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Quantum advantage for differential equation analysis
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Quantum algorithms for differential equation solving, data processing, and machine learning potentially offer
an exponential speedup over all known classical algorithms. However, there also exist obstacles to obtaining this
potential speedup in useful problem instances. The essential obstacle for quantum differential equation solving
is that outputting useful information may require difficult postprocessing, and the essential obstacle for quantum
data processing and machine learning is that inputting the data is a difficult task just by itself. In this study,
we demonstrate that, when combined, these difficulties solve one another. We show how the output of quantum
differential equation solving can serve as the input for quantum data processing and machine learning, allowing
dynamical analysis in terms of principal components, power spectra, and wavelet decompositions. To illustrate
this, we consider continuous-time Markov processes on epidemiological and social networks. These quantum
algorithms provide an exponential advantage over existing classical Monte Carlo methods.
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I. INTRODUCTION

One of the primary proposed applications of quantum
computers is the solution of linear differential equations on
high-dimensional spaces. The ability of quantum computers
to represent N-dimensional vectors as the state of log2 N
qubits and to perform linear algebraic transformations of those
states in time poly(log N ) then translates into a potential ex-
ponential speedup over classical algorithms for solving such
high-dimensional differential equations. The output of the
quantum computer presents the solution to the equation as a
quantum “history state” that is a superposition of the solution
at different points in time. The problem then arises: How
do we extract useful information from that quantum solution
state? We can measure the expectation value of different quan-
tities of interest; however, in the example of Markov chains,
such expectation values can often be evaluated efficiently
classically via Monte Carlo techniques. To obtain a quantum
advantage that reveals essential features of the solution to
the linear differential equations, we need to perform quantum
postprocessing on the history state.

Quantum machine learning and data processing algorithms
provide potential exponential speedups over classical coun-
terparts for methods such as high-dimensional regression,
principal component analysis, and support vector machines
[1–4]. A basic problem with such quantum algorithms is
that the input to the algorithm is a quantum state that en-
codes the classical data and constructing such a state requires

the implementation of a large-scale quantum random access
memory (qRAM), a difficult technological task. The central
observation of this study is that the problem with quantum
linear equation solvers, that they give quantum states as out-
put, and the problem with quantum machine learning and
data processing algorithms, that they require quantum states
as input, effectively solve each other: The output from the
quantum linear equation solver can be used as the input to
the quantum machine learning or data processing algorithm.
In particular, we show that the history-state quantum solution
to high-dimensional linear differential equations takes exactly
the form needed to perform quantum analysis of the solution
via quantum machine learning and data analysis. We show
how to produce the singular values and singular vectors of
the solution via quantum principal component analysis and
how to extract the power spectrum of the solution by per-
forming quantum Fourier transforms. This analysis reveals the
dominant components of the time evolution, corresponding to
large singular values and eigenvalues of the transition matrix
with a small negative real part. Finally, we show how to
perform quantum wavelet analysis to reveal rapid transitions
and emergent features in the solution at different timescales.
These quantum algorithms for postprocessing the solution of
linear differential equations can yield an exponential speedup
over classical methods and could potentially be performed on
near-term intermediate-scale quantum computers.

The quantum postprocessing of the history state to reveal
salient features of the history can be applied to any linear

2469-9926/2022/105(2)/022415(15) 022415-1 ©2022 American Physical Society

https://orcid.org/0000-0003-1477-0308
https://orcid.org/0000-0002-5064-8695
https://orcid.org/0000-0002-3049-6516
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.022415&domain=pdf&date_stamp=2022-02-14
https://doi.org/10.1103/PhysRevA.105.022415


BOBAK TOUSSI KIANI et al. PHYSICAL REVIEW A 105, 022415 (2022)

differential equation. To show how quantum postprocessing
reveals such features, we focus on the case of continuous-
time Markov chains on high-dimensional spaces, with an
emphasis on the spread of disease and opinion in complex so-
cial networks. Previous quantum algorithms for Monte Carlo
methods yielded a square-root speedup over classical algo-
rithms [5]. By contrast, the quantum algorithms presented
here for analyzing linear dynamics in terms of singular values,
power spectra, and wavelets represent an exponential speedup
over existing classical Monte Carlo methods.

II. RESULTS

A. Quantum algorithms for linear differential equations

Quantum numerical algorithms solve differential equations
by quantizing classical numerical procedures and perform-
ing matrix operations on finite high-dimensional state spaces
[6–9]. We write a general linear differential equation for a
vector in RN , with N � 1, in the form

d�x(t )

dt
= M�x(t ) + �c, (1)

where x(t ) represents the state of the system at time t , M
is the N × N differential equation matrix, and c is a forcing
term. For example, in the case of Markov models, the state
space is represented by a probability vector x(t ) with entries
xi(t ) indicating the probability of the system existing in state
i at time t and M the transition matrix.

Well-known quantum algorithms [6,7] can solve linear dif-
ferential equations of the form of Eq. (1), where M is a sparse
matrix, by applying the quantum algorithm for linear systems
of equations [10,11]. The algorithms of Refs. [6,7] are based
on a simple underlying idea, but require highly nontrivial tech-
nical improvements in order to achieve a low computational
complexity. For the sake of a clearer exposition, we present
here only the basic idea and refer the reader to Refs. [6,7] for
a complete presentation of the algorithms. We consider the
differential equation (1) for 0 � t � tmax. The idea is based
on the standard classical methods for discretizing Eq. (1) in
T time steps, each of size h = tmax/T , and reframing it as the
solution to an equation of the form

A�x = �b, (2)

where

�x =

⎛
⎜⎜⎜⎜⎝

�x0

�x1

�x2
...

�xT

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

�x(0)
�x(h)
�x(2h)

...

�x(T h)

⎞
⎟⎟⎟⎟⎠ (3)

is a vector of vectors that contains the values of the state
vectors for the system, �x� = �x(t�), at different moments of dis-
cretized time t� = �h. In addition, A is a matrix that represents
the updating action of the discretized differential operator.
The form of A and �b depends on which discretization method
one employs for the differential equation (e.g., Euler forward,
Euler backward, Crank-Nicolson, etc.). The simplest method

is Euler forward, where

A =

⎛
⎜⎜⎜⎜⎝

I 0 · · · 0 0
−(I + M�t ) I · · · 0 0

. . .

0 0 · · · I 0
0 0 · · · −(I + M�t ) I

⎞
⎟⎟⎟⎟⎠

(4)
and

�b =

⎛
⎜⎜⎝

�x0

�c
...

�c

⎞
⎟⎟⎠. (5)

The solution to the differential equation is then obtained by
inverting the matrix in Eq. (2):

�x = A−1�b. (6)

Roughly speaking, the quantum algorithms of [6,7] map the
classical states onto quantum states �x → |x〉 and �b → |b〉 and
solve the problem using quantum matrix inversion to construct
the normalized version of the unnormalized quantum state
|x〉 = A−1|b〉, which represents a quantum superposition of
the solutions of Eq. (1) at different points in time.

We will base our results on the algorithm of Ref. [7], which
has the lowest computational complexity. This algorithm sets
T = �tmax‖M‖�, employs the Taylor expansion of the matrix
exponential to solve the differential equation (1), and pro-
duces a coherent superposition of the quantum state |x〉 with
some garbage state associated with the terms of the Taylor
series. We show in Appendix A that the normalized version
|x̄〉 = |x〉/‖|x〉‖ of |x〉 can be recovered from the quantum
state produced by the algorithm of Ref. [7] with O(1) success
probability.

1. Form of the quantum solution

The (unnormalized) quantum state |x〉 contains registers for
the states and time steps,

|x〉 =
T∑

i=0

|xi〉 |i〉 , (7)

where the entries of |xi〉 are the values of the state for time
step |i〉. Here |x〉 is a quantum history state: a superposition
of the different time steps |i〉, correlated or entangled with the
corresponding state vectors |xi〉 at that time step.

The quantum state in Eq. (7) can now be postprocessed
using efficient quantum algorithms such as those for wavelet
transforms or quantum machine learning. Alternatively, his-
tory states encoding the evolution of an arbitrary quantum
circuit at different times can be created by preparing the
ground state of a local Hamiltonian [12,13] and then subse-
quently postprocessed.

2. Computational runtime and scaling of the error

The computational complexity of the quantum algorithm
of Ref. [7] is linear in the condition number and the time and
logarithmic in the error. We show in Appendix A that, by run-
ning this algorithm and by suitably projecting the generated
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quantum state, we can obtain a quantum state that is ε-close
to the state |x〉 in 2-norm with

O

(
κ ′poly log

[(
1 + tmax‖�c ‖

‖�x(0)‖
)

κ ′N
ε

])
(8)

elementary quantum gates. Here κ ′ = κtmax‖M‖s, κ is the
condition number of the matrix that is used to diagonalize M,
and s is the sparsity of M.

Furthermore, input states |b〉 for differential equation
solvers can often be efficiently constructed via efficient algo-
rithms that apply sparse matrix or local operations. This is
especially true in the case of Markov chains, further discussed
later, where initial states are often supported on a sparse num-
ber of entries or locally uniformly throughout the possible set
of states (see Appendix B).

3. Application to the Schrödinger equation

In the case where M is anti-Hermitian, then Eq. (1) is the
Schrödinger equation [12]. In this case, the Fourier analysis
of the history state reveals the eigenvalues and eigenvectors
of M. For example, when M is the Feynman Hamiltonian,
the history state encodes the history of quantum computation
and the Fourier analysis reveals its eigenstates. Finding the
eigenstates of the Feynman Hamiltonian is at least as hard as
performing the quantum computation [14].

B. Continuous-time Markov chains

To illustrate the power of our methodology, in this study we
focus on differential equations for continuous-time Markov
chains which update probability distributions over state space
by assuming that the probability of making a transition to the
next state only depends on the current state of the Markov
chain. Here we focus on Markov chains that represent dy-
namics of complex networks, particularly those modeling the
spread of opinion and disease. The dynamics of complex
networks are modeled via Markovian techniques by assuming
that each node in a network exists in one of q states. A
central challenge in this setup is in handling the dimension
of the Markov state, which grows exponentially with the
number of nodes in a graph, often rendering the problem
intractable for classical computers. For example, in epidemi-
ology, modeling the dynamics of infection and recovery for a
system of individuals whose interactions make up a complex
network of n nodes is a hard computational problem that in-
volves predicting the behavior of a very large qn-dimensional
continuous-time probabilistic dynamics [15,16]. The exact
solution for the dynamics of such epidemiological models
lies beyond the realm of capability of even the most pow-
erful classical computers. Consequently, classical approaches
typically rely on various approximations, such as mean-field
theory [15].

Continuous-time Markov chains are defined by differential
equations of the form

d�x(t )

dt
= M�x(t ), (9)

where �x(t ) is the vector of probabilities for the underlying
state of the system at time t and M is a matrix of transition
rates [17,18]. Equation (9) is precisely of the form required

in Eq. (1) for efficiently solving differential equations using
quantum algorithms. As shown in Appendix A, the quan-
tum algorithm of Ref. [7] can be employed to produce a
normalized version of the quantum state |x〉 = ∑T

i=0 |xi〉 |i〉
storing the state probabilities at discretized times. Note that
the quantum algorithm represents the vector of probabilities
as quantum vector of probability amplitudes.

1. Generalization to non-Markovian models

We can generalize our algorithms to incorporate prior his-
tories in a non-Markovian model. The Markovian nature of
the methods for solving differential equations is reflected in
the form of the matrix A in Eq. (4) above. The fact that the
Euler forward method for discretizing a differential equation
depends only on the current and previous states of the system
implies that A only has entries on the diagonal and directly
below the diagonal. If we wish to include influences on the
present from further in the past (including the distant past),
then we can simply add additional entries to each row: Adding
a matrix entry Ai j , j < i, to the ith row of A allows the state
of the system at time j < i to influence the updating at time i.
This change cannot be directly incorporated in the algorithm
of Ref. [7], which relies on the Taylor expansion of the matrix
exponential, but it can easily be incorporated in the previous
algorithm of Ref. [6], which directly solves Eq. (2).

C. Quantum postprocessing

The solution of our quantum differential equation solver
|x〉 exists in a very-high-dimensional Hilbert space, and here
we discuss methods to obtain useful information from |x〉
using various quantum algorithms that can offer exponential
speedups over classical counterparts. In this study we focus on
the particular case of postprocessing outputs from continuous-
time Markov chain models. The algorithms we list here are
by no means comprehensive of the full catalog of algorithms
available to quantum computer scientists for extracting infor-
mation from these states.

1. Postprocessing: Expectation values of quantities

The most basic information that can be extracted from a
Markov chain is the expectation value at a given time of a
real-valued observable on the state space. Classically, such ex-
pectation values can be estimated efficiently by Monte Carlo
sampling of the Markov chain up to the required time. In
the quantum case, expectation values of quantities can be
obtained by estimating the overlap of the history state with
a state encoding the values of the quantity we wish to calcu-
late. In Appendix C we consider two quantum algorithms to
compute such expectation values. The first is based on a post-
processing of the quantum history state of the Markov chain
and the second is based on the coherent version of the classical
Monte Carlo simulation of the Markov chain. As shown in
Appendix C, one can obtain a quadratic speedup in the error of
estimating an observable using quantum techniques for Monte
Carlo sampling.
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2. Postprocessing: Principal component analysis of data matrix

If the history state is effectively low rank, i.e., there are
only a few large singular values, then the description of the
time evolution of the Markov process can be compressed by
expressing it in terms of the corresponding singular vectors,
which the quantum principal component analysis also reveals.
The history state will be effectively low rank, for example,
when the Markov transition matrix has only a few eigenvalues
with small negative parts, so that the dynamics is dominated
over longer times by the corresponding eigenvectors.

In the case of continuous-time Markov chains, the quantum
state in Eq. (7) can be interpreted as a qn × T data matrix
Xmat where each column j corresponds to the probabilities of
the Markov state at time step j. The dominant singular values
and corresponding singular vectors of this matrix can be ex-
tracted from |x〉 by performing quantum principal component
analysis (qPCA) on the |x j〉 and | j〉 registers which runs in
O(Rn log q) time, where R is the rank of Xmat [2]. Note that
qPCA in this setting is equivalent to performing a Schmidt
decomposition on the Hilbert spaces spanned by registers |x j〉
and | j〉. The qPCA performs this decomposition via density-
matrix exponentiation [2]. It is often the case that the effective
rank R (the number of large singular values) of Xmat is small
with respect to the number of states qn, and later we show that
the effective rank is in fact very small for the example models
we consider. Note that because our method acts directly on
a quantum state, quantum inspired algorithms for principal
component analysis do not have access to the data structure
for extracting the singular vectors and singular values of the
history state [19–21]. Specifically, in Appendix D we show
that classical Monte Carlo methods cannot efficiently extract
the singular vectors and the singular values of the history state
[Eq. (7)] whenever the support of the probability distribution
is exponentially large in the number of nodes of the network.

After performing qPCA via density-matrix exponentiation
on copies of |x〉, we have a decomposition of the data matrix
into left and right singular vectors

qPCA : |x〉 →
T∑

j=0

|l j〉 |r j〉 |σ̃ j〉 , (10)

where |l j〉 are the left singular vectors corresponding to the
Markov states, |r j〉 are the right singular vectors correspond-
ing to the temporal states, and |σ̃ j〉 are estimates of the
singular values. The singular values |σ̃ j〉 represent the weight
of the left (Markov state) and right (temporal state) singular
vectors in the solution. It is conventional to take the ordering
in j in Eq. (10) to be from the largest to smallest singular
values.

The left singular vectors |l j〉 can be interpreted as the most
common profile of Markov states. The first left singular vector
corresponds to the profile with the greatest contribution to the
data matrix, often the steady state of the Markov process. The
next few singular vectors typically correspond to the profile
of states in the early progression of the Markov simulation
before the steady state is achieved (see simulations later for
examples).

The right singular vectors |r j〉 detail the progression of the
corresponding left singular vectors over time. For example,

the first singular vector is typically weak during the early
progression and grows to a constant value as the steady state
arises. The next few right singular vectors show when the
corresponding left singular vectors take prominence, often
highest in magnitude at early points in time (see simulations
later for examples).

Decomposing the data into singular vectors also allows
one to apply efficient transformations to the singular vectors
using quantum postprocessing methods. For example, if one
is interested in analyzing the Markov states in the frequency
domain, a quantum Fourier transform can be applied to the
right singular vectors. Later, in our example, we show that
the dominant singular vectors correspond to slowly varying
dynamics at low frequencies and the later singular vectors
correspond to more rapidly varying dynamics at higher fre-
quencies.

3. Postprocessing: Efficient quantum transformations

Fourier transforms and wavelet transforms are commonly
used in the analysis of large data sets, especially time series
[22–25]. Discrete wavelet transforms, for example, can be
used to identify statistical patterns in a time series. With a
quantum computer, Fourier transforms and certain discrete
wavelet transforms can be performed exponentially faster than
their classical counterparts [26–28]. These transforms can be
applied to the data contained in our output quantum state
[Eq. (7)]. For example, a Fourier transform or wavelet trans-
form can be applied to the time register, e.g., to observe the
data in the frequency domain or to compress the data in terms
of the dominant wavelets. Let Ujk = 〈k| j〉 be the element of
the unitary matrix U that maps the states | j〉 to the transform
states |k〉 (frequency states in the case of the quantum Fourier
transform; wavelets in the case of the discrete wavelet trans-
form). Applying U to the temporal register, we obtain the state

T∑
j=0

|x j〉U | j〉 =
T∑

j,k=0

|x j〉Ujk |k〉 =
T∑

k=0

|yk〉 |k〉 , (11)

where |yk〉 = ∑T
j=0 Ujk |x j〉 is the state of the system corre-

lated with the kth frequency or wavelet state in the temporal
register. Sampling from the temporal register then yields the
dominant frequencies or wavelets, and the spatial register
yields the state of the system correlated with those frequencies
or wavelets. For example, as noted above in the discussion
of the Schrödinger equation, in Eq. (1), if �c is 0 and the
matrix M is anti-Hermitian, performing a quantum Fourier
transform on the temporal register yields the purely imaginary
eigenvalues of M and the output contains the corresponding
eigenvectors [29]. More generally, when the eigenvalues of
M have both real and imaginary components, performing
the quantum Fourier transform reveals the power spectrum
of the solution: A complex eigenvalue a + ib manifests itself
as a Lorentzian peaked at the natural frequency

√
a2 + b2.

By contrast, classical Monte Carlo sampling does not obvi-
ously extract the proper information for performing Fourier
or wavelet transforms on the quantum state (see Appendix D).
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4. Postprocessing: Quantum machine learning

In the past few years, many quantum algorithms for ma-
chine learning have been proposed that can be performed
exponentially faster than classical counterparts when data in-
puts are quantum states [1,3,4,30–34]. When data in the form
of Eq. (7) are used as input, applications of machine learning
algorithms are numerous. Here we list some of these appli-
cations, grouped by the type of model used. First, quantum
models have been proposed for compression of data or effi-
cient readout. These models include quantum autoencoders
[34,35] and qPCA as discussed before [2]. Second, a wide
range of algorithms implementing kernel methods can be
used to classify data, identify key features in the data, or
measure the similarity between different data sets [4,36–38].
Indeed, if we trace out the temporal register in Eq. (7),
the state register is described by the (unnormalized) density
matrix

∑
j |x j〉 〈x j |, which is the covariance matrix for the

synthetically generated data which can be analyzed directly.
Third, output states can be input into parametrized quantum
circuits or quantum neural networks to identify key features
or perform machine learning tasks [32,39,40].

D. Example simulation for epidemic processes

The analysis of epidemic spreading, viral or social, is often
modeled as a dynamical process on a complex network [15].
Theoretical approaches to epidemic processes typically as-
sume that transitions (e.g., rates of infection) occur as Poisson
processes which correspond to models of continuous-time
Markov chains [15,41]. Classically, numerical simulation of
continuous-time Markov processes is intractable for large
networks as the dimension of the Markov state grows expo-
nentially with the number of nodes in the network or graph.

To demonstrate the applicability of our quantum algorithm,
we simulate continuous-time Markov chain models on simple
seven-node networks. We choose a relatively small network
so that we can still visually represent the full solution to
the continuous-time Markov chain. Here we present models
for analyzing viral epidemics and perform similar analysis
for social epidemics in Appendix E. For ease of graphical
presentation, we implement susceptible-infected-susceptible
(SIS) epidemiological models which have only two states
per node: susceptible and infected. This is in contrast to the
more realistic susceptible-infected-recovered models, which
also fit within the framework of our algorithms, but can be
hard to visualize and plot since they have many more states
(3n as opposed to 2n).

1. Epidemic simulations of viral contagion

We present analysis of a Markov simulation for an SIS
model on a single network shown in Fig. 1(a). Our simple
model features many common properties of continuous-time
Markov chain simulations. Notably, it is common that Markov
transition matrices have only a small number of dominant
eigenvalues (i.e., those whose values are close to zero), thus
rendering them suitable for analysis similar to that performed
here for small networks. Of course, network models with
more nodes will likely have emergent phenomena that will not

(a)

(b)

FIG. 1. (a) Seven-node network used for simulation of the
continuous-time Markov chain. Line widths correspond to the rate
of infection from infected neighbor nodes (rSI = {0.4, 0.8, 1.6} from
thinnest to thickest lines). The network has the feature that some
nodes (e.g., nodes 2 and 3) are strongly connected to neighboring
nodes and others (e.g., node 5) are not. (b) Probabilities of Markov
states over the course of three days shown as a color-bar chart (loga-
rithmically scaled). Postprocessing is performed on the data between
days 1 and 2 contained in the orange box. States are enumerated as
rows on the left-hand side, each denominated by a seven-node color
bar numbered node 0 on the left to node 6 on the right. Dark and light
colors indicate that a node in that state is infected and susceptible,
respectively.

appear in this small network, phenomena that one may hope
to analyze using quantum computers [15,41].

For an SIS model, the full state at time t is described
by a vector �x(t ) of length 2n (n = 7 for our example). All
transitions are modeled as Poisson processes with transition
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matrix Q,

d�x(t )

dt
= Q�x(t ). (12)

We begin in an initial state where any node has a 35%
probability of being infected and conduct analysis over the
intermediate phase of the epidemic, between days 1 and 2.
To numerically estimate the state at discretized times �xt , we
employ a forward Euler method that begins at the state of the
epidemic on day 1 and ends at day 2 over T = 1027 time steps
(step size h ≈ 0.001 days):

�xt+1 = �xt + hQ�xt . (13)

From day 1 to day 2, the epidemic has spread sufficiently that
multiple individuals are likely to be infected and the proba-
bility distribution has spread throughout the space. As noted
above, this is the regime where the quantum algorithm pro-
vides an exponential advantage over existing classical Monte
Carlo techniques.

Fully simulating the above for T steps constructs a data
matrix Xmat where column i is equal to xi−1 (we assume the
initial state x0 is included in this matrix as well),

Xmat =
⎡
⎣ | | |

�x0 �x1 · · · �xT

| | |

⎤
⎦, (14)

where we note that this data matrix can be interpreted as a
classical version of the quantum output state shown in Eq. (7).
In Fig. 1(b) we plot the probabilities of states of the Markov
process over time providing a visualization of the data matrix
Xmat. Subsequent postprocessing of this data matrix is per-
formed on the segment of data between days 1 and 2. We
note that though Fig. 1(b) contains a complete description of
the Markov history state, extracting trends and analyzing this
figure can be challenging. For larger networks, visualization
of this data matrix cannot be efficiently performed and we
now turn our attention to efficient quantum algorithms for
extracting salient features from this data matrix.

2. Simulations: Quantum principal component analysis

The output of our continuous-time Markov chain algorithm
is stored in a data matrix, visualized in Fig. 1(b). In the
quantum setting, this data matrix is a quantum state which we
can subsequently postprocess using various efficient quantum
algorithms. One available postprocessing algorithm is quan-
tum principal component analysis as in Eq. (10), which can
compress the data into its singular vectors [2]. If the matrix
is low rank, as in our example with exponentially decaying
singular values [see Fig. 2(a)], qPCA can be performed in
time logarithmic in the dimension of the full Markov state [2].
The principal components can be subsequently transformed or
even measured.

The most dominant left [Fig. 2(b)] and right [Fig. 2(c)]
singular vectors can be interpreted as the most common profile
of states (left vectors) and their corresponding trajectories in
time (right vectors). In our example, the first singular vector
corresponds to the steady state of our epidemic. Note that it
takes prominence almost completely throughout the course
of the simulation [see the right singular vector in Fig. 2(c)].

