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Linear and nonlinear mechanical responses can be
quite different in models for biological tissues†

Preeti Sahu, ‡a Janice Kang,‡b Gonca Erdemci-Tandogan ac and
M. Lisa Manