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ABSTRACT

We present XENON, a solver-aided, interactive method for formally
verifying that VERILOG hardware executes in constant-time. XENON
scales to realistic hardware designs by drastically reducing the
effort needed to localize the root cause of verification failures via
a new notion of constant-time counterexamples, which XENoN
uses to synthesize a minimal set of secrecy assumptions in an
interactive verification loop. To reduce verification time XENON
exploits modularity in VERILOG code via module summaries, thereby
avoiding duplicate work across multiple module instantiations. We
show how XENON’s assumption synthesis and summaries enable us
to verify different kinds of circuits, including a highly modular AES-
256 implementation where modularity cuts verification from six
hours to under three seconds, and the ScaArVside-channel hardened
RISC-V micro-controller whose size exceeds previously verified
designs by an order of magnitude. In a small study, we also find
that XENON helps non-expert users complete verification tasks
correctly and faster than previous state-of-art tools.
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1 INTRODUCTION

Timing side-channel attacks are no longer theoretical curiosities.
Over the last two decades, they have been used to break imple-
mentations of cryptographic primitives ranging from public-key
encryption algorithms [26, 62, 88], to block ciphers [23, 71], digital
signature schemes [70], zero-knowledge proofs [35], and pseudo-
random generators [33]. This, in turn, has allowed attackers to
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break systems that rely on these primitives for security—for exam-
ple, to steal TLS keys used to encrypt web traffic [26, 33, 88], to
snoop and forge virtual private network traffic [70], and to extract
information from trusted execution environments [25, 33, 35, 87].

The gold standard for preventing timing side-channel attacks is
to follow a discipline of constant-time or data-oblivious program-
ming [1, 15, 22, 29, 36, 89]. At its core, this discipline ensures that
(1) secret data is not used as an operand to variable-time instruc-
tions (e.g., floating-point operations like division [19, 20, 63, 75])
and (2) the program’s control flow and memory access patterns do
not depend on secrets. But for the constant-time discipline to be
effective, it is crucial that the constant-time property be preserved
by the underlying hardware. For example, an instruction that is
deemed constant-time needs to indeed produce its outputs after
the same number of clock cycles, irrespective of operands or in-
ternal state. Similarly, given that control-flow and memory access
patterns are public, i.e., free of secrets, a CPU’s timing must indeed
be secret-independent.

Unfortunately, simply assuming that hardware preserves constant-
time doesn’t work. Incorrect assumptions about the timing-variability
of floating-point instructions, for example, allowed attackers to
break the differentially private Fuzz database [56]. Attempts to
address these attacks (e.g., [76]) were also foiled: they relied on
yet other incorrect microarchitectural assumptions (e.g., about the
timing-variability of SIMD instructions) [63]. Yet more recently,
hardware crypto co-processors (e.g., Intel and STMicroelectron-
ics’s trusted platform modules) turned out to exhibit similar secret-
dependent timing variability [70].

A promising path towards eliminating such attacks is to formally
verify that our hardware preserves the constant-time property of the
software it is executing. Such verification efforts, however, require
tool support. Unfortunately, unlike software verification of constant-
time, which has had a long history [21], constant-time hardware
verification is still in its infancy [28, 50, 53, 89]. As a result, existing
verification approaches fail to scale to realistic hardware. This is
because of two fundamental reasons. First, existing tools do not
help when verification fails—and inevitably it does fail: hardware
circuits only preserve constant-time execution under very specific
secrecy assumptions that describe which port and wire values are
public or secret. In our experience, dealing with failures takes up
most of the verification time. With tools like IoDINE [50], you must
manually determine whether the circuit is leaky (i.e., variable-time),
or whether it is missing additional secrecy assumptions that the tool
needs to be made aware of. Second, current methods fail to exploit
the modularity that is already explicit at the register transfer level.
Hence, they duplicate verification effort across replicated modules
which leads to a blow up in verification time.
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In this paper, we present XENON, a solver-aided, interactive
method for formally verifying that VERILOG hardware executes
in constant-time. We develop XENON via five contributions.

1. Counterexamples. To help users understand verification fail-
ures, we introduce the notion of constant-time counterexamples
(§ 4.1). A counterexample highlights the earliest point in the circuit
where timing variability is introduced; this simplifies the task of
understanding whether a circuit is variable-time by narrowing the
user’s attention to the root cause of the verification failure (and
thereby a small fraction of the circuit). To compute counterexam-
ples, XENON leverages information extracted from the failed proof
attempt. In particular, the solver communicates (1) which variables
(i.e., registers and wires) remained constant-time during the failed
proof attempt, and (2) the order in which the remaining variables
became non-constant time. This allows XENON to break cyclic data-
dependencies which cause a chicken-and-egg problem that is hard
to resolve when assigning blame manually.

2. Assumption Synthesis. To help the user resolve the verification
failure, XENON uses the counterexample to synthesize a suggested
fix. For example, XENON may find a constant-time counterexample
for a processor pipeline where the two different runs may execute
two different ISA instructions (say, addition and division) which
take different numbers of clock cycles. Yet, the execution of each
instruction (for any inputs) may be constant-time. XENON uses the
counterexample to synthesize a minimal candidate set of secrecy
assumptions (e.g., that any two executions have the same, publicly
visible sequence of instructions) which address the root cause of
the verification failure (§ 4.2). The user then decides either to accept
the candidate assumption or, if they do not match their intuition for
the intended usage of the circuit, reject them, in which case Xenon
computes an alternative. Internally, XENON computes candidate
assumptions via a reduction to integer linear programming [73].

3. Modular Verification. Finally, to scale verification and coun-
terexample generation to larger and more complex hardware, and
to keep counterexamples and suggested assumptions local, we in-
troduce a notion of module summaries (§ 3). Module summaries
succinctly capture the timing properties of a module’s input and
output ports at a given usage site. By abstracting inessential details
about the exact computations performed by the module and focus-
ing solely on its timing behavior, XENoN produces fewer and more
compact constraints. Our modular verification approach also allows
the user to focus attention on one module at a time, which keeps
errors and assumptions local, and helps to bootstrap the verification
of large circuits (§ 7).

4. Evaluation. We implement XENON and evaluate the impact of
counterexamples, assumption synthesis, and modularity on the ver-
ification of different kinds of hardware modules (§ 6). We find that
XENON’s solver-aided interactive verification process drastically
reduces verification effort (e.g., verifying the largest benchmark of
[50] took us several minutes instead of multiple days) and, together
with module summaries, allows us to scales verification to realistic
hardware (e.g., we verify the SCARV side-channel hardened RISC-V
core [4], which is order of magnitude larger than the RISC-V cores
verified by previous state-of-the-art tools). From a small (ten per-
son) user study, in which users were tasked with verifying three
circuits (an ALU, an FPU, and a full RISC core), we find that XENoN
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1 module S (clk, in, out);

2 input clk; [7:0] in;

3 output reg [7:0] out;

4 always @ (posedge clk)

5 case (in)

6 8'h00: out <= 8'h63;
7

8 8'hff: out <= 8'h2c;
9 endcase

10 endmodule

Figure 1: A simple, constant-time lookup-table in VERILOG, taken
from [10].

has large (d = 1.62), statistically significant (t(8) = 2.56,p = .016)
positive effect on correct completion: Participants using XENON
were able to correctly complete significantly more tasks in the
allotted time (40 min), and their solution sizes were (on average)
smaller. On the most challenging task—a full RISC-V processor with
a complex assumption set—no participant in the control-group suc-
ceeded, whereas 60% of the participants using XENON were able to
successfully complete the verification task.

6. Secrecy Assumptions. As a side product of the verification of
SCARYV, we obtain a set of annotations (§ 7) detailing secrecy
assumptions under which SCARV is guaranteed to execute in
constant-time. These secrecy assumptions, together with XENON’s
source code are open source and available on GitHub!. We hope that
these artifacts will facilitate further efforts to provide end-to-end
constant-time guarantees across hardware and software.

2 OVERVIEW

We start by reviewing how to specify and verify the absence of
timing channels in VERILOG hardware designs (§ 2.1), show how
existing techniques fail to scale on real-world hardware designs, as
these designs are often only constant-time under additional secrecy
assumptions which are tedious to derive by hand (§ 2.2), sketch
how XENON helps to find secrecy assumptions automatically (§ 2.3),
and finally discuss how XENON exploits modularity (§ 2.4).

2.1 Verifying Constant-Time Execution of
Hardware

Lookup Circuit. Figure 1 shows the code for a VERILOG module,
which implements a lookup table by case-splitting over the 8-bit
input value. This module executes in constant-time: even if input
in contains a secret value, producing output out takes the same
amount of time (one clock cycle), irrespective of the value of in,
and therefore an attacker cannot make any inference about the
value of in by observing the timing of the computation.

Specifying Constant-Time Execution. Figure 2 makes this in-
tuition more precise, using a recent definition of constant-time
execution for hardware [50]. Instead of tracking timing indirectly
through information flow [66, 82, 91] the definition uses a direct
notion of timing. The figure shows two runs of module S: one for
input 8'h0@ and one for input 8"'hff. We want to track how long it
takes for the two inputs, issued at cycle 1 to pass through the circuit

!https://xenon.programming.systems
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time in out in® out®
L R L R L R L R
1 hoo hff X X * *
2 hoo hff h63 h2c * *

Figure 2: Two runs of Figure 1 showing values and liveness-bits for
input (in) and output (out). X represents an undefined value.

and produce their respective outputs. For this, we put a “tracer”
on the inputs by assigning a liveness-bit to each register. For some
register x, we set its liveness-bit x® to ¥, if x has been influenced
by the input at initial cycle 1 (we say x is I-live) and e, otherwise.
Figure 2 shows how liveness-bits are propagated through the circuit.
Initially, in both executions, the input is 1-live and the output is
not. In cycle 2, both outputs I-live due to the case-split on the value
of in. Assuming that an attacker can observe the liveness-bits of
all outputs, here, register out, the attacker cannot distinguish the
two executions, and we can conclude that the pair of executions is
indeed constant-time.

Verifying Constant-Time Execution. To show constant-time ex-
ecution, not only for the two runs in Figure 2, but for the whole
circuit, we have to prove that for any pair of runs, that is, for any
pair of inputs, and any initial cycle, the constant-time property
holds. This can be achieved by constructing a product circuit [50]?
whose runs correspond to pairs of runs—called left and right—of
the original circuit. In this product, each original variable x has
two copies x; and xg that hold the values of x in the left and right
runs, respectively. We can then use the product circuit to synthesize
invariant properties of the circuit. For example, let’s define that a
variable x is constant time (and write ct(x)), if for any pair of exe-
cutions, its liveness-bit in the left execution x} is always the same
as its liveness-bit in the right execution x5, i.e., xz = x;e always
holds, for all initial cycles t. Then, the following invariant on the
module proves constant-time execution, under the condition, that
module inputs are constant-time: ct(in) = ct(out).

2.2 Real-World Hardware is Not
Constant-Time

Unfortunately, unlike the simple lookup table from Figure 1, real-
world circuits are typically not constant-time, in an absolute sense.
Instead, when carefully designed, they are constant-time under
specific secrecy assumptions detailing which circuit inputs are sup-
posed to be public (visible to the attacker) or secret (unknown to the
attacker). Thus, verification requires the user to painstakingly dis-
cover secrecy assumptions through manual code inspection, which
can be prohibitively difficult in real-world circuits.

A Pipelined MIPS Processor. We illustrate the importance of se-
crecy assumptions using the program in Figure 3 which shows
a code-fragment taken from one of our benchmarks—a simple,
pipelined MIPS processor [9]. If the reset bit rst is set (Line 18),
the processor sets several registers to zero (Line 19). Otherwise, the
processor checks whether the pipeline is stalled (Line 21) and either
forwards the current instruction from the instruction-fetch stage

2In architecture, this is often referred to as miter circuit [43].
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// source : IF_pc; sink :
module mips_pipeline(clk,rst);
input clk, rst;

WB_reg;

assign IF_pcj = ID_Jmp ? ID_jaddr :
assign IF_pcn = M_PCSrc ? M_btgt

1
2

3

4

5 assign IF_pc4 = IF_pc + 32'd4;
6 IF_pc4;
7 IF_pcj;
8

9 assign ID_rs = ID_instr[25:21];

10 assign ID_rt = ID_instr[ : 1;

11 rom32 IMEM(IF_pc, IF_instr);

13 always @(x)

14 Stall = EX_MemRead &&

15 ( EX_rt == ID_rs ||
16 EX_rt == ID_rt );
17 always @(posedge clk)

18 if (rst)

19 ID_instr <= 0;

20 else

21 if (Stall == 1) begin
22 ID_instr <= ID_instr;
23 IF_pc <= IF_pc;

24 EX_rt <= EX_rt;

25

26 WB_reg <= WB_reg;

27 end else begin

28 ID_instr <= IF_instr;
29 IF_pc <= IF_pcn;
30 EX_rt <= ID_rt;

31

32 WB_reg <= WB_wd;

33 end

34 end

Figure 3: MIPS Pipeline Fragment.

to the instruction-decode stage (Line 28) and advances the pro-
gram counter (Line 29), or stalls by reassigning the current values
(Lines 22 to 24).

The Pipeline is not Constant-Time. When using the processor
in a security-critical context, we want to make sure that it avoids
leaking secrets through timing, i.e, that it is constant-time. Unfor-
tunately, our example pipeline is not constant-time without any
further restrictions on its usage. For example, the execution time
for a given instruction depends on whether the pipeline is stalled
before the instruction is retired. This is illustrated in Figure 4. We
model an attacker that can measure how long an instruction takes
to move through the pipeline, i.e., from source IF_pc to sink WB_reg.
Such an attacker can distinguish the two runs in Figure 4, as the
liveness-bits of WB_reg differ in cycle 3. This timing difference lets
the attacker make inferences about the control flow of the program
which is executed on the processor, and therefore any attempt to
verify constant-time execution results in a failure.

2.3 Finding Secrecy Assumptions

We may, however, still be able to use this processor safely, if we can
find a suitable set of secrecy assumptions. For example, we could
assume that register Stall is public (i.e., free of secrets, which can
be formally expressed by the assumption that Stall; = Stallg
always holds). In this case, the timing difference in Figure 4 would
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time stall ID_jmp IF_inst® ID_inst® EX_rt® WB_reg®
L R L R L R L R L R L R
1 0 1 1 0 * *
2 0 0 0 1 * *
3 0 0 0 0 * * * * *

Figure 4: Two runs of Figure 3, where the right run stalls in cycle 1. The liveness bits of sink wb_reg differ in cycle 3 and therefore the circuit

is not constant-time.

only leak information that the attacker is already aware of. How-
ever, assuming that Stall is public may not be the best choice.
Stall is defined deep inside the pipeline which makes it hard to
translate this assumption into a restriction on the kind of software
we are allowed to execute on the processor. Instead, we want to
pick assumptions as closely as possible to the sources, i.e., the exter-
nally visible computation inputs. For example, restricting program
counter IF_pc to be public directly translates into the obligation
that the executed program’s control flow be independent of secrets.

To discover this assumption using existing technology, the ver-
ification engineer first has to manually identify that the timing
variability is first introduced in variable ID_instr (Lines 22 and 28)
due to a control dependency on Stall. They then need to inspect
how Stall is set (Line 14) and painstakingly trace the definitions
which may involve complex combinatorial logic (excerpt starting
in Line 5) and circular data-flows to identify a promising candidate
register, such that marking the register as public will render the
circuit constant-time. Counterexamples like Figure 4 are often of
little help as they are hard to interpret and fail to focus attention
on the relevant parts of the circuit.

Solver Aided Verification: XENON’s Interactive Loop. XENON
drastically simplifies this time-consuming process through an in-
teractive, solver-aided workflow that helps to find an optimal set
of secrecy assumptions automatically.

Step 1. First, we start with an empty set of secrecy assumptions and
run XENON on the pipeline. The verification fails, as the pipeline is
not constant-time, however, XeNon displays the following prompt
to guide the user towards a solution.

> Mark 'rst' as PUBLIC? [Y/n]

The user either answers with Y indicating that rst should indeed be
considered public, or else responds n which tells XENON to exclude
the variable from future consideration (i.e., not suggest it in future).
Suppose that we follow XEnON’s advice, and choose Y: this marks
rst public and re-starts XENON for another verification attempt.

Step 2. Next, XENON suggests marking M_PCSrc as public. Flag
M_PCSrc indicates whether the current instruction in the memory
stage contains an indirect jump. But whether an indirect jump is
executed depends on register values (i.e.,, M_PCSrc is set depending
on whether the output of the ALU is zero) and therefore, indirectly,
on the data memory. Assuming that M_PCSrc is public would lead to
assumptions about the memory which we wish to avoid. Hence, we
tell XENoN to exclude it in future verification attempts and restart
verification.

