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Abstract. Secure multi-party computation (MPC) allows multiple par-
ties to perform secure joint computations on their private inputs. To-
day, applications for MPC are growing with thousands of parties wish-
ing to build federated machine learning models or trusted setups for
blockchains. To address such scenarios we propose a suite of novel MPC
protocols that maximize throughput when run with large numbers of
parties. In particular, our protocols have both communication and com-
putation complexity that decrease with the number of parties. Our proto-
cols build on prior protocols based on packed secret-sharing, introducing
new techniques to build more efficient computation for general circuits.
Specifically, we introduce a new approach for handling linear attacks
that arise in protocols using packed secret-sharing and we propose a
method for unpacking shared multiplication triples without increasing
the asymptotic costs. Compared with prior work, we avoid the log |C|
overhead required when generically compiling circuits of size |C| for use
in a SIMD computation, and we improve over folklore “committee-based”
solutions by a factor of O(s), the statistical security parameter. In prac-
tice, our protocol is up to 10X faster than any known construction, under
a reasonable set of parameters.
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1 Introduction

A major goal in secure multi-party computation (MPC) is to reduce the nec-
essary communication and computation as a function of the number of parties
participating in the protocol. Today, most protocols have costs growing linearly
and even quadratically as the number of parties increases. This makes MPC



prohibitively expensive for applications with very large numbers of parties, and
all real-world applications of MPC have focused on use-cases with only a hand-
ful of parties. Academic experiments have pushed the limit to a few hundreds
of participants [37]. However, today we have use-cases for MPC that naturally
have thousands if not millions of participating parties. For example, in secure
federated learning, thousands of low-resource devices wish to train a single ma-
chine learning model on their collective data [30]. Another example is that of
distributed trusted setup for blockchains where (possibly) millions of miners may
wish to participate in the protocol. Finally, a particularly well fitting applica-
tion for such large-scale MPC is to generate offline material for smaller MPC
computation. Such offline material is usually expensive to generate, but enables
much faster online MPC computations once it is available.

To address such applications we construct a new MPC protocol that scales
practically to hundreds of thousands of parties. The amortized cost of our pro-
tocol decreases as the number of parties increases, resulting in reduced cost for
all parties as more parties join the computation – the more the merrier. This is
especially true for applications such as blockchain setup, where the number of in-
puts does not grow with the number of computing parties. Specifically, assuming
that at most t ≤ n(1/2− ϵ) parties are actively malicious, for any 0 < ϵ < 1/2,
our protocol requires each party to send O(|C|/n) field elements, where |C| is
the size of the circuit we wish to evaluate, and n is the number of parties. It
requires each party to perform O(log n|C|/n) field operations.4

While ours is not the only protocol with communication and computation
that diminishes with n, our communication complexity is better, asymptotically
and concretely, than every construction that we know of. For example, one naive
solution in this setting of a strong honest majority is to elect a small commit-
tee of size O(s), where s is a statistical security parameter, independent of n,
and to run any arbitrary MPC protocol among that committee alone. Techni-
cally, the average communication and computation cost reduces with n, since
n − O(s) parties that remain idle still reduce the average. However, the com-
mittee members carry the worst-case cost, O(|C|). As we will see, even when we
consider natural improvements to this approach that spread the worst-case cost
among the parties, we out-perform such approaches by a factor of O(s), which,
concretely, could be as large as 40X. More interestingly, several solutions using
packed secret sharing are also known [13,23]: we outperform these constructions
by a factor of O(log |C|) by avoiding the use of a general compiler from standard
circuits to SIMD circuits. We provide a brief asymptotic comparison with spe-
cific prior constructions at the end of this introduction, in Subsection 1.2, and
we provide a thorough analysis of these comparisons in Section 5.

We have implemented our protocol and executed it for small numbers of par-
ties. To our knowledge, this is the first implementation with sub-linear costs:
among existing implementations, the one with lowest concrete costs that we
know of is by Furukawa and Lindell [20], which requires O(|C|) communication
per party, and does not benefit from an increase in the number of participants.

4 We are ignoring terms that do not depend on |C| or n.
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Missing from our implementation is any large-scale deployment, which would
introduce some major engineering challenges (not to mention social and/or fi-
nancial challenges of finding participants). Most obviously, it would be very
difficult to convincingly simulate the network environment.5 Additionally, while
a single Linux server can efficiently handle tens of millions of TCP connections
[39], this is not currently supported by the OS, and requires extensive effort
to implement. Nevertheless, our implementation allows us to precisely measure
the computational cost for a million participants, which is the bottleneck in our
construction. It also allows us to provide an exact extrapolation on the amount
of data communicated. What is missing from this extrapolation is any handling
of network variance or participant failure. Recognizing these caveats and ex-
trapolating our performance, we estimate that we can achieve a throughput of
500 million multiplication triples per second6 when 1 million parties participate,
even over a relatively slow 10 megabit per second network.

One particularly appealing application for our protocol is as a service for
generating offline material for smaller scale computations. The offline phase is
the bottleneck for the majority of MPC protocols. If tens of thousands of users
can be incentivized7 to generate billions of computation triples over night, which
might require less than 10 minutes of their time, these triples can be transferred
to a small online committee for arbitrary computation the next day, enabling
malicious-secure MPC, even with a dishonest majority, at the cost of an efficient
online phase.

1.1 Technical overview

We now give a brief overview of the key ideas and building blocks behind our
main protocol.

Damgård-Nielsen: In the honest-majority setting, most modern approaches to
MPC build upon the multiplication protocol of Damgård-Nielsen (DN) [15]. This
construction begins with an input-independent pre-processing phase in which the
parties compute threshold double sharings of random values, ([r]d, [r]2d), with
thresholds d and 2d, respectively. During the online phase of the computation,
these double sharings can be used to perform multiplication on shared field
elements at a communication cost of 2 field elements per party.

To generate these random sharings in the semi-honest setting, the DN pro-
tocol proceeds as follows. Each party Pi samples a random ri and sends two

5 Sometimes such experiments are run in cloud environments, which is useful for tens
or hundreds of participants. However, we are interested in deployments involving
tens or hundreds of thousands of participants. AWS has only 64 data centers, so
testing with more parties than this would provide an inaccurate simulation of the
network environment.

6 This estimate is for a malicious-secure protocol that generates unauthenticated
triples, which suffice for semi-honest computation in the online phase. In Section
4.1, we present a known result for converting these to authenticated triples. The
throughput in that setting is closer to 70 million triples per second

7 Or commanded by Google.
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threshold sharings to every other party: [ri]d, [ri]2d. This costs n
2 total commu-

nication. Naively, each party could locally sum their received shares to recover
a single double sharing of a random r, but the cost per sharing would be O(n2).
Instead, each party assembles an n dimensional vector from the shares that
they received, and multiplies this with a Vandermonde matrix, M . Assuming
h = O(n) honest parties, this allows them to extract h random double sharings,
instead of a single one. This reduces the total communication cost to O(n) per
multiplication gate, requiring each party to send only a constant number of field
elements per circuit gate.

Moreover, recent work by Genkin et al. [24] showed that this semi-honest
DN protocol actually offers a stronger notion of security, called security up to
additive attacks. This means that the protocol offers privacy against a malicious
adversary and only allows an additive attack, wherein an adversary can add
an error δ to the result of each multiplication. Several works have since shown
how to leverage this property to efficiently achieve full malicious security (with
abort) [33,10,20].

Packed secret sharing: To further reduce the cost by a factor of O(n), we
use packed secret sharing when we construct our double sharings [18,13,23]. In
a standard Shamir sharing, the secret is encoded in the evaluation of a random
polynomial at 0. However, if t = (1/2 − ϵ)n, then even after fixing all t ad-
versarial shares, there are still ϵn degrees of freedom in the polynomial (while
maintaining the degree d < n/2). These can be used for encoding additional
secret values. In a packed secret sharing scheme, a vector of ℓ = ϵn elements are
encoded together in a single polynomial by interpolating a random polynomial
through those ℓ points, and, as in Shamir sharing, providing point evaluations of
the polynomial as shares. By packing [r] = [r1], . . . , [rℓ] into a single polynomial,
and performing the Vandermonde matrix multiplication on the packed shares,
we can further reduce the communication and computational costs by a factor
of O(n), as was done by Damgård et al., and Genkin et al. [13,23]. When per-
forming ℓ independent computations in parallel, this directly reduces both the
communication and the computation by a factor of ℓ, without any cost. When
performing only a single evaluation of the circuit (which is the setting we focus
on), Damgård et al. [13] show how to compile a circuit C into one of size at most
O(|C| log |C|), that can leverage packed sharing even in a single computation by
parallelizing the multiplication gates in groups of size ℓ.

Unpacking the secret shares: Our first contribution is a new way to avoid
this log |C| multiplicative overhead, even in the single execution setting. To do
this, we avoid computing on packed values, and instead unpack the random
values into fresh secret shares for later use by an “online committee”.8 That
committee then uses these values to perform the online phase (i.e., the input de-

8 There are advantages and disadvantages to varying the size of this committee, which
we will discuss in depth in what follows. For now, we can assume that the online
committee is in fact the entire network of n parties. In the “standard” approach to
executing the online phase with n parties, the communication complexity is O(|C|)
per party. We will address this as well.
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pendent portion of the computation). Unpacking the secrets allows us to directly
compute an arbitrary circuit. However, if we unpack the ℓ secrets before sending
them to the online committee, we ruin our sub-linear communication complex-
ity: for every gate in the circuit, each of the n parties would need to send (at
least) one share to the online committee, resulting in a per-party communica-
tion complexity of (at least) O(|C|). Instead, we observe that unpacking requires
only linear operations (i.e., we need to perform polynomial interpolation, which
is a linear operation), and thus can be performed on secret shares of the packed
secret sharing. So, the n parties re-share each of their packed shares with the
online committee. Because they are still packed, the per-party communication
of re-sharing is O(|C|/n) instead of O(|C|). The online committee then locally
unpacks the “inner” threshold sharing by interpolating the polynomial that is
“underneath” the outside sharing. This requires no interaction inside the online
committee, and maintains the desired complexity.

