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Abstract

Cell—cell communication is a fundamental process that shapes
biological tissue. Historically, studies of cell-cell communica-
tion have been feasible for one or two cell types and a few
genes. With the emergence of single-cell transcriptomics, we
are now able to examine the genetic profiles of individual cells
at unprecedented scale and depth. The availability of such
data presents an exciting opportunity to construct a more
comprehensive description of cell-cell communication. This
review discusses the recent explosion of methods that have
been developed to infer cell-cell communication from non-
spatial single-cell and spatial transcriptomics, two promising
technologies that have complementary strengths and
limitations. We propose several avenues to propel this rapidly
expanding field forward in meaningful ways.
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Introduction
Cell—cell communication (CCC)—cell—cell interactions
that are regulated by biochemical signaling—is an

important aspect of tissue structure and function, regu-
lating individual cell processes and intercellular relation-
ships. Historically, CCC could only be studied in  vitro
experiments consisting of one or two cell types and a select
few genes. These studies paint an incomplete picture, as
CCC involves many cell types and invokes a large number
of genes. A new, powerful method to probe tissue hetero-
geneity is single-cell RNA sequencing (scRNA-seq), which
measures gene expression at a single-cell resolution. As the
number of cells that can be sequenced increases [1],
computational tools mature, allowing researchers to
analyze scRNA-seq data with increasing efficiency [2].
"Thus, the study of single-cell transcriptomics has begun to
shift from only focusing on w/ar cells are present to further
focusing on what relationships between cells are present.
Dissecting these relationships (lineage trajectories, cell—
cell interactions) is crucial to understanding the ‘land-
scape’ of biological systems. The availability of single-cell
transcriptomics presents an exciting opportunity to study
CCC in ways that have previously been impossible.
Conversely, CCC inference presents as a meaningful way to
use single-cell transcriptomics. As such, the number of
tools that infer CCC from scRNA-seq, which lacks spatial
resolution, has increased rapidly over recent years. Spatial
transcriptomics (ST), which profiles gene expression at
single “spots” of one—ten cells or at subcellular resolution
(hereafter referred to simply as single-cell spatial tran-
scriptomics), has emerged as an alternative resource for
CCC inference, albeit with complementary advantages
and limitations.

The aim of this review is twofold: (1) to summarize the
emerging and novel field of CCC inference from single-
cell resolution data and (2) highlight possible research
avenues to improve on current limitations of CCC
inference. We first describe the general principles
governing CCC inference from non-spatial scRNA-seq
data. The current state of the art for CCC analysis and
visualization are outlined. We then describe how CCC
can be inferred from ST alone or by integrating it with
scRNA-seq. We close with a list of pertinent avenues for
future investigations.

Inferring CCC from single-cell genomics
data

CCC is facilitated through various biochemical re-
actions that comprise signaling pathways. For a given
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Figure 1
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Principles of cell-cell communication inference. (a) Cells can secrete ligands that diffuse and can bind to receptors expressed on the surface of
nearby cells. This is likelier to occur for receiver cells that are closest to the sender cell and when there is sufficient receptor expression. Cell—cell
communication only occurs when the bound ligand triggers a downstream response. The blue and orange cells represent different cell types. For the blue
cells, darker shades represent stronger ligand expression. (b) Cell—cell communication can be inferred from scRNA-seq at either the individual cell or cell
cluster level, but spatial distances between cells are lost. (¢) Using spatial transcriptomics to infer cell-cell communication preserves spatial distances

between cells but potentially at the loss of single-cell or gene resolution.

signaling pathway, ligands expressed by a ‘sender cell’
bind to corresponding receptor proteins expressed on
the surface of a ‘receiver cell,” triggering downstream
gene responses (Figure la). There are two types of
signaling: autocrine, when the sender and receiver are
the same cell; and paracrine, when the sender and
receiver are two different cells. From gene expression
data, one can use corresponding ligand and receptor
gene expression levels as indirect measures of protein
expression. By scrutinizing the gene expression levels
of a group of sender and receiver cells, where the
ground truth is masked by biological and technical
noise, communication is often quantitatively defined in
a probabilistic sense. For example, one assigns an
‘interaction score’ based on ligand and receptor ex-
pressions. As such, CCC inference will be most bene-
ficial when there are sufficiently many cells from which
one can sample the relevant ligand and receptor
expressions.

Although the core principle of CCC inference is intui-
tive to understand, it is overly simplistic and can over-
estimate communication activity for several reasons.
First, cell signaling occurs at the protein level, not the
gene level. As gene expression does not always translate
directly to protein expression, it is possible that
communication determined using ligand or receptor
gene expression data alone may not have occurred at the
protein level. In the case of receptor gene expression,
communication can be further evaluated by examining
the downstream target gene response caused by ligand—
receptor binding (Figure 1a). Second, cell signaling is
spatially constrained. Many signaling pathways are
activated through ligands diffusing from sender cells to
nearby receiver cells. Hence, the number of cells with
which the sender cell can communicate is limited by the
finite spatial diffusivity of the ligand (Figure 1a). Other
pathways are activated by physical contact between
adjacent cells. These spatial aspects of biological tissue
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Visualization and analysis of cell-cell communication from scRNA-seq data (a—e) Common visualization methods for cell—cell communication. (a)
Circle plot: Circle size and edge width are proportional to the number of cells in each cell cluster and the communication score between interacting cell
clusters, respectively. (b) Chord diagram. (¢) Heatmap: Rows and columns represent sources and targets, respectively. Bar plots on the right and top
represent the total outgoing and incoming interaction scores respectively. (d) The hierarchical plot consists of two parts: Left and right portions highlight
the autocrine and paracrine signaling to clusters A/B/C and clusters D/E/F, respectively. Solid and open circles represent source and target, respectively.
Circle sizes are proportional to the number of cells in each cell group and edge width represents the communication score. (e) The bubble plot shows the
ligand—receptor pairs contributing to the signaling from cell cluster A to other clusters (f—h) Examples of analysis techniques of cell—cell communication
from CellChat. (f) Ready identification of major signaling sources and targets using network centrality analysis. For a given cell—cell communication
network, the outgoing and incoming centrality scores are computed for each cell cluster and then visualized in a two-dimensional space. Circle size
represents the total number of interactions associated with each cell cluster. (g) The alluvial plot shows the correspondence between the inferred latent
patterns and cell clusters as well as signaling pathways. These patterns reveal how the cell clusters coordinate with each other as well as how they
coordinate with certain signaling pathways. The thickness of the flow indicates the contribution of the cell cluster or signaling pathway to each latent
pattern. (h) CellChat also delineates signaling changes across different contexts by jointly projecting signaling networks from two data sets onto a two-
dimensional space, and quantitatively comparing the information flow of each signaling pathway between two data sets. The overall information flow of a
signaling network is calculated by summarizing all the communication scores in that network.
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Table 1

Current packages developed to infer cell-cell communication from single—cell transcriptomics.

Package Reference Additional Methods Implementation Output
input?
Methods that only
require nonspatial
scRNA-seq as input

CellChat Jin et al. [5] None. Curated database; R e CellChat  object
multiple ligand/ containing
receptor subunits Neyuster-bY-Neuster
and cofactors. communication
Communication probability
probabilities matrices for each
calculated using constituent
law of mass ligand—receptor
action, pairs of significant
considering the signaling
geometric means pathways.
of ligand and
receptor
expressions (with
their subunits),
weighted by their
agonists/
antagonists.

CellPhoneDB Efremova None. Curated database; Python e List of most

etal. [7] multiple ligand/ statistically

receptor subunits. significant
Permutes cell ligand—receptor
cluster labels to interactions.
generate null
distribution, from
which enriched
ligand—receptor
interactions for
each cell type are
determined.

COMUNET Solovey None. CCC network is R e List of Ngyster-by-

et al. [47] modeled as Neiuster interaction

multiplex network, matrices for each
where each layer interacting
corresponds to a ligand—receptor
ligand—receptor pair.
interaction.

iCELLNET Noél et al. [8] None. Manually curated R o Nejuster-bY-Neiuster
database; multiple matrix of CCC
ligand/receptor probabilities.
sub-units.
Interactions
determined by
multiplying the
geometric means
of ligand and
receptor
expressions.

iTALK Wang et al. [40] None. Manually curated R o Nejuster-bY-Neiuster
database. matrix of CCC
Significant probabilities for
interactions are most significant
determined by ligand—receptor
considering interactions.
differentially
expressed genes.

NATMI Hou et al. [48] None. Manually curated Python o Nejuster-bY-Neiuster

database.
Interactions
between clusters

matrix of CCC
probabilities.

(continued on next page)
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Table 1 (continued)

Package Reference

Additional

input?

Methods

Implementation

Output

PyMINEr Tyler et al. [49] None.

scTensor Tsuyuzaki None.

et al. [12]

SingleCellSignalR Cabello-
Aguilar

et al. [6]

None.

Methods that consider downstream response

CytoTalk Hu et al. [11] None.

are modeled as
network edge
weights, which are
calculated by the
product of
normalized ligand
and receptor
expressions of the
two clusters.
Constructs
coexpression
networks
determined from
Spearman
correlation, which
are then integrated
with
protein—protein
interaction
networks.
Enriched
interactions are
determined with
respect to a
Gaussian null
distribution
between cell
clusters.

Manually curated
database.

CCC network
constructed as a
directed
hypergraph with
multiple edge
types representing
different
ligand—receptor
pairs.

Interactions
modelled using
tensor
decomposition,
which are then
scored.

Manually curated
database.
Probabilities  are
calculated using a
nonlinear function
of the product of
ligand and
receptor
expressions.

gene

Constructs
integrated network
of intercellular and
intracellular
gene—gene in-
teractions based
on mutual
information.

Python

MATLAB/Python/R

e List of gene—gene
interaction net-
works for each cell
cluster.

e Hypergraph of
Neiuster NOdes,
consisting of
ligand patterns,
receptor patterns,
and
ligand—receptor
pairs.

® Neiuster-0Y-Nejuster
matrix of CCC

probabilities.

e Integrated signal
transduction
gene network
where edge types
indicate
intercellular and
intracellular
interactions
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Package Reference Additional Methods Implementation Output
input?
between cell
clusters.

scMLnet Cheng et al. [10] Downstream e Manually curated R e List of multilayer
responses database. signaling
modeled by e Multilayer network networks for each
interlayer is constructed cell cluster.
network edges. using ligand,

receptor, and
target genes as
nodes of network
layers.