Step 3. Restarting verification causes XENON to suggest candidate
variable IF_pc, the program counter of the fetch stage. We mark
IF_pc as public as this directly encodes the assumption that the
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program’s control flow does not depend on secrets. XENON restarts
the solver which proves that the program—under the inferred se-
crecy assumptions—executes in constant-time. This concludes the
verification process. In addition to the assumptions that rst and
IF_pc are public, XENON also infers a set of usage assumptions that
detail the parts of the pipeline that have to be flushed on context
switches. These assumptions would otherwise have to be supplied
by the user as well.

Counterexamples. When synthesizing assumptions, XENON inter-
nally computes a constant-time counterexample which contains the
set of variables that have lost the constant-time property earliest.
While the user can simply follow XENON’s suggestions without
further investigating the root cause of the violation, we find that—if
the user chooses to do so—the counterexample often helps to fur-
ther understand why the circuit has become non constant-time. In
our example, XENON returns as counterexample, variable ID_instr,
for all three interactions. Indeed, inspecting the parts of the circuit
where ID_instr is assigned focuses our attention on the relevant
parts of the circuit, that is, the conditional assignment of ID_instr
under rst (Line 19) and under Stall (Lines 22 and 28). We discuss
how XENON computes counterexamples using artifacts extracted
from the failed proof attempt in § 4.1, and how XENON uses them
to synthesize an optimal set of secrecy assumptions via a reduction
to integer linear programming in § 4.2.

2.4 Real-World Circuits Are Not Small

While XENON’s solver-aided, interactive verification loop signifi-
cantly reduces the time the user has to spend on verification efforts,
large real-world circuits often also present a challenge for the solver.
This is because computing invariants and synthesizing assumptions
naively requires a whole-program analysis. Hence, efficiency cru-
cially depends on the size of the circuit we are analyzing.

Consider, for example, the AES-256 benchmark from [10]. Fig. 5
depicts the dependency graph of its modules, where each node
m represents a VERILOG module, and we draw an edge between
modules m and n, if m instantiates n. Each edge is annotated with the
number of instantiations. Even though there are only ten modules,
the total number of module instantiations is 789. This, in turn,
causes a blowup in the size of code XENON has to verify. Even
though the sum of #LOC of the modules is only 856, inlining module
instances causes this number to skyrocket to 135194 rendering both
assumption synthesis and verification all but intractable. (In fact,
XENON does manage to verify the naive, inlined circuit, however, a
single verification run takes over 6 hours to complete).

Fortunately, we can avoid this blowup by exploiting the modu-
larity that is already apparent at the VERILOG level. We illustrate
this process using module S from Figure 1.
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Figure 5: Module dependency graph of the AES-256 benchmark.

1 module S4 (clk, in, out);

2 input clk;

3 input [31:0] in;

4 output [ 1 out;

5 wire [7:0] out_0, out_1, out_2, out_3;
6 S S_0 (clk, in[ 1, out_3),

7 S_1 (clk, in[ 1, out_2),

8 S_2 (clk, in[ 1, out_1),

9 S_3 (clk, in[ 1, out_0);

10 assign out = {out_3, out_2, out_1, out_0};

11 endmodule

Figure 6: Module from the AES benchmark.

Module Summaries. Since the value of out only depends on in,
we can characterize its timing behavior as follows: the module
output out is constant-time, if module input in is constant-time.

We can formalize this in the following module summary, which
XENON computes automatically: ct(in) = ct(out). Instead of in-
lining the module, both assumption synthesis, and verification can
now use its summary thereby eschewing the code explosion. The
code in Figure 6 shows an instantiation of module S in module
S4. Instead of inlining S at its four instantiation sites S_0 to S_3,
XENON uses the single module summary to compute a correctness
proof for the full AES circuit, which only takes 3 seconds.

3 MODULAR CONSTANT-TIME
VERIFICATION

We now formalize the concepts introduced in the overview. We
first review a formal definition of constant-time execution for hard-
ware circuits (§ 3.1) and its translation to Horn-clause verification
conditions, which we use to encode the verification task (§ 3.2). We
then modularize this naive encoding via summaries (§ 3.3). After
that, we discuss counterexamples and assumption synthesis (§ 4).

3.1 Defining Constant-Time Execution

Configurations. Configurations represent the state of a VERILOG
computation. A configuration ¥ = (P, 0, 6, ¢, t, SRc) is made up of
a VERILOG program P (say, the processor in Figure 3), a store 0, a
liveness map 6, current clock cycle ¢ € N; initial clock cycle t € N
and, finally, a set of sources SRc C VARs. Store ¢ € VARs — Z
maps variables VARs (registers and wires) to their current values;
map 6 € VARs — {5, ¢} maps variables to liveness-bits; cycle ¢
marks the starting-cycle of the computation we want to track and
finally, Src identifies its inputs.

Transition relation. Transition relation ~€ (2 X ) encodes a
standard Verilog semantics which defines how a configuration is
updated from one clock cycle to the next. We omit its definition, as
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it is not needed for our purposes, but formal accounts can be found
in [50, 51, 91]. In addition to updating the store and current cycle,
the transition relation updates the liveness map 6 by tracking which
variables are currently influenced by the computation started in t.
At initial cycle t, our transition relation starts a new computation
by setting the liveness-bits of all variables in Src to %, and those
of all others variables to

Runs. We call a sequence of configurations 7 = 3¢%1...2p-1 a
run, if each consecutive pair of configurations is related by the
transition relation, ie., if %; ~» X1, fori € {0,...,n — 2}. We
call Xy = (P, 09, 0y, 0, t, SRC) initial state, and require that 8y maps
all variables to e. Finally, for a run 7 = (P, gy, 09, co, t, SRC) ...
(P, 0n—1,0n-1, cn—1, t, SRC), we say that 7 is a run of P of length n
with respect to ¢ and Src and let store(r,i) = o; and live(r, i) = 0;,
forie {0,...,n—1}.

Example. Consider again Figure 2. The Figure depicts two runs sy
and 7R of length 3 with respect to initial cycle 1 and source {in} of
the program in Figure 1. Columns in and out show store(r, i) (in)
and store(r,i)(out), for 7 € {xy, 7r} and i € {1,2}. Similarly,
columns in® and out® show live(r,i)(in) and live(r,i)(out), for
7 € {ny, nr}, and i € {1, 2}. The Figure omits the initial state at
cycle 0, where all liveness-bits are set to

Flushed, Constant-Time, Public. For two runs n; and ngp of
length n, we say that variable v is flushed, if store(rr,0)(v) =
store(7R, 0)(v), we call v public, if store(ry,i)(v) = store(ng, i)(v),
fori € {0,...,n — 1} and call v constant-time, if live(ny,i)(v) =
live(ng,i)(v), fori € {0,...,n—1}.

Secrecy Assumptions. Secrecy assumptions A = (FLusH, PUB)
consists of a set of variables FLusH C VARs that are assumed to
be flushed in the initial state, and a set of variables PuB C VARs,
that are assumed equal throughout. A pair of runs 7 and g of
length n, satisfy a set of assumptions A, if, for each v € FLUSH, v is
flushed, and for each v in PuB, v is public. We describe how XEnon
synthesizes secrecy assumptions in § 4.

Constant-Time Execution. We now define constant-time execu-
tion with respect to a set of sinks SNk C VARs, sources Src, and
assumptions A. We say that a program P is constant-time, if for
any initial cycle t and any pair of runs 7y and 7 of P with respect
to t and Src of length n that satisfy A, and any sink o € SNK, 0 is
constant-time.

Example. Consider again Figure 2. If we assume that variables in
cycle 0 have the same value as in cycle 1, then out is flushed while in
is not. Neither in, nor out are public, but both are constant-time. As
out is constant-time in all runs, the program in Figure 1 is constant-
time with respect to the empty set of assumptions and sink {out}.In
Figure 4, none of the variables are public or constant-time, however,
the program in Figure 3 can be shown to be constant-time with
Pus = {IF_pc,rst}.

3.2 Verifying Constant-Time Execution via
Horn Constraints

To verify constant-time execution, we mirror the formal definition

in a set of Horn clauses [24]—an intermediate language for verifi-

cation. We start with the naive, monolithic encoding and discuss
how to make it modular in § 3.3. At high level, the constraints
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init(vsp, vsg) A flush A pub = inv(vsg,usg, 0,t) (init)
inv(uvsg, usg, ¢, t) A pub

= 5 ’ ’ +
A next(vsr, SR, vsy, USg, ) inv(vs, vsp, ¢ +1,t) (cons)

.:O.

inv(vsL, vsR, ¢,t) A pub = o] = op, for o € SNK (ct)

Figure 7: Horn clause encoding of the verification conditions for
constant-time execution.

(1) issue anew live instruction at a non-deterministically chosen
initial cycle ¢, and

(2) ensure constant-time execution by verifying that the liveness-
bits for each sink are always the same, in any two runs.