Now consider the question of how to re-share the packed sharing. The naive
choice here is to stick with a threshold secret sharing scheme, ensuring that after
they unpack into the outer scheme, the parties maintain a threshold sharing of
the DN double sharings, and can proceed exactly as in the DN protocol. Unfor-
tunately, starting with ([r]d, [r]2d), we do not know how to efficiently transfer
([r]s, [r]2s) to an online committee of size s without incurring a communication
overhead of O(s): the cost of sending a Shamir share to a committee of size s is,
seemingly, O(s). In the case where the “committee” is of size n, this again ruins
the claim of sub-linear complexity, even though there are only O(|C|/n) values
to be re-shared. Instead, we use an additive secret-sharing for our outer scheme.
After establishing pairwise seeds between the senders and the receivers, we can
compress the cost of re-sharing: to re-share some value x, party i computes
[x]s = x + G(ri,1) + · · · + G(ri,s−1) and sends this to party s. All other parties
fix their shares deterministically using their shared seed. This saves a factor of
O(s) in the communication cost, and when the committee size is n, it allows us
to maintain the desired complexity. However, with an additive secret sharing,
we can no longer use DN for multiplication. Instead, prior to transferring the
packed values, we use our double sharings to create packed multiplication triples
([a]d, [b]d, [ab]d), and send additive shares of these packed, threshold shares to
the online committee. The online committee unpacks these values into additive
shares of multiplication triples by interpolating inside the additive sharing.

So far, we have ignored two important points: the cost of the online phase, and
computational complexity of the protocol. Using n-out-of-n additive shares of
multiplication triples, there is no clear way to achieve sub-linear communication
complexity in the online phase. Furthermore, even if we ignore the cost of the
online phase, unpacking a single multiplication triple requires O(n log n) field
operations, which, having successfully reduced the communication complexity,
becomes the new bottleneck in our protocol. The solution to both problems
is one and the same: we parallelize the work of unpacking the triples, using
many small committees, each of size O(s), with the guarantee that each has
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at least one honest participant9. The computational cost of unpacking is now
reduced to O(s log n|C|/n) field operations per party. Rather than transfer these
shares to a single evaluation committee, we then split |C| among the O(n/s)
committees, charging each with evaluating O(s|C|/n) gates.10 For the online
phase, we use the online phase of the SPDZ protocol [16]. In order to use the
generated triples in this protocol, each committee first “authenticates” their
triples. This is very similar to the protocols found in prior work ([16,14,32,3]),
and appears in Section 4.1. We stress that the authentication and the SPDZ
online protocol have bottleneck communication linear in the number of gates to
be evaluated.

Security against linear attacks: Genkin et al. [23] (building on Damgård
et al. [13]) present a protocol that begins as ours does, with the construction
of packed double sharings. (They do not construct packed triples for use in
a malicious majority online committee, but instead use the packed values in
a SIMD computation, incurring the O(log |C|) overhead described above.) In
their security analysis, Genkin et al. observed that when computing with packed
double sharings, one has to prevent a “linear attack” in which an adversary
adds to the output of a multiplication gate some arbitrary linear combination
of the values that are packed into the input shares. As the authors note, this is
not something that is allowed by an additive attack, since the adversary does
not know the packed secrets. Briefly, the linear attack works as follows (See
Appendix B of [22]). Consider shares [a]d = a1, . . . , an, and [b]d = b1, . . . , bn for
n = 2d+1. Let δ1, . . . , δd+1 denote the Lagrange coefficients that recover the first

element in the packed polynomial: b(1) =
∑︁d+1

i=1 δibi. Let γ1, . . . , γn denote the
coefficients that recover the second element in the product polynomial: a(2)b(2) =∑︁n

i=1 γiaibi. If an adversary modifies the first d+1 shares of a, [â]i = [a]i+δi/γi,
then the reconstruction of a(2)b(2) will equal a(2)b(2) + b(1). Such a dependency
on b(1) is not allowed in an additive attack.

We avoid linear attacks using two critical properties of our construction. Ob-
serve that linear attacks work by modifying at least d + 1 shares of an input
wire to a multiplication gate. Thus, we ensure that this can never happen in our
construction. First, as described earlier, we only use packed multiplication to
produce triples, thus we only need to deal with a depth-1 circuit of multiplica-
tion gates. In particular, the output of any (packed) multiplication gate is never
used as an input into another (packed) multiplication gate. Thus, even though
an adversary can introduce an arbitrary additive attack to modify all the packed
values in the resulting product, these modified values will never be used as an
input to a (packed) multiplication gate. There is still one place where the adver-

9 Technically, since we are selecting many such committees, to guarantee that they all
have at least one honest party requires a union bound over the number of committees,
resulting in committees of size O(s+ logn). However, since s > logn, we drop this
logn term in our asymptotic notation. However, we point out that our experimental
results in Section 6 do account for this union bound.

10 This can be done regardless of the circuit structure, and does not require a wide
circuit.

6



sary can introduce a linear attack: the original inputs to the triple generation
(i.e., A’s shares of a and b). However, we observe that this requires the adversary
to change at least d+1 shares of a and thus requires changing at least one share
held by an honest party. However, this is detectable by the honest parties if they
(collectively) check the degree of the polynomial on which their shares lie. We,
therefore, avoid linear attacks on the inputs by performing a degree check on
the input shares of [a] and [b] using a standard procedure. Moreover, since we
can batch all of these checks, doing so is (almost) for free.

1.2 Performance Comparisons

We give here a brief overview of how our protocol compares, asymptotically,
to various other protocols. We will give a more detailed description of how we
arrive at these numbers in Section 5, after presenting our protocol in full; here
we only present the alternative protocols used in the comparisons, and present
the results. Throughout, we assume we begin the computation with n parties,
and t < n/3 corruptions by an actively malicious adversary. We use s to denote
a statistical security parameter.

Performance metrics: When comparing the communication and computation
costs of various protocols, we consider the bottleneck complexities [7]. This refers
to the maximum communication sent or received11 by any party taking part in
the protocol, and the maximum computation performed by any one party. We
believe that this is a more meaningful metric than average or total communi-
cation when analyzing protocols that use small committees, since most parties
might do nothing after sharing their inputs, and therefore reduce the average ar-
tificially. In Section 5 we will give a more careful analysis, and, for completeness,
we include there the total complexities.

Protocol Variants and Results: In what follows, we consider three variants of
our protocol, as each provides insight into various aspects of our design. We begin
by considering the simplest variant in which the full network of n participants
unpack all |C| triples, and all n parties participate in the online phase. We
compare this with two folklore solutions in which a single committee is elected
to perform the computation. We then describe two changes that strengthen our
protocol, and compare the impact of each improvement to a similar improvement
to these folklore solutions.

Baseline comparisons: In Figure 1, we compare the asymptotic behavior
of our protocol to that of Furukawa and Lindell, which is also designed for a
corruption threshold of t < n/3 [20]. Additionally, with t < (1/2 − ϵ)n, an

11 When analyzing total or average communication, there is no need to consider re-
ceiving complexity as the number of bits sent by all parties equals the number of
bits received. But, when considering bottleneck complexity, one must make a dis-
tinction between the two. For example, if many parties send messages to one party,
that party’s receiving bandwidth becomes the bottleneck. In fact, there are MPC
protocols such as [37] that are bottlenecked by the receiving bandwidth of some of
the parties.
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Single Online, Single Unpack

Ours t < n/3 [20] t < n/2 [10] t < n [16]

Comm O(|C|/n) O(|C|) O(|C|) O(s|C|)
Comp O(logn|C|) O(logn|C|) O(log s|C|) O(s|C|)

Fig. 1. Asymptotic complexities for the offline phase of four protocols. In our variant,
and in that of [20], all parties participate throughout. In the other two protocols, the
state-of-the-art is run by a small committee: with an honest majority in column 4,
and a malicious majority in column 5. All values measure bottleneck costs, rather than
total costs. The online communication and computation cost for all four protocols is
O(C), and is not included.

old folklore approach is to choose a random committee of size O(s) that is
guaranteed, with probability 1 − negl(s), to contain an honest majority. We
consider performing the entire computation within that committee, using the
state-of-the-art protocol for the t < n/2 setting by Chida et al. [10]. Finally, a
similar folklore solution is to select a much smaller committee, with the weaker
guarantee that at least one honest party is chosen, and then run the entire
protocol using the state-of-the-art construction for the t < n setting, such as the
protocol by Damgård et al. [16], or any of the follow-up work. Furukawa and
Lindell requires O(|C|) communication per party, and the folklore solution using
an honest majority committee requires O(|C|) communication for each party on
the committee, yielding the same bottleneck complexity. The folklore solution
with a malicious majority has bottleneck complexity of O(s|C|). In comparison,
our offline phase has bottleneck complexity of O(|C|/n). However, as mentioned
previously, our online phase has bottleneck complexity of O(|C|) as well, and
our computational cost is higher than that of the first folklore solution. More
importantly, computation is the major bottleneck in our performance. In the
next two tables, we address these two issues, strengthening the folklore solutions
in analogous ways.