The second singular vector plots important changes in the
epidemic as more nodes become infected. The corresponding
right singular vector plots the steady, almost linear, transition
over time as this singular vector takes prominence. Similarly,
the third and fourth singular vectors plot trends in the progres-
sion of the epidemic, especially in early phases where nodes
become infected.

3. Simulations: Fourier and wavelet analysis

For small networks such as the one studied here, the data
in the Fourier domain are dominated by the steady-state con-
tributions as shown in Fig. 3(a). With quantum algorithms,
one also has the option of transforming the individual sin-
gular vectors into their frequency components as shown in
Fig. 3(b). The second to fourth singular vectors all have strong
contributions from low frequencies, whose values provide an
indication of the rate of change in the progression of the
Markov chain. Given the small network size, this dominance
of low-frequency components is perhaps not altogether sur-
prising. Larger networks encounter phenomena not observed
in small networks and may potentially reveal interesting fea-
tures in the Fourier domain [15,41] if they are analyzed with
a quantum computer.

Beyond the standard Fourier transform, quantum comput-
ers offer the advantage of efficient postprocessing via wavelet
transforms [26]. Continuing the example shown in the text,
here we transform the time dimension of our data matrix
using a Haar wavelet transform, which can be performed effi-
ciently on a quantum computer [26]. When viewed in the Haar
wavelet basis [form of wavelets shown in Fig. 4(a)], one can
analyze the characteristic timescales over which differences
in the Markov state probabilities become apparent. Perhaps
unsurprisingly, as shown in Fig. 4(b), the zeroth Haar vector
is most prominent as this corresponds to the steady state of
the Markov chain. More interesting results are observed in
analysis of the singular vectors, which can also be transformed
into the Haar domain as shown in Fig. 4(c). Here clear differ-
ences can be observed in the Haar basis of the steady-state
singular vector (first singular vector) and later vectors. The
first singular vector is dominated by the zeroth Haar wavelet
(constant wavelet) since that singular vector corresponds to
the steady state. The next few singular vectors corresponding
to changes in the intermediate progression of the epidemic are
dominated by Haar vectors with support over various phases.
For example, the third and fourth singular vectors take large
values over Haar vectors with support in the early phases of
the simulation (e.g., fourth and eighth Haar vectors).

E. Potential for realization on near-term quantum devices

The algorithms proposed here are potentially suitable for
near-term quantum devices [42] with around 100 qubits. We
note that the presence of noise in near-term quantum devices,
which is not analyzed here, may present a challenge to the
successful implementation of these algorithms. Nevertheless,
if challenges with noise are addressed via error correction
or other means, our algorithms can be used to analyze the
output of high-dimensional differential equations outside the
reach of available classical algorithms. For example, Markov
states of dimensionality 250 can be simulated for 106 time
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(a) (b)

(c)

FIG. 2. (a) Singular values of data matrix Xmat decay exponentially fast. (b) The first four left singular vectors scaled by the square root of
their corresponding singular values show that much of the disease progression can be understood by just observing the first few vectors. States
are enumerated as rows on the left-hand side, each denominated by a seven-node color bar numbered node 0 on the left to node 6 on the right.
Dark and light colors indicate that a node in that state is infected and susceptible, respectively. (c) Values of the right singular vectors scaled
by the square root of their corresponding singular values show the progression of the epidemic over time. The first singular vector depicts the
steady state and the next few singular vectors detail the intermediate course of the Markov process.

steps (approximately 220) on a quantum computer with 100
qubits using algorithms from [7]. Given the output state, quan-
tum principal component analysis and wavelet transforms can
subsequently be performed to analyze the history state gener-
ated by the near-term quantum device [2,26,43].

III. DISCUSSION

Common quantum algorithms for solving linear differ-
ential equations output quantum states corresponding to
solutions of physical models in high-dimensional vector
spaces. These output states store the complete history of the
solution to a differential equation, allowing one to perform
efficient quantum postprocessing on these solution states.
Our approach avoids a commonly cited drawback of many
quantum machine learning and data processing algorithms,
that classical inputs must be mapped into quantum states or
stored in qRAM. We focus here on the case of Markov mod-
els and propose efficient quantum algorithms for evaluating
continuous-time Markovian and non-Markovian models. Our
algorithms allow for efficient simulation of Markov models
on the complete state of a Markov chain. Outputs of our

models are quantum states which can be efficiently gener-
ated and then passed as inputs for other efficient quantum
postprocessing algorithms (e.g., quantum signal analysis and
machine learning). The quantum postprocessing reveals fea-
tures of the data such as the singular-value decomposition, the
power spectrum, and wavelet decompositions, which cannot
be reconstructed efficiently using classical sampling algo-
rithms. When applied to complex networks, the quantum
algorithms may be used to reveal such fundamental features
of the dynamics of epidemics potentially exponentially faster
than classical algorithms.

All data generated or analyzed during this study are in-
cluded in this article. To recreate figures and results, access
our code repository in [44].
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APPENDIX A: PROOFS OF RUNTIMES
AND ERROR BOUNDS

1. Generation of the quantum history state

Let T = �tmax‖M‖�, let δ > 0, and let k ∈ N with k � 5
and (k + 1)! � 2T . The quantum algorithm of Ref. [7] dis-
cretizes the differential equation in T time steps of size h =
tmax/T , truncates the Taylor expansion of the matrix exponen-
tial at the kth order, and produces an approximate normalized
version |φ〉 of the quantum state

|y〉 =
T −1∑
i=0

k∑
j=0

|i, j〉|yi, j〉 + |T, 0〉|yT,0〉. (A1)

For sufficiently large k, the vectors |yi,0〉 are close to the
solution of the linear differential equation at the ith time step
(see [7], Theorem 6),

‖�x(ih) − |yi,0〉‖ � 2.8κi
‖�x(0)‖ + tmax‖�c ‖

(k + 1)!
, (A2)

and the vectors |yi, j〉 for j � 1 are some garbage vectors
associated with the terms of the Taylor expansion of the matrix
exponential, of which we do not need the exact form. Their
norms are upper bounded by (see [7], Eqs. (99) and (100)]

‖|yi, j〉‖ � ‖|yi+1,0〉‖ + ‖|yi,0〉‖
(3 − e) j!

