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Automated segmentation and tracking of
mitochondriain live-cell time-lapse images

Austin E. Y. T. Lefebvre?, Dennis Ma?, Kai Kessenbrock?, Devon A. Lawson* and

Michelle A. Digman 2=

Mitochondria display complex morphology and movements, which complicates their segmentation and tracking in time-lapse
Images. Here, we Introduce Mitometer, an algorithm for fast, unblased, and automated segmentation and tracking of mito-
chondria in live-cell two-dimensional and three-dimensional time-lapse images. Mitometer requires only the pixel size and the
time between frames to Identify mitochondrial motion and morphology, including fusion and fission events. The segmentation
algorithm Isolates Individual mitochondria via a shape- and size-preserving background removal process. The tracking algo-
rithm links mitochondria via differences In morphological features and displacement, followed by a gap-closing scheme. Using
Mitometer, we show that mitochondria of triple-negative breast cancer cells are faster, more directional, and more elongated
than those In their receptor-positive counterparts. Furthermore, we show that mitochondrial motility and morphology in breast
cancer, but not in normal breast epithelia, correlate with metabolic activity. Mitometer Is an unblased and user-friendly tool
that will help resolve fundamental questions regarding mitechondrial form and function.

cal wounds, and ultimately our demise. Within these cells, the

mitochondrion lies at the intersection of these three physi-
ological states, and understanding its dynamics may help to identify
important therapeutic targets for the pharmaceutical treatment of a
broad range of diseases, from Alzheimer’s disease to cancer'™.

The roles that structure and function play in healthy mito-
chondria and the impact that altered mitochondrial morphol-
ogy, movement, and fission and fusion dynamics have on the
regulation of vital biological processes are currently the subjects
of active research. For example, recent studies have demonstrated
mitochondria-associated actin accumulation before fission events',
Additionally, their localization in neurons has been found to fuel
the bioenergy demands at distal extremities®, regulate the turn-
over of dysfunctional mitochondria®, and regulate neurogenesis in
postmitotic cells'. Impairment of these mitochondrial dynamics
has also been associated with a wide variety of neurodegenerative
diseases, including Alzheimer’s disease™, Huntington’s disease” and
Parkinson’s disease'™ ' It has also been suggested that dysregulation
of mitochondrial motion may contribute to the fueling of bioen-
ergy demands in metastatic cancer'*"". However, the advancement
of both basic and preclinical mitochondria research has been held
back by the biased and time-consuming manual analysis methods
currently serving as the gold standard in the field. To uncover the
peculiarities of these important life-preserving and disease-driving
organelles, a novel method for automated and robust mitochondrial
segmentation and tracking must first be developed.

Existing segmentation and tracking methods are difficult to tai-
lor to mitochondria because of their dynamics and unique shapes.
Several general techniques exist, but they make use of a Gaussian
fit to estimate morphology, which works well only for spherical
and elliptical particles'="". Object-based tracking methods are bet-
ter suited for mitochondrial morphologies because they allow for
variability in size and shape. Importantly, these methods require

| he cell governs our birth, our response to mental and physi-

unbiased segmentation of the objects to be tracked, which is
non-trivial. A deep learning model has been constructed for mito-
chondrial segmentation and it includes transfer learning, to train the
model in one’s own system, although manual annotation is required,
which may introduce bias'®. Other deep learning models tailored
broadly to biological segmentation may also be adapted to organel-
lar segmentation, but they are still in their early stages and are not yet
consistently used'*". Current methods for tracking mitochondria
are also limited, most of which work only for linear axonal trans-
port in neurons, and require extensive user input® ', These meth-
ods also ignore fission and fusion events altogether, or else require
high temporal resolution to connect overlapping regions between
frames™*. We compare several of these open-source techniques
(Supplementary Note 1, Supplementary Table 1 and Supplementary
Figs. 1, 2)/78527-30,

To address the issues in analyzing mitochondrial dynamics, we
developed Mitometer, a software package that incorporates a new
method in a fast, unbiased and automated approach to segmenta-
tion and spatiotemporal tracking of mitochondria in live-cell fluo-
rescence microscopy time-lapse images. Mitometer requires only
pixel size and the time between frames to identify changes in mito-
chondrial morphology, motion, and fission and fusion dynamics.
We validate our segmentation and tracking algorithms in silico via
mitochondria simulations, and in vitro on a panel of cell types with
differing basal mitochondrial morphologies, and with influenc-
ers of mitochondrial motion, fission and fusion. Using Mitometer
we analyze heterogeneities between non-cancerous normal breast
epithelial mitochondria, receptor-positive breast cancer (estrogen
receptor or progesterone receptor positive; ER/PR4) mitochon-
dria, and triple-negative breast cancer (TNEC) mitochondria from
patient-derived xenograft (PDX) breast cancer cells, primary breast
cells, and various breast cancer cell lines in both two-dimensional
(2D) and three-dimensional (3D} environments. These results
show TNBC mitochondria to be faster, more directional and more
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elongated than their ER/PR+ counterparts. We further examined
correlations between metabolic heterogeneity and the mitochon-
drial morphology and motility of mitochondria at the level of the
single mitochondrion. We found a positive relationship between
fractions of bound nicotinamide adenine dinucleotide in its
reduced form (NADH) and features such as speed and displace-
ment, and negative relationships with features such as directionality
and branching in both TNBC and ER/PR+ mitochondria, but not in
normal breast epithelial mitochondria. Together, the automated seg-
mentation and tracking algorithms and the intuitive user interface
make Mitometer a broadly accessible tool that requires only basic
fluorescence imaging capabilities, and which will serve to advance
mitochondrial research in basic science and its clinical applications.

Results

Object-based segmentation of mitochondria. Mitometer takes
a 3D or 2D time series of mitochondrial fluorescence images
(Fig. 1a). First, we apply a diffuse background removal algorithm
to each time frame and z-plane of the series (Extended Data Fig. 1
and Supplementary Note 2). This diffuse background subtrac-
tion algorithm allows for a size- and shape-independent method
of keeping well-isolated mitochondria intact, such as perilamellar
mitochondria, and of separating mitochondria in crowded environ-
ments, such as perinuclear mitochondria (Fig. 1b, Extended Data
Fig. 1 and Supplementary Video 1).

MNext, we convolve a Gaussian kernel with the diffuse
background-subtracted image to remove high-frequency noise,
which is followed by an intensity threshold to create a mask of the
segmented mitochondria (Supplementary Note 3). To ensure the
stability of the mask, we run a parameter exploration algorithm to
select the standard deviation of the kernel and the threshold level
(Fig. 1c). A mismatch between these parameters results in improper
connections or separations of mitochondria (Extended Data Fig. 2).
The optimal parameters minimize the variation in the number
and area of mitochondria between adjacent temporal frames of
the image while maximizing the median number of mitochondria
detected (Fig. 1d, Extended Data Fig. 2 and Supplementary Video 1).
We then remove any detected objects below and above predefined
minimum and maximum area thresholds and multiply the mask
by the original image (Fig. 1e and Supplementary Video 1). In 3D
images, we conduct the parameter exploration on the frame with
the largest mean intensity value and use the parameters for all layers
in the stack. Mitometer performs semantic segmentation by assign-
ing all true pixels in the final binary mask to a mitochondrion. This
is followed by a connected-component instance segmentation in
which all spatially connected true pixels in the final mask belong to
an individual mitochondrion, whereas pixels separated by false pix-
els belong to different mitochondria. The mitochondria now having
been properly segmented, tracking can be accurately performed.

Object-based tracking of mitochondria. Mitochondria are
dynamic organelles that undergo translational motion via molecu-
lar motors, fission by proteins such as dynamin-related protein 1
(Drp1). fusion by proteins such as mitofusin 1/2 (Mfn1/2) and optic
atrophy 1 (Opal), organic appearance via mitochondrial biogenesis
or movement into the plane of focus, and organic disappearance via
mitophagy or movement out of the plane of focus® - For trans-
lational motion, a mitochondrion is assigned to its track from the
previous frame. In the case of fission, one mitochondrion splits into
two or more. In the case of fusion, two or more mitochondria merge
into one mitochondrion. Fission and fusion events are differenti-
ated from a mitochondrion’s organic appearance and disappearance
via a volume (or in two dimensions, area) comparison of new and
lost tracks to existing tracks.

Owr tracking algorithm uses a frame-by-frame global optimi-
zation scheme for track assignment, while allowing new tracks to

be made and old tracks to be left unassigned. We first assign each
mitochondrion in the first temporal frame to a new track. In each
subsequent temporal frame, we assign each mitochondrion to
either an existing track or to a new track. Global assignments are
determined by a cost minimization scheme of the weighted and
z-score-normalized differences in six (or, in three dimensions,
seven) morphological parameters, that is, the area (or volume),
the major and minor (and z) lengths, the solidity, the perimeter
(or surface area), and the mean intensity of each mitochondrion,
along with the difference in intensity-weighted centroid positions
between frames (Fig. 2a, Extended Data Fig. 3 and Supplementary
Note 4). If a mitochondrion has a high correspondence in all param-
eters to a mitochondrion of an existing track, the cost of assign-
ment between them will be low, while two mitochondria that have
a low correspondence will have a high cost of assignment (Fig. 2b).
We also give a cost to assigning a mitochondrion to a new track
Additionally, to ensure the avoidance of highly improbable assign-
ments and to increase the efficiency of our algorithm, we ignore the
costs of assigning mitochondria to tracks that violate two defined
thresholds: the maximum velocity threshold and the maximum
search time threshold (Extended Data Fig. 3). The maximum veloc-
ity threshold is the furthest distance a mitochondrion can be from a
potential track between frames, derived both empirically and from
existing literature™, and the maximum search time threshold is the
maximum number of temporal frames between which a mitochon-
drion can be assigned to an unassigned track (Supplementary Note 5
and Supplementary Fig. 3).

Each mitochondrion has a track that minimizes the assign-
ment cost for that individual mitochondrion, which may be a dif-
ferent track than one that globally minimizes the assignment of all
mitochondria in that frame (Extended Data Fig. 3). We define the
assignments that both individually and globally minimize the cost
as confident assignments. We calculate the 98th quantile of the run-
ning list of confident assignment costs and designate this adaptive
cost as the cost of assigning a mitochondrion to a new track (which
we initially set to 1 for the first temporal frame, equivalent to 1 stan-
dard deviation above the mean cost of all assignments) (Extended
Data Fig. 3). We further define a track consisting entirely of con-
fident assignments at the end of the track assignment process as a
confident track. For every confident track, we calculate the coef-
ficient of variation (CoV) of each morphological parameter in the
track (intraCoV), and between different tracks (interCoV). We use
the numeric interCoV :intraCoV ratio normalized to the number
of weighted variables (seven in three dimensions, six in two dimen-
sions) as the weighting for each morphological parameter in our
cost matrix; conceptually, parameters differing greatly between
different tracks will be given a higher weighting, while parameters
differing greatly in the same track will be given a lower weighting
(Fig. 2c and Supplementary Note 6). We then rerun the tracking
algorithm using these calculated weights to improve assignments
(Extended Data Fig. 3).

To account for mistakenly disconnected tracks, we apply a
stack-wide gap-closing scheme between new and lost tracks (Fig. 2d
and Supplementary Note 7). We merge every combination of new
and lost tracks that satisfies the velocity and search time thresholds.
We then retain as candidates those combinations with a travel angle
CoV below 20% (Extended Data Fig. 4). Next, we globally mini-
mize the cost of closure based on the intensity-weighted centroid
displacement between viable new and lost track candidates. We also
merge any new tracks that have only one possible assignment to a
lost track based on velocity and search time thresholds. We iterate
through this scheme until the number of tracks ceases to change
(Extended Data Fig. 4).

Finally, we discriminate between fission events and organic
appearance in new tracks, and fusion events and organic disap-
pearance in lost tracks to detect and quantify these mitochondrial
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Fig. 1| Object-based segmentation of individual mitochondria from fluorescence images. a, A 30 or 2D time stack of mitochondrial fluorescence images is
taken as an input. b, The original (G} stack (left), with orthogonal z projections of white crosshairs is shown. This stack is run through a diffuse background
(DB} subtraction algorithm to remove noise between adjacent mitochondria. An example of a perinuclear region with a high DB (i) and a perilamellar

region with a low DB (i) are shown. €, A parameter exploration scheme iterates through combinations of Gaussian filter standard deviations and absolute
thresholds, and the resulting time stack's connected components are analyzed for variability in number and size throughout the stack. This produces a
specific minimum value (white dot) at the optimal parameters. d, The optimal Gaussian filter (right) and the intensity and area thresholds are applied to the
stack to produce a binary mask (left). e, The binary mask is multiplied with the original stack to produce the final stack used for tracking. Scale bars, 20 pm
for full images, 2 pm for close-ups. This example is a depiction of a BT-549 cell with mitochondrizlly targeted mCherry via a lentiviral expression system.

dynamics. We build a list of fission and fusion candidates within the
search time threshold of those tracks with extrema distances within
the velocity threshold of the new or lost track. We use the extrema
distance rather than intensity-weighted centroid distance given that
fission or fusion events would result in the appearance or disappear-
ance of two adjacent extrema, respectively. In the case of fission, we
limit the possible candidates from which a mitochondrion has split
by performing a volume (or area, in two dimensions) threshold by
calculating the absolute difference of the mean volume of the track
before fission and the sum of the mean volumes of the two tracks
after fission (Fig. 2e). In the case of fusion, we instead calculate the
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absolute difference of the mean volume of the track after fusion
and the sum of the mean volumes of the two tracks before fusion
(Fig. 2f). To retain the track as a possible fission and fusion candidate,
it must meet stringent requirements to ensure a high accuracy while
keeping false-positive assignments low (Supplementary Note 8).