Single Online, Distributed Unpack

Ours t < n/2 t < n

Comm O(s|C|/n) O(s|C|) O(s2|C|/n)
Comp O(s logn|C|/n) O(s log s|C|/n) O(s2|C|/n)

Fig. 2. In our protocol variant, triples are unpacked in many parallel committees, and
then transferred back to the full set of size n. Costs are measured through the transfer
step, and exclude the cost of the online phase. In the column labeled t < n/2, many
parallel committees, each with an honest majority, prepare double-sharings that will
be used by a single online committee of size O(s). In the column labeled t < n, many
parallel committees, each with at least one honest participant, generate multiplication
triples that will be used by the full network of size n. The online phase still requires
O(|C|) communication and computation for all three protocols, and is not included in
the Table.
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Distributed triple generation: Instead of unpacking all triples in a single
committee, we improve our computational complexity by a factor of O(n/s) by
unpacking the triples in O(n/s) small committees, each large enough to guaran-
tee at least one honest member. The resulting triples are then transferred to a
single online committee, still of size n.

Making an analogous change to the two folklore solutions,12 we consider con-
structing triples in parallel, using O(n/s) committees – honest majority commit-
tees in the first variant, and malicious majority committees in the second – each
responsible for an O(s/n) fraction of the pre-processing. When using honest ma-
jority committees, we analyze the case where the double sharings are transferred
to a single online committee of size O(s), which is guaranteed to have an hon-
est majority with all but negligible probability. When using malicious majority
committees, we distribute the multiplication triples to the entire network of size
n. (In both cases, these choices minimize the bottleneck complexity. We consider
using a small online committee, both for ourselves, and for the t < n setting, in
Section 5. This reduces total communication complexity, but introduces the bot-
tleneck of having a small receiving committee.) We summarize these comparisons
in Figure 2.

Asymptotically, all three protocols improve equally in computational cost, by
a factor of O(s/n). However, because honest majority committees are about 18X
larger than malicious majority committees, in concrete terms, our computational
cost is quite similar to protocol using honest majority committees. We discuss
in more detail in Section 5.

Distributed online computation: To claim an end-to-end protocol that has

Distributed Online

Ours t < n/2 t < n

Offline Online Offline Online Offline Online

Comm O(|C|/n) O(s|C|/n) O(s|C|/n) O(s2|C|/n) O(s2|C|/n) O(s|C|/n)
Comp O(s logn|C|/n) O(s|C|/n) O(s log s|C|/n) O(s|C|/n) O(s2|C|/n) O(s|C|/n)

Fig. 3. Here we distribute the work done in the online phase, assigning O(s|C|/n) gates
to each of the O(n/s) committees. In all three protocols, the material generated during
pre-processing remains with the same committee for the online phase. The state of the
online phase is transfered from one committee to the next.

sub-linear communication, we present a final set of protocol variants in which
we distribute the online computation. These three protocol variants begin as in
the previous set of protocols, but they stop short of transferring the multiplica-
tion triples to an online committee. Instead, each of the O(n/s) committees is

12 Note that when we assume t < n/3, we cannot construct committees of size O(s)
that have the same corruption threshold. We therefore do not consider running
Furukawa and Lindell in parallel. We could do so with larger, committees, or we
could consider a smaller threshold, but we feel the current set of comparisons suffices
for demonstrating the value of our protocol.
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responsible for O(s|C|/n) triples (or double sharings, when t < n/2), and holds
them until the online phase. Each committee is then responsible for a propor-
tionate “chunk” of the circuit during the online evaluation. All three protocols
benefit similarly from the reduced cost of the online evaluation.

In Figure 3, we have separated the online cost in this protocol. In some set-
tings, it might make sense to stop the protocol after the offline phase, leaving
the triples in their committees until they are needed by some other group for
an online computation. For example, we can imagine using such a protocol in
a service that sells computation triples. The cost of producing the triples di-
minishes with n, and the small unpacking committees can then transfer these
triples, as needed, to paying customers. The receiving customers might have a
malicious majority, and the cost of receiving the transfer would be minimal in
comparison to the cost of securely generating the triples on their own. In this
setting, the cost of receiving these triples (which show up in Figure 3), and the
cost of using them in an online evaluation, can both be reasonably ignored by
the triple service provider.

This last protocol variant combining distributed unpacking and a distributed
online phase gives us the following main theorem.

Theorem 1 (Informal). Assuming the existence of a PRG, our distributed on-

line protocol generates |C| multiplication triples with O( |C|
n ) bottleneck complex-

ity and O( s logn|C|
n ) bottleneck computation for a statistical security s, achieving

security against a static, malicious adversary corrupting t < n/3 parties.

1.3 Related Work

A full survey of the MPC literature is out of scope for this work, so we only
discuss the results that are most directly relevant. Damgård and Nielsen [15]
introduced the technique of using double sharings for realizing multiplication
with O(|C|) per-party communication in the honest majority setting. The tech-
nique has been used in many follow-up results [5,13,33,10,20,24,23] for a variety
of efficient MPC protocols with honest majority. The technique of using mul-
tiplication triples was first introduced by Beaver [4]. Since then this technique
has been extremely fruitful in the setting of malicious majority with a num-
ber of works proposing improved constructions of multiplication triples based
on oblivious transfer (OT) [19,27,26] and based on somewhat-homomorphic en-
cryption [16,32].

Several works have looked into achieving sub-linear communication for MPC
in the honest majority setting. In particular, packed secret sharing was originally
introduced by Franklin and Yung [18]. We use the packed version of the protocol
due to Damgård and Nielsen [15] that was first presented in [13]. Other recent
works such as Leviosa [25] and Ligero [2] have also used packed secret sharing to
achieve efficiency for MPC-in-the-head [28] and zero-knowledge proofs. Damgård
and Ishai [12] present a protocol for MPC in a client / server model that leverages
packed secret sharing. Their construction has total communication complexity
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of O(n|C| log |C|), but when the number of clients is constant, they can remove a
factor of n, achieving performance that improves as they introduce more servers.
Very recently, Garay et al [21] study the feasibility of constructing sub-linear
communication MPC and demonstrate some challenges to achieving sub-linear
communication in MPC, especially when |C| is small.

Using committees to speed up performance of MPC has been studied starting
with the work of Bracha [8]. Since then several works [17,29,38,36,11] have looked
into using committees to reduce communication in MPC over large numbers of
parties. Additionally, another line of work has leveraged committees to improve
the communication locality (i.e., how many parties a party must talk to as part of
the protocol) of MPC protocols [6,9]. Finally, similar to our work, Scholl et al. [35]
also consider how one can outsource triple generation when an online committee
does not want to do the work on its own. They propose several approaches for
outsourcing triple generation for MPC.

MPC protocols secure against additive attacks were introduced by Genkin
et al. [24]. Then, Genkin, Ishai, and Polychroniadou [23] introduced the notion
of a linear attack and showed that the semi-honest variant of packed Damgård-
Nielsen given by Damgård et al. [13] is secure up to linear attack. For details see
Genkin’s thesis [22].

Finally, the notion of bottleneck complexity for MPC communication was
originally introduced by Boyle et al. [7].

2 Preliminaries

2.1 Secret sharing

We use two types of secret sharing schemes. Packed secret sharing, in which a
secret share is a single evaluation of a polynomial that encodes ℓ secrets, and
additive secret sharing, in which a secret share is a random field element, and
the shares sum to the secret. We only define notation here, and do not bother
to define security or correctness of secret sharing.

Packed secret sharing:
We let [r]d represent a secret sharing of r using a degree d polynomial, and we
denote party Pi’s share with [r]id.

share(d, r): outputs n shares of a degree d polynomial (d, s1, . . . , sn).

reconstruct(d, s1, . . . , sj): given j shares, with j > d, output r ∈ Fℓ.

reconstruct(d, i, s1, . . . , sj): given j shares, with j > d, output ri ∈ F, which is the
value stored in the ith packing slot. In practice, we never extract a single value,
as we can unpack all values using a pair of FFT / IFFT operations. However,
notationaly, it is convenient to refer to the value recovered from a single slot.

Additive secret sharing:
We fix the size of our additive secret sharing to that of the online committee,
Com. Our additive secret shares will always be a sum of |Com| field elements.
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aShare(x): outputs x1, . . . , xCom such that x =
∑︁

i xi. In practice, this can be
done by generating the first Com− 1 shares pseudorandomly, and then choosing
the final share as xCom = x−

∑︁Com−1
i=1 xi.

reconstruct(x1, . . . , xn): outputs
∑︁

i xi.

3 Multiplication Triple Generation

Overview: We describe a maliciously secure protocol with t = ϵn corrupted
parties, for ϵ ∈ [0, .5). We let h = n − t denote the number of honest parties,
and we let ℓ = n/2− ϵn denote the packing parameter used in our secret sharing
scheme. We will use polynomials of degree d = ⌊(n−1)/2⌋, and d′ = n−1. How-
ever, to simplify the notation, we will assume n is odd, and use d and 2d as the
degrees of these polynomials. For simplicity, we describe only one protocol vari-
ant. We describe the protocol as having a single unpacking committee, denoted
Com, and, we allow the committee size to be flexible. The extension to multiple,
parallel unpacking committees is straightforward. If |Com| < n, we elect a ran-
dom subset of the parties to the committee. To ensure an honest member with
probability 2−s, it suffices to elect a committee of size |Com| ≤ −s/ log ϵ. This is
done by performing a secure coin flip among the n parties, and using the result
to select parties at random, with replacement, −s/ log ϵ times. (If the committee
happens to be smaller than Com because there are collisions in the sampling,
this improves performance without impacting security.)