. (A3)

Let

|ȳ〉 = |y〉
‖|y〉‖ (A4)

be the normalized version of |y〉. The quantum state |φ〉 satis-
fies

‖|φ〉 − |ȳ〉‖ � δ (A5)

and the algorithm requires

O

(
κk2tmax‖M‖s poly log

κktmax‖M‖sN

δ

)
(A6)

elementary quantum gates [see [7], Eq. (128)].
An approximation of the quantum history state |x〉 can be

obtained by projecting the second register of the quantum state
|φ〉 on the 0 value. Let 〈0|φ〉 be the unnormalized projection.
In the following, we show that its success probability is O(1)
and that by choosing

δ = O(ε),

k = O

(
log

[(
1 + tmax‖�c ‖

‖�x(0)‖
)

κ tmax‖M‖
ε

])
(A7)

we can achieve ∥∥∥∥ 〈0|φ〉
‖〈0|φ〉‖ − |x̄〉

∥∥∥∥ � ε. (A8)

From Eq. (A6), this modification of the algorithm of Ref. [7]
requires

O

(
κtmax‖M‖s poly log

[(
1 + tmax‖�c ‖

‖�x(0)‖
)

κtmax‖M‖sN

ε

])

(A9)

elementary quantum gates.

a. Success probability

We assume that

δ � 1

2
√

66
. (A10)

We have, from Eq. (A3),

k∑
j=1

‖|yi, j〉‖2 � (‖|yi+1,0〉‖ + ‖|yi,0〉‖)2

(3 − e)2

∞∑
j=1

1

j!2

� 1.28 × 2
‖|yi+1,0〉‖2 + ‖|yi,0〉‖2

(3 − e)2
(A11)
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(a) (b)

(c)

FIG. 4. (a) Each Haar wavelet has support over a characteristic timescale indicated by the wavelet number. Haar wavelet numbers between
powers of 2 take the same form and are offset from each other in the time dimension. As a visual aid, we show here the first 16 discrete Haar
wavelets. (b) The quantum state has high probability in the zeroth Haar wavelet (steady state). (c) The wavelet transform of singular vectors
shows that the first singular vector is strongest in the zeroth Haar vector (steady state). Later singular vectors take prominence in Haar vectors
with support in the early stages of the epidemic.

and

T −1∑
i=0

k∑
j=1

‖|yi, j〉‖2 � 1.28 × 4

(3 − e)2

T∑
i=0

‖|yi,0〉‖2

� 65
T∑

i=0

‖|yi,0〉‖2. (A12)

Let 〈0|y〉 be the projection of |y〉 onto the 0 value of the second
register. The success probability of such projection is

‖〈0|ȳ〉‖2 =
∑T

i=0 ‖|yi,0〉‖2∑T
i=0 ‖|yi,0〉‖2 + ∑T −1

i=0

∑k
j=1 ‖|yi, j〉‖2

� 1

66
. (A13)

Let 〈0|φ〉 be the projection of |φ〉 onto the 0 value of the
second register. We have, from Eqs. (A5), (A13), and (A10),

‖〈0|φ〉‖ � ‖〈0|ȳ〉‖ − ‖〈0|ȳ〉 − 〈0|φ〉‖

� ‖〈0|ȳ〉‖ − δ � 1

2
√

66
; (A14)

therefore, the success probability of the projection satisfies

p = ‖〈0|φ〉‖2 � 1
264 . (A15)

b. Error analysis

From Eq. (A2), the distance between the quan-
tum history state |x〉 and the projection 〈0|y〉
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satisfies

‖|x〉 − 〈0|y〉‖2

=
T∑

i=0

‖�x(ih) − |yi,0〉‖2

� 2.82κ2 [‖�x(0)‖ + tmax‖�c ‖]2

(k + 1)!2

T (T + 1)(2T + 1)

6
;

(A16)

then

‖|x〉 − 〈0|y〉‖ � κ
‖�x(0)‖ + tmax‖�c ‖

2k+4

√
3T (T + 1). (A17)

We have, from Lemma 1,∥∥∥∥|x̄〉 − 〈0|y〉
‖〈0|y〉‖

∥∥∥∥ � ‖�x(0)‖ + tmax‖�c ‖
‖|x〉‖

κ
√

3T (T + 1)

2k+3

�
(

1 + tmax‖�c ‖
‖�x(0)‖

)
κ
√

3T (T + 1)

2k+3
. (A18)

We choose

k =
⌈

log2

[(
1 + tmax‖�c ‖

‖�x(0)‖
)

κ
√

3T (T + 1)

4ε

]⌉

= O

(
log

[(
1 + tmax‖�c ‖

‖�x(0)‖
)

κtmax‖M‖
ε

])
(A19)

such that ∥∥∥∥|x̄〉 − 〈0|y〉
‖〈0|y〉‖

∥∥∥∥ � ε

2
. (A20)

We have, from Eqs. (A5) and (A13) and Lemma 1 again,∥∥∥∥ 〈0|φ〉
‖〈0|φ〉‖ − 〈0|ȳ〉

‖〈0|ȳ〉‖
∥∥∥∥ � 2‖〈0|φ〉 − 〈0|ȳ〉‖

‖〈0|ȳ〉‖ � 2
√

66δ,

(A21)
such that choosing

δ = ε

4
√

66
, (A22)

we have ∥∥∥∥ 〈0|φ〉
‖〈0|φ〉‖ − 〈0|ȳ〉

‖〈0|ȳ〉‖
∥∥∥∥ � ε

2
(A23)

and ∥∥∥∥ 〈0|φ〉
‖〈0|φ〉‖ − |x̄〉

∥∥∥∥ �
∥∥∥∥ 〈0|φ〉
‖〈0|φ〉‖ − 〈0|ȳ〉

‖〈0|ȳ〉‖
∥∥∥∥

+
∥∥∥∥ 〈0|y〉
‖〈0|y〉‖ − |x̄〉

∥∥∥∥ � ε, (A24)

as required.
Lemma 1. Let v and w be vectors in a normed vector space.