In silico validation of segmentation and tracking algorithms. To
validate Mitometer, we simulate mitochondrial objects in silico and
assign dynamic events to them. This allows us to generate ground
truth tracks of mitochondria with varying magnitudes of directed
motion, with the ability to appear and disappear, and to undergo
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Fig. 2 | Tracking of mitochondria via global minimization of morphological and displacement differences. a b, Mitochondria in the first (T,) and

second (T,) temporal frames. Scale bars: left, 20 pm; right, 4 pm. Center-of-mass distances (Ad, Ad,) and differences in morphological features

within the maximum velocity threshold (r) are used to create a z-score-normalized assignment cost matrix. €, Confident mitochondrial tracks and their
interCoV : intraCoV ratio for each morphological parameter used for weighting. d, In the case of multiple possibilities, gap-closing within ris done via travel
angle (&) and center-of-mass distance {d) of the tracks at the new and lost positions. In the case of a single possible combination, the tracks are combined.
@, Fission between existing tracks (i,ii} and a newly created track (*) is determined by comparisons of the volume {or area, in two dimensions) and of the
extrema distances of nearby mitochondria before and after fission. f, Fusion is handled the same way as fission, but compares the volume (or area) and the

extrema distances of nearby mitochondria before (i-iii) and after fusion (i,ii).

fusion and fission events (Supplementary Note 9). We did not use
manually annotated datasets because these are subjective and are
known to generate large position estimation errors in general track-
ing tasks, as compared with computational tracking methods™",
We test Mitometer’s segmentation robustness with regard to
the separation of adjacent mitochondria by simulating two paral-
lel mitochondria with an applied Gaussian blur. We vary both the
distance of their nearest pre-blur extrema and the signal-to-noise
ratio (SNR), as defined by the mean intensity of the generated mito-
chondria divided by the standard deviation of the background. We
separate out the algorithm’s detection into four categories: 0, 1, 2,
and >2 mitochondria found. In 3 independent trials, the segmenta-
tion algorithm faithfully recovers both mitochondria, even with low
SNEs and separation distances, and performs better than existing
segmentation routines (Fig. 3a and Supplementary Fig. 1).

1094

We test Mitometer’s segmentation robustness with regard to the
detection of mitochondria of varying sizes by simulatinga 5% 5 grid
of mitochondria while varying both the length of the major axis
and the SNR. We separate out the algorithm’s detection into three
categories: <25, 25, and >25 mitochondria found. Mitometer's seg-
mentation algorithm recovers all 25 mitochondria in most cases of
reasonable SNR, again outperforming competing routines (Fig. 3b
and Supplementary Fig. 1).

Given that many mitochondrial dyes are sensitive to membrane
potential, which may vary widely between mitochondria in a single
cell, we also test Mitometer's segmentation robustness with regard
to detecting mitochondria of varying intensities. We simulate a
5% 5 grid of mitochondria in which each mitochondrion has a dif-
ferent intensity. We vary the range of intensities and the length of
the major axis. Mitometer’s segmentation algorithm recovers all 25
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Fig. 3 | In silico validation of mitochondria segmentation and tracking algorithms. a, Two adjacent mitochondria are simulated at increasing separations
and signal-to-noise ratios. The median number of mitochondria recovered by the segmentation algorithm is shown. b,e, A grid of 25 mitochondria is
simulated at increasing major axis lengths and signal-to-noise ratios (b) or intensity differences (c). d-J, The mean number of mitochondria recovered by
our segmentation algorithm is shown. Twenty (blue), 40 {green), 60 (orange) or 80 (red) mitochondria are simulated in the center quarter of a 512x 512
image in two dimensions with a pixel size of 0138 pm. The mean number of potential assignments of individual mitochondria (d) and mean distance to
their nearest neighbor (&) are shown. The performance of the tracking algorithm compared with ground truth values is quantified by its ability to correctly
assign tracks (F), the rank sum P value of the mitochondrion speads between the algorithm and the ground truth (two-sided Wilcoxon rank sum test)

(g), and the fraction of tracks with correct lifetimes (h). The mitochondria are then allowed to undergo fission and random appearance (1) or fusion and
random disappearance (J), and the algorithm is quantified in its classification ability according to accuracy (ACC) and false-positive rate (FPR). d-J, Data
are given as the mean and 95% confidence interval. a-¢, n=3 independent trials; d-h, n=10 independent trials; 1], n=>5 independent trials.

mitochondria in most cases and detects at least 18 mitochondria in
the most difficult tests, again outperforming almost all competing
routines (Fig. 3c and Supplementary Fig. 1).

We validate Mitometer’s tracking robustness by simulating mito-
chondria under four conditions of increasing densities. We also vary
the delay time between each frame, to produce larger and smaller
mitochondrial displacements between frames. In all cases, the num-
ber of potential track assignments for each mitochondrion is greater
than 1 and increases as the frame delay time increases, as expected
(Fig. 3d). We confirm that the average nearest neighbor distance
decreases as we increase the density of mitochondria, and increases
only slightly for increasing frame delay times as the mitochondria
move out from the center of the field where they are generated (Fig. 3e).
We guantify Mitometer’s performance based on three important
metrics, as compared with ground truth values: the fraction of cor-
rect assignments between mitochondria in adjacent frames, the rank
sum P value of the mitochondrion speeds between our algorithm
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and the ground truth, and the fraction of correct lifetimes of the
mitochondrial tracks (Fig. 3f-h). Mitometer performs well in
all three metrics at reasonable frame delay times, and outcom-
petes existing techniques, but drops steadily at high frame delays
(Supplementary Fig. 2). The increase in nearest neighbor distance
probably accounts for the increase in the ranked speeds P value at
the longest delay time, which is also seen in other tracking software.

We further validate Mitometer’s ability to correctly identify
fission and fusion events. As described previously, Mitometer's
algorithm compares the track areas before and after fission or
fusion and adds a track as a candidate if the area difference is
below 1 standard deviation. We tested the algorithm’s ability to
detect fission and fusion in these simulated conditions with dif-
ferent standard deviation classifications. Mitometer’s algorithm
had a high classification accuracy and rarely labeled false-positive
events at standard deviations below 1 (Fig. 3i.j). As expected,
the algorithm performed worse as we increased the standard
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deviation threshold, and allowed more events to be classified as
fission or fusion.

In vitro validation of segmentation and tracking algorithms.
Although in silico experiments are useful when ground truth data
are not available, the full characteristics of a complex system in liv-
ing cells cannot yet be fully represented in a simulation. Thus, we
also validate Mitometer in live mammalian cells.

To validate segmentation robustness in vitro, we compare mor-
phologies of mitochondria in three cell types with differing basal
mitochondrial morphologies labeled with tetramethylrhodamine
methyl ester perchlorate (TMRM): neoblastic pheochromocytoma
12 cells with circular mitochondria, non-small cell lung carci-
noma H1299 cells with intermediately elongated mitochondria,
and human foreskin fibroblast (HFF) cells with highly elongated
mitochondria (Fig. 4a). We compare elongation by quantifying
differences in the ratio of the minor axis to the major axis lengths
of individual mitochondria. A higher ratio indicates more circu-
lar mitochondria, with 1 being a perfect circle. The segmentation
algorithm was able to capture the differences in elongation between
these three cell types across all tested microscope systems, including
an L5M 710 and 880 (Zeiss), Eclipse Ti-E (Nikon), FluoView 1000
(Olympus) and IX83 (Olympus) in total internal reflection fluores-
cence (TIRF) mode and widefield mode (Fig. 4b). We further vali-
date the segmentation efficiency at differing full well depth and read
noise root mean square values by adding artificial Poissonian and
Gaussian noise to the time lapses in the same three cell lines. We
compared area values to the original time lapse and found that the
algorithm performs with high precision at typical detector param-
eters, and only begins to fail for extremely poor-quality detectors
(Extended Data Fig. 5a).

To validate the tracking robustness in cultured cells, we use
nocodazole to inhibit mitochondrial motion in the same three cell
lines™. Nocodazole is a well-studied drug that destabilizes microtu-
bules and inhibits their polymerization, thereby disrupting the phys-
ical structures used for mitochondrial movement™. As expected,
mitochondrial speed in all cell lines dramatically decreased with
nocodazole treatment (Fig. 4c and Supplementary Video 2). We
validate the tracking efficiency by adding artificial Poissonian and
Graussian noise. We compared mitochondrial speed with the original
time lapse and found that the algorithm again only begins to fail at
values of extremely poor-quality detectors (Extended Data Fig. 5b).

Finally, to validate the fission and fusion detection robustness
in vitro, we use known inducers of fission and fusion and quan-
tify the dynamic events of the cells before and after treatment in
a time-dependent manner. For these experiments, we use 10 pM
oligomycin to induce fission, and nutrient starvation using Hank’s
balanced salt solution (HBS5) to induce fusion®'. We chose to use
TMEM-labeled Henrietta Lacks (Hela) cervical cancer cells and
mouse embryonic fibroblast (MEF) cells because both cell lines
have been previously validated to respond to nutrient starvation in
an expected manner (Fig. 4d)"*. To account for variability in the
number of mitochondria in various cells, we normalize each time
point’s fission and fusion events to the average number of events
in the three time points acquired before treatment. We then com-
pare these events by normalizing to the controls’ events at each
time point. We successfully validate in both MEF and Hela cells an
increase in fission and fusion events after treatment with oligomy-
cin or HBSS (Fig. 42.f).

Together, these experiments confirm Mitometers robustness
and verify the ability of Mitometer’s algorithm to properly segment,
track and identify fission and fusion events in mitochondria.

Mitochondrial features may predict breast cancer subtype.
Mitometer enables us to gquantify and compare mitochondrial
morphology, motility and dynamics in both 2D and 3D images

of mitochondria. We demonstrated these capabilities through a
comprehensive analysis of TMRM-labeled mitochondria in a wide
panel of breast cells, including five primary normal breast epithe-
lial cell lines from reduction mammeoplasties of five different indi-
viduals (patients 72, 76, 08, 99, 97), two ER/PR+ breast cancer
cell lines (MCE-7, T-47D)), three TMBC cell lines (MDA-MB-231,
MDA-MB-468, BT-549) and two TNBC PDX cell lines” (HCI-010,
HCI-002), all of which are detailed in the supplementary materi-
als (Supplementary Table 2). We cultured all these cell lines in
a Matrigel-embedded 3D spheroid environment, as previously
established™, as well as an additional 2D culture environment for
the two ER/PR+ lines (MCF-7, T-47D) and three TWNBC lines
(MDA-MB-231, MDA-MB-468, BT-549) (Fig. 5a,b, Extended Data
Fig. 6 and Supplementary Videos 3.4).

We compared mitochondria of breast cancer categories (nor-
mal epithelia, ER/PR+ and TNBC) in their respective 3D and 2D
environments, and also compared mitochondria between 3D and
2D environments in their respective breast cancer categories, using
Mitometer. We construct tracks of 3D and 2D mitochondrial dis-
placement while retaining morphological information of every
mitochondrion in each frame (Fig. 5c). Simple comparisons of the
mean-squared displacement of individual mitochondria show large
heterogeneity across cell types (Fig. 5d). We analyzed three motility
parameters in each individual mitochondrion across all cell lines
and environments: their median speed, their directionality (calcu-
lated as the maximum displacement divided by the total distance
traveled), and the ratio of the median to the maximum speed (sug-
gesting the propensity for mitochondria to have bursts of motion)
(Supplementary Fig. 5). To remain cell size agnostic when con-
structing the models, instead of using total displacement or distance
traveled, we use our directionality metric by dividing the maximum
displacement of a track by its total distance traveled (a value neces-
sarily constrained between 0 and 1). In 3D cultures, mitochondria
are slower and more directional, with a lower propensity for bursts
of motion than their 2D groups (Fig. 5e-g). Interestingly, this phe-
nomenon is consistent at the cellular level during cell migration, in
which 31 cultures move slowly but more directionally than their 2D
counterparts”. Additionally, at the 3D level, mitochondria in breast
cancer cells are significantly slower than those of normal breast epi-
thelia, hinting at mitochondrial dysregulation within the cancerous
conditions. We also compared the fission and fusion occurrences
in 20} cell cultures and noted a lowered odds ratio of fusion, but
not fission, in TNBC cells compared with ER/PR+ cells (Fig. 5h).
Interestingly, the suppression of mitochondrial fusion in TNBC cells
has been shown to enhance breast cancer cell migration and inva-
sion'. The results hint at an involvement of mitochondrial dynam-
ics in the increased aggressiveness seen in cases of TNBC compared
with cases of ER/PR+ breast cancer. We further analyzed five mor-
phological parameters: the length of mitochondrial minor axes, the
length of the major axes, their ratio (which gives the sphericity of
the mitochondria), the solidity (calculated as the ratio of the vol-
ume of individual mitochondria to their convex hull, which gives
information on how branched the mitochondria are), and the mean
TMEM fluorescence intensity in individual mitochondria (which
gives information on the membrane potential) (Supplementary
Fig. 5)". In general, ER/PR+ cells have mitochondria that are less
networked and which have higher membrane potentials compared
with TNBC mitochondria, but are more rounded only in 21D cul-
tures (Fig. 5i-m). However, there seems to be large heterogeneity in
mitochondrial membrane potential and solidity between cell lines,
even in the same cancer subtypes, necessitating more in-depth
analysis, which is beyond the scope of this paper (Supplementary
Fig. 6). Interestingly, TNBC mitochondria are more similar in all
parameters to normal breast epithelial mitochondria than to ER/
PR+ mitochondria in 3D cultures. Together, these results reinforce
a role for mitochondria in breast cancer aggressiveness through the
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Fig. 4 | In vitro validation of mitochondria segmentation and tracking algorithms. a, Representative images of pheochromocytoma (PCHZ, H1299 and HFF
cells labeled with TMRM, and their outlines (white dotted lines). b, The minor: major axis ratios of each cell line for microscopes LSM 710 (n= 683, 1,047
and 1,218 distinct mitochondrial tracks for PC12, H1299 and HFF cells, respectively), LSM 880 (n=384, 542, 1,048), Eclipse Ti-E (n=2 057, 1,369, 1,195},
FluoView 1000 (n= 201, 1,640, 1,690), and IX&3 in total internal reflection fleorescence (TIRF) mode (n= 793, 1,377, 1,.239) and widefield (WF) mode
(n=416, 1,244, 1,658). €, The median mitochondrial speeds of PC12 cells {n=709 and 667 distinct mitochondrial tracks for control and nocodazole-treated
conditions, respectively), H1299 cells (n= 563, 475) and HFF cells (n= 835, 604) before and after treatment with 10 pM nocodazole. d, Representative
images of HelLa (control, oligomycin) or MEF (nutrient starvation) cells 40 min before (top row) or 140min after (bottom row) no treatment {contral),
nutrient starvation, and treatment with 10 pM oligomycin. e f, Mormalized fission (left) and fusion (right) rates of MEF (e) and HeLa (f) cells before and
after (black arrow) no treatment (control; red line), nutrient starvation (yellow line) and 10 uM oligomycin (blue line). n= 10 cells. Data are given as the
median and interguartile range (b.c) or the mean (e, f). Pvalues are calculated using a Kruskal-Wallis non-parametric rank test with Dunn's post-hoc test
(H=873.5 5401, 518.8, 2815, 621.3, 664.8) (b) or using a two-tailed Kolmogorov-Smirnov test (D=0.3912, 0.2883, 0.1088) {c). Scale bars, 20 pm.
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modulation of specific morphological and motile mechanisms, and
reaffirm the importance of culture environment for the study of cel-
lular processes.