In steps 1 and 2 of the protocol, the parties exchange secret shares of random
values, and use the public Vandermonde matrix M to extract O(h) packed secret
values. In step 3, they perform a degree check on all the shares sent in the 1st
step, ensuring that the shares of all honest parties lie on a degree d polynomial, as
expected. This limits any future modifications by the adversary to t < d shares,
eliminating the linear attack described previously, and limiting the adversary to
simple additive attacks.

In Step 4, the parties perform local multiplication on their packed shares,
doubling the degree of the polynomial, and blind the result using their share of
[r]2d. This is sent to the dealer, P0, who extracts the blinded, packed secrets,
and reshares them, reducing the degree back down to d.

The resharing can be sent only to the first d + 1 parties. At this point in
the protocol, any further deviations by the adversary will only create additive
attacks, which we do not bother to prevent. (These attacks will be caught in the
online phase, through a call to macCheck, before the outputs are revealed.) We
therefore do not need the redundancy of extra shares.

In step 6, the d + 1 parties receiving shares of the blinded product re-share
their shares using the additive secret sharing scheme. These additive shares are
sent to the committee(s) of size Com, which might be of size n or of size O(s).
In step 7, the committee unpacks their shares of the triples, homomorphically,
resulting in additive shares [a]a, [b]a and [ab]a.

The ideal functionality is presented in Figure 4. We note that the adversary
is allowed to specify what output shares they would like to receive (but learns
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nothing about the shared value, which is still random). This is because we do
not try to prevent a rushing attack in which the adversary sees the messages sent
by the honest parties in the first step of the protocol, prior to fixing its own first
message. This attack is benign, and is commonly allowed in prior work. More
importantly, the adversary is allowed to specify an additive attack for every
triple produced. Instead of receiving [a]a, [b]a and [ab]a, the output committee
instead receives [a]a, [b]a and [ab+ δ]a

Ideal functionality for triple generation secure up to
additive attack: Ftriple

Adversarial Behavior: The adversary gets to specify the share val-
ues they receive from the functionality. Additionally, the adversary
inputs a vector δ ∈ Fhℓ.

Input: The functionality takes no input.

Computation: For i ∈ {1, . . . , hℓ}
1. Sample random ai and bi and compute ci = ai · bi + δi.
2. For each i ∈ [hℓ], additively secret-share ai, bi, ci to Com.

Output: Each party in Com receives a share of ai, bi, and ci for
i ∈ {1, . . . , hℓ}.

Fig. 4. This is a randomized functionality that outputs additive shares of hℓ = O(n2)
multiplication triples to a designated committee, Com. Note that although no parties
have input, and only |Com| ≤ n parties have output, the protocol for realizing the
functionality is always an n-party protocol. The produced triples are secure up to
additive attack.

Theorem 2. Let t = ϵn for some ϵ ∈ [0, .5), let h = n − t, and let ℓ = n/2 −
ϵn. Then the protocol for unauthenticated triple generation in Figure 5 securely
realizes the functionality of Figure 4 in the presence of an active, computationally
unbounded adversary corrupting t parties.

Proof. We define A to be the set of corrupted parties, and H to be the set of
honest parties. The simulator begins by selecting randomness on behalf of all
honest parties, and executes the protocol on their behalf, exchanging messages
with the adversary as needed.

In the first step of the protocol, for each Pi ∈ A, when Pi calls share(d, r̃i),
share(d, ãi) and share(d, b̃i), the simulator extracts the values r̃i, ãi, b̃i from the
shares sent to the honest parties. If the values are not consistently defined (be-
cause the degree of the polynomial is too high), S sets the shares to ⊥, and
continues the simulation until the degree check in Step 3, at which point S always
aborts. Otherwise, S computes (r(1), . . . , r(h)), (a(1), . . . ,a(h)), (b(1), . . . ,b(h)) us-
ing the extracted values, the honest randomness, and the local multiplication
with the Vandermonde matrix, M .
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Triple generation (Πtriple)

Inputs: No parties have any input.

1. Pi samples random r̃i, ãi and b̃i, and calls share(d, r̃i),
share(2d, r̃i), share(d, ãi) and share(d, b̃i).

2. Party Pi receives:
([̃r1]

i
d, . . . , [̃rn]

i
d), ([̃r1]

i
2d, . . . , [̃rn]

i
2d), ([ã1]

i
d, . . . , [ãn]

i
d) and

([b̃1]
i
d, . . . , [b̃n]

i
d).

and computes:(︂
[r(1)]id, . . . , [r

(h)]id

)︂
= M · ([̃r1]id, . . . , [̃rn]id),(︂

[r(1)]i2d, . . . , [r
(h)]i2d

)︂
= M · ([̃r1]i2d, . . . , [̃rn]i2d),(︂

[a(1)]id, . . . , [a
(h)]id

)︂
= M · ([ã1]

i
d, . . . , [ãn]

i
d), and(︂

[b(1)]id, . . . , [b
(h)]id

)︂
= M · ([b̃1]

i
d, . . . , [b̃n]

i
d)

3. The parties call [γ]d ← Frand.
The parties call Fcoin to get random coefficients c1, . . . , c3h ← F.
They compute [ζ] = [γ]d +

∑︁n
i=1 ci[ai]d + cn+i[bi]d + c2n+i[ri]d.

They open ζ, and verify that it is of degree d. If not, they abort.
4. For j ∈ {1, . . . , h}, Pi computes [m(j)]i2d = [a(j)]id ·[b(j)]id+[r(j)]i2d,

and sends [m(j)]i2d to P0.
5. For j ∈ {1, . . . , h}, P0 receives ([m(j)]12d, . . . , [m

(j)]n2d).
P0 reconstructs the packed secrets: m(j) =
reconstruct(2d, [m(j)]12d, . . . , [m

(j)]n2d). P0 then calls share(d,m(j))
and sends the first d+ 1 shares to P1, . . . , Pd+1.

6. For j ∈ {1, . . . , h}, each Pi ∈ {P1, . . . , Pd+1} receives [m(j)]id from
P0, and computes
[c(j)]id = [m(j)]id − [r(j)]id = [a(j) · b(j)]id.
Pi calls aShare([a

(j)]id), aShare([b
(j)]id), and aShare([c(j)]id).

7. For each j ∈ {1, . . . , h}, each Pk ∈ Com receives
([[a(j)]1d]

k
a , . . . , [[a

(j)]nd ]
k
a ), ([[b(j)]1d]

k
a , . . . , [[b

(j)]nd ]
k
a ), and

([[c(j)]1d]
k
a , . . . , [[c

(j)]nd ]
k
a ).

For i ∈ {1, . . . , ℓ}, j ∈ {1, . . . , h}, Pk computes:
[a(i,j)]ka = reconstruct(d, i, [[a(j)]1d]

k
a , . . . , [[a

(j)]nd ]
k
a ).

[b(i,j)]ka = reconstruct(d, i, [[b(j)]1d]
k
a , . . . , [[b

(j)]nd ]
k
a ).

[c(i,j)]ka = reconstruct(d, i, [[c(j)]1d]
k
a , . . . , [[c

(j)]nd ]
k
a ).

Output: Each Pk ∈ Com outputs
{︂
[a(j)]ka , [b

(j)]ka , [c
(j)]ka

}︂|hℓ|

j=1

Fig. 5. Protocol for computing additive shares of hℓ = O(n2) triples. The shares
are delivered to a designated committee, Com. For |C| triples, this protocol must be
repeated |C|/hℓ times. M ∈ Fh×n is a Van Der Monde matrix.

Prior to simulating the final message in which additive shares are sent to
the output committee, Com, S extracts δ, the value used as an additive attack
by A, and submits this to the functionality. There are three places in which
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the adversary might introduce an additive attack; the simulator extracts three
values, δ0, δ1, δ2, some of which might be 0, and sums them to recover δ. This
is done for each of the h packed shares of triples. For ease of notation, we drop
the superscript and only describe the simulation for one of these h values. Recall
that P0 denotes the dealer, and Com is the set of parties receiving output. We
let D+ denote the set {P1, . . . , Pd+1}.

If P0 ∈ H, S recovers m after the malicious parties send shares of [m]2d to P0

in Step 4. He then computes δ0 = m− (ab+ r). If P0 ∈ A, S sets δ0 = 0l.

If (P0 ∈ A) ∧ (D+ ⊂ H):
S recovers m by interpolating the shares sent from P0 to D+ in Step 5. He
computes δ1 = m− (ab+ r). If P0 ∈ H, or D+ ̸⊂ H, S sets δ1 = 0l.

If D+ ̸⊂ H ∧ Com ⊂ H:

S recovers ˜︂ab by summing the shares sent from the malicious parties in D+

to Com in Step 6 (using the stored values of any any honest parties in D+ to
fill in the gaps) and interpolating the resulting polynomial shares. He computes

δ2 = ˜︂ab− ab. If D+ ∈ H, or Com ̸⊂ H, S sets δ2 = 0l.
S sets δ = δ0 + δ1 + δ2.

Finally, S calls Ftriple(δ), and returns the output from the functionality to A.

We now argue that S produces a joint distribution on the view of A and the
output of honest parties that is statistically close to A’s view in the real world,
together with the honest output in a real execution.