The clauses—shown in Figure 7—encode verification conditions
over an inductive invariant inv(vsg, vsg, ¢, t) of the product circuit,
where vs ranges over all variables in the circuit and their respec-
tive liveness bits, and ¢ and ¢ are the current and initial cycles,
respectively.

Initial States and Transition Relation. Formula init(vsy, vsg)
describes the product circuit’s initial states and requires all liveness-
bits to be set to e. To ensure that the proof holds for any initial cycle,
init does not constrain t. Formula next(vsy, usg, Usi, US&, t) encodes
the transition relation of the product circuit, where un-primed vari-
ables represent state before, and primed variables represent state
after the transition. Like ~», next sets liveness-bits of all sources
to % at clock cycle ¢. Importantly, constructing next requires inlin-
ing all modules and therefore can lead to large constraints that are
beyond the abilities of the solver.

Assumptions. For a set of assumptions A = (FLuss, PuB), we con-
struct formulas flush and pub, both of which require the variables
in their respective sets to be equal in the two runs. We let

flush = (AxeFrusu XL = xg) and pub = (Axepup XL = XR) .

Horn Constraints & Solutions. We then require that the invari-
ant holds initially (init), assuming all variables in FLusx and Pus
are equal in both runs; that the invariant is preserved under the
transition relation of the product circuit, assuming that public vari-
ables are equal in both runs (cons), and finally, that the liveness-bits
of any sink are the same in both runs (ct). These constraints can
then be passed to any of a vast array of existing Horn constraint
solvers [8, 34, 37, 44, 52, 55, 57] yielding a formula which, when
substituted for inv, makes all implications valid and thus proves
constant-time execution.

Proof Artifacts. To compute constant-time counterexamples and
synthesize secrecy assumptions upon a failed proof attempt, as
described in the next section, XENON requires the solver to generate
the following artifacts:
(1) the set of variables which remained constant-time and public,
during the current failed proof attempt, and
(2) the order in which the remaining variables lost the respective
properties.
These artifacts can, for example, be extracted from a concrete coun-
terexample trace like Figure 4. However, even if the solver is unable
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to produce concrete counterexample traces, the necessary informa-
tion can often be recovered from the internal solver state.

3.3 Finding Modular Invariants

Naively, constructing next requires all the code to be in a single mod-
ule. However, this can yield gigantic circuits whose Horn clauses
are too large to analyze efficiently. To avoid instantiating the entire
module at each usage site, XENON constructs module summaries that
concisely describe the timing relevant properties of the module’s
input and output ports.

Per-Module Invariants and Summaries. Instead of a single whole
program invariant inv, the modular analysis constructs a per-module
invariant invy,, and an additional summary sum,,, for each mod-
ule m. The summary only ranges over module inputs and out-
puts, and respective liveness-bits (o) and needs to include all in-
put/output behavior captured by the invariant, i.e., we add a clause:

invpy, (vsL, vsg, t) = sumpy(ior, iog, t) . The analysis produces the

same constraints as before, but now on a per-module basis, that is,

we require module invariants to hold on initial states (init), and be

preserved under the transition relation (cons), but, instead of using

the overall transition relation next we use a per-module transition

relation nextp,. It may now happen that next,;, makes use of a mod-
ule n, but instead of inlining the transition relation of n as before,
we substitute it by its module summary sum,,, thereby avoiding the

blowup in constraint size. Finally, we restrict sources and sinks to

occur at the top-level module, and add a clause requiring that any

sink has the same liveness-bits in both runs (ct). The summaries are

also used to modularize our assumption synthesis algorithm § 4.3,
which is crucial for our modular verification approach, as we will

discuss in § 7.

Solving Modularity Constraints. To solve the modular Horn con-
straints, the solver first computes an invariant for each module,
and then uses quantifier elimination [58] to project the module’s
behavior onto its inputs and outputs, which yields the summary.
Since a module’s summary may show up in another module’s tran-
sition relation and thereby influence its invariant, this yields an
interdependent constraint system, which we solve via a fix-point
iteration loop [24, 52].

4 COUNTEREXAMPLES & ASSUMPTION
SYNTHESIS

We now explain how XENON uses the proof artifacts to help the
user understand and explicate secrecy assumptions when verifi-
cation fails. We first describe how XENoON analyzes the artifacts
from the failed proof attempt in order to compute a counterexample
consisting of the set of variables that—according to the informa-
tion communicated by the prover—lost the constant-time property
first (§ 4.1). Next, we discuss how XENON uses the counterexample
to synthesize a set of secrecy assumptions that eliminate the root
cause of the verification failure (§ 4.2). This is done by computing a
blame-set that contains the variables that likely caused the loss of
constant-time for the variables in the counterexample via a control
dependency. This blame set is then used to encode an optimization
problem whose solution determines a minimal set of assumptions
required to remove the timing violation. Finally, we briefly discuss
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how XENON uses module summaries to speed up counterexample
generation and secrecy assumption synthesis (§ 4.3).

4.1 Computing Counterexamples

Dependency Graph. To compute the counterexample from a failed
proof attempt, XENON first creates a dependency graph G = (V,D U
C) which encodes data- and control-dependencies between program
variables. G consists of

» variables V C VARs,

» data-dependencies D C (VARSXVARs), where (v, w) € Difv’s
value is used to compute w directly through an assignment,
and

» control-dependencies C C (VARs X VARs) where (v, w) € C, if
v’s value is used indirectly, i.e., w’s value is computed under
a branch whose condition depends on v.

Variable-Time Map. Next, XENON extracts an artifact from the
failed proof attempt: a partial map varTime € (VARs — N) which
records the temporal order in which variables started to exhibit
timing variability. Importantly, if for some v varTime is undefined
(varTime(v) = L), v was constant-time throughout the failed proof
attempt. For any other variables v and w, if varTime(v) < varTime(w),
then v started to exhibit timing variability before w.> XENON uses
this map to break cyclic data-flow dependencies.

Computing the Counterexample. Using the data-flow graph, and
varTime, XENON computes a reduced graph. XENON removes from
the dependency graph all nodes that are constant-time and all edges
(w,v) such that varTime(w) > varTime(v). Intuitively, if variable
w has started to exhibit timing variability after variable v, it cannot
be the cause for v losing the constant-time property. Finally, XeNoN
removes all nodes that cannot reach a sink node using the remaining
edges. This leaves us with a set of variables CEx C VARs without
incoming edges, which we present—as counterexample—to the user.
We now define the reduced graph in more detail.

Reachability. For dependency graph G = (V,D U C) and nodes
v,w € V we write v — w, if (v,w) € (DUC), v " w, if there
is a sequence vyv1 . ..0p—1, such that vp = v and v,—1 = w, and
v; — vj41 for i € {0,...,n— 2}. Finally, we say w is reachable from
v, if there exists n such that v —™ w.

Reduced Graph. For a data-flow graph G = (V, D U C), and map
varTime, we define the reduced graph with respect to varTime as
the largest subgraph G’ £ (V’,D’ UC’) such that V/ C V, D’ C D,
C’ ¢ Cand

(1) No node is constant-time, i.e., for allo € V', varTime(v) # L.

(2) All edges respect the causal order given by varTime, i.e., for
all (v, w) € (D’ UC’), we have varTime(v) < varTime(w).

(3) All nodes can reach a sink, i.e., forallo € V’, there is o € SNk
such that o is reachable from v.

3More formally, for variables v, w if varTime(v) < varTime(w), then there exist
two runs 7y, and 7R of some length n, and two numbers 0 < i, j < n such that
i is the smallest number such that live(rr,i)(v) # live(ng,i)(v) and similarly j
is the smallest number such that live(ry, j) (w) # live(ng, j)(w) and i < j. This
information can e.g., be extracted from a concrete counterexample trace, like the one
shown in Figure 4.
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assign ID_rt = ID_instr[20:16];

rom32 IMEM(IF_pc, IF_instr);

stall = (ID_rt == EX_rt);

always @(posedge clk) begin

1
2
3
4
5 always @(x)
6
7
8
9 if (Stall == 1) begin

10 ID_instr <= ID_instr;
11 EX_rt <= EX_rt;

12 end else begin

13 ID_instr <= IF_instr;
14 EX_rt <= ID_rt;

15 end

16 end

Figure 8: Simplified MIPS Pipeline Fragment in Verilog.

For variable v, and graph G = (V, D U C), let pre(v, G) be the set of
its immediate predecessors in G, that is

pre(v,G) = {w | (w,0) e (DUC)}.

We define the counterexample Cex of a graph G with map varTime
as the set of nodes in the reduced graph G’ (wrt. varTime), that
have no predecessors, i.e, CEx = {v | pre(v,G’) = 0} .

