Sub-grid parameterisations of the
transition between these boundaries have been developed (Seroussi et al. 2014; Cheng et al.
2020). We do not explore these schemes here because they introduce additional terms in
the weak forms that depend on the grounding-line positions. For plotting and convergence
testing, we estimate the true grounding-line positions by linear interpolation between the
mesh nodes. Throughout, we plot the interpolated positions rather than the adjacent mesh
nodes where the discretised ice–water and ice–bed boundaries meet.

Verification and validation of the numerical model are established by providing a known
subglacial-lake volume change rate. The computed results can then be compared with
the true volume change and, in some cases, an expected grounding-line migration rate.
Using this approach, we discuss convergence of the numerical method with decreasing
ε, 
t and 
x (Appendix B.1). We provide a second benchmark test for validation that is
based on an expected rate of grounding-line migration for a slow-filling triangular lake
(Appendix B.2). For the marine problem, satisfaction of the flotation condition
(2.23) near the outflow boundary is also a useful validation measure (figures 2
and 3). The code is openly available as an archived Git repository (Stubblefield 2020,
doi:10.5281/zenodo.4302610).

4. Numerical examples

4.1. Tidal cycles
Here, we illustrate the grounding-line response to tidal cycles in the marine ice-sheet
problem. We consider sinusoidal tidal cycles of the form

	(t) = ρi

ρw
h0 + sin(2πt/P), (4.1)

where the initial ice-shelf surface elevation is h0 = 500 m, the period P is a half day and
the maximum deviation from mean sea level (ρi/ρw)h0 is 1m (figure 2). We choose a linear
bed geometry

β(x) = −5x
L

, (4.2)

where the length L = 20 km. The inflow speed is set to u0 = 1 km yr−1 on ΓD. We
assume that the cryostatic condition (2.21) holds on the outflow boundary ΓN (figure 1).
To construct appropriate initial free surfaces for the tidal problem, we keep the sea level
fixed at 	(t) = (ρi/ρw)h0 and evolve the initial conditions s(x, 0) = max(β(x), 0) and
h(x, 0) = h0 to time t = 0.35 yr, using a time-step size of 
t = 5 × 10−4 yr. The resulting
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Figure 2. (a) Sea-level change 
	 = 	(t) − 	(0), mean ice–air elevation change 
h̄ = h̄(t) − h̄(0) and mean
ice–water elevation change 
s̄ = s̄(t) − s̄(0) over the course of four tidal cycles, where h̄ and s̄ denote the mean
of h and s over the ice–water boundary. The black diamonds mark the times and relative sea levels associated
with the free-surface plots in figure 3. (b) Comparison of the outflow elevation 
hout = h(L/2, t) − h(L/2, 0)

with the flotation elevation 
hf = hf (t) − hf (0), given by (2.23). (c) Minimum and maximum grounding-line
positions over time. An extended grounding zone forms when sea level falls, characterised by the presence of
a thin water layer between x− and x+ (discussed in § 4.1). The extended grounding zone is lost when sea level
begins to rise, resulting in a single grounding line. We plot the results for t � 5 days after transients in the
grounding-line time series have relaxed.

initial ice-sheet profile for the tidal simulation thickens inland from the shelf (figure 3a).
For the tidal simulation, we reduce the time step to 
t = 2 × 10−6 yr to obtain a similar
number of time steps per oscillation period as in the subglacial-lake problem where
numerical accuracy has been verified. We explore numerical convergence and accuracy
with respect to (
x, 
t) in Appendix B.1 and demonstrate that these solutions are well
resolved in space and time.

The mean elevations of the ice–water interface and overlying ice–air interface closely
follow the tidal cycle over time (figure 2a). At the outflow boundary, the ice elevation
closely matches the flotation condition (2.23) that results from the stress boundary
conditions (figure 2b). The grounding-line response is also periodic in time, migrating
roughly 5 km over each cycle (figure 2c). The free-surface geometry over the course of
one tidal cycle is shown in figure 3. We provide a movie of the complete simulation in the
supporting information (supplementary movie 1). An intriguing feature of this solution is
that, for oscillations on a tidal time scale, multiple contact points can form (figure 2c).
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Figure 3. Plot of free-surface geometry over the course of one tidal cycle, with time increasing from (a–d).
The times and relative sea levels are noted in figure 2(a). The initial geometry is depicted by dashed black lines
in (a). Sea level 	 is depicted by a dash-dotted green line and the ice-flotation elevation hf (2.23) is depicted
by a dashed purple line. For visualisation, 98 % of the initial sea-level and ice-surface elevation have been
subtracted from 	 and h, respectively. The reference upper surface elevation is h0 = 500 m. The sea levels in
(b,d) are the same. The colour scheme follows figure 1. The minimum and maximum grounding-line positions
x± are noted by black triangles.

The tidal cycle causes flexure in the ice sheet that leads to multiple contact points
(figure 4). After high tide, ice begins to make contact with the bed as sea level falls.
The strong downward flexure of the floating ice shelf causes an upward flexure inland of
the main grounding line x+, which acts like a hinge (figure 4a). Ice is lifted from the bed in
a zone adjacent to x+, forming a ∼1 mm thick water layer of width ∼1 km (figure 4b). We
refer to this area of thin separation between ice and bed as the extended grounding zone.
The upward flexure is balanced by a slight downward flexure farther inland that causes
previously lifted patches of ice to progressively regain contact with the bed (figure 4a).
This flexural response causes the thin water layer to migrate seaward behind the main
grounding line x+ while decaying in amplitude until low tide (figure 2c).

We show that the extended grounding zone forms for a wide range of mesh spacings
in supplementary movie 2 (
x = 12.5, 50 and 100 m), time-step sizes in supplementary
movie 3 (
t = 1, 2 and 4 min) and boundary geometry tolerances in supplementary movie
4 (τ = 10−2, 10−3 and 10−4 m). The width, maximum amplitude and migration speed of
the water layer are insensitive to changes in these parameters. Therefore, the extended
grounding zone is a robust feature of the solution. When the water layer collapses near low
tide, differences between the solutions can occur on the sub-millimetre scale.

After low tide, the extended grounding zone is lost as ice is lifted off the bed by the
rising sea (figures 2c, 3b). Only one grounding line exists as sea level rises because a
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Figure 4. (a,c) Vertical velocity uz near the grounding line plotted on the displaced mesh during the falling and
rising stages of the tidal cycle. The times are noted in figure 2(a). The instantaneous displacement u × 
t has
been exaggerated by a factor of ∼3 × 105 for visualisation. The width and structure of the extended grounding
zone are noted in (a). Minimum and maximum grounding-line positions are noted by black triangles. (b,d)
Water-layer thickness s − β − τ during the falling and rising stages of the tidal cycle, where τ is the boundary
geometry tolerance parameter defined in § 3.4. (b) shows the ∼1 mm thick water layer that forms between x−
and x+. Supplementary movies 2–4 available at https://doi.org/10.1017/jfm.2021.394 show the evolution of the
water-layer thickness over the full simulation for a range of numerical parameters.

downward flexure occurs inland of x+, balancing the strong upward flexure of the ice
shelf (figure 4c,d). The grounding line migrates inland until high tide, when the cycle
is completed. The extended grounding zone does not form at longer (e.g.weekly)
oscillation periods because the flexural response is absent (supplementary movie 5).

4.2. Subglacial lake filling–draining cycles
Here, we illustrate grounding-line responses to subglacial-lake filling–draining cycles.
Motivated by observations and modelling studies of sub-decadal cycles, we use a volume
change rate V̇ obtained from a smoothed sawtooth volume-change time series with a period
of one year (Fowler 2009; Kingslake 2015; Siegfried & Fricker 2018; Stubblefield et al.
2019). The volume change V is shown in figure 5(a). We assume that the subglacial lake
exists in a topographic low point on the bed beneath an ice slab of length L = 10 km.
Therefore, we let the bed topography be a Gaussian

β(x) = −10 exp
(

−16
x2

L2

)
. (4.3)

We choose an initial lower surface given by s(x, 0) = max(β(x), −5 m), and a uniform
initial upper-surface elevation of h(x, 0) ≡ 1 km (figure 6a). We set the horizontal inflow
and outflow speeds to u0 = 0 on ΓD = {|x| = L/2} so that ΓN = ∅ (figure 1). We choose
a time-step size of 
t = 5 × 10−4 yr.

The ice–air and ice–water surface-response time series mirror the sawtooth volume
change (figure 5a,b). However, the upper-surface response is smaller in magnitude than
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Figure 5. (a) Computed lake volume change V/V0 compared with the exact volume change Vtrue/V0, where
V0 is the initial lake volume. The black diamonds mark the times and relative water volumes associated with the
free-surface plots in figure 6. (b) Change in mean values of h and s over the ice–water boundary (cf. figure 2a).
The response of the upper surface is smaller in magnitude than that of the lower surface. (c) Motion of the
grounding lines x− and x+ over time. (d) Plot of the deviation of the mean water pressure p̄w from the mean
cryostatic pressure po = ρig(h̄ − s̄) over time. The line p̄w = po is shown for reference.
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Figure 6. Plot of free-surface geometry over the course of one filling–draining cycle, with time increasing
from (a–d). The reference upper-surface elevation is h0 = 1 km and the initial geometry is depicted by dashed
black lines in (a). For visualisation, 99 % of the initial ice-surface elevation has been subtracted from h. The
times and relative water volumes are noted in figure 5(a). The water volumes in (b,d) are the same. The colour
scheme follows figure 1. The grounding-line positions x± are noted by black triangles.
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the lower-surface response because it is distributed over a wider area. The grounding lines
move inward and outward during the draining and filling stages, respectively (figure 5c).
Both grounding lines migrate a total distance of ∼1.9 km over the course of the cycle.
We also plot the deviation of p̄w from the mean cryostatic pressure po = ρig(h̄ − s̄) over
time (figure 5d). The difference p̄w − po is slightly positive during the filling stage as the
subglacial water forces the ice upwards. During the draining stage, the cryostatic pressure
exceeds the water pressure by up to ∼2 kPa because the water is not fully supporting the
weight of the ice.

We show the spatial pattern of elevation change and grounding-line migration over one
filling–draining cycle in figure 6. The elevations of the grounding lines remain close to
the mean elevation of the ice–water interface s̄ during lake lowstand and the draining
stages (figure 6a,d). During the filling stage, the grounding lines move outward as the ice
separates from the bed (figure 6b,c). The grounding-line elevations quickly surpass the
mean elevation s̄, leaving only a thin gap between the ice and the bed initially (figure 6b).
Over the time scale considered here, the lower surface deforms to the shape of the bed
so that it records the lowest elevation experienced during the draining stage. At slower
volume change rates, this crack-like geometry near the grounding lines does not develop
because the lower surface can relax viscously (Appendix B.2). As before, we provide a
movie of the complete simulation (supplementary movie 6).

5. Discussion

In the tidal problem, we described the formation of a thin water layer that extends the
grounding zone farther inland during sea level fall. The extended grounding zone results
from flexural bending of the ice, which occurs on short time scales in thin viscous sheets
(Ribe 2001). Sayag & Worster (2013) showed that tidal bending can generate oscillations in
the hydraulic gradient near the grounding line, potentially providing a similar mechanism
for the formation of isolated subglacial water bodies. Similarly, Warburton, Hewitt &
Neufeld (2020) explored how coupling between elastic bending, dynamic water pressure
and subglacial drainage can influence tidal grounding-line migration. Determining the
dynamic coupling between grounding-line migration and subglacial drainage at the
ice–ocean interface remains a pertinent area for future work.

An advantage of our subglacial-lake model compared with previous work is that ice flow
is directly linked to the volume change rate. Subglacial-lake volume change is controlled
by the inflow and outflow of water through drainage pathways such as channels, canals,
cavities and water sheets (Nye 1976; Walder & Fowler 1994; Fowler 1999; Creyts & Schoof
2009; Hewitt, Schoof & Werder 2012; Schoof, Hewitt & Werder 2012; Stubblefield et al.
2019). This formulation provides a natural coupling of ice flow to subglacial hydrology
models because the volume change rate can be expressed as the net inflow or outflow
of water from drainage elements that are connected to the lake. As the mean water
pressure p̄w closely approximates the mean cryostatic pressure po, the effective pressure
is po − pw = ρwg(s − s̄) + O(1 kPa) (figure 5d). This relation can serve as an effective
pressure boundary condition in subglacial hydrology models, perhaps with a correction
to account for underpressure during draining stages. We leave further exploration of the
ice-flow response to lake volume change for future work since this probably depends on
the choice of lateral boundary conditions, ice thickness and oscillation period.

While approximations to the Stokes equations have dominated ice-sheet modelling
for decades, full-Stokes ice-sheet models have become more common in prognostic
and diagnostic studies (Durand et al. 2009b; Zhang et al. 2011; Petra et al. 2012;
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Seddik et al. 2012; Seroussi et al. 2012; Isaac, Stadler & Ghattas 2015; Gagliardini et al.
2016; Zhu et al. 2016; Helanow & Ahlkrona 2018). In contrast to existing approaches to
full-Stokes grounding-line dynamics, we resolve the contact conditions directly during
solution of the variational problem (Durand et al. 2009a; Favier et al. 2012; Cheng et al.
2020). Not only does this result in a simple numerical method, but also the penalty-method
solution is known to converge to the solution of the underlying variational inequality
problem. The penalty method (3.21) can be implemented in existing finite-element marine
ice-sheet models by simply (i) extending the water pressure weak form inland of the
grounding line and (ii) adding the penalty weak form. Moreover, the method does not
introduce additional numerical constraints on stability or resolution beyond those already
necessary for time-accurate free-surface Stokes solutions.

The penalty method developed herein is perhaps the simplest variational treatment of
the contact conditions. Alternative methods that possess improved convergence properties
probably exist. Defining an effective stress σe = σn − pw, the contact conditions (2.27) are
equivalent to the single equation

σe = max(0, σe + ε−1un), (5.1)

for arbitrary ε > 0. The penalty method can be derived from (5.1) by dropping the σe
inside the max function and carrying through a derivation similar to § 3.1, but testing
against functions v ∈ VD. Advanced methods that instead solve (5.1) iteratively have been
developed for the classical Signorini problem (Stadler 2007; Ito & Kunisch 2008).

6. Conclusions

Here, we have introduced variational formulations of contact problems for marine ice
sheets and subglacial lakes. These models take the form of variational inequalities that
are analogous to the Signorini problem from elasticity. The formulations can be extended
naturally in several pertinent directions since the contact conditions are independent of
constitutive relations on the stress and water pressure. For example, the method can be
extended to include (i) a dynamic water pressure near the grounding line if ice flow is
coupled to a subglacial hydrology model, (ii) an elastic or viscoelastic ice rheology or (iii)
complex bed geometry. Therefore, the contact formulations developed herein are widely
applicable to future work on the interaction between grounding-line migration, subglacial
hydrological systems, climatic forcings and ice-sheet evolution.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.394.
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Appendix A. Well-posedness lemmas

A.1. Function space setting

For r̂ � 1 and a set O, we define the norms ‖Φ‖Lr̂(O) = (
∫

O |Φ|r̂)1/r̂, where | · | denotes
the absolute value of a scalar, Euclidean norm of a vector, or Frobenius norm of a tensor.
We define the function space for velocity V to be the completion of C1(Ω) with respect to
the norm

‖v‖V = ‖v‖W1,r(Ω) + ‖vn‖L2(Γs)
. (A1)

The Sobolev norm ‖v‖W1,r(Ω) = (‖v‖r
Lr(Ω) + ‖∇v‖r

Lr(Ω))
1/r in (A1) ensures that the weak

forms of the flow law (2.9) and sliding law (2.25) are well defined (Jouvet & Rappaz 2011;
Chen et al. 2013). The additional L2 norm over Γs in (A1) ensures that the weak forms of
the water pressures (2.14) and (2.17) are well-defined. A similar setting arises when using
a linear sliding law (Isaac et al. 2015). We let Q = Lr′

(Ω) be the function space for the ice
pressure, where r′ = r/(r − 1) is the Hölder conjugate of r.