We first argue that if S does not abort, the δ value extracted by S is correct.
That is, that it matches the δ imposed in the real world output under the same
adversarial behavior. Because S does not abort, the values a,b and r that are
extracted in the first step are well defined. There are only 3 other messages sent
in the protocol: [m]2d sent to P0, the response [m]d sent to D+, and additive
sharing of [ab]d sent from D+ to Com. In each of these 3 cases we show that the
δ values that the adversary is able to introduce are independent of the values
of a or b. We note that this is not true when there is a linear attack since the
δ value in that case is allowed to be a linear combination of the packed values.
Namely, we prove the following claim.

Claim. If S does not abort, then for any values a, b, and δ ∈ Fl, we have that

Pr[a = a ∧ b = b|δ = δ] = Pr[a = a ∧ b = b]

Proof. Since S aborts whenever the degree of the initial sharing is too high, we
know that [a], [b], and [r] are all shared via degree t polynomials, and thus the
values a,b, r extracted by S are well defined. We now analyze all the ways in
which a malicious A can introduce a non-zero δ.

If P0 ∈ H, then δ0 is extracted by P0 after receiving shares of [m]2d in Step 4. In
this case, Pi ∈ A can modify his share [m]id to [m′]i = ([a]id + δa) · ([b]id + δb) +
[r]i2d + δm for adversarially chosen δa, δb, and δm, where each of these can be
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arbitrary functions of the t < d shares received by the malicious parties in Step
1. Rewriting this as [m′]i = ([a]id · [b]id)+ (δa · [b]id)+ (δb · [a]id)+ δm, we see that
Pi can contribute a value δi = (δa · [b]id)+(δb · [a]id)+δm, which is also a function

of at most t shares of a and b. Thus, the jth value in δ0, δ
j
0 =

∑︁
Pi∈A sji δ

i

where the sji are the corresponding Lagrange coefficients. Since δj0 is a linear
combination of these δi values, it follows that it is also independent of a and b.

If (P0 ∈ A) ∧ (D+ ⊂ H), then S extracts δ1 from the values sent to D+ by the
dealer in Step 5. Because the sharing is of degree d = |D+| − 1, whatever P0

sends in this step is a consistent sharing of some value, m′. This value might
be some function of ab + r, but because the P0 has no information about r, it
follows that δ1 is independent of ab.

Finally, if D+ ̸⊂ H ∧ Com ⊂ H, δ2 is extracted from the shares sent to Com.
Thus, δj2 =

∑︁
Pi∈A sji δi where δi is the change introduce by Pi to his Shamir

sharing of ab (during the process of additively sharing the Shamir share). Since
this is again a linear combination of at most t shares of ab, it is independent of
a and b.

We can now complete the proof of Theorem 2. It is easy to see that the
shares included in A’s view are independent of the values ai,bi, ri chosen by
S. Moreover, by Claim 3, we know that, as long as the degree check does not
fail, for any A, the value of δ is also independent of these values. In the real-
world, the honest parties would output these shares while in the ideal-world they
output the shares chosen by Ftriple. Since the view of A is independent of these
values, both sets of honest outputs are consistent with A’s view showing that
the simulation is perfect. Finally, since the degree check succeeds with all but
negligible probability, we have that the simulated joint distribution is statistically
indistinguishable from that of the real world, proving the theorem.

4 Protocols for Circuit Evaluation

For input sharing and the online phase we use the well-known SPDZ proto-
col [16]. However, as SPDZ uses authenticated triples, the online protocol first
needs to “authenticate” the triples produced by our offline phase. This authenti-
cation protocol is very similar to the protocols found in prior work ([16,14,32,3]),
and appears in Section 4.1. We note that while the cost of authenticating the
triples is asymptotically the same as the cost of using them for circuit evaluation,
this does result in approximately a factor of 7 increase in communication in the
online phase, when compare with the online phase of SPDZ. We leave reducing
this as an interesting open question.

4.1 Authenticating the triples

The previous protocol provides triples that are un-authenticated. We now use
these unauthenticated triples to construct authenticated triples of the form (a, b, c,
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FTripAuth

Inputs: None.

Computation: Sample α← F, and a random additive sharing, [α].

For i ∈ [m]:
– Sample ai, bi ← F, and compute ci = aibi.
– Sample random additive sharings, [ai], [bi], [ci], [αai], [αbi], [αci]

Output: [α],
{︁
[ai], [bi], [ci], [αai], [αbi], [αci]

}︁m

i=1

Fig. 6. An ideal functionality for constructing authenticated triples. The functionality
is parameterized by an integer m indicating how many authenticated triples should be
output.

αa, αb, αc), where ab = c, and α, which is unknown to the parties, is used to
authenticate all of the triples.

For a committee to generate m = O( s|C|
n ) authenticated triples, they need to

use 8m unauthenticated triples. We describe the protocol in the Ftriple-hybrid
model, allowing the parties on this committee to receive these unauthenticated
triples from that functionality. We remind the reader that in practice, the proto-
col realizing Ftriple is executed in the full network. The remainder of the ΠTripAuth

protocol is carried out only by the smaller committees and only requires a dis-
honest majority.

Our construction is almost identical to the one used in SPDZ. The parties
first choose an additive secret sharing of a random authentication value, α. They
take one triple, ([a], [b], [c]), and compute ([αa], [αb], [αc]) using 3 other triples,
one for each multiplication (as in the classic result by Beaver [4]).13 We denote
this procedure by Mult in the protocol description.

Because the triples are additively shared and unauthenticated, it is impor-
tant to note that the adversary can modify the shared value at anytime. To
verify that we have a valid authenticated triple after performing these multi-
plications, we sacrifice one authenticated triple against another to catch any
malicious modifications, precisely as in prior work.

The only difference between our construction and that of SPDZ (and the
follow-up work) is in the way we instantiate the Mult sub-routine. While we use
unauthenticated triples, as just described, SPDZ uses somewhat homomorphic
encryption to generate these authenticated triples (prior to the sacrifice step).
With that approach, once the parties hold ([a], [b], [c]), the adversary is unable
to modify the result of Mult(a, α) or Mult(b, α). However, because they need
to refresh the ciphertext encrypting c, the adversary can introduce an additive
shift, resulting in Mult(c + δc, α). In our realization of Mult, the adversary can

13 For example, to compute [αa] from [α] and [a] using triple (x, y, z), the parties open
a+ x and α+ y. Each locally fixes its share by computing (a+ x)[α] + (α+ y)[a]−
(a+ x)(α+ y) + [z].
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ΠTripAuth

Inputs: None.
Protocol:
1. The parties call [α]← Frand.
2. The parties call Ftriple to generate 8m triples. We denote the first

2m of these triples by
{︁
[ai], [bi], [ci], [a

′
i], [b

′
i], [c

′
i]
}︁m

i=1
.

3. The parties call
[aα] = Mult(a, α), [bα] = Mult(b, α), [cα] = Mult(c, α) and
[a′α] = Mult(a′, α), [b′α] = Mult(b′, α), [c′α] = Mult(c′, α)

4. The parties call (r1, . . . , rm)← Frand.
5. For i ∈ [m], the parties

– compute and open ai = ri · [ai]− [a′
i], and bi = [bi]− [b′i].

– The parties compute:

[γi] = ri[ciα]− [c′iα]− bi[a
′
iα]− ai[b

′
iα]− aibi[α]

[ρi] = ri[aiα]− [a′
iα]− ai[α]

[σi] = [biα]− [b′iα]− bi[α]

6. The parties call (τ1, . . . , τ3m)← Frand.
7. The parties compute

[ζ] =

m∑︂
i=1

τi[γi] +

m∑︂
i=1

τm+i[ρi] +

m∑︂
i=1

τ2m+i[σi]

The parties open [ζ] using a commit-and-reveal. If ζ ̸= 0, abort.

Output: Each party outputs its shares of
[α], ([ai], [bi], [ci]), and ([aiα], [biα], [ciα]).

Fig. 7. Protocol for sacrificing some triples in order to authenticate others. The au-
thenticated triples are then used in the online phase. The protocol is in the Ftriple-
hybrid model (Figure 4), and realizes the FTripAuth functionality (Figure 8). The Mult
sub-routine is the standard protocol by Beaver [4] for securely computing [xy] from [x]
and [y].

introduce this shift on any of the inputs to Mult. For this reason, we provide
a complete proof of security for the authentication step. The functionality and
protocol realizing this authentication are given in Figures 8 and 9 respectively.

Complexity After receiving the 8m unauthenticated triples, each party sends
12m field elements in the 6m executions to the Mult subroutines, and another
2m field elements in the sacrifice step. The rest of the communication can be
amortized, as it is independent of m.

It is known that we can further reduce the number of unauthenticated triples
needed [31]. In the sacrifice step, instead of using 2 independent triples, we can
use (αa, αb, αc) and (αa′, αb, αc′), where b was used twice. In this case, we could
reduce communication per triple in our offline phase by 12.5% (by sending half as
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many b values), and we can reduce the number of triples needed in the ΠTripAuth

protocol by 12.5% (because we only multiply b with α and not b′.)14

Theorem 3. The protocol ΠTripAuth securely realizes FTripAuth in the Ftriple-hybrid
model, in the presence of an active adversary corrupting all but one party.

Proof. The proof of Theorem 3 follows from prior work for completeness we
provide it in Appendix A.

4.2 Providing Input and MACCheck

FTripAuth

Setup: Sample and store α← F.

Triples:
Inputs: None.
Computation:
For i ∈ [m]:
– Sample ai, bi ← F, and compute ci = aibi.
– Sample random additive sharings, [ai], [bi], [ci], [αai], [αbi], [αci]

Output: [α],
{︁
[ai], [bi], [ci], [αai], [αbi], [αci]

}︁m

i=1

Input Authentication:
Inputs: The input party provides input value x ∈ F.
Computation:
– sample [x] and [αx]

Output: [x] and [αx] are distributed to the parties on the committee.