Example: Simplified Pipeline. The code in Figure 8 shows a sim-
plified version of the pipelined processor from Figure 3. Like in
Figure 3, the pipeline either stalls (Lines 10 and 11) if flag Stall
is set (Line 9), or else forwards values to the next stage (Lines 13
and 14). To avoid a write-after-write data-hazard, the Stall flag is
set, if the instructions in the execute and decode stage have the same
target registers (Line 6). The target register is calculated from the
current instruction (Line 1), and the instruction is, in turn, fetched
from memory using the current program counter (Line 3). Note
the cyclic dependency between ID_instr and Stall that turns
comprehending the root cause into a “chicken-and-egg” problem.

Dependency Graph. To check if the pipeline fragment executes
in constant-time, we mark IF_pc as source, and ID_instr as sink
and run XENON. Since the pipeline is variable-time, the verification
fails. To compute a minimal counterexample, XENON creates the
dependency graph shown in Figure 9a. Each node is annotated with
information extracted from the failed proof attempt: the node is
labeled with its value under varTime, and is marked with (/) if
the variable remained constant-time throughout the proof attempt
and (X) otherwise. Solid edges represent data- and dashed edges
represent control-dependencies.

Reduced Dependency Graph. Figure 9b shows the dependency
graph after removing all constant-time nodes and edges that vio-
late the causal ordering. XENON erases all nodes that cannot reach
sink ID_instr. This only leaves ID_instr which we return as coun-
terexample. The ordering induced by varTime allowed us to break
the cyclic dependency between variables Stall and ID_instr,
thereby resolving the chicken-and-egg problem.

Remark. In case the proof artifact only partially resolves the cyclic
dependencies, that is, varTime only defines a partial order over
non-constant-time variables, the reduced graph may still contain
cycles, and therefore there may be no nodes without predecessor.
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(a) Dependency Graph.

(b) Dependency Graph after eliminating
constant-time nodes and edges violating the

order given by varTime.
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(c) Dependency Graph with Module Summary.

Figure 9: Figure 9a shows the dependency graph for Figure 8. Data-dependencies are shown as solid edges, and control-dependencies are shown
dashed. Each node is labeled with its varTime-value and marked (/) if the variable remained constant-time throughout the proof attempt and
(X) otherwise. Figure 9b shows the dependency graph after eliminating constant-time nodes from Figure 9a, and removing edges that violate
the variable-time map. Removing the edge between Stall and ID_instr breaks the cyclic dependency in the original graph. Figure 9c shows
the variable dependency graph with a summary graph extracted from the module summary.

We can however still apply our technique by computing the graph’s
strongly connected components and including all nodes in the
respective component in the counterexample.

4.2 Assumption Synthesis

The previous step leaves us with a set of nodes Cex, which lost
the constant-time property first. Since these nodes must have lost
the constant-time property through a control dependency on a
secret value, we can compute a set of variables BLAME that are
directly responsible: the immediate predecessors of Cex in the
dependency graph with respect to a control dependency. Formally,
for dependency graph G = (V,D U C), we let BLAME = {w | v €
Cex A (w,v) € C} . To synthesize secrecy assumptions that remove
the constant-time violation, we could directly assume that all nodes
in BLAME are public. But this is often a poor choice: variables in
BLAME can be defined deep inside the circuit, whereas we would
like to phrase our assumptions in terms of externally visible input
sources.

Finding Secrecy Assumptions via ILP. Instead, we compute a
minimal set of assumptions close to the input sources via a reduc-
tion to Integer Linear Programming (ILP). To this end, we use a sec-
ond proof artifact, a map secret that—similar to varTime—describes
the temporal order in which the verifier determines variables have
become secret, i.e., ceased being public. Let G’ = (V/, D’ UC’) be the
reduced dependency graph with respect to secret, and let No C V’
be a set of variables that the user chose to exclude from considera-
tion. XENON produces constraints on a new set of variables: two
constraint variables m, € {0,1} and p, € {0, 1}, for each program
variable v, such that m, = 1, if program variable v is marked public
by an assumption, and p, = 1, if v can be shown to be public, that is,
it is either marked public, or all its predecessors are public. Then,
XENON produces the following set of constraints.

my > py, ifoeV’, pre(v,G') =0 (1)
mv+(%) >py ifoeV’, pre(s,G)#0 (2)
pyv=1 if v € (BLAME \ No) 3)
my =0 if v € No (4)
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Constraints (1) and (2) ensure that a variable is public, if either it
is marked public, or all its predecessors in G’ are public. Constraint
(3) ensures that all blamed variables that have not been excluded
can be shown to be public, and finally, constraint (4) ensures that
all excluded constraints are not marked. Let d(v, w) be a distance
metric, i.e., a function that maps pairs of nodes to the natural num-
bers. Then we want to solve the constraints using the following
objective function that we wish to minimize, where for v € V’, we
define as weight the minimal distance from one of the source nodes:

(objective)

and we let wy = (min;j,esgc d(in,v)). A solution to the constraints
defines a set of assumptions A = (Frush, PuB), with FLusH =
{oeV' |my=0Ap,=0}andPuB = {v € V' | my = 1}. The
constraints can be solved efficiently by an off-the-shelf ILP solver.

Example: Simplified Pipeline. Consider again the pipeline in Fig-
ure 8. As we identified ID_instr as counterexample in the previous
step, we need to ensure that its blame-set consisting of all indirect
influences is public. ID_instr only depends on Stall, and there-
fore we add constraint psta11 = 1. Since all variables are secret (i.e.,
we didn’t make any public-assumptions yet), the reduced graph is
equal to the original graph. For variables IF_instr and ID_instr,
we get: mIF_instr + PIF_pc = PIF_instr and

PIF_instr + Pstall

2 2 PID_Instr-

MIp_Instr +

We obtain the following objective function: mir_pc + 2mrr_instr +
3mip_instr +... . Sending the constraints to an ILP solver produces
a solution, where mir_pc = 1, and my = 0, for all variables v #
IF_PC, and py = 1, for all v. This corresponds to the following
assumption set A = (Flush, {IF_PC}), where Flush includes all
variables except IF_PC. This is exactly our desired minimal solution
where we only mark IF_pc as public. Note that our method does
not necessarily result in all variables becoming public. We give an
example in Appendix A.
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4.3 Modular Assumption Synthesis

To avoid a blowup in constraint size and to keep counterexamples
and assumptions local, we want to avoid inlining instantiated mod-
ules. We, therefore, extract a dependency graph from the module
summary. Whenever the summary requires an input in to be public
for an output out to be constant-time, we draw a control depen-
dency between in and out. Whenever the summary requires an
input in to be constant-time for an output out to be constant-time,
we draw a data dependency. Finally, we insert the computed sum-
mary graph into the top-level dependency graph, and connect the
instantiation parameters to the graph’s inputs and outputs.
Example. We modify Figure 8 to factor out the updates to ID_instr
into a separate module. XENON computes the following summary
invariant, from which we create the graph in Figure 9¢

ct(IF_instr) A pub(Stall) = pub(ID_instr) .

Since connecting the instantiated variables to the summary graph
is equivalent to (Figure 9a), our analysis returns the same result.

5 IMPLEMENTATION

XENON is split into front-end and back-end. Our front-end trans-
lates VERILOG to an intermediate representation (IR) and asso-
ciates secrecy assumptions with input and output wires. Our back-
end translates this annotated IR into verification conditions (Horn
clauses); when verification fails, we generate counterexamples and
secrecy assumptions and present them to the user for feedback.
We implement the back-end in roughly 9KLOC Haskell, using
the liquid-fixpoint (0.8.0.2) [8] and Z3 (4.8.1) [37] libraries for
verification, and the GLPK (4.65) [7] library for synthesizing as-
sumptions by solving the ILP problem of § 4. Our tool and evalu-
ation data sets, including the secrecy assumptions discovered for
SCARV (§ 7) are open source and available on GitHub at https:
//xenon.programming.systems.

6 EVALUATION

We evaluate XENON by asking the following questions:

» Q1: Are constant-time counterexamples effective at localiz-
ing the cause of verification failures?

» Q2: Are the secrecy assumptions suggested by XENON use-
ful?

» Q3: What is the combined effect of counterexamples and
secrecy assumption generation on the verification effort?

» Q4: Do module summaries improve scalability?

» Q5: Does XENON reduce verification time by helping users
find secrecy assumptions?

» Q6: How does using XENON affect assumption quality?