A.2. Properties of K
 and J
The set K is closed and convex (Kikuchi & Oden 1988, cf. Theorem 5.7). We let {vk} ⊂
K
 with vk → v ∈ K strongly as k → ∞. We define vk,n = vk · n|∂Ω . Using Hölder’s
inequality and the local estimate |∇ · u| �

√
2|∇u|, we obtain

|qwV̇ − bΩ(q, v) − bΓ (qw, v)| = |bΩ(q, vk − v) + bΓ (qw, vk − v)| (A2)

�
√

2‖q‖Q‖vk − v‖W1,r(Ω) + |qw||Γs| 1
2 ‖vk,n − vn‖L2(Γs)

(A3)

� max(
√

2‖q‖Q, |qw||Γs| 1
2 ) × ‖vk − v‖V → 0 (A4)

as k → ∞, for all (q, qw) ∈ Q × R. Therefore, v ∈ K
 and K
 is closed.
Next, we show that J is continuous and coercive with respect to the norm

‖v‖V = ‖v‖W1,r(Ω) + ‖vn‖L2(Γs)
. To leverage previous results, we define Ĵ (v) = J (v) −

ρwg
∫
Γs

γ1v
2
n + (γ2 − s)vn ds. Continuity of J follows from continuity of Ĵ with respect

to ‖ · ‖W1,r(Ω) and continuity of
∫
Γs

γ1v
2
n + (γ2 − s)vn ds with respect to ‖ · ‖L2(Γs)

(Chen

et al. 2013, Lemmas 9 and 12). Coercivity of Ĵ on W1,r(Ω) is guaranteed by

Ĵ (v) � c1‖v‖W1,r(Ω) − c2 (A5)

for some positive constants c1 and c2, provided that ‖v‖W1,r(Ω) is sufficiently large and
Γb /=∅ (Chen et al. 2013, Lemma 13). We use Hölder’s inequality to estimate

ρwg
∫

Γs

γ1v
2
n + (γ2 − s)vn ds � c3‖vn‖2

L2(Γs)
− c4‖vn‖L2(Γs)

, (A6)

where c3 = ρwgγ1 and c4 = ρwg‖γ2 − s‖L2(Γs)
. Combining (A5) and (A6), we obtain

J (v) � c1‖v‖W1,r(Ω) + c3‖vn‖2
L2(Γs)

− c4‖vn‖L2(Γs)
− c2, (A7)

which shows that J (v) → ∞ when ‖v‖V → ∞.
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A.3. Existence and uniqueness of the pressures
Here, we prove the existence and the uniqueness of the ice pressure p and mean water
pressure p̄w in the mixed formulation (3.12) given a solution u ∈ K
 to the reduced
formulation (3.14). In the following, we show that the problem involves test functions
belonging to

V0 = {v ∈ V : v = 0 on Γb ∪ ΓD}. (A8)

Following Isaac et al. (2015), we define the subspace Ṽ0 = {v ∈ V0 : vn|Γs = 0} where
the norm reduces to ‖v‖V = ‖v‖W1,r(Ω). Using the inf–sup condition (Lemma 3.9) from
Jouvet & Rappaz (2011) on Ṽ0, we obtain

sup
u∈V0

bΩ(q, u)

‖u‖V
� sup

u∈Ṽ0

bΩ(q, u)

‖u‖V
� c6‖q‖Q (A9)

for all q ∈ Q, where c6 is a positive constant. We choose an arbitrary ξ ∈ V0 such that
∇ · ξ = 0, ξn � 0 on Γw and c7 = ‖ξn‖L1(Γs)

/‖ξ‖V > 0. For example, ξ can be obtained
as the solution of an auxiliary Stokes problem posed over V0, with ξn prescribed on Γw.
The constraint operator bΓ then satisfies the inf–sup condition

sup
u∈V0, ∇·u=0

bΓ (qw, u)