We are also able to predict with high accuracy whether a mito-
chondrion belongs to an ER/PR+ cancer cell or to a TNBC cell
in both 2D and 3D environments. We used a random forest clas-
sification through Python’s Scikit-learn with a 70:30 train:test
split on 8,065 ER/PR+ and 15,022 TNBC mitochondria in the 2D
environment, and 670 ER/PR+ and 1,320 TNBC mitochondria in
the 3D environment. For classification, we used either morpho-
logical characteristics, motility characteristics, or both combined
(Supplementary Tables 3.4 and Supplementary Fig. 7)*. We achieve
an area under the curve (AUC) of the receiver operating character-
istic (ROC) curves of above 0.5 in all cases, with the best AUCs of
0.77 and 0.80 for 2D environments and 30 environments, respec-
tively, resulting from the combination of morphological and motil-
ity characteristics as an input for predicting mitochondria from ER/
PR+ and TNBC subtypes (Fig. 5n.0). The random forest classifier
also assesses the feature importance, with median speed ranking
highest in the case of the 2D environment, and intensity ranking
highest in the case of the 3D environment (Fig. 5p).

Metabolism of single mitochondria via Mitometer and NADH
FLIM. We also used Mitometer to analyze the metabolism of single
dynamic mitochondria in live normal breast epithelial, ER/PR+
and TNBC cells. We make use of a well-established technique, the
phasor approach to the fluorescence lifetime imaging (FLIM) of
intrinsically fluorescent and endogenously expressed NADH, to
quantify metabolic alterations™*'. We labeled the mitochondria of
the cells with 100 nM TMEM, a concentration lower than those that
affect mitochondrial respiration™. We collected NADH and TMRM
fluorescence in two separate detectors while simultaneously acquir-
ing FLIM data from the NADH emission in the frequency domain
(Supplementary Note 15). We use the rule of linear addition of two
components to calculate the fraction of bound NADH (NADHDb) of
each mitochondrion that is tracked for at least 20 frames (Fig. 6a).
A much more detailed explanation of the use of the rule of linear
addition for calculating NADH fractions can be found in our pre-
vious work™. We find that mitochondrial NADHD in each breast
cell subtype follows a normal distribution, but that normal breast
epithelial cells have a significantly lowered mean NADHb than that
of breast cancer cells (Fig. 6b.c). We also find that these normal
cells have more variation in their NADHb compared with cancer-
ous breast cells, as calculated using the CoV's (Fig. 6d). We further
analyze how mitochondrial motility and morphology parameters
correlate with respect to mitochondrial NADHD (Fig. 6¢). Again, to
ensure that we remain cell size agnostic when deriving correlations
between mitochondrial parameters and bound NADH values, we

analyze mitochondria only within the same cell, rather than corre-
lating these values in bulk across all samples. This also allows us to
account for natural variations in both TMEM labeling efficiency and
basal NADH fractions between different cells. We find few signifi-
cant correlations in any parameters in normal breast epithelial cells,
except for a small positive correlation in perimeter and a negative
correlation in solidity. By contrast, mitochondria in both ER/PR4+
and TNBC cancer cells had highly significant correlations in a wide
array of parameters. Most notably, mitochondria in breast cancer
cells had positive correlations of NADHbB with mitochondrial speed
and displacement, and negative correlations of NADHb with solid-
ity, directionality and TMEM intensity. Interestingly, mitochondria
in ER/PR+ cancer cells had higher correlation coefficients than
those in TNBC cells in every tested parameter. These results sug-
gest an association between changes in mitochondrial metabolism
and changes in mitochondrial motility and morphology in breast
cancer cells, but not in normal breast epithelial cells, and may iden-
tify therapeutic vulnerabilities to specifically target breast cancer
cells. To determine if these feature differences are brought about
due to changes in metabolism, we treated MDA-MB-231 cells with
SpM antimycin A, an inhibitor of mitochondrial electron trans-
port chain complex I11. Treatment induced a lowering of cell-wide
NADHbD as expected (Fig. ). We then performed an analysis of
the three most positively and negatively NADHb-correlated mito-
chondrial parameters. Surprisingly, antimycin A treatment led to
an increase in mitochondrial median, mean and maximum speeds,
and decreases in solidity, directionality,and mean fluorescence
intensity, all of which are the inverse of the calculated correlations
with NADHb (Fig. 6g-1). This suggests that mitochondrial motility
and morphological features do not directly depend on NADHb and
that instead, specific mitochondria in individual cells are modu-
lated to perhaps serve specific metabolic needs. This also represents
an analysis of metabolic alterations in relation to mitochondrial
motility and morphology at the level of the single mitochondrion
in living cells.

Discussion

Mitometer is an efficient resource for quickly and accurately ana-
lyzing morphological and motility features of mitochondria that
eliminates the need for time-consuming and biased user interven-
tion. We optimize and automate segmentation techniques to main-
tain the integrity of mitochondrial morphology for object-based
tracking. The minimization scheme used for tracking allows for
computational efficiency and an accurate and automated track con-
struction process. Furthermore, the use of an object-based tracking
method allows for determination of fission and fusion events via
comparison of mitochondrial volumes. Simulations and experi-
ments with cell lines of heterogeneous mitochondria, nocodazole,

r

Fig. 5 | Motility and morphology differences in mitochondria of normal breast epithelial cells and breast cancer cells. a, Tracks of mitochondria overlaid
on fluorescence images of a TMEC MDA-MB-231 cell line (left) and an ER/PR+ MCF-7 cell line (right) stained with TMRM and imaged for 2min at 1s
intervals. b, Tracks and corresponding z-stack time-lapse images of TMRM fluorescence in non-cancenous (control) primary breast epithelial cell spheroids
(left), ER/PR+ MCF-7 spheroids (middle) and TMBC MDA-MB-231 spheroids (right) €, A single mitochondrial track (left) of an MDA-MEB-231 (top)

and MCF-7 (bottom) cell with the detected mitochandrial object’s morphology shown overlaid {right), downscaled 10-fold relative to the track length.

d, A mean-squared displacement (M5D) graph of the tracks (i) and (i) shown in a and b. e-g, The speed (e}, directionality (), and median : maximum
speed ratio {g) of normal primary epithelial cells {control 1-5), ER/PR+ cells (MCF-7, T-470) and TNBC PDX cells and cell lines (HCI-010, HCI-002,
MDA-MB-231, MDA-MEB-468, BT-549) in 2D and 2D environments. h, The fission and fusion odds ratio of TMBC cell lines compared with ER/PR+ oell
lines in @ 2D environment. I-m, The major (I} and minor (J) axes lengths, axes ratio (k), solidity (1) and mean TMRM fluorescence intensity (m) of normal,
ER/PR+ and TMBC cells in 3D and 2D environments. n= 868, 670, 1,320, 8,065 and 15,022 distinct mitochondrial tracks in 30 normal, ER/FR+ and TNBC
cells, and 20 ER/PR+ and TMEBC cells, respectively. m0, ROC curves of random forest classifications between mitochondria from ER/PR+ cells and TNBC
cells using only morphological characteristics (blue), motility characteristics {purple) or both (yellow) in 2D (n) and 3D (e) environments, with the ALUC.
p. Importance of features wsed for the random forest classification in 20 and 3D environments. Data are given as the mean +5.d. (d,h) or median and
interquartile range (e—g,l-m). Pvalues are calculated using a two-sided Fisher's exact test (h) or a Kruskal-Wallis non-parametric rank test with a post-hoc
Dunn's multiple comparison test (H= 4542, 390.0, 335.0, 1031, 5312, 734.8, 516.5, 873.5) (a-gI-m, respectively). Scale bars, 20 pm (a), 10 pm (b) and

Tpm ()
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and fission- and fusion-inducing agents validated the robustness of
the algorithms. Validation experiments confirmed the robustness
of the algorithms, with cases of failure occurring only at low SNEs
(~1.5) and low mitochondrial separation (~2 pixels), and for simu-
lated parameters of especially poor (~800 full well depth) detectors.

ARTICLES

We have demonstrated Mitometer’s ability to detect small but
important differences in morphology and motility in the mito-
chondria of TNBC, ER/PR+, and normal breast cells in clini-
cally relevant PDX TNBC models, primary mammary cells, and
well-established breast cancer cell lines. These results will have
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important implications for the understanding of how mitochon-
dria are recruited to the invading edges of cells to fuel invasion and
metastasis’"’. Moreover, we were able to integrate Mitometer with
other fluorescence-based measurements by combining mitochon-
drial analysis with FLIM of NADH. Mitometer identified hetero-
geneity and trends in mitochondrial dynamics and morphology in
relation to the bioenergetics of mitochondrial populations in vary-
ing metabolic states, which was particularly evident in breast cancer

oo

cells compared with non-cancerous mammary epithelial cells. These
results suggest that specific subsets of mitochondria serve to regu-
late tumorigenic metabolism, and will lead to important insights
into how these organelles drive tumor progression. This study criti-
cally depended on object-based tracking to quantify NADH lifetime
values of individual mitochondria instead of individual pixels in an
averaged fluorescence image stack. Additionally, Mitometer's ability
to build tracks with accurate track lifetimes allowed sufficient FLIM
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Fig. 6 | Cancer-specific metabolic heterogeneity in single mitochondria. a, TMRM-labeled mitochondria overlaid with a pseudocolor corresponding to the
mean fraction of bound NADH. Scale bars, 20 pm. Shown are six different breast cell lines in three different subcategories: normal breast epithelial cells
(blue}, cancerous and receptor-positive (ER/PR+) breast cells (green) and THBC cells (red). b, Histogram distributions of the mitochondrial fraction of
bound NADH of normal, ER/PR+ and TNBC cells. €, The mean fraction of bound MADH of each cell type's mitochondria. d, The coefficients of variation of
bound NADH for each cell type. n=13, 21 and 28 distinct cells (c,d). 8, Spearman’s correlation coefficient (r) between bound MADH and the mitochondrial
parameters of motility and morphology for each cell type. f-1, Mormalized fraction of MADHbD in control (gray) and antimycin A (AA)-treated (orange) cells
(), along with the median speed (g), mean speed (h), maximum speed (1), solidity (J), directionality (k) and mean fluorescence intensity (I of contral

and AA-treated mitochondria. n=852, 1,634 and 1,958 distinct mitochondrial tracks in normal, ER/PR+ and TNBC samples, respectively (b.e); n=19, 10
distinct cells in control and AA conditions, respectively (F); n= 2 470, 1,586 distinct mitochondria in control and AA conditions, respectively (g-1). Data are
given as the mean +5.e.m. (c,df) or median + interquartile ranges (g-1). +F values are calculated using the Kruskal-Wallis non-parametric rank test with a
post-hoc Dunn’s multiple comparison test (H=14.50,17.62) (c.d.g-1), a Spearman’s two-tailed rank comrelation test (e) or a Student’s two-tailed t-test ().

data to be averaged through the image stack for each mitochon-
drion to reliably quantify its fraction of bound NADH.

We hope Mitometer will encourage the widespread dissemina-
tion of mitochondrial morphological and motility feature data-
sets, which would allow the use of deep learning techniques to
improve unbiased and situation-specific segmentation and track-
ing. Additionally, Mitometer currently requires a time-lapse image
for automated segmentation, which presumably can be overcome
with data-driven machine learning techniques and would be advan-
tageous for morphology-only analyses.

This pipeline, which features a simple and intuitive user interface
and Image] compatibility, is accessible to any cell biologist with the
ability to acquire fluorescence images. Mitometer may be adapted to
a variety of other applications for which segmentation and tracking
of variably sized objects in a noisy image is required, including but
not limited to other organelles and intracellular structures. The fur-
ther integration of Mitometer with other mitochondria-localizing
probes, such as intracellular oxygen sensors™, temperature sensors™
and pH sensors™, opens the door to many additional exciting ave-
nues for the investigation of biologic and, more specifically, meta-
bolic alterations at the level of the single mitochondrion in live cells
and animal models.
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Methods

Primary human mammary tissue dissociation and processing. Human reduction
mammoplasty samples were obtained with informed consent through the
Cooperative Human Tissue Network (CHTN) under the approved institutional
review board protocel UCT 17-05. Tissue samples were processed as previously
reported™. In brief, human mammary tissues were washed in PBS, mechanically
dissociated with scalpels, digested with 2mgml-! collagenase type I (Life
Technologies, 17100-017) in DMEM with 5% FBS at 37 °C overnight on a shaker,
treated with DMase I (Worthington Biochemnical, LS002139) and subjected to three
pulse centrifugations to 500xg. Supernatants were then collected and centrifuged
for 5min at 500y to isolate primary mammary fibroblasts, and pellets containing
mammary epithelial organoids were digested with trypsin (Corning, 25-052-Cl) for
10min at 37 *C to generate single-cell suspensions of primary mammary epithelial
cells. Cells were filtered through a 70 pm strainer.

Collection and processing of PDX tumors. All tissue samples were collected

with informed consent from individieals being treated at the Huntsman Cancer
Huspital and the University of Utah. Samples were collected and de-identified

bry the Huntsman Cancer Institute Tissue Resource and Application Core

facility before being obtained for implantation under a protocol approved by the
University of Utzh Institutional Review Board. We were able to obtain human
reduction mammoplasty samples under the approved institutional review board
protocol UCT 17-05. HCI-010 and HCI-002 PDX tumors® were established and
grown in M5G mice purchased from The Jackson Laboratory. Animals were
maintained in a pathogen-free facility and animal procedures were approved by
the University of California, Irvine, Institutional Animal Care and Use Committee.
After 3-6 months of growth, PDX tumors were collected, mechanically dissociated,
digested with 2mgml-' collagenase type I'V (Sigma-Aldrich, C5138-1G) in DMEM
with 5% FBS at 37 °C for 45 min on a shaker. Digested tumors were washed with
PBS, treated with DNase I (Worthington Biochemical, LS002139) and dissociated
to single cells with trypsin {Corning, 25-052-CI). PDX cells were filtered through a
T pm strainer.

Primary and PDX cell calture. Primary mammary epithelial cells and HCI-

010 and HCI-00Z PDX cells were grown in 30 spheroid culture as previously
described®. In brief, approximately 73 10*- 1x 10° cells were embedded in Corning
Matrigel Growth Factor Reduced Matrix (Corning, 354230) and cultured on
35mm glass-bottom imaging dishes in EpiCult Medium (StemCell Technologies,
05610) supplemented with 5% FBS, 10ngml* human epidermal growth factor
{PeproTech, AF-100-15), 10ngml-' basic fibroblast growth factor (PeproTech,
100-188) and 1% penicillin-streptormycin (Hyclone, SV30010) for 4-7d at 37°C at
5% C0, before imaging.

Three-dimensional culture of cell lines. Cell lines were embedded in Corning
Matrigel Growth Factor Reduced Matrix (Corning, 354230) using seeding densities
of between 5 10¢ and 1 10° cells. Embedded cells were grown in 30 spheroid
culture on 35 mm glass-bottom imaging dishes in DMEM supplemented with 10%
FBS and 1% penicillin-streptomycin (Hyclone, SV30010) for 4-7d at 37°C at 5%
€0, before imaging.

Two-dimensional culture of cell lines. Cell lines were plated on 10 pgml-
fibronectin-coated 35 mm glass-bottom imaging dishes in DMEM supplemented
with 10% FBS and 1% penicillin-streptomnycin (Hyclone, SV30010) ar, in

the case of MCF- 104 cells, DMEM/F12 media supplemented with 5% horse
serum, 20ngpl-* epidermal growth factor (PeproTech, AF-100-15), 0.5 mgml-*
hydrocortisone (Sigma, H0838), 100 ngml-* cholera toxin (Sigma, C8052),

10 pgml™ insulin (Sigma, 11882} and 1% penicillin-streptomycin (Hydone,
SV30010) at 37°C at 5% CO, before imaging.

TMRM studies. For TMRM experiments, 20 and 30 cell cultures in imaging
dishes were incubated with 100nM TMRM for 15 min without washout,
immediately followed by imaging.

Nocodazole studies. For in vitro nocodazole validation studies, 100 nM TMEM
was added to cells for 45 min, followed by the addition of nocodazole at a final
concentration of 10pM. The treatment was applied for 1 h without washout,
immediately followed by imaging.

Fission and fusion studies. Cells were first treated with 100 nM TMBM for 45 min,
and immediately imaged for | min time lapses at 15 min intervals for 40min. To
induce mitochondrial fission, 10 pM oligomycin was added to the medium. To
induce mitochondrial fusion, the media was replaced with phenol red-free HESS
with 10mM HEPES. Cells were then again imaged for 1 min time lapses at 15 min
intervals for 140 min.

Mitochondria and fluorescence lifetime imaging. For nocodazole and MEF
fission and fusion studies we performed experiments on an LSM 880 (Zeiss), and
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for Hel.a fission and fusion studies on an LSM 710 (Zeiss) inverted laser scanning
confocal microscope with a 63x, numerical aperture 1.4, oil-immersion objective,
at a frame size of 512 512 pixels, with a pixel size of 138 nm, and at a rate of 1
frame per second for 30s.

For 2D and 30 TMRM studies we performed experiments on a Zeiss LSM 710
inverted laser scanning confocal microscope with a 400, numerical aperture 1.2
water-immersion objective. In the 2D studies we used a frame size of 512x 512
with a pixel size of 87.9 nm and at a rate of 1 frame per second for 120 frames. In
the 30 studies we used a frame size of 256 x 256 with a pixel size of 105.4 nm and
at a rate of 1 stack every 10s, with 21 z-planes per stack at a distance of 450 nm
between planes. In both cases, we used a two-photon titanium : sapphire laser
{Spectra-Physics, MaiTai) to excite the TMRM at a wavelength of 820 nm, which
was passed through a 690 nm dichroic filter. The fluorescence emission in the
range of 520-700 nm was captured through the microscope’s internal detector.

The cells were kept under biological conditions through the imaging. Images were
converted to TIFs in Image] v1.53c.

For FLIM of NADH studies, we performed experiments on a Zeiss LSM 710
inverted laser scanning confocal microscope with a 63x, numerical aperture 1.4,
oil-immersion objective at a frame size of 256 % 256 with a pixel size of 180 nm
and at a rate of 0.398 frames per second for varying numbers of frames. The cells
were excited at approcimately 2 mW at the plane of excitation with a two-photon
titanium : sapphire laser (Spectra-Physics, MaiTai) at 740 nm, which was passed
through a 6% nm dichroic filter. The fluorescence emission was separated
through two bandpass filters, a 460/80 nm filter for NADH fluorescence
emission and a 641/75 nm filter for TMRM fluorescence emission, and was then
detected using two separate photomultiplier tubes (Hamamatsu, H7422P-40).
The fluorescence lifetime decays were captured in the frequency domain via
an A320 FastFLIM box (I155) and calibrated using SimFCS v4 developed at the
Laboratory for Fluorescence Dynamics at the University of California, Irvine.
Coumarin-6 in ethanol, with a known single exponential fluorescence lifetime
of 2.5 ns, was imaged on each day of imaging and was used as the calibration
sample for the instrument response time. The cells were kept under biological
conditions through the imaging.

Statistical testing. Random forest classification was implemented using the
scikit-learn package in Python. All other statistical analyses were done using
Graphpad Prism v7.

Reporting Summary. Further information on research design is available in the
Mature Research Reporting Summary linked to this article.

Data availability

The authors declare that all data supporting the findings of this study are available
in the article and its supplementary information files or from the corresponding
author upon reasonable request. Source data are provided with this paper.

Code availability

The Mitometer program is written in MATLAB (MathWorks). The MATLAB
GUI Mitometer app and corresponding source code are available as
Supplementary Software. The software and updated versions are also freely
available online through GitHub at hitps-//github.com/aelefebv/Mitometer,
with a direct download link available at https://github.com/aelefebv/Mitometer/
archivefrefs/heads/main_zip.
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Extended Data Flg. 1| Diffuse background removal surrounding objects of complex shapes. Circular median filters of diameters of 0.6 pm (&) to 2pm
(€} (corresponding to the minimum area threshold and a value larger than the minor axis length of mitochondria) in 1-pixel increments (b) are convolved
with the original image. Close-ups of regions with high (i) and low (i) diffuse background noise convolved with a small {(d) medium {e) and large ()
median filter {left), with corresponding minimum median filter values at each filker size {right). g The minimum value of each pixel in the stack of median
filtered images (which also contains the original image) is used to build the diffuse background image, showing high diffuse noise in the dense regions

(i7 and minimal diffuse noise in the sparse regions (ii). h, The diffuse background image is then subtracted from the original image to produce a diffuse
background subtracted image, separating adjacent mitochondria in dense regions (i) and keeping mitochondria intact in sparse regions (ii).
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Extended Data Fig. 3 | Flowchart for morphology and displacement-based global cost minimization tracking. a, & matrix of intensity weighted centroid
distances is built comprised of the difference between every existing track {columns) and every mitochondrion found in the current time frame (rows).
A region of mitochondria from an adjacent cell can be seen in the dotted white area, resulting in large differences between the mitochondria of the

two cells. b, A mask is created to avoid assignments between any mitochondria and track which are further than 3 frames apart (the maximum search
time threshold), and at a distance greater than 1 pm multiplied by the frame time apart (the maximum velocity threshold). €, The mask is applied to