Then ∥∥∥∥ v

‖v‖ − w

‖w‖
∥∥∥∥ � 2

‖v − w‖
‖v‖ . (A25)

Proof. We have∥∥∥∥ v

‖v‖ − w

‖w‖
∥∥∥∥ � ‖v − w‖ + |‖w‖ − ‖v‖|

‖v‖ � 2
‖v − w‖

‖v‖ .

(A26)

APPENDIX B: INPUT STATE PREPARATION

Input states to differential equations encode boundary con-
ditions and initial states. These input states can be prepared
via two different methods discussed here.

1. Efficiently constructed quantum initial states

The most optimal setting which commonly occurs in dif-
ferential equation analysis is when input vectors are sparse or
efficient to construct on a quantum computer. For a standard
linear differential equation in the form d�x(t )

dt = M�x(t ) + �c, the
boundary conditions take the form of (5).

Note that in quantum algorithms, copies of the vector
above are encoded into the quantum state at appropriate lo-
cations. It is often the case that �b is sparse or easily computed
by local operations. This is especially true in the case of
Markov chain algorithms where c = 0 and the initial state is
either sparsely supported or locally independent. For exam-
ple, applying Hadamard gates to all qubits in the initial state
constitutes one easy method to construct the initial state with
uniform support over all states. Similarly, applying single-
qubit operations to each node provides an easy method to form
an initial state where one has knowledge of individual nodes
independent of other nodes.

2. Input states via qRAM

If it is not possible to efficiently construct the initial state
via sparse matrix or local operations as discussed above,
another option one can use is inputting states via a qRAM
data structure [45,46]. Quantum random access memory
data structures store data (i, xi ) ∈ [n] in a form that allows
for quantum queries in superposition |i, 0〉 → |i, xi〉 in time
O(poly log(n)). Constructing such a data structure would in
general require O(n) quantum operations [46]. However, in
settings where subsequent computations require longer run-
times, say, O(n2) or O(n3) time, then such a qRAM data
structure can be efficiently employed in our algorithms.

APPENDIX C: SAMPLING AND CALCULATING
OBSERVABLES OF MARKOV STATES

To determine the T qn individual probabilities of a Markov
state x j (k), for j = 0 to T , k = 1 to N = qn stored in a
quantum state, one would have to make an exponentially large
number of measurements. However, one can use quantum
measurements to reveal a wide variety of desired properties of
the quantum system at time j. To extract the expectation value
of some desired quantity Q (total number infected, variance
of the infection rate across the graph, existence of hot spots,
etc.) we need to make a quantum measurement to estimate the
expectation value

〈Q〉 =
N∑

k=1

x j (k)Q(k), (C1)

where Q(k) is the value of Q on the kth state of the vertices of
the graph.

First, we have to make sure that we obtain the state |�x j〉
with high probability. In the formulation given above, this
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state only occurs in the overall superposition |x〉 with ampli-
tude O(1/

√
T ). The standard way to amplify the probability

of finding the answer at the desired time j [6] is to pad out the
matrix A following the jth row with O(T ) rows of the form

(0 . . . 0 − II0 . . . 0), (C2)

where the I term in each −II0 sequence lies on the diagonal.
These rows induce a trivial dynamics in which all the states
in the solution following the jth state also contain the state
|�x j〉. This technique allows us to obtain the state |�x j〉 with
probability O(1).

To obtain 〈Q〉 = ∑N
k=1 x j (k)Q(k), we use standard tech-

niques of quantum state preparation [47]. We assume that we
are given access in quantum superposition to the individual
values of the variable Q(k) together with its partial sums over
ranges of k. The techniques of [47] then allow us to construct
the (unnormalized) state

|Q〉 =
N∑

k=1

Q(k)|k〉 (C3)

in time O(log N ) = O(n log q). Define ZQ = ∑N
k=1 Q(k)2.

Even if ZQ is not known beforehand, its value is revealed
during the state preparation process [47]. The normalized
version of |Q〉 is then

|Q̃〉 = Z−1/2
Q |Q〉. (C4)

We can now use a swap test between |Q̃〉 and |x̃ j〉 to
measure the overlap 〈Q̃|x̃ j〉. This overlap in turn allows us to
measure

〈Q〉 =
N∑

k=1

x j (k)Q(k) = 〈Q|x j〉 = Z1/2
j Z1/2

Q 〈Q̃|x̃ j〉. (C5)

In conclusion, even though we do not have access to the
individual probabilities for states, the quantum algorithm al-
lows us to measure expectation values for a wide variety
of observables efficiently. This method allows us to use the
quantum algorithm to extract expectation values of the desired
quantities.

1. Comparison to classical complexity

Extracting expectation values could also be done clas-
sically using classical Monte Carlo to sample from the
probabilistic dynamics. Because of the local form of the prob-
abilistic updating rule, the number of computational steps
required to draw one sample of the Markov chain at time t
scales as

O(n(t/h) log q). (C6)

The average of Q over O(log 1
δ
/ε2) samples is ε-close to

〈Q〉 with probability at least 1 − δ and its computation has
complexity

O

(
n(t/h) log 1

δ
log q

ε2

)
. (C7)

2. Quantum speedup of Monte Carlo sampling

The quantum algorithm of Ref. [5] provides a quadratic
improvement in the dependence of the complexity (C7) of
Monte Carlo sampling on the precision ε. More precisely,
let us assume that 0 � Q(k) � 1 for any k = 1, . . . , N (this
can always be achieved by a suitable linear redefinition of
Q). Let U be a quantum unitary operator that implements
a unitary dilation of the classical algorithm for the Monte
Carlo sampling of the Markov chain. We can assume that
the complexity of U has at worst a constant overhead with
respect to the classical algorithm and therefore has the same
scaling equation (C6). Then Theorem 2.3 of [5] implies that
for any 0 < ε < 1 and any 0 < δ < 1 there exists a quantum
algorithm that, with O(log 1

δ
/ε) applications of U , outputs

μ ∈ R such that |μ − 〈Q〉| < ε with probability at least 1 − δ.
The complexity of the algorithm is therefore

O

(
n(t/h) log 1

δ
log q

ε

)
, (C8)

with the promised quadratic improvement in the ε dependence
with respect to Eq. (C7).