Fig. 8. An ideal functionality for constructing authenticated triples, and authenti-
cated inputs. The functionality is parameterized by an integer m indicating how many
authenticated triples should be output.

For providing input, we note that SPDZ uses authenticated random values
([r], [αr]) to mask the inputs. We can use the shares of either a or b from an
authenticated triple in place of these random values.

Finally, as in SPDZ, prior to reconstructing the output, we perform a MAC-
Check on all values opened during the protocol. Specifically, as in SPDZ, we do
this by opening α to all parties. The parties can then perform a batched MAC-
Check on all values that were publicly opened during multiplication. For the
parties providing input, the committee additionally opens [αr] to the relevant

14 Note that our offline phase has a computational bottleneck, so reducing the commu-
nication cost per triple might not lead to large improvement in runtime, though it
still may reduce the dollar cost of communicating. Reducing the number of triples
needed will reduce end-to-end runtime.
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ΠTripAuth

Triples:
Inputs: None.
Protocol:
1. The parties call [α]← Frand.
2. The parties call Ftriple to generate 8m triples. We denote the first

2m of these triples by
{︁
[ai], [bi], [ci], [a

′
i], [b

′
i], [c

′
i]
}︁m

i=1
.

3. The parties call
[aα] = Mult(a, α), [bα] = Mult(b, α), [cα] = Mult(c, α) and
[a′α] = Mult(a′, α), [b′α] = Mult(b′, α), [c′α] = Mult(c′, α)

4. The parties call (r1, . . . , rm)← Frand.
5. For i ∈ [m], the parties

– compute and open ai = ri · [ai]− [a′
i], and bi = [bi]− [b′i].

– The parties compute:

[γi] = ri[ciα]− [c′iα]− bi[a
′
iα]− ai[b

′
iα]− aibi[α]

[ρi] = ri[aiα]− [a′
iα]− ai[α]

[σi] = [biα]− [b′iα]− bi[α]

6. The parties call (τ1, . . . , τ3m)← Frand.
7. The parties compute

[ζ] =

m∑︂
i=1

τi[γi] +

m∑︂
i=1

τm+i[ρi] +

m∑︂
i=1

τ2m+i[σi]

The parties open [ζ] using a commit-and-reveal. If ζ ̸= 0, abort.

Output: Each party outputs its shares of
[α], ([ai], [bi], [ci]), and ([aiα], [biα], [ciα]).

Input Authentication:
Inputs: The input party provides input value x ∈ F.

1. The computing committee uses a triple, and opens (a, bα, cα) to
party Pi.

2. Pi sends (x+ a, [abα]) to the committee.
3. The committee computes [x] = x+a− [a], and [xα] = (x+a)[α]−

[aα]) for use in the online phase. They also open to Pi: [abα]−[cα]
4. If Pi receives an opening that is non-zero, it aborts.

Fig. 9. Protocol for sacrificing some triples in order to authenticate others. The au-
thenticated triples are then used in the online phase. The protocol is in the Ftriple-
hybrid model (Figure 4), and realizes the FTripAuth functionality (Figure 8). The Mult
sub-routine is the standard protocol by Beaver [4] for securely computing [xy] from [x]
and [y].

party, allowing them to locally MACCheck the masks r that they used to hide
their inputs.
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As these protocols, and the corresponding functionalities, are exactly as de-
scribed in SPDZ and we omit their descriptions here.

5 Optimizing Large-Scale MPC

Having presented the components of our protocol in Sections 3 and 4, we now
describe trade-offs that result from various choices of committee sizes. In the
process we identify several standard, but critical optimization techniques, and
we identify communication and computation bottlenecks. We also provide a more
in-depth analysis of the enhanced “folklore” schemes described in Section 1.2,
explaining how these compare to our work.

5.1 Protocol Optimizations

We make heavy use of the following two standard optimization techniques. While
these are not new, we briefly describe them here for completeness.

Pseudorandom Share Transfer: Our first optimization technique allows us
to transfer an additively shared value using very low communication by using a
PRG. Suppose a party P wants to additively secret share a value s to a committee
Com containing S parties. P pre-shares a PRG seed si with each party Pi in Com.
Then, for all but the last party in Com, both P and Pi ∈ Com compute a share
as [s]i = G(si), and P computes s −

∑︁s−1
i=1 [s]i and sends this value to PS as

his share. In this way, P can share a secret with a committee of any size while
communicating only one field element. If we start with an additive secret sharing
of s across a committee Com1, using the same technique, we can transfer this
shared value to another committee Com2 (of arbitrary size) by having each party
in Com1 send one field element. We observe that this technique does not work for
Shamir-shared values. Instead, the natural parallel (e.g., as described by [20,34])
can only save, approximately, a factor of 2 in the communication.

Amortization: A second optimization that we use extensively in all of our
protocols is amortization. Specifically, we rotate the roles in our protocol to
ensure that the communication and computation loads are split equally across all
parties. For example, we rotate the party serving as the dealer (P0) in Steps 4-5
of Figure 5, and we rotate the party receiving the real share in the pseudorandom
share transfer described above.

5.2 Protocol Bottlenecks

To simplify the analysis of both our and related protocols, we decompose our
protocol into phases, allowing us to analyze the bottlenecks of each phase sepa-
rately.

1. The Vandermonde phase corresponds to Steps 1-2 of Figure 5 in which par-
ties generate doubly-shared (packed) random values. This phase is always
run by all n parties and produces O(|C|/n) packed secrets. It requires each
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party to send (and receive) O(n) shares (one to each party) to produce O(n)
packed secrets, resulting in O(|C|/n) bottleneck communication.
For computation, for every n packed secrets, each party must produce its
own packed share, requiring O(n log n) field operations using an FFT, and
must perform multiplication by the Vandermonde matrix M , which can be
done by an IFFT in the same time. Thus, we have a bottleneck computation
of O(|C|/n2 · n log n) = O(log n|C|/n) field multiplications.

2. The Triple Gen. phase corresponds to Steps 3-5 in Figure 5. This phase is
again run by all n parties, and we rotate the dealer to ensure that each party
plays the role of the dealer in a 1/n fraction of the O(|C|/n) executions. Each
time a party is the dealer, it receives and sends O(n) shares for each packed
triple and also performs an iFFT and an FFT to produce the new sharing.
Thus, the bottleneck communication is O(|C|/n2 · n) = O(|C|/n) field ele-
ments and the bottleneck computation is O(log n|C|/n) field operations. We
note that Step 3 (degree check) is only performed once per O(n2) triples,
and thus will not be the bottleneck.

3. The Transfer phase corresponds to Step 6 in Figure 5. In this phase all n
parties sub-share their (Shamir-shared) packed triples to the committee Com.
The cost of this step varies a good deal in our different protocol variants, so
we defer the discussion.

4. The Unpack phase corresponds to Step 7 in Figure 5. In this phase the
parties in Com perform local computation to unpack the received triples
into additively shared triples. This requires no communication, but requires
an IFFT and thus O(n log n) field operations for every n shares.

5. The Online phase corresponds to the online protocols described in Section 4.

5.3 Protocol Variants

We now describe several different protocol variants for realizing secure committee-
based MPC. For each of these variants, we analyze its asymptotic communication
and computation complexity. Additionally, for each of these protocol variants,
we analyze analogous committee-based protocols built on top of the existing
protocols [20,10,16], as described briefly in Section 1.2, to provide an apples-to-
apples comparison to our work. For ease of reference, we duplicate the tables
that appeared in Section 1.2 here.

Single Committee: The first protocol variant we consider is one that directly
follows the protocol specified in Figure 5. That is, we use a single committee Com
for performing both the unpack and online phases. We consider both a commit-
tee of size O(s), and the case where Com is the set of all n parties. In the former
case, the communication bottleneck (for the offline portion) is the cost for the
committee parties to receive the packed secrets. Since we have O(|C|/n) packed
secrets, with n parties holding a share of each, there are a total of O(|C|) shares
that need to be transmitted to Com. Using pseudorandom shares and amortizing
receiving cost, this requires each party in Com to receive O(|C|/s) field elements.
If, on the other hand, we let |Com| = n, then we can split the task of receiving
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Single Online, Single Unpack

Ours t < n/3 [20] t < n/2 [10] t < n [16]

Comm O(|C|/n) O(|C|) O(|C|) O(s|C|)
Comp O(logn|C|) O(logn|C|) O(log s|C|) O(s|C|)

Fig. 10. Asymptotic complexities for the offline phase of four protocols. In our variant,
and in that of [20], all parties participate throughout. In the other two protocols, the
state-of-the-art is run by a small committee: with an honest majority in column 4,
and a malicious majority in column 5. All values measure bottleneck costs, rather than
total costs. The online communication and computation cost for all four protocols is
O(C), and is not included.

these shares across all n parties, resulting in O(|C|/n) bottleneck communica-
tion. We note that in this case, this also matches the bottleneck communication
in the Vandermonde and Triple gen. phases. In both of these options, the bottle-
neck communication of the online phase is O(|C|): given multiplication triples,
evaluating a multiplication gate requires O(1) communication by each party in
Com. In both cases, the computation bottleneck arises from the unpacking step,
where the parties in Com need to unpack O(|C|/n) packed shares, each requir-
ing O(n log n) field operations (for FFT), resulting in bottleneck computation of
O(log n|C|) field operations.

It is worth exploring the trade-off here between bottleneck complexity and
total complexity. We have added Figure 11 to help do so. Because receiving shares
is a bottleneck, we lower the bottleneck complexity in the offline phase if we have
a bigger receiving committee. Put another way, using pseudorandom shares,
sending to a larger committee does not increase the total communication, but it
does distribute the cost of receiving that same data. On the other hand, when
we look at the cost of the online phase, computing in a smaller committee does
reduce the total communication. The question of which is preferable depends on
the application, and possibly on the incentive of the participants and the protocol
administrator. In some rough sense, a lower bottleneck complexity implies a
shorter run-time, while a lower total complexity implies a cheaper protocol,
financially. We note that the same comparison can be made for the protocol using
a single malicious majority committee in Figure 12, and for the two protocols
with malicious majority committees in Figure 13. We avoid the redundancy and
do not include the data in our figures.

For comparison purposes, we consider analogous protocol variants built from
existing protocols. First, consider the protocol of Furukawa and Lindell [20]
which is secure for t < n/3. Since we only have t < n/3, this protocol must
use all n parties for the entire computation resulting in an O(|C|) bottleneck
communication and O(|C| log n) computation (from the Vandermonde step). It
is easy to see that we achieve significant asymptotic savings in offline communi-
cation while matching the online communication and computation bottlenecks.
Second, consider the protocol of Genkin et al. [23]. This protocol also requires
t < n/3 and thus must use all n parties. However, this circuit works by convert-
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Single Online, Single Unpack

Offline Online

|Com| = n |Com| = O(s) |Com| = n |Com| = O(s)

Bottleneck Comm O(|C|/n) O(|C|/s) O(|C|) O(|C|)
Total Comm O(|C|) O(|C|) O(n|C|) O(s|C|)

Bottleneck Comp O(logn|C|) O(logn|C|) O(|C|) O(|C|)
Total Comp O(n logn|C|) O(s logn|C|) O(n|C|) O(s|C|)

Fig. 11. We compare two variants of our protocol that was described in Figure 12. In
the first column, the packed triples are re-shared with the full network, and unpacked
by all n parties. In the second column, the they are re-shared with a small, malicious
majority committee, and unpacked there.

ing the circuit C into a SIMD circuit at the cost of a O(log |C|) factor increase
in circuit size. This results in an offline and online bottleneck communication of
O(|C| log |C|/n), a O(log |C|) overhead on our protocols.

Next, we build a protocol using the honest majority (i.e., t < n/2) proto-
col from Chida et al. [10]. For this protocol we select random Com of size O(s)
that guarantees honest majority within the committee, and use this committee
for the entire computation. Since the Chida et al. protocol cannot take advan-
tage of pseudorandom share transfer, there is no benefit to using a committee
of size n. This results in a bottleneck communication of O(|C|) for both the of-
fline (i.e, Vandermonde) and online phases and O(|C| log s) computation (from
Vandermonde multiplication). We again significantly improve in the offline com-
munication. However, we are now slightly worse in bottleneck computation.

Finally, we consider a protocol variant using the malicious majority protocol
of Damgård et al. [16]. For this setting, we choose a committee of size O(s) to
guarantee at least one honest party and run both the offline and online phase
inside this committee. Here, the higher complexity of triple generation becomes
the bottleneck resulting in O(s|C|) bottleneck communication and computation
for the triple generation. This communication is worse than our protocol by a
factor of O(n). The online communication of O(|C|) matches our protocol.

Single Online, Distributed Unpack

Ours t < n/2 t < n

Comm O(s|C|/n) O(s|C|) O(s2|C|/n)
Comp O(s logn|C|/n) O(s log s|C|/n) O(s2|C|/n)

Fig. 12. In our protocol variant, triples are unpacked in many parallel committees, and
then transferred back to the full set of size n. Costs are measured through the transfer
step, and exclude the cost of the online phase. In the column labeled t < n/2, many
parallel committees, each with an honest majority, prepare double-sharings that will
be used by a single online committee of size O(s). In the column labeled t < n, many
parallel committees, each with at least one honest participant, generate multiplication
triples that will be used by the full network of size n. The online phase still requires
O(|C|) for all three protocols, and is not included in the Table.
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Distributed triple generation: We note that the bottleneck computation
cost of our protocol grows logarithmically in the number of parties. For our
protocol, this bottleneck comes from the cost of the unpacking phase. Thus,
our next protocol variant addresses this problem by distributing the unpacking.
Specifically, we elect many unpacking committees, each of size O(s) to guar-
antee at least one honest party per committee. These committees split the
triples to unpack, and then transfer the unpacked triples to the online com-
mittee (which can again be of size O(s) or include all n parties). Now each
unpacking committee only needs to unpack a O(s/n) fraction of the triples, re-
quiring O(|C|/n · s/n · n log n) = O(s log n|C|/n) field operations. However, we
now need to communicate unpacked triples to the online committee. Since there
are O(|C|) unpacked triples held by committees that are each of size O(s), we
need to receive a total of O(s|C|) shares. If we use a committee of size O(s), this
requires O(|C|) bottleneck communication, but if we use an online committee of
size O(n), this only requires O(s|C|/n) communication. We note, however, that
the total communication of the protocol (across all parties) does not decrease,
and in fact, increases for the online computation. However, we still believe that
presenting the bottleneck complexity is the correct metric here as it measures
the end-to-end computation time for running the protocol, whereas the total (or
average) communication is measuring the total monetary cost of running the
protocol.

We now describe equivalent protocol variants using the protocols of Chida
et al. [10] and Damgård et al. [16]. We do not provide further comparison to
Furukawa and Lindell [20] or Genkin et al. [23] as their protocols require t <
n/3 and thus cannot be used with smaller committees. For both of these base
protocols, the equivalent protocol variant is to elect many “offline” committees
that generate double-shared values (in the case of Chida et al.) or triples (in
the case of Damgård et al.) and then transmit this material to a single online
committee. For Chida et al., since this protocol cannot take advantage of the
pseudorandom share transfer, the cost of transferring the offline material forms
the bottleneck of O(s|C|) field elements, a factor of O(n) worse than our best
deployment. However, the ability to use smaller committees, each generating a
O(s/n) fraction of the pre-processing material, results in O(s log s|C|/n) field
operations bottleneck computation. While this computation is asymptotically
better than what we achieve, we note that, concretely, the two are quite similar.
Specifically, the O(s) size committee necessary to guarantee honest majority
is much larger than the committee needed to guarantee at least one honest
party. Concretely, for 2−40 security, a committee of size 25 suffices for dishonest
majority, but a committee of size 430 is needed to guarantee honest majority. In
comparing computation between these solutions, we need to compare O(s log n)
for dishonest majority to O(s log s) for the honest majority setting. For n < 2150,
25 log n < 430 log 430. Taking other constants into account, our protocol requires
roughly 2X more computation.

The equivalent protocol variant using Damgård et al. chooses many triple
generation committees of size O(s) and has them all transfer the produced triples
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to the online committee. Since there are O(n/s) such offline committees, each
one is tasked with generating O(s|C|/n) triples for bottleneck communication of
O(s2|C|/n), which is O(s) times worse than what is achieved by our protocol.

Distributed Online

Ours t < n/2 t < n

Offline Online Offline Online Offline Online

Comm O(|C|/n) O(s|C|/n) O(s|C|/n) O(s2|C|/n) O(s2|C|/n) O(s|C|/n)
Comp O(s logn|C|/n) O(s|C|/n) O(s log s|C|/n) O(s|C|/n) O(s2|C|/n) O(s|C|/n)

Fig. 13. Here we distribute the work done in the online phase, assigning O(s|C|/n)
gates to each of the O(n/s) committees. In all three protocols, the material generated
during pre-processing remains with the same committee for the online phase. The state
of the online phase is transfered from one committee to the next.

Distributed online computation: Finally, we note that the online cost of all
our protocols considered so far grows linearly with |C|, as parties in the online
committee must send O(1) bits for each gate. To improve on this, we design
a protocol that also distributed the online computation. Specifically, we elect
many online committees, each of size O(s) to guarantee at least one honest
party per committee. These committees split the gates of the circuit to evalu-
ate, with each committees responsible for an O(s/n) fraction of the gates. Of
course, the intermediate gate outputs must be communicated to the commit-
tee responsible for the next gate. Using pseudorandom share transfer, this can
be done with each party sending O(1) field elements per gate. Thus, each party
needs O(s|C|/n) communication for computing the gates it is responsible for and
the same amount of communication to transfer the results of these gates. We
note that this deployment also reduces the communication of the offline phase.
The reason for this is that we no longer need to transfer unpacked triples to a
single online committee, instead each unpacking committee serves as an online
committee using the triples it unpacks. Thus, the cost of transfer in the offline
phase disappears, and with triple generation and Vandermonde steps as the new
bottleneck, we get O(|C|/n) bottleneck communication. Since the computation
in the offline phase is unchanged, this remains O(s log n|C|/n).

For a comparison, we consider similar protocol variants built using the proto-
cols of Chida et al. [10] and Damgård et al. [16]. While we can similarly partition
the online phase in both these protocols, the advantages of doing so for Chida
et al. are limited. Since their t < n/2 protocol cannot take advantage of pseu-
dorandom share transfer, the cost to transmit the state between gates of the
circuit dominates, resulting in online communication of O(s2|C|/n), a factor of
O(s) worse than for our protocol. The Damgård et al. protocol, on the other
hand, can benefit from pseudorandom share transfer, and can thus distribute
their online phase at the same communication cost as our protocol. However, in
their offline phase, the cost of triple generation becomes the bottleneck requiring
communication of O(s2|C|/n), which is O(s2) times worse than our offline cost.
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1 mbps 10 mbps 100 mbps 1000 mbps
n Ours DN Ours DN Ours DN Ours DN

1024 8898.0 384380.2 1366.2 39286.2 613.0 4776.8 539.6 1325.9
4096 2248.3 85541.2 369.6 8769.4 181.7 1092.2 162.9 324.5

16384 571.0 20274.3 101.6 2086.5 54.7 267.7 50.0 85.8
65536 144.9 5071.6 27.5 524.3 15.8 69.6 14.6 24.1

262144 36.8 1266.5 7.5 131.5 4.6 18.0 4.3 6.7
1048576 9.4 316.6 2.0 33.1 1.3 4.8 1.2 1.9

Ratio 33.8 - 43.2 16.2 - 28.8 3.6 - 7.8 1.6 - 2.5

Ratio Per Gate 9.7 - 12.3 4.6 - 8.2 1 - 2.2 .5 - .7

Fig. 14. Ours vs. Damgård-Nielsen Pre-Processing Time. This describes the time, in
milliseconds, for n parties to generate one million (unauthenticated) triples (for our
protocol) or doubly-shared random values (for DN) as used by Chida et al. [10]. For
both we use the multiple unpacking committees protocol. Times are given for four
different network bandwidths from 1mbps to 1000mbps. The ratio is a range of ratios
between DN and our protocol. In the final row, we consider the fact that the online
phase of Chida et al. requires only 2 unauthenticated triples per gate, whereas our
online phase requires 7 unauthenticated triples per gate.

The computational load for the distributed online protocol is the same as in the
distributed unpacking protocol regardless of which of the three protocols is used
as the building block. Thus, in the distributed online variant, our protocol is
strictly better than the variants based on either existing protocol, achieving a
factor of at least O(s) improvement in communication in both the online and
offline phases for Chida et al., and in the offline phase for Damgård et al.

Triples as a service: A related protocol variant that we wish to mention briefly
is that of triples as a service. Here, our protocol would be used to produce triples,
distributed across multiple unpacking committees, for use by external parties for
their online MPC computation. In this case, we do not need to pay the cost for
transferring the triples to the clients or for the online phase. Thus, looking at
only the offline costs for our optimal deployment (the distributed online one),
we see that for this variant we save a factor of O(s) and O(s2) in communication
costs over Chida et al. and Damgård et al. respectively.

6 Concrete Performance Estimation

In Section 5 we analyzed the asymptotic performance of our protocols and com-
pared them to committee-based protocols. Here we look at how these protocols
might perform in practice, taking into account the constants hidden in the big-
O notation, and the incomparable nature of communication and computation.
To better understand the concrete performance comparison, we built a proto-
type to estimate computation and communication time for two of the protocol
variants previously described: our own protocol using distributed unpacking and
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distributed online evaluation, and the comparable protocol that uses parallel
honest majority committees for pre-processing (labeled t < n/2 in Figure 13).

In both cases, we only measure the performance of the offline phase, as we
view this as our main contribution. Additionally, the offline phase of the dis-
tributed online protocol is precisely what is needed for the triples-as-a-service
application.

We also do not compare to the cost of parallel triple generation using mali-
cious majority committees. Asymptotically, this protocol is worse than the vari-
ant using honest majority committees, in both communication and computation
(Table 13). When considering the concrete costs reported in Overdrive [32], it
seems to compare less favorably than the honest majority protocol that we have
chosen for comparison. Also important is that the protocol we implemented looks
similar to our own (since both rely on DN). Nevertheless, a concrete comparison
with malicious majority committees would be interesting to add in the future.

6.1 Measurement Details

To estimate the performance of these protocols, we use different techniques for
computation and communication. For computation, we implement and run a
single party doing the full computation of our protocol to give an accurate es-
timate of the bottleneck complexity. This is done using the implementation of
FFT from the libiop library [1]. All experiments were performed on a machine
with a dual core i7 cpu at 2.80GHz.

To estimate the cost of communication, we took a somewhat different ap-
proach. Since we do not have access to millions of compute nodes, instead of
building a full, networked test of our protocol, we precisely calculated the nec-
essary communication at each step, and estimated the communication time as
a function of the network bandwidth and latency. For this evaluation, we varied
the available bandwidth between 1 mbps, 10 mbps, 100 mbps, and 1000 mbps.

6.2 Results

The results of our empirical evaluation are given in Figure 14 where we report the
time (in milliseconds) needed to produce one million (unauthenticated) triples.
Recall that our offline protocol generates unauthenticated triples, and we need 7
such triples for each gate in the online phase. In contrast, protocols using honest
majority in the online phase require only 2 unauthenticated triples per gate.
In the row labeled “Ratio Per Gate” we provide estimates with this distinc-
tion in mind. In the remainder of the Table, we consider the costs of generating
unauthenticated triples. At the top end of our performance, with approximately
1, 000, 000 parties on a 1000 mbps network, we can generate one million triples
in only 1.2 milliseconds. But, our best performance improvement over honest
majority committees is on lower bandwidth networks, where we can outperform
their pre-processing protocol by as much as 43.2X, and 12.3X when considering
authenticated triples. This is due to the fact that our biggest improvement is in
communication, at a slight cost in computation. We note that when considering
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deployment of MPC across tens or hundreds of thousands of parties, it is quite
unlikely that all parties will have access to a high-speed (e.g., 1000 mbps) net-
work connection. For example, 4G LTE offers roughly 10 mbps. For synchronous
protocols such as ours, the bandwidth and latency of the slowest party becomes
that of all parties. Thus, we believe that our results for lower network speeds
more closely represent the use-cases we envision.
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A Proof of Theorem 3

Theorem 3. The protocol ΠTripAuth securely realizes FTripAuth in the Ftriple-hybrid
model, in the presence of an active adversary corrupting all but one party.

Proof. We first provide the description of a simulator S. S starts by querying
FTripAuth, and receives shares of [α], [ai], [bi], [ci], [aiα], [biα], [ciα]. Then,

1. S simulates Frand using [α]. It generates and stores random shares for the
honest parties.

2. S simulates Ftriple by running the code of the functionality, and using [ai],
[bi], [ci] for the adversary’s output. It also simulates and records the honest
output. If A provides a δ to Ftriple, S reflects that value in the adversary’s
output by modifying the shares of ci.

3. S simulatesMult by running the code of the functionality, and using [α], [aiα],
[biα], [ciα] for the adversary’s output. S also simulates and records the honest
output. If A modifies (the sum of) its shares of [α], [ai], [bi], [ci] when pro-
viding input, then S reflects that change in the adversary’s output shares.

4. S completes the simulation by running the code of the honest parties, and
the functionality Frand.

We claim that the joint distributions over the adversarial view and the hon-
est output, are statistically close in the real and ideal worlds. First, we make a
simple observation: since the simulator runs the protocol honestly, the marginal
distributions defined by the views of the adversary in each world are identical.
Furthermore, the simulator aborts if and only if the honest parties would abort
in the real world. We therefore only consider executions that do not end in abort.
In such cases, note that in the ideal world the joint distribution always consti-
tutes a “good authenticated triple”, (a, b, c, ãα, b̃α, c̃α), where the following two
properties hold. 1) ãα· b̃α = c̃α2, and 2) ã and b̃ are uniformly and independently
chosen from F.15

15 Note that we do not insist that a = ã, b = b̃, c = c̃. There is no need to insist on this,
because the adversary can change his shares of (a, b, c) at anytime, including during
the online computation. This is true for all schemes using authenticated triples based
on additive secret sharing.
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We now argue that, assuming the protocol completes without abort, the same
properties hold in the real world, except with negligible probability. Since the
adversary can produce an additive change to the inputs to Mult by modifying
his own shares, we denote such changes by δ with subscripts to indicate which
input is modified. We denote the outputs of Mult in Step 2 by:

[ãα] = [(a+ δa)(α+ δα,a)],

[b̃α] = [(b+ δb)(α+ δα,b)],

[c̃α] = [(c+ δc)(α+ δα,c)],

[ã′α] = [(a′ + δ′a)(α+ δ′α,a)],

[b̃′α] = [(b′ + δb′)(α+ δα,b′)],

[c̃′α] = [(c′ + δ′c)(α+ δ′α,c)]

noting that, regardless of the values of δ chosen by the adversary, there exist
some ã, b̃, c̃, ã′, b̃′ and c̃′ for which the above equalities hold. Our proof follows
from the following sequence of claims.

Claim. If ãb̃ ̸= c̃, or ã′b̃′ ̸= c̃′, then Pr[γ = 0 |] ≤ 2
|F| .

Proof. Note

[γ] = r[c̃α]− [c̃′α]− b[ã′α]− a[b̃′α]− ab[α]

=
[︁
α
(︁
rc̃− c̃′ + ã′b̃′ − rãb̃

)︁]︁
=

[︁
α
(︁
r
(︁
c̃− ãb̃)− (c̃′ − ã′b̃′

)︁)︁]︁
So, if γ = 0, we have α = 0, or r = (c̃′−ã′b̃′)

(c̃−ãb̃)
. Since the adversary chose

(ã, b̃, c̃, ã′, b̃′, c̃′) before r was chosen, the probability that the latter relationship
holds is |F|−1. The claim follows from a union bound on these two events.

Claim. The real world distribution over (ã, b̃) is statistically close to uniform.

Proof. Note that if δa = −a, or if δα,a = −α, then ã = 0. The probability of

this occurring is at most 2
|F| . (The same argument holds for b̃ and c̃.) However,

conditioned on ã ̸= 0, ã is uniformly distributed over the remaining values of F.
It follows that the statistical distance from uniform is O( 1

|F | ).
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