the difference matrices of all mitochondrial features and distance. d, The difference matrices are then squared, z score normalized, weighted, and
summed to create the final difference matrix (e). f, A diagonal matrix of new track costs is appended to the difference matrix to allow newly found
mitochondria to be assigned to a new track. g, Every mitochondrion {row) in the matrix is assigned to a single track {column) that leads to a globally
minimized cost of assignment. h, A mitochondrion which is assigned to a track that also corresponds to its own individually minimum cost is labelled as
a confident assignment. I, This process is repeated for all temporal frames. All confident tracks are then analyzed for interCoViintraCoV ratios for each
mitochondrial marphological feature, and weights are set accordingly. These weights are used to rerun the tracking algorithm, leading to a higher number
of mitochondria that are confidently tracked for the full length of the time stack (J) and to less total number of tracks overall (k).
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variation under 0.2 is remaved. f, The final masked gap closing matrix is produced, which is then globally minimized to assign new tracks with possible

lost track candidates. g, The gap-closing scheme is repeated in its entirety until the total number of tracks stabilizes. In this example, it took 4 iterations to
stabilize to 460 tracks.
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Extended Data Fig. 5 | Live-cell time lapse images with added noise. The comparison of area (a) and spead (b) of mitochondria in live-cell time
lapse images of PC12 (1), H1299 (i), and HFF (i) cells between the original image and images with added noise to simulate a lower full well depth
(Poissonian noise) and higher read noise root mean square (RMS) value (Gaussian noise). Comparisons are done via a two-sided Wilcoxon rank
sum test. ¢, Representative images of TMRM labelled H1299 cells with simulated noise corresponding to the numbers in panels ii. W=3 time lapse
imzges per cell line.
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Extended Data Fig. 6 | Three-dimensional spheroid cultures. a Representative images of human reduction mammoplasty samples (Fatient 72, Fatient
76, Patient 08, Patient 99, Patient 97), established breast cancer cell lines (MCF-7, T-470, MDA-MB-231, MDA-MB-468, BT-549), and patient derived
wenografts (HCI-00, HCI-002) embedded in Matrigel and grown in three-dimensional spheroid culture. Gray = brightfield, cyan = mitochondria
fluorescence (TMRM), pink = nuclear fluorescence (MucBlue).
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Software and code

Policy information about availability of computer code

Data collection  All mitachandrial segmentation and tracking codes are available at https://github.com/aelefeby/Mitometer.
All additional eades for simulating mitochondria and their motion are available at https://github.com/aelefeby/Mitormeter-Supplement.
FLIM data was collected through the SimFCS version 4 software (https:/fwww. Iid.uci.edufglobals/).

Data analysis All additional codes used in this manuscript for analyzing mitochondrial dynamics and morphology are available at https:/fgithub.com/
aelefeby/Mitometer-Supplement. L5M image files collected through Zeiss' Zen software version 2.3 5P1 were converted to Tifs in Image)
w1.53c. all FUM data collected through SimFCS version 4 were referenced to the calibration sample in SimFCS version 4. Random forest
classification was implemented via Scikit-learn's Python packages, All other statistical analyses were done through Graphpad Prism version 7.

For manuseripts utilzing custom algarithms or software that are central to the research but not yet described in published literature, software must be made available to editers and
reviewers. We strongly encourege code deposition in a community repositery (e.g. GitHub), See the Mature Research guidelines for submitting eode & software for further information,
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unigue identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- & description of any restrictions on data availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files or from the
cerresponding author upon reasonable request,
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative

Sample size No statistical tests for sample size determination were performed. Instead, as many cells as possible were imaged within cne hour of
treatment with the mitochondrial dye to ensure replicability. For the fission and fusion time lapse experiments, as many cells as possible were
imaged before the next time paint. Each experiment provided enough mitachondria for significant statistical tests. We also ensured that each
group had mitochendria originating from at keast 10 individual cells, a number exceeding typical numbers in the field, The total number of
mitochondria analyzed for each condition was substantially greater than typical numbers used within the field.
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Data exclusions Mo data were excluded from analyses presented in the manuscript unless otherwise specified,

Re plicgtiﬂn Mitochondria were analyzed within at least 10 individual cells for each experiment unless otherwise specified, All other simulation based
replications are enumerated in the respective figures but were at least 3. &ll attempts at replication were successful,

Randomization Mo randomization was performed. Specific cells chasen for imaging and subsequent analysis were not chasen by any specific metric. Samples
were zllocated into groups based on breast cancer subtype, or lack thereof. Randomization in these experiments were not technically

feasible, and its impact was considered negligible. Thus the substantial effert that would have been required to implement it was not justified.

Blinding The analysis for experiments comparing different conditicns is inherently blinded as the softwares take no subjective user input.

Reporting for specific materials, systems and methods

We reguire information from authors about some types of materials, experimental systems and methods used im many studies. Here, indicate whether each material,
systemn or method listed is relevant to your study. If vou are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study nfa | Involved in the study
[] Antibodies BA|[] chiP-s=q
(<] Eukaryotic cell lines BI[] Flow eytometry
|:| Palaeontology and archaeology E |:| MRI-based neurcimaging

E Animals and other organisms
(<] Human research participants
[] clinical data

D Dual use research of concern
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) MCF104, MCF-7, T-470, MDA-MB-231, MDA-MB-468, BT-549, PC12, H1299, HFF, MEF, and Hela cells were obtained from
the American Type Culture Collection [ATCC).

Authentication The cell lines were not authenticated.
Mycoplasma contarmination The cell lines were not confirmed to be mycoplasma-free.

Commaonly misidentified lines Mo commonly misidentified cell lines were used.
[See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals HCI-010 and HO-002 PDX tumors were established and grown in 3-d-week old female N3G mice purchased from The Jackson




Laboratory animals Laboratory {Bar Harbor, Maine, USA). Animals were maintained in a pathogen-free facility with a controlled 12/12-h light/dark cycle
{lights on at 6:00 AM), temperature {22 £ 2°C), and relative humidity [45%—65%).

Wild animals The study did not include the use of wild animals.

Field-collected samples | The study did not include field-collected samples.
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Ethics oversight Animal procedures were approved by the University of California, Irvire, Institutional Animal Care and Use Committee.

Neote that full informaticn on the approval of the study protocol must also be provided in the manuscript.

al |

Human research participants

Policy information about studies involving human research participants

Population characteristics Samples from patients were genercusly provided by AL, Welm in the Department of Oncological Sciences at the Huntsman
Cancer Institute (HCI). Briefly, HCI002 was acquired from a primary tumaor blopsy of a female patient diagnosed with ER-PR-
Her2-, basal-like Stage 1A medullary type 1DC with no previous systemic treatment. HOO10 was acquired frem a pleural
effusion of 2 Stage |IIC femala patient diagnosed with ER-PR-Her2-, basal-like (FAMSO) IDC treated with several rounds of
chemotherapies.
Hurman breast reduction mammoplasty samples were obtained through the Cooperative Hurman Tissue Network {CHTN).
All covariate-relevant population characteristics of the human research population (e.g. age, gender, race] is available in the
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supplementary materials.,

Recruitment All tissue samples were collected with informed consent from individuals being treated at the Huntsman Carcer Hospital and
the University of Utah. Mo self-selection bias or other biases were present in conducting these studies that the authors are
aware of,

Ethics oversight Samples were collected and de-identified by the Huntsman Cancer Institute Tissue Resource and Application Core facility

before being obtainad for implantation under a protocol approved by the University of Utah Institutional Review Board.
‘We were able to obtain human reduction mammeoplasty samples under the approved IRB protocel UCH 17-05,

Nete that full informaticn on the approval of the study protocol must also be provided in the manuscript.
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