NicheNet Browaeys et al. [9] Must specify e Manually curated R e List of potential
candidate database. ligand—target
downstream e Ligand-target interactions.
targets. potential scores

determined using
Personalised
PageRank to infer
ligand—target
signaling
importance.

SoptSC Wang et al. [3] Can specify e Individual cell MATLAB/R o Neey-by-Neeys
upstream/ CCC probabilities matrix of individual
downstream are calculated cell CCC
genes to refine using nonlinear probabilities.
probabilities. functions of the o Nejuster-bY-Neiuster

products of ligand matrix of cell
and receptor cluster CCC
expressions, probabilities.
which can be

weighted by target

gene response.

Methods that accept ST as sole data input or in conjunction with scRNA-seq

Cell2Cell Armingol et al. [30] Can specify e Curated database. Python e List of enriched
intercellular e Bray—Curtis—like and depleted
distances via ST. score to model ligand—receptor

interactions and interactions.
optimizes o Noiuster-0Y-Noiuster
Spearman matrix of cell—cell
correlation interaction
between distances distances.
and interaction
scores

e Infers
communication
distance using
Gaussian mixture
model.

Giotto Dries et al. [24] Requires ST as data e Spatial network is Python/R o Neuster-bY-Neiuster

input. constructed from matrix of CCC
ST data, which is probabilities.
used to filter for o List of most
interactions significant
between cells that ligand—receptor
are sufficiently interactions.
close.
e Interactions
between clusters
scored by average
ligand and
receptor
expressions.
MISTY Tanevski et al. [32] Requires ST at data e Significant marker R e Clustered network

input.

genes at specific
locations are

of signaling gene
interactions within

(continued on next page)
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Table 1 (continued)

Package Reference Additional Methods Implementation Output
input?

determined using cell clusters and
random forest between cell
methods. clusters.

e Interactions are
calculated by
weighting the
gene expressions
of local cell
neighborhood.

SpaOTsc Cang and Nie [22]  Requires e Optimal transport Python List of inferred
intercellular is used to infer ligand and
distances or STas  CCC between cell receptor
data input. clusters from expressions at ST

scRNA-seq data. coordinates.

e Optimal transport Neey-by—Ncey
maps CCC from CCC matrix for a
scRNA-seq to given signaling
spatial position. pathway.

stLearn Pham et al. [21] Requires ST as data e Gene expression Python Nspot-by-Nspot
input. is normalized matrix

across spatial representing
location. ligand—receptor

e Significant expression across
ligand—receptor discretized tissue.
pairs are deter-
mined using Cell-

PhoneDB on
normalized gene
expression.

SVCA Arnol et al. [31] Requires ST as data e Models gene Python/R Variance

input. expression as contributions for
Gaussian mixed significantly

effects model that
accounts for
intrinsic effects,
environmental
effects, and
cell—cell
interactions

expressed genes
to predict genes
with significant
spatial variation.

For each method, we specify the literature reference; whether or not the method requires additional input alongside scRNA-seq; a brief description of the
methods used to infer CCC; the programming language used for implementation; and the format and dimensions of the method output.

are lost in scRNA-seq but preserved in ST (Figure 1b
and c). Considering these limitations or caveats,
numerous approaches have been devised to improve the
accuracy of CCC inference from single-cell genomics
data.

A summary of the different methods for
CCC using scRNA-seq data

Computational tools have been developed to infer CCC
from scRNA-seq at both the individual cell and cell
cluster levels. SoptSC is one of the few methods to infer
CCC between individual cells [3]; most methods infer

the unique features
methods, such as SoptSC [3], CellChat

CCC between cell clusters [4,5] ('Table 1). We highlight
of different methods.

[5], and

Some

SingleCellSignalR [6], calculate interaction scores using
nonlinear modeling approaches, for example, CellChat
uses Hill-function—based mass action models, whereas
other methods, such as CellPhoneDB [7] and
ICELLNET [8], calculate the product of ligand and
receptor expressions. To predict statistically significant
and cell-cluster—specific communications, CellChat
[5], CellPhoneDB [7], and SingleCellSignalR [6] assign
a p-value to each interaction by generating a score null
distribution. To better recapitulate known ligand—

Current Opinion in Systems Biology 2021, 26:12—-23

www.sciencedirect.com


www.sciencedirect.com/science/journal/24523100

receptor interactions, CellChat [5], CellPhoneDB [7],
and ICELLNET [8] consider the multi-subunit struc-
ture of ligands and receptors to represent heteromeric
complexes accurately. In addition, CellChat [5] modu-
lates interactions due to cofactors (agonists and antag-
onists). Methods such as SoptSC [3], NicheNet [9],
scMLnet [10], and CytoTalk [11] account for intracel-
lular gene-gene interactions in receiver cells. Although
most methods focus on pairwise analysis of signaling
between cell clusters, scTensor models higher-order
interactions, using tensor decomposition to detect
many-to-many CCC involving multiple cell clusters and
ligand—receptor pairs [12].

In addition to quantifying CCC, these tools provide
several ways to visualize the inferred intercellular
communication network. CellChat is one such rep-
resentation tool and includes powerful visualization
features for different analytical tasks [5]. Figure 2
shows several common methods, including visualiza-
tion of signaling networks mediated by a single
ligand—receptor pair (Figure 2a—d) and multiple
ligand—receptor pairs (Figure 2e). Unique to Cell-
Chat is a customized hierarchical visualization tool,
which is especially useful to dissect complex signaling
networks by explicitly specifying sender and receiver
cells to distinguish paracrine from autocrine signaling
(Figure 2d).

CCC tools have been applied successfully to a diverse
range of systems to dissect mechanisms of cell fate
decisions and diseases [4]. For example, CellChat
predicted key signaling mechanisms of dermal
condensate and melanocyte cell migration during
early hair follicle development [5] and elevated in-
flammatory signaling from brain-barrier cells during
COVID-19 infection [13]; CellPhoneDB inferred
significant interactions that prevent harmful immune
responses during early human pregnancy [14] and
epidermal-dermal crosstalk during large wound heal-
ing in skin [15]; and NicheNet predicted upstream
niche signals that regulate the liver macrophage niche
[16].

The majority of tools focus exclusively on the infer-
ence of CCC. More recently, to facilitate the analysis
and interpretation of the complex intercellular
communication networks, CellChat adapts methods
from social network analysis, pattern recognition, and
manifold learning, allowing for: identification of major
signaling sources and targets (Figure 2f); prediction of
coordination between cells and signals for function
(Figure 2g); and delineation of conserved and
context-specific signaling across different data sets
(Figure 2h). Together, these tools provide an un-
precedented opportunity to comprehensively probe
underlying CCC that often drive heterogeneity and
cell state transitions.

Cell-cell communication from single-cell data Almet et al. 19

Integration of scRNA-seq and spatial data
Using only scRNA-seq data to infer CCC often in-
troduces false-positive links, because cells only
communicate directly over a limited spatial distan-
ce—critical information lost in the scRNA-seq data.
This limitation can be mitigated by integrating scRNA-
seq with emerging ST technologies [17—19] that retain
spatial information, but often, at the cost of compro-
mised cellular resolution, coverage, or sequencing depth
[20] (Figure 3a). General-purpose methods for inte-
grating two heterogeneous data sets, representing
different measurements of the same biological system,
may be used [2]. More specialized methods to integrate
spatial imaging or transcriptomics with scRNA-seq data
have been developed to exploit the spatial structure of
the former [21—26]. These methods rely on commonly
measured genes to estimate the similarity between po-
sitions and single cells, improving data integration with
spatial information. For example, SpaOTsc refines data
integration using structured optimal transport, using
both gene expression similarities and spatial distances
between cells from scRNA-seq and ST, respectively
[22]. Alternatively, a hidden Markov random field-based
method uses the spatial neighborhood information when
transferring labels from scRINA-seq data [25]. There are
also methods for ¢ novo spatial placement of scRNA-seq
data without a spatial reference [27—29]. These
methods place single cells in space based on different
assumptions. For example, cells with similar gene
expression profiles are considered to be nearby [27], or
cells coexpressing ligands and receptors are assumed to
be colocalized [29].

CCC inference using spatial

transcriptomics

Spatial transcriptomics (ST) or ST integrated with
scRNA-seq empowers CCC analysis in spatial contexts
(Figure 3b). Although CCC inferred from scRNA-seq
can be further refined by spatial constraints, there are
specialized methods that use the spatial data directly to
analyze CCC. To examine CCC through membrane-
bound ligand and receptor expression, Giotto uses a
spatial proximal graph to quantify signaling between
clusters by restricting the average ligand and receptor
expressions of the two clusters to cells that are
connected in the spatial proximal graph [24]. To
improve the confidence of identified CCC, cell2cell
uses a Bray—Curtis—like score over hundreds of ligand—
receptor pairs followed by a spatial distance-based filter
to identify interacting cells [30]. Rather than infer
pairwise cell—cell interactions, stl.earn computes a
ligand—receptor coexpression score related to cell type
diversity at individual ‘spots’ to identify spatial regions
with intensive signaling activity [21]. Taking a global
perspective such that a lone receptor-expressing cell is
likelier to receive a signal than a cell surrounded by
many receptor-expressing cells, SpaOTsc derives two
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Figure 3
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Integrating scRNA-seq with spatial transcriptomics. (a) The major tasks involved in integrating scRNA-seq with spatial transcriptomics are: imputing
gene expression in spatial data; assigning cell types to spatial data; inferring spatial origins of scRNA-seq data; and estimating spatial interactions in
scRNA-seq. (b) The main outputs of current spatial cell-cell communication inference methods include: a cell—cell or cluster—cluster network due to
ligand—receptor binding (for a specified signaling pathway) and more general intercellular gene regulatory networks in space.

spatial distributions for signal senders and receivers,
based on the ligand, receptor, and downstream genes,
and finds an optimal transport plan from the sender
distribution to receiver distribution with a minimum
total transportation distance in space [22]. In a more
general setting, Spatial Variance Component Analysis
(SVCA) uses probabilistic models to infer how cell-
specific genes are impacted by neighboring cells and
the external environment [31]. Using a machine
learning model, MISTy identifies predictor genes in the
spatial neighborhood for target genes [32].

There are three functions of the current methods. First,
they can identify interactions between cells through
specified signaling pathways with known ligands, re-
ceptors, and downstream genes. Second, they can pre-
dict novel gene pairs that interact across neighboring
cells. Third, they can infer the physical properties of

CCC from spatial data. For example, SpaOTsc can es-
timate the spatial ‘diffusivity’ of a signaling pathway by
modeling downstream gene expression based on signals
received over a range of distances [22]. Although CCC is
a temporal process, there are no methods that consider
this dynamical aspect inherent in ST data. With the
advancements in ST resolution, it will be possible to
develop spatiotemporal CCC inference methods based
on spatiotemporal trajectories constructed from ST data
[6,22,33].

Benchmarking and validation

To infer the most significant CCCs, a wide range of
methodologies along with different underlying as-
sumptions have clearly been developed (lable 1). To
validate these methods, it is important to establish
appropriate benchmarks. Generally, CCC inference
methods may be validated by prior biological knowledge
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and evaluated using indicators such as robustness and
enrichment analysis [7,18,34,35]. However, it is difficult
to completely benchmark identified CCC networks
against the biological ground truth, which is often un-
known. Besides being used as constraints to improve
CCC inference, ST can also be used as a benchmark to
evaluate false-positive rates [11]. When applied as a
hypothesis-generating tool for specific biological sys-
tems, the inferred CCC can be validated by parallel
experiments, such as  vivo imaging, and downstream
functional studies that perturb certain CCC experi-
mentally [35,36]. In addition, assuming transcriptomics
reflects proteomics well, which can be validated using
emerging technologies [37—39], the algorithmic aspects
of CCC inference methods can be benchmarked by
silico CCC simulations [32].

Outlook

We have described the current capabilities of CCC
inference from single-cell transcriptomics. Although
CCC inference has advanced considerably in recent
years, there are several limitations and future opportu-
nities that warrant further studies.

1. Multiscale linking of CCC to downstream response and gene
regulatory networks

Most CCC methods focus on the existence and likeli-
hood of various signaling pathways. For example, Cell-
Chat [5], SingleCellSignalR [6], CellPhoneDB [7],
ICELLNET [8], and iTALK [40] predict the potential
CCC based on the expression of ligands and receptors—a
major assumption of all CCC methods. Methods such as
SpaOTsc [22] reduce false-positive predictions by ac-
counting for spatial distance between cells. However,
very few methods account for the coupling between the
downstream response and CCC, where the downstream
responses indicate the cell processes regulated by the
inferred signaling pathways. Within-cell gene regulatory
networks (GRNs) also drive cell fate and decision-
making. Although there are tools to infer GRNs from
scRNA-seq [41], GRN inference is generally separate
from CCC inference. So far, there are only rudimentary
efforts to link CCC to GRNs [11,42,43]. Improved
linking of CCC to downstream response and GRNs in a
coherent way will improve the understanding of cell-
type-specific responses to cell signaling.

2. Coupling with (lineage) trajectory analysis for landscape
reconstruction

Another popular application of single-cell tran-
scriptomics is trajectory inference, showing the capacity
for one or more cell types to differentiate into other cell
types. Numerous trajectory inference methods have
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been developed for scRNA-seq [44], but, like GRN
inference, trajectory inference is performed separately
from CCC inference. However, differentiation trajec-
tories can clearly be influenced by cell—cell signaling,
and vice versa [4].

3. Stmulating scRNA-seq data with realistic underlying CCC

A significant issue in CCC inference is the current lack
of benchmarks, which are needed to validate the wide
range of methodologies. Current approaches include
using ‘high-quality’ data sets [6] or ST [11]. A common
approach for inference benchmarking is validation on
synthetic data. However, it is not clear how to best
generate synthetic scRNA-seq with a well-defined un-
derlying CCC network, as the ground truth is unknown.
Although there exist methods to simulate synthetic
scRNA-seq data [12,32], there are no methods to
generate CCC  networks with realistic  spatial
constraints.

4. Integration with mathematical modeling

CCC is a spatiotemporal process, but neither its dy-
namic nor spatial aspects are fully captured by single-
cell transcriptomics. Mathematical models can be
harnessed to validate temporal and spatial effects and
simulate perturbed variants of the studied system.

5. Multiomics integration

In addition to scRNA-seq and ST, there are now other
emerging single-cell technologies that provide protein
[37—39] and epigenetic [45] information. For example,
integrating scRNA-seq with scATAC-seq provides
additional insight into cell clustering and transcriptional
regulation [46]. CCC will clearly benefit from such
integration. As CCC involves both protein-specific and
gene-specific responses, but neither scRNA-seq nor ST
capture protein-level information, it is pertinent that
CCC methods can be extended to incorporate these
multiomics data. Incorporating multi-omics data will
allow researchers to improve and validate CCC infer-
ence and enable better method benchmarking.

Single-cell transcriptomics has yielded enormous
amounts of biological data, allowing for new insights into
CCC. As more technologies and inference methods
emerge and are refined, the field of CCC inference
holds great promise for many exciting opportunities and
insights.

Conflict of interest statement
Nothing declared.

www.sciencedirect.com

Current Opinion in Systems Biology 2021, 26:12—-23


www.sciencedirect.com/science/journal/24523100

22 Theoretical approaches to analyze single-cell data

Acknowledgments

We apologize for unintentionally excluding any current CCC methods in
the literature, due to the constraint on the number of references. This
work is partially supported by an NSF grant DMS1763272, a grant from the
Simons Foundation (594598, QN), and an NIH grant U01AR073159.