To answer questions Q1 and Q2, we use XENON to recover the
assumptions for the benchmark suite from [50]. These benchmarks
include a MIPS and RISC-V core, ALU and FPU modules, and RSA
and SHA-256 crypto modules. To answer Q3 and Q4, we evaluate
XENON on two challenging new benchmarks, the SCARV “side-
channel hardened RISC-V” processor [4] whose size exceeds the
largest benchmark from [50] by a factor of 10, and a highly modular
AES-256 implementation [10]. Finally, we conduct a user study
to answer Q5 and Q6, in which participants were asked to find
assumptions for three benchmarks from [50]: two benchmarks
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with relatively simple assumptions (ALU and FPU) and RISC-V core
with a more complex assumption set.*

Summary. XENON’s counterexample synthesis dramatically re-
duces the number of potential error locations users have to manu-
ally inspect (6% of its original size) and most of XENON’s assumption
suggestions are accepted by the user (on average 81.67%). Module
summaries are key to reducing verification times for certain designs
(e.g., for AES-256 summaries reduced the verification time from six
hours to three seconds). We find the counterexamples and secrecy
assumptions suggested by XENON to be crucial to reducing the
human-in-the-loop time from days to (at worst) hours. Our user-
study findings indicate that—using XENON—participants were able
to correctly complete significantly more tasks, showing a very large
(d = 1.62), statistically significant (¢(8) = 2.56, p = .016) positive ef-
fect on correct completion. Participants in the test group produced
fewer (d = 1.03) incorrect solutions (#(5.5) = 1.63,p = .07), and
solution sizes were smaller on average.

Experimental Setup. We run all experiments on a 1.9GHz Intel
Core i7-8650U machine with 16 GB of RAM, running Ubuntu 20.04
with Linux kernel 5.4.

Methodology. For every benchmark used to answer Q1-Q4, we
start with an empty set of secrecy assumptions and run XENON
repeatedly to recover the missing assumptions needed to verify the
benchmark. We collect the following information after every invoca-
tion of the tool: the total number of variables that are variable-time
and secret; the size of the counterexamples measured by the num-
ber of variables they contain; the number of assumptions XENoN
suggests, and how many of these assumptions we reject; finally,
we record the number of times we invoke XENON to complete each
verification task. With all the assumptions in place, we measure
the time it takes for the tool to verify each benchmark; we report
the median of thirty runs for all but the non-modular (inlined) AES
benchmark, for which—due to its size—we report the median of
three runs.

User-Study Design. For our user study, we recruited ten partici-
pants who had some familiarity with software constant-time ex-
ecution, but had never used XENoON or IoDINE. The participants
were randomly split into two equally sized groups: Test who were
given XENON and Control who were given IoDINE. Participants
using IODINE were given access to IODINE’s counterexample out-
puts. After reading the instructions, both groups were given 40
minutes to complete the three tasks, i.e., find assumptions for three
IopINE benchmarks. For each task, we recorded the time taken to
complete the task in minutes (Time), the number of annotations
in the solution set (Size), and whether the solution was correct
(Crt). We rejected solutions for ALU and FPU if they contained
assumptions about the operands, and for RISC-V, if they contained
assumptions about memory or the register-file.

Q1: Error Localization. To understand whether our counterex-
ample generation is effective at localizing the cause of verification
failures, we compare the number of variables in the counterexample
to the total number of non-constant-time variables. The CEX Ratio
column Table 1 reports the average ratio per iteration. We observe

4We include the larger RISC-V core to evaluate the hypothesis that XENON benefits
users even if many of XENON’s suggestions are eventually rejected. We chose this
benchmark because XENON achieves the lowest accept-ratio over all benchmarks.
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#Assum Check (H:M:S) CEX Sugg  Accept
Name #LoC #flush  #public cT Inlined Modular * Tter Ratio  Ratio Ratio
MIPS [9] 447 28 3 v 2.42 3.13 3 2.50% 1.73% 83.33%
RISC-V [6] 514 10 11 v 13.21 10.23 5 16.24% 3.98% 46.90%
SHA-256 [11] 563 4 3 v 7.21 8.90 2 4.28% 3.57%  100.00%
FPU [2] 1108 3 1 v 9.10 11.54 1 0.33% 0.26%  100.00%
ALU [5] 1327 1 3 v 2.01 2.29 2 0.88% 1.38% 75.00%
FPU2 [3] 272 24 4 X 131 3.65 - - - -
RSA 855 29 4 X 2.87 151 - - - -
AES-256 [10] 800 0 0 v 6:05:01.82 2.74 - - - -
SCARYV [4] 8468 73 54 v 14:20.93 8:35.46 34 9.08% 5.68% 84.80%
Total 14354 159 89 - 6:20:00.88 9:19.45 47  555%°  277%°  81.67%"

Table 1: #LOC is the number of lines of Verilog code (without comments or empty lines), #Assum is the number of assumptions; flush and
public are sizes of the sets FLusH and PuB respectively, CT shows if the program is constant-time, Check is the time XENON took to check
the program; Inlined and Modular represent inlining module instances and using module summaries respectively. # Iter is the number of
times the user has to invoke XENON to verify the benchmark starting with an empty set of assumptions; CEX Ratio is the average ratio of
the number of identifiers in the counterexample to all variable-time identifiers in a given iteration; Sugg Ratio is the average ratio of the
number of secrecy assumptions that XENON suggests to all secret variables in a given iteration, and Accept Ratio is the ratio of user-accepted
assumptions to all XENON suggestions. In the Total row, we use * to denote averages instead of sums. We do not run error localization on FPU2
and RSA because they are variable-time; AES-256 does not need any assumptions.

that fewer than 6% of non-constant-time variables are included in
the counterexample. Since the total number of non-constant-time
variables is typically on the order of hundreds (e.g., the median
(and geomean) number of non-constant-time variables across all
benchmarks and iteration is 97 (94)), this dramatically reduces the
number of variables the developer has to inspect in order to under-
stand the violation. For the benchmarks that were variable time,
the counterexamples also precisely pinpointed where in the circuit
the constant-time property was violated. For example, in the FPU2
benchmark Xenon included the state register in its third iteration
counterexample. This register indicates when the FPU’s output is
ready. Inspecting the register’s blame-set (similar to the process de-
scribed in § 2.3) revealed that its value is set depending on whether
one of the operands to the division operation is NaN and thus the
FPU clearly leaks information about its operands.

Q2: Identifying Secrecy Assumptions. To assess the quality of
secrecy assumptions suggested by XENON, we record the number
of suggestions that the user accepts (useful suggestions) and the
ratio of suggestions to the total number of secret variables the user
would otherwise have to inspect manually. We find that most (on
average 81.67%) of XENON’s suggestions are useful, reported in the
Accept Ratio column of Table 1. Moreover, we observe that the
number of variables included in the counterexamples is relatively
small (Sugg Ratio column); on average, we only had to inspect
2.77% of the secret variables.

Q3: Verification Effort. Finally, as a rough measure of the overall
verification effort, we count the number of user interactions, i.e.,
the number of times we invoked XENON after modifying our set of
secrecy assumptions. Verifying the largest benchmark from [50],
the Yarvi RISC-V core [6] took five invocations over several min-
utes. The final assumptions we arrived at were the same as the
assumptions manually identified by the authors of IoDINE in [50];
they, however, took multiple days to identify these assumptions
and verify this core [61]. Verifying the SCARV core took thirty-four
iterations and roughly three hours; this core is considerably larger
(roughly 10x) than the Yarv1 RISC-V core and, we think, beyond

what would possible with tools like IopINE, which rely on man-
ual annotations and error localization. Indeed, we found the error
localization and assumption inference to be especially useful in
narrowing our focus and understanding to small parts of the core
and avoid the need to understand complex implementation details
irrelevant to the analysis.

Q4: Scalability. To evaluate how module summaries affect the
scalability, we compare the time it takes to verify (or show variable-
time) a program with and without module summaries. Columns
Inlined and Modular of Table 1 give the run times of XENON with
inlining (no summaries) and module summaries, respectively. On
the IopINE benchmarks (the first seven benchmarks), we observe
that module summaries don’t meaningfully speed up verification.
Indeed, on average, module summaries only reduce the size of
the query sent to our solver by roughly 5% on these benchmarks.
On the more complex AES-256 and SCARV benchmarks, however,
the benefits of module summaries become apparent. For AES-256,
using module summaries reduces the query size by 99.7%, from
391.3 MB to 1.2 MB, which, in turn, reduces the verification time by
three orders of magnitude—from six hours to three seconds. Module
summaries allow XENON to exploit the core’s modular design, i.e.,
AES-256’s multiple and nested instantiations of the same modules
(see Figure 5). For SCARV, summaries reduce the query size by 41%
and speed up the verification time by 40%. Though this reduction
is not as dramatic as the AES-256 case, the speedup did improve
XENON’s interactivity.

05: Reducing Verification Time. To determine whether XEnonN
helps users find annotations more quickly, we recorded the number
of tasks that participants were able to correctly complete within
the 40 minutes timeframe. Column #Crt of Figure 13 summarizes
our results. Participants in the test group completed 2.6 tasks on
average, while participants in the control group were only able to
solve 1.4. Figure 10 shows the percentage of participants that were
able to find a correct set of assumptions, split by task. A little over
50% of control group participants were able to complete the first
task, while 75% were able to complete the second. In contrast, all
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Figure 11: Correctly completed tasks over time.
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Figure 12: Solutions size for correctly completed tasks.

test-group users were able to correctly complete Task 1 and Task 2.
None of the control group users correctly finished the significantly
more difficult Task 3—verifying a full processor with a complex
assumption set—whereas 60% of test-group participants were able
to do so. We find these results encouraging, especially since our par-
ticipants were non-expert users—some only with cursory exposure
to hardware and RTL design.

Figure 11 shows the number of correctly completed tasks over
time, split by group. Test group users were able to finish simple
tasks more quickly and correctly solved more tasks over time.

Q6: Assumption Quality. To determine the quality of assump-
tions, we recorded how often a participant was able to finish a task
within time, but found an incorrect set of assumptions. While the
control group produced five incorrect solutions, the test group only
produced one. Figure 12 shows the average size of correct assump-
tion sets, per group. For tasks completed by both, the test-group
sizes were on average smaller. Though the sample size is small,
it’s clear that XENON helps guide the user’s attention and avoid
incorrect assumptions.

7 CASE STUDY: VERIFYING SCARV

We now describe our experience verifying SCARV and discuss the
set of secrecy assumptions XENON synthesized.
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SCARYV: Overview. SCARV is a 5-stage single-issue in-order CPU,
implementing the RISC-V 32-bit integer base architecture. SCARV is
side-channel hardened and explicitly designed to run cryptographic
code. It supports an external hardware random number generator
and implements fine-grained per-stage flushing of its processor
pipeline via an instruction set extension.

Finding Assumptions Modularly. To verify SCARV, we follow
XEeNoN’s modular philosophy: we start with modules that occur at
leaf-level in the instantiation-tree, that is, modules that have no
sub-modules of their own, and iteratively work our way up such
that in each stage, we already determined the assumptions for all
sub-modules. At each step, we prove that the current module is
unconditionally constant-time, where we set all module inputs as
sources and outputs as sinks. This keeps errors and assumptions lo-
cal: At every stage of the verification process, we only have to think
about the current module. But this approach has a downside. We
might end up with a set of assumptions that is unnecessarily restric-
tive. Our modular verification process ensures that all input/output
paths of all submodules are constant-time. But, to ensure constant-
time execution of the entire circuit, constant-time execution of only
a subset of modules and their respective input/output paths might
be required. Fortunately, we can use the assumptions found via our
modular verification process to bootstrap a search for a minimal
assumption set. As XENON’s module summaries can express that a
module is constant-time only under certain conditions, and only for
a subset of input/paths, we can safely erase assumptions, as long as
XENON can still prove the circuit to be constant time. Repeating this
process yields a minimal assumption set, which we now discuss.

Sources and Sinks. XENON represents assumptions as yaml files
that are iteratively populated during verification. Figure 14 shows
assumptions for the top-level module of SCARV. Annotations src
and snk define sources and sinks, respectively. We choose all mod-
ule inputs as sources, and all module outputs as sinks. This captures
all relevant externally observable timing behaviors, including:

» The timing of signals interacting with both instruction and
data memory, including requests (Lines 5 and 8), acknowl-
edgments (Line 6), and strobe signals (Line 7),

» the timing of flush signals to external resources, such as
caches (Line 9), and

» the timing of requests to the external random number gener-
ator, such as request ready bit (Line 10) and accept response
bit (Line 11).

Secrecy Assumptions: External Devices. Annotation pub shows
the secrecy assumptions synthesized by XENON. At top-level, these
assumptions concern external signals, hardware and interrupts.
They require, for example, the external reset signal (Line 14), con-
trol inputs from external devices like memory (Lines 16 to 19),
memory-mapped devices (Line 25), and the external random gener-
ator (Lines 21 to 23) to be public. The assumptions on memory are
justified as they do not concern caches. Finally, the assumptions re-
quire that traps (Line 27), interrupts from external devices (Lines 29
to 31), and software (Lines 37 and 38) do not depend on secrets.
Importantly, neither are all inputs public nor are assumptions
only placed on inputs. For example, XENON doesn’t synthesize
assumptions requiring values read from data-memory (Line 2) or
the external random source (Line 3) to be public. Conversely, the
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Task 1 (ALU) Task 2 (FPU) Task 3 (RISC-V) #Crt Task 1 (ALU) Task 2 (FPU) Task 3 (RISC-V) #Crt
Time Size Crt ‘ Time Size Crt ‘ Time Size Crt ‘ Time Size Crt ‘ Time Size Crt ‘ Time  Size Crt ‘

2 3 v 3 1 v 20 10 v 3 19 2 X 2 1 v 18 17 X 1

2 3 v 1 1 v 14 11 v 3 10 2 X 5 3 X - - - 0

5 3 v 18 1 v 14 10 v 3 9 3 v 4 1 v 12 1 X 2

21 3 v 10 1 v - - - 2 9 5 v 3 2 v - - - 2

9 3 v 4 1 v 27 10 X 2 13 3 v 21 1 v - - - 2
)z 7.80 3.00 - 7.20 1.00 - 18.75 10.25 - 2.60 H 12.00 3.00 - 7.00 1.60 - 15.00 9.00 - 1.40
o 7.92 0.00 - 6.91 0.00 - 6.18 0.50 - 0.55 o 4.24 1.22 - 7.91 0.89 - 4.24 11.31 - 0.89
s 7.80 3.00 - 7.20 1.00 - 16.00 10.33 - 2.60 ,u* 10.33 3.67 - 7.50 1.25 - - - - 1.40
o 7.92 0.00 - 6.91 0.00 - 3.46 0.58 - 0.55 o 2.31 1.15 - 9.04 0.50 - - - - 0.89

(a) Test Group: Using XENON

(b) Control Group: Using IODINE

Figure 13: Results of the user study. The participants were split into two equally sized groups: Test (Fig. 13a) using XEnonN and Control (Fig. 13b)
using IopINE. The participants were asked to find assumptions for three of the IopINE benchmarks: ALU, FPU, and RISC-V. Both groups were
given 40 minutes to complete the three tasks. For each task, we record the time taken to complete the task in minutes (Time), the number
of annotations in the solution set (Size), and whether the solution was correct (Crt). We reject solutions for ALU and FPU if they contain
assumptions about operands, and for RISC-V, if they contain assumptions about memory or the register file. We report the average (1) and
standard deviation (o) of all completed runs, i.e.,, including those that yielded wrong solutions. ;* and o* show average and standard deviation
for correct runs, only. Finally, we report the overall number of correctly completed tasks #Crt. On average, participants in the test group were
able to complete 2.6 tasks, while participants in the control group were only able to solve 1.4 within the 40 minutes trial. This indicates that
using XENON has a very large (d = 1.62), statistically significant (#(8) = 2.56, p = .016) positive effect on correct completion.

assumptions on traps, memory-mapped IO, and timer interrupts
do not concern external inputs, but internal pipeline state.

Secrecy Assumptions: Internal Processor State. While, in our
experience, top-level assumptions about IO behavior are relatively
easy to find, proving constant-time execution also requires harder
to find assumptions about processor internals. These assumptions
encode constraints on the kind of programs that can safely be
executed on the processor. Figure 15 shows the assumptions for
SCARV’s pipeline module. XEnoN discovers the classic constant-
time assumptions stating that control-flow (Lines 4 and 5) and
memory-trace (Line 7) are secret independent. Similarly, memory
stalls (Line 9), instruction validity (Line 11), and the computed pop
(Line 13) must not depend on secrets.

But XENON also discovers systems-level assumptions that are
not commonly associated with constant-time programming. For ex-
ample, access errors for control and status (CSR) registers (Line 15)
must not depend on secrets, and the timing of when to return from
machine-mode (Line 17) and traps (Lines 21 and 22), must be pub-
lic. Finally, we may not set the configuration register of SCARV’s
leakage fence instruction (Line 19) depending on secrets. This is
necessary as different configurations flush different parts of the
pipeline and might incur different delays.

Constant-Time Subset of Instructions. The above assumptions
are satisfied, when the instructions run on SCAR-V are limited
to the arithmetic, and bitwise-logic subset of RISC-V; instructions
must be valid, i.e., properly encoded; even division is constant-time.