APPENDIX D: CLASSICAL ALGORITHMS
FOR PRINCIPAL COMPONENT ANALYSIS

Here we show that the singular vectors and singular values
of the data matrix X cannot be efficiently estimated with
classical methods whenever ‖|x j〉‖2 is exponentially small in
the number of nodes for any time step, i.e., if the size of the
support of the probability distribution is always exponential.
More precisely, we show that none of the entries of X†X can
be estimated efficiently. Indeed, if x j (k) is the probability of
the kth state at the time step j, the j j′ entry of X†X is

(X†X) j j′ =
∑

k

x j (k)x j′ (k) (D1)

and is equal to the probability that, in a couple of independent
Monte Carlo simulations of the Markov chain, the state of the
first simulation at the step j is equal to the state of the second
simulation at the step j′. This probability can be estimated by
running many couples of simulations of the Markov chain.
However, the estimate will be zero until a couple with the
state of the first simulation at the step j equal to the state of
the second simulation at the step j′ is found. This event will
typically happen after

O

(
1

(X†X) j j′

)
� O

(
1

maxi ‖|xi〉‖2

)
(D2)

runs, which is exponentially large in the number of nodes if
‖|x j〉‖2 is exponentially small for any time step.

APPENDIX E: ADDITIONAL SIMULATIONS
AND FIGURES

1. Epidemic simulations of social opinion

Continuous-time Markov chains can also be implemented
to simulate the spread of social opinion. Here we consider
a model where nodes can exist in one of three states: con-
servative, liberal, or undecided. As in our analysis on viral
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(a)

(b)

FIG. 5. Quantum principal component analysis of the spread of
social opinion. (a) Singular values of the data matrix Xmat decay
exponentially fast. (b) Values of the right singular vectors scaled
by the square root of their corresponding singular values show the
progression of social opinion over time. The results are consistent
with prior results for the analysis of viral epidemics on the same
network.

epidemics, we perform simulations on the same seven-node
network as in the main text. Similar to before, transitions from
undecided to liberal or conservative occur at rates dependent
on the strength of connection to other liberal or conservative
nodes, respectively. The data matrix is analyzed between days
1 and 2 of the social epidemic; at day 0, all states are equally
likely.

As shown in Fig. 5(a), the data matrix in this case is
similarly low rank. Furthermore, we see similar progressions
over time in the right singular vectors as shown in Fig. 5(b).
The first singular vector corresponds to steady-state contribu-
tions, whereas later singular vectors chart the most prominent
changes in the data matrix over time.

2. Model of social distancing

Supplementary to the main text, we show results here for a
simulation of a Markov chain which incorporates effects of so-
cial distancing in the Markov model. Specifically, we simulate
a viral epidemic on the same network as in the main text where
transitions from susceptible to infected and vice versa occur

(b)

(a)

FIG. 6. (a) Seven-node network used for simulation of a
continuous-time Markov chain where transitions from susceptible
to infected and vice versa occur with rates rSI = 1.5, reduced by a
factor of 5 when four or more nodes are infected. (b) Probabilities of
Markov states over time shown as a color-bar chart (logarithmically
scaled). States are enumerated as rows on the left-hand side, each
denominated by a seven-node color bar numbered node 0 on the left
to node 6 on the right. Dark and light colors indicate that a node in
that state is infected and susceptible, respectively.

with rates rSI = 1.5 and rIS = 0.33, respectively, as long as
three or fewer nodes are infected. When four or more nodes
are infected, social distancing is enacted and transitions from
susceptible to infected occur at one-fifth of the original rate
(rSI = 0.3). As expected, this shifts the steady state away from
situations where all nodes are infected to those where four
nodes are infected.

The complete progression of this model is plotted in
Fig. 6(b). Note that the state where all nodes are infected is
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(a)

(c)

(b)

FIG. 7. (a) Singular values of data matrix X decay exponentially fast. (b) The first four left singular vectors scaled by the square root of
their corresponding singular values show that states where four nodes are infected become prominent as this is the inflection point for social
distancing. States are enumerated as rows on the left-hand side, each denominated by a seven-node color bar numbered node 0 on the left to
node 6 on the right. Dark and light colors indicate that a node in that state is infected and susceptible, respectively. (c) Values of the right
singular vectors scaled by the square root of their corresponding singular value show the progression of the epidemic over time. The first
singular vector depicts the steady state and the next few singular vectors detail the intermediate course of the Markov process.

now unlikely; instead, the states where four or five nodes are
infected become very likely (i.e., the social distancing works).

As with the original model, singular values decay expo-
nentially rapidly [see Fig. 7(a)]. The first four left singular
vectors are plotted in Fig. 7(b) scaled by their corresponding
singular value. The steady-state singular vector has clearly
changed with respect to the original model. Analysis of the
first singular vector shows that the dominant states are those
where no node is infected and four nodes are infected (i.e., the
transition point of social distancing).

APPENDIX F: MARKOV STATES INCORPORATING
MORE THAN JUST SIMPLE NODES

Markov models can incorporate nodes of different types
which interact in a customized fashion. Figure 8 outlines some
of the different options available to one modeling epidemi-
ological processes. Utilizing quantum algorithms, nodes of

different types can be stored in separate registers. Analysis
and postprocessing of the Markov states using a quantum state
can take advantage of the structure inherent in these expanded
models.

APPENDIX G: EXPERIMENTAL DETAILS

All experiments were performed in PYTHON using the
packages NUMPY [48] and SCIPY [49]. For simulations of
epidemic spreading, to construct the transition matrix Q for
our experiments, we use the method detailed in [50]. We
assume that transitions from infected to susceptible (i.e., re-
covery rate) occur at rate rIS = 0.33, indicating that it takes
about three days on average to recover from infection. Tran-
sitions from susceptible to infected occur at a rate rSI ∈
{0.4, 0.8, 1.6} depending on a node’s connection strength to
a neighboring node.
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FIG. 8. By customizing the properties of nodes in a network, Markov states can model various different phenomena. Here we show some
of the options available to expand the functionality of a Markov state. In these cases, states are stored in a tensor product structure where
information corresponding to nodes of different types can be stored in separate registers.

To simplify the exposition, our experiments and simula-
tions were performed classically. In Appendix A we further
discussed the asymptotic runtimes and errors for performing

our algorithms on a gate-based quantum computer. We also
showed that input states for Markov models can typically be
efficiently constructed using simple quantum operations.
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