References
Papers of particular interest, published within the period of review,
have been highlighted as:

ee Of outstanding interest

1.  Svensson V, Vento-Tormo R, Teichmann SA: Exponential
scaling of single-cell RNA-seq in the past decade. Nat Protoc
2018, 13:599-604, https://doi.org/10.1038/nprot.2017.149.

2. Hie B, Peters J, Nyquist SK, Shalek AK, Berger B, Bryson BD:
Computational methods for single-cell RNA sequencing.
Annu Rev Biomed Data Sci 2020, 3:339—-364, https://doi.org/
10.1146/annurev-biodatasci-012220-100601.

3. Wang S, Karikomi M, Maclean AL, Nie Q: Cell lineage and

ee communication network inference via optimization for single-
cell transcriptomics. Nucleic Acids Res 2019, 47:1-13, https:/
doi.org/10.1093/nar/gkz204.

One of the few works to focus specifically on individual cell—cell

communication, using a pairwise function based on ligand and re-

ceptor expression.

4. Lewis N, Armingol E, Officer A, Harismendy O: Deciphering cell-
cell interactions and communication from gene expression.
Nat Rev Genet 2020, https://doi.org/10.1038/s41576-020-00292-
X.

5. Jin S, et al.: Inference and analysis of cell-cell communication

ee using CellChat. Nat Commun 2021:1-20, https://doi.org/
10.1038/s41467-021-21246-9.

State of the art for cell-cell communication visualization and demon-

strates how various methods from other fields can be adapted to

facilitate the interrogation of complex cell-cell communication

methods.

6. Cabello-Aguilar S, Alame M, Kon-Sun-Tack F, Fau C, Lacroix M,
Colinge J: SingleCellSignalR: inference of intercellular net-
works from single-cell transcriptomics. Nucleic Acids Res
2020, 48, hitps://doi.org/10.1093/nar/gkaa183.

7. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R:

ee CellPhoneDB: inferring cell-cell communication from com-
bined expression of multi-subunit ligand—receptor com-
plexes. Nat Protoc 2020, 15:1484—15086, https://doi.org/10.1038/
s$41596-020-0292-x.

A pioneering work that demonstrates how cell—cell communication can

be inferred from scRNA-seq data by considering possible ligand-

receptor interactions.

8. Noél F, et al.: Dissection of intercellular communication using
the transcriptome-based framework ICELLNET. Nat Commun
2021:1-16, https://doi.org/10.1038/s41467-021-21244-x.

9. Browaeys R, Saelens W, Saeys Y: NicheNet: modeling inter-

ee cellular communication by linking ligands to target genes.
Nat Methods 2020, 17:159—-162, https://doi.org/10.1038/s41592-
019-0667-5.

One of the first works that systematically considers the downstream

response of receiver cells and infers possible ligand-target links be-

tween senders and receivers.

10. Cheng J, Zhang J, Wu Z, Sun X: Inferring microenvironmental
regulation of gene expression from single-cell RNA
sequencing data using scMLnet with an application to
COVID-19. Briefings Bioinf 2020:1-18, https://doi.org/10.1093/
bib/bbaa327. 00.

11. HuY, Peng T, Gao L, Tan K: CytoTalk: de novo construction of
signal transduction networks using single-cell RNA-Seq data.
2020:1-22, https://doi.org/10.1101/2020.03.29.014464.

12. Tsuyuzaki K, Ishii M, Nikaido I: Uncovering hypergraphs of cell-
cell interaction from single cell RNA-sequencing data. bioRxiv
2019:566182, hitps://doi.org/10.1101/566182. no. Cci.

13. Yang AC, et al.: Broad transcriptional dysregulation of brain
and choroid plexus cell types with COVID-19. bioRxiv 2020, 2,

https://doi.org/10.1101/2020.10.22.349415. no. October, p.
2020.10.22.349415.

14. Vento-Tormo R, et al.: “Single-cell reconstruction of the early
maternal-fetal interface in humans. Nature 2018, 563:
347-353, https://doi.org/10.1038/s41586-018-0698-6.

15. Abbasi S, et al.: Distinct regulatory programs control the
latent regenerative potential of dermal fibroblasts during
wound healing. Cell Stem Cell 2020:1—-17, https://doi.org/
10.1016/j.stem.2020.07.008.

16. Bonnardel J, et al.: Stellate cells, hepatocytes, and
endothelial cells imprint the kupffer cell identity on mono-
cytes colonizing the liver macrophage niche. Immunity
2019, 51:638—-654, https://doi.org/10.1016/
j.immuni.2019.08.017. 9.

17. Rodriques SG, et al.: Slide-seq: a scalable technology for
measuring genome-wide expression at high spatial resolu-
tion. Science (80-) 2019, 363:1463—1467, https://doi.org/
10.1126/science.aaw1219.

18. Eng CHL, et al.: Transcriptome-scale super-resolved imaging
in tissues by RNA seqFISH+. Nature 2019, 568:235—239,
https://doi.org/10.1038/s41586-019-1049-y.

19. Stahl PL, et al.: Visualization and analysis of gene
expression in tissue sections by spatial transcriptomics.
Science (80-) 2016, 353:78—-82, https://doi.org/10.1126/
science.aaf2403.

20. Waylen LN, Nim HT, Martelotto LG, Ramialison M: From whole-
mount to single-cell spatial assessment of gene expression
in 3D. Commun Biol 2020, 3:1-11.