8 LIMITATIONS AND FUTURE WORK
We discuss some of XENON’s limitations.

Assumptions about Data. XENON currently only discovers se-
crecy assumptions, i.e., whether a given value is public or private.
It may be beneficial to also discover assumptions about data (e.g.,
that a certain flag is always set). In future work, we would like to
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explore how to combine XENON’s assumption synthesis method
with techniques for inferring data preconditions [38, 74].

Minimality of Assumptions. XENON inherits the limitations of
the underlying Horn solver (§ 3). In particular, an assumption set
could be sufficient to ensure constant-time execution of the circuit,
but the solver may be unable to prove it. The minimality of our
assumption set (§ 7) is therefore relative to the solver, and could
potentially be improved with more precise solving methods—at the
cost of reduced interactivity and scalability. As future work, one
could use fast over-approximating solvers in the assumption discov-
ery phase of our verification method (§ 7), and then slower, more
precise solvers to minimize the assumption set after bootstrapping.

Mapping Back to Software. XENON discovers an assumption set
that ensures constant-time execution of the verified design. But, it
leaves open the question of how to map assumptions back into proof
obligations on software. The assumption set XENON discovered for
SCARV (§ 7) suggests that this might require a whole system effort
that goes beyond current practices of constant-time programming.
We hope that open-sourcing assumptions for SCARV will help
future research efforts in this direction.

Guarantees on Synthesized Circuits. Finally, we prove constant-
time at the Verilog level. This is convenient for error-localization,
but it doesn’t ensure that guarantees carry over to the generated
circuits. Proofs are guaranteed to carry over if the synthesizer
produces behavior within the Verilog standard [13], as, for example,
formalized in [50, 51]. In particular, we make no further assumptions
apart from semantics preservation. However, we leave the problem
of verifying semantics preservation in synthesis to future work.

9 RELATED WORK

Verifying Leakage Freedom. There are various techniques, such
as ct-verif [16], [22], and CT-Waswm [85], that verify constant-
time execution of software, and quantify leakage through timing
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1 src 12 pub:

2 dmem_rdata 13

3 rng_rsp_data 14 g_resetn

4 snk: 15

5 dmem_req 16 dmem_error
6 dmem_ack 17 dmem_gnt

7 dmem_strb 18 dmem_recv
8 imem_req 19 imem_error
9 leak_fence_unco 20

rng_req_valid
rng_rsp_ready

rng_req_ready
rng_rsp_valid

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

rng_rsp_status
int_nmi
mmio_error
int_software
int_trap_req mie_msie
int_extern_cause
int_external
mie_meie

ti_pending
mie_mtie

mstatus_mie

Figure 14: Secrecy Assumptions Synthesized by XeNoN for the Toplevel Module of SCARV.

1 pub: 12

2 13 s2_uop

3 14

4 cf_req 15 csr_error

5 cf_target 16 ret_from_mach_mode
6 17 exec_mret

7 lsu_addr 18

8 hold_memory_requests 19 leak_lkgcfg
9 hold_lsu_req 20

10 21 trap_cpu

11 s1_valid 2 trap_int

Figure 15: Secrecy Assumptions Synthesized by XENoON for the Main-
Pipeline module of SCARV.

and cache side-channels [12, 17, 41, 65, 79, 90]. However, their anal-
yses do not directly apply to our setting: They consider straight-
line, sequential code, unlike the highly parallel nature of hardware.
There are many techniques for verifying information flow proper-
ties of hardware. Kwon et al. [64] prove information flow safety of
hardware for policies that allow explicit declassification and are ex-
pressed over streams of input data. SecVerilog [91] and Caisson [66]
use information flow types to ensure that generated circuits are
secure. GLIFT [82, 83] tracks the flow of information at the gate
level to eliminate timing channels. Other techniques such as Hyper-
Flow [45], GhostRider [67] and Zhang et al. [90] take the hardware
and software co-design approach to obtain end-to-end guarantees.
dudect [77], detects end-to-end timing variability across the stack
via a black-box technique based on statistical measurements. Io-
DINE [50], like XENON, focuses on clock-precise constant-time exe-
cution, not information flow. Unlike XENON, none of these methods
provides help in elucidating secrecy assumptions, in case the verifi-
cation fails—a feature we found essential in scaling our analysis to
larger benchmarks. We see the techniques presented in this paper
as complementary and would like to explore their potential for
scaling existing verification methods for hardware and software.

Fault Localization. There are several approaches to help devel-
opers localize the root causes of software bugs [86]. Logic-based
fault localization techniques [31, 42, 59, 60] are the closest line of
work to ours. For example, BugAssist [59] uses a MAXSAT solver
to compute the maximal set of statements that may cause the fail-
ure given a failed error trace of a C program. XENON is similar in
that we phrase localization as an optimization problem, allowing
the use of ILP to locate the possible cause of a non-constant-time
variable. However, XENON focuses on constant-time, which is a re-
lational property, and hardware which has a substantially different
execution model.
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Synthesizing Assumptions. Our approach to synthesizing secrecy
assumptions is related to work on precondition synthesis for mem-
ory safety. Data-driven precondition inference techniques such
as [47, 48, 72, 80, 81], unlike XENON, require positive and nega-
tive examples to infer preconditions. XENON’s synthesis technique
is an instance of abductive inference, which has been previously
used to triage analysis reports by allowing the user to interactively
determine the preconditions under which a program is safe or un-
safe [38] or to identify the most general assumptions or context
under which a given module can be verified safe [14, 27, 39, 40, 49].
Livshits et al. [68] infer information-flow specifications for web-
applications using probabilistic inference. Unlike these efforts, our
abduction strategy is tailored to the relational constant-time prop-
erty. Furthermore, XENON uses information from the verifier to
ensure that the user interaction loop only invokes the ILP solver
(not the slower Horn-clause verifier), yielding a rapid cycle that
pinpoints the assumptions under which a circuit is constant-time.
In future work, we would like to see, if ideas introduced in XENON
can be applied to localization, explanation and verification of other
classes of correctness or security properties.

Modular Verification of Software and Hardware. XENON ex-
ploits modularity to verify large circuits by composing summaries of
the behaviors of smaller sub-components. This is a well-known idea
in verification; [78] shows how to perform dataflow analysis of large
programs by computing procedure summaries, and Houdini [46]
shows how to verify programs by automatically synthesizing pre-
and post- conditions summarizing the behaviors of individual proce-
dures. For hardware, model checkers like Mocha [18] and SMV [69]
use rely-guarantee reasoning for modular verification. Kami [30]
and [84] develops a compositional hardware verification method-
ology using the Coq proof assistant. However, the above require
the user to provide module interface abstractions. There are some
approaches that synthesize such abstractions in a counterexample
guided fashion [54, 92]. All focus on functional verification of prop-
erties of a single run, and do not support abstractions needed for
timing-channels which require relational hyper-properties [32].
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A EXAMPLE: NOT ALL VARIABLES BECOME
PUBLIC

Example 3. One might think that XENON requires all variables
occurring in branch conditions to be annotated as public, how-
ever, this is not the case. Appendix A shows an example of such a
program. Running XeNON produces the dependency graph shown
in Figure 16. XENON computes root-cause candidates by eliminat-
ing constant-time nodes and edges violating the precedence order.
The result is shown in Figure 17. Removing all nodes that cannot
reach source out leaves only nodes r3 and out, and since r3 has
no predecessors, we identify it as the earliest node that became
non-constant time, and therefore the root cause of the problem.
Solving the ILP constraints yields stall as candidate assumption,
and marking stall as public and restarting XENON verifies con-
stant time execution without the need to mark cond as public. This
is possible because XENON is able to prove that tmp1 and tmp2 have
the same liveness-bits, irrespective of the value of cond, i.e., that
tmp1®=tmp2*® holds irrespective of cond.

1 module test(clk, in, cond, bubble, out);
2 input wire clk, in, cond, bubble;

3 output reg out;

4 reg tmpl, tmp2, r2, r3;

5

6 always @(posedge clk) begin

7 tmpl <= in | r3;

8 tmp2 <= in & r3;

9

10 if (cond)

444

CCS ’21, November 15-19, 2021, Virtual Event, Republic of Korea

11 r2 <= tmpl;
12 else

13 r2 <= tmp2;
14

15 if (stall)

16 r3 <= r3;
17 else

18 r3 <= r2;
19

20 out <= r3;

21 end

22 endmodule

Figure 16: Example 3: Variable dependency graph.

Figure 17: Example 3: Variable dependency graph after eliminating
non-ct nodes and edges that violate the precedence relation.
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