‖u‖V
� c7|qw| (A10)

for all qw ∈ R. We define the combined volume-change and incompressibility constraint
operator

b(qw, q, u) = bΩ(q, u) + bΓ (qw, u). (A11)

The inf–sup conditions (A9) and (A10) imply that

sup
u∈V0

b(qw, q, u)

‖u‖V
� c8(‖q‖Q + |qw|) (A12)

for some c8 > 0 (Howell & Walkington 2011, Theorem 3.1).
In the following, we show that any v ∈ K can be expressed as

v = ṽ + ϕ for ṽ ∈ K
, ϕ ∈ V0. (A13)

We substitute the decomposition (A13) into (3.12) to obtain

F(u, ṽ − u) + P l
w(u, ṽ − u) + F(u,ϕ) + P l

w(u,ϕ) + b(p̄w, p,ϕ) � 0. (A14)

As we found a unique u ∈ K
 satisfying (3.14) for all ṽ ∈ K
, the problem reduces to
finding ( p, p̄w) ∈ Q × R such that

b(p̄w, p,ϕ) = −F(u,ϕ) − P l
w(u,ϕ) (A15)

for all ϕ ∈ V0. We define the kernel of b over V0 by ker(b) = {ϕ ∈ V0 : b(qw, q,ϕ) =
0 for all (q, qw) ∈ Q × R}. Setting v = u ± ϕ0 for ϕ0 ∈ ker(b) in (3.14), we find that

F(u,ϕ0) + P l
w(u,ϕ0) = 0 (A16)

for all ϕ0 ∈ ker(b). As both sides of (A15) vanish for ϕ0 ∈ ker(b), we resort to the quotient
space V0/ker(b). Hölder’s inequality and (A16) show that F(u, ·) + P l

w(u, ·) is a bounded
linear functional over V0/ker(b) (Conway 2007, Theorem 10.2). Therefore, the inf–sup
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Figure 7. (a) Convergence of volume change V(t) towards the exact value Vtrue(t) with decreasing penalty
parameter ε. (b) Maximum, minimum and average values of the penalty functional over the simulation time,
showing that Π(u) → 0 faster than ε → 0. The time-step size and element width at the lower boundary are

t = 1/2000 yr and 
x = 12.5 m, respectively.

condition (A12) and generalised Lax–Milgram theorem guarantee that a unique solution
( p, p̄w) ∈ Q × R to (A15) exists (Howell & Walkington 2011, Theorem 2.1).

Now we show that the vector decomposition (A13) holds. We denote the
subset of admissible velocity fields that obey the volume change constraint by
K◦ = {v ∈ K : − ∫

Γs
vn ds = V̇}. Using Lemma 3.3 from Amrouche & Girault (1994), we

can write any v◦ ∈ K◦ as v◦ = ṽ + ψ , where ṽ ∈ K
 and ψ ∈ V with ψ = 0 on Γs ∪ ΓD
(Chen et al. 2013, cf. § 4). We choose an arbitrary ξ ′ ∈ V0 satisfying

∫
Γw

ξ ′
n ds /= 0. Then,

for any v ∈ K we have that v◦ = v − λξ ′ is in K◦, where λ = (V̇ + ∫
Γs

vn ds)/
∫
Γw

ξ ′
n ds.

The decomposition (A13) then follows with ϕ = ψ + λξ ′.

Appendix B. Numerical tests

B.1. Convergence tests
Here, we test the convergence of the numerical method with decreasing penalty parameter
ε, time-step size 
t and element width at the lower boundary 
x. We assume the same
subglacial-lake set-up as in § 4.2. We choose a final time of one year, corresponding to a
single filling–draining cycle. First, we study convergence with decreasing ε by comparing
the exact volume change Vtrue(t) with the computed volume change V(t). We observe that
the relative error ‖Vtrue − V‖2/‖Vtrue‖2 < 10−2 when ε � 10−13 (figure 7a). The average
value of the penalty functional Π(u) over the simulation time is more than an order of
magnitude smaller than ε when ε � 10−12 (figure 7b).