21. Pham DT, et al.: stLearn: integrating spatial location, tissue
morphology and gene expression to find cell types, cell-cell
interactions and spatial trajectories within undissociated
tissues. bioRxiv 2020.

22. Cang Z, Nie Q: Inferring spatial and signaling relationships

ee between cells from single cell transcriptomic data. Nat
Commun 2020:1—13, https://doi.org/10.1038/s41467-020-15968-
5.

Uses optimal transport to map cell-cell communication inferred from

scRNA-seq to spatial transcriptomics to account for spatial distances

between cells.

23. Lopez R, et al.: A joint model of unpaired data from scRNA-seq
and spatial transcriptomics for imputing missing gene expression
measurements. arXiv Prepr; 2019. arXiv1905.02269.

24. Dries R, et al.: Giotto, a pipeline for integrative analysis and
visualization of single-cell spatial transcriptomic data.
Genome Biol 2021:1-31, https://doi.org/10.1101/701680.

25. Zhu Q, Shah S, Dries R, Cai L, Yuan G-C: Identification of
spatially associated subpopulations by combining scRNA-
seq and sequential fluorescence in situ hybridization data.
Nat Biotechnol 2018, 36:1183.

26. Andersson A, et al.: Single-cell and spatial transcriptomics
enables probabilistic inference of cell type topography.
Commun Biol 2020, 3:1-8, https://doi.org/10.1038/s42003-020-
01247-y.

27. Nitzan M, Karaiskos N, Friedman N, Rajewsky N: Gene
expression cartography. Nature Dec. 2019, 576:132—-137,
https://doi.org/10.1038/s41586-019-1773-3.

28. Bravo Gonzalez-Blas C, et al.: “Identification of genomic en-
hancers through spatial integration of single-cell tran-
scriptomics and epigenomics. Mol Syst Biol 2020, 16:€9438.

29. Ren X, Zhong G, Zhang Q, Zhang L, Sun Y, Zhang Z: Recon-
struction of cell spatial organization from single-cell RNA
sequencing data based on ligand-receptor mediated self-as-
sembly. Cell Res 2020, 30:763—-778.

30. Armingol E, et al.: Inferring the spatial code of cell-cell in-
teractions and communication across a whole animal body
Graphical abstract. bioRxiv 2020:2020. 11.22.392217.

31. Aol D, Schapiro D, Bodenmiller B, Saez-Rodriguez J, Stegle O:
Modeling cell-cell interactions from spatial molecular data

Current Opinion in Systems Biology 2021, 26:12—-23

www.sciencedirect.com


https://doi.org/10.1038/nprot.2017.149
https://doi.org/10.1146/annurev-biodatasci-012220-100601
https://doi.org/10.1146/annurev-biodatasci-012220-100601
https://doi.org/10.1093/nar/gkz204
https://doi.org/10.1093/nar/gkz204
https://doi.org/10.1038/s41576-020-00292-x
https://doi.org/10.1038/s41576-020-00292-x
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1093/nar/gkaa183
https://doi.org/10.1038/s41596-020-0292-x
https://doi.org/10.1038/s41596-020-0292-x
https://doi.org/10.1038/s41467-021-21244-x
https://doi.org/10.1038/s41592-019-0667-5
https://doi.org/10.1038/s41592-019-0667-5
https://doi.org/10.1093/bib/bbaa327
https://doi.org/10.1093/bib/bbaa327
https://doi.org/10.1101/2020.03.29.014464
https://doi.org/10.1101/566182
https://doi.org/10.1101/2020.10.22.349415
https://doi.org/10.1038/s41586-018-0698-6
https://doi.org/10.1016/j.stem.2020.07.008
https://doi.org/10.1016/j.stem.2020.07.008
https://doi.org/10.1016/j.immuni.2019.08.017
https://doi.org/10.1016/j.immuni.2019.08.017
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1126/science.aaf2403
https://doi.org/10.1126/science.aaf2403
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref20
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref20
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref20
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref21
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref21
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref21
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref21
https://doi.org/10.1038/s41467-020-15968-5
https://doi.org/10.1038/s41467-020-15968-5
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref23
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref23
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref23
https://doi.org/10.1101/701680
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref25
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref25
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref25
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref25
https://doi.org/10.1038/s42003-020-01247-y
https://doi.org/10.1038/s42003-020-01247-y
https://doi.org/10.1038/s41586-019-1773-3
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref28
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref28
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref28
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref29
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref29
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref29
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref29
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref30
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref30
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref30
www.sciencedirect.com/science/journal/24523100

32.

33.

34.

35.

36.

37.

38.

39.

40.

with spatial variance component analysis. Cell Rep 2019, 29:
202-211, https://doi.org/10.1016/j.celrep.2019.08.077. e6.

Tanevski J, Gabor A, Flores ROR, Schapiro D, Saez-Rodriguez J:
Explainable multi-view framework for dissecting inter-cellular
signaling from highly multiplexed spatial data. 2020, https://
doi.org/10.1101/2020.05.08.084145.

Huang X, Chen D, Ren T, Wang D: A survey of community
detection methods in multilayer networks. US: Springer; 2020.

Cabello-Aguilar S, Alame M, Kon-Sun-Tack F, Fau C, Lacroix M,
Colinge J: SingleCellSignalR: inference of intercellular net-
works from single-cell transcriptomics. Nucleic Acids Res
2020:1-12, https://doi.org/10.1093/nar/gkaa183.

Sheikh BN, et al.: Systematic identification of cell-cell
communication networks in the developing brain. iScience
2019, 21:273-287.

Wang L, et al.: Single-cell reconstruction of the adult human
heart during heart failure and recovery reveals the cellular
landscape underlying cardiac function. Nat Cell Biol 2020, 22:
108-119.

Stoeckius M, et al.: Simultaneous epitope and transcriptome
measurement in single cells. Nat Methods 2017, 14:865—-868,
https://doi.org/10.1038/nmeth.4380.

Chung H, et al.: Simultaneous single cell measurements of
intranuclear proteins and gene expression. bioRxiv 2021.

Katzenelenbogen Y, et al.: Coupled scRNA-seq and intracel-
lular protein activity reveal an immunosuppressive role of
TREM2 in cancer. Cell 2020, 182:872—-885, https://doi.org/
10.1016/j.cell.2020.06.032. e19.

Wang Y, et al.: iTALK: an R Package to characterize and
illustrate intercellular communication. bioRxiv 2019:507871,
https://doi.org/10.1101/507871.

Cell-cell communication from single-cell data Almet et al. 23

41.

42.

43.

44,

45.

46.

47.

48.

49.

Pratapa A, Jalihal AP, Law JN, Bharadwaj A, Murali TM:
Benchmarking algorithms for gene regulatory network infer-
ence from single-cell transcriptomic data. Nat Methods 2020,
17:147-154, https://doi.org/10.1038/s41592-019-0690-6.

Cheng Jinyu, Zhang Ji, Wu Zhongdao, Sun Xiaogiang: Inferring
microenvironmental regulation of gene expression from
single-cell RNA sequencing data using scMLnet with an
application to COVID-19. Brief. Bioinform. 2021 Mar, 22:
988-1005.

Sha 'Y, Wang S, Zhou P, Nie Q: Inference and multiscale model
of epithelial-to-mesenchymal transition via single-cell tran-
scriptomic data. Nucleic Acids Res 2020, 48:9505—-9520, https://
doi.org/10.1093/nar/gkaa725.

Saelens W, Cannoodt R, Todorov H, Saeys Y: A comparison of
single-cell trajectory inference methods. Nat Biotechnol 2019,
37:547-554, https://doi.org/10.1038/s41587-019-0071-9.

Buenrostro JD, et al.: Single-cell chromatin accessibility re-
veals principles of regulatory variation. Nature 2015, 523:
486—490, https://doi.org/10.1038/nature14590.

Jin S, Zhang L, Nie Q: scAl: an unsupervised approach for the
integrative analysis of parallel single-cell transcriptomic and
epigenomic profiles. Genome Biol 2020, 21:1-19, https:/
doi.org/10.1186/s13059-020-1932-8.

Solovey M, Scialdone A: COMUNET: a tool to explore and
visualize intercellular communication. Bioinformatics 2020, 36:
4296-4300, https://doi.org/10.1093/bioinformatics/btaa482.

Hou R, Denisenko E, Ong HT, Ramilowski JA, Forrest ARR:
Predicting cell-to-cell communication networks using NATMI.
Nat Commun 2020, 11:5011, https://doi.org/10.1038/s41467-020-
18873-z.

Tyler SR, et al.: PyMINEr finds gene and autocrine-paracrine
networks from human islet scRNA-seq. Cell Rep 2019, 26:
1951-1964, https://doi.org/10.1016/j.celrep.2019.01.063. e8.

www.sciencedirect.com

Current Opinion in Systems Biology 2021, 26:12—-23


https://doi.org/10.1016/j.celrep.2019.08.077
https://doi.org/10.1101/2020.05.08.084145
https://doi.org/10.1101/2020.05.08.084145
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref33
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref33
https://doi.org/10.1093/nar/gkaa183
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref35
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref35
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref35
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref36
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref36
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref36
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref36
https://doi.org/10.1038/nmeth.4380
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref38
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref38
https://doi.org/10.1016/j.cell.2020.06.032
https://doi.org/10.1016/j.cell.2020.06.032
https://doi.org/10.1101/507871
https://doi.org/10.1038/s41592-019-0690-6
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref42
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref42
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref42
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref42
http://refhub.elsevier.com/S2452-3100(21)00008-1/sref42
https://doi.org/10.1093/nar/gkaa725
https://doi.org/10.1093/nar/gkaa725
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/nature14590
https://doi.org/10.1186/s13059-020-1932-8
https://doi.org/10.1186/s13059-020-1932-8
https://doi.org/10.1093/bioinformatics/btaa482
https://doi.org/10.1038/s41467-020-18873-z
https://doi.org/10.1038/s41467-020-18873-z
https://doi.org/10.1016/j.celrep.2019.01.063
www.sciencedirect.com/science/journal/24523100

	The landscape of cell–cell communication through single-cell transcriptomics
	Introduction
	Inferring CCC from single-cell genomics data
	A summary of the different methods for CCC using scRNA-seq data
	Integration of scRNA-seq and spatial data
	CCC inference using spatial transcriptomics
	Benchmarking and validation
	Outlook
	Conflict of interest statement
	Acknowledgments
	References