We define the CFL number κ = x′
g
t/
x, where x′

g is the maximum grounding-line
speed associated with the fine-resolution simulation (
x = 12.5 m and 
t = 1/2000 yr).
As 
x decreases, we observe that ‖Vtrue − V‖2/‖Vtrue‖2 converges approximately
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Figure 8. (a) Convergence of volume change V(t) to the exact value Vtrue(t) with decreasing element width
at the lower boundary 
x for different CFL numbers κ := x′

g
t/
x, where x′
g is the maximum grounding-line

speed for the fine-resolution simulation (
x = 12.5 m and 
t = 1/2000 yr). The CFL number κ0 ≈ 0.96
corresponds to the black circles. (b) Convergence of the grounding-line position x+(t) to the fine-resolution
position x•+(t) (
x = 12.5 m and 
t = 1/2000 yr) as 
x decreases for different CFL numbers. Linear
convergence in 
x and 
t are noted by the black dashed lines in (a,b). The penalty parameter is ε = 10−13.

linearly (figure 8a). Convergence with decreasing 
t (decreasing κ) is also approximately
linear. To study convergence of the grounding-line position x+(t), we define x•+(t) to be
the fine-resolution solution. We observe that ‖x+ − x•+‖2/‖x•+‖2 decreases approximately
linearly for larger values of 
x and 
t (figure 8b). Convergence at smaller (
x, 
t)
becomes superlinear because x+ → x•+ when (
x, 
t) → (12.5 m, 1/2000 yr). We also
provide time series of V/V0 and x+ for κ = κ0 and a range of element widths (figure 9).

B.2. Triangular-lake benchmark
Here, we provide an additional benchmark test for validation. We rely on the expectation
that the ice–water surface should remain nearly flat if the lake volume changes sufficiently
slowly. We consider a wedge-shaped bed with slope m = 1/500 given by β(x) = m|x|, and
an initial lower surface s(x, 0) = max(β(x), s0) where s0 = 5/2 m is constant, resulting in
a triangular-initial-lake geometry. We suppose that the ice–water surface evolves as

s(x, t) = s0 + ṡ t (for s > β), (B1)

where ṡ is a constant uplift rate. In this case, the grounding-line positions are given by

x±(t) = ±s0 + ṡ t
m

. (B2)

The volume change associated with (B1) and (B2) is given by V(t) = V0(1 + (ṡ/s0)t)2,

where V0 is the initial volume. We provide the associated volume change rate V̇(t) =
2V0ṡ/s0(1 + (ṡ/s0)t) as input in the numerical tests for various values of ṡ (figure 10).
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Figure 9. (a) Volume change and (b) grounding-line position time series with a CFL number of
κ = κ0 ≈ 0.96 over a range of 
x. The penalty parameter is ε = 10−13 for all simulations.
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Figure 10. (a) Convergence of x+ towards the expected slow-filling solution ((B2), dashed line) as ṡ becomes
small. The final time T is related to the filling rate by T = s0/ṡ. (b,c) Free-surface plots for larger values of ṡ
at the final time. (d) Free-surface plot for small ṡ at the final time. The grounding lines (black triangles) and
ice–water elevation (red line) are close to the asymptotic solutions ((B2), open triangles) and ((B1), dashed
line), respectively. For all simulations, 
x = 50 m, 
t = 10−3 yr and ε = 10−14.
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We set ṡ = s0/T and vary the final time T so that the total water volume change
is always the same. In the slow-filling limit (ṡ � 5/128 m yr−1), the numerical
grounding-line position remains within 2
x of the asymptotic solution (figure 10a).
The small discrepancy arises because a rapid initial adjustment causes the ice–water
surface to meet the bed tangentially whenever ṡ > 0; this effect also occurs in a similar
model of subglacial cavitation (Fowler 1986; Schoof 2005). At fast filling rates, a
crack-like geometry develops near the grounding lines as they rapidly migrate outwards
(figure 10b,c). At slower filling rates, the ice–water surface remains flat and approaches
the asymptotic solution (B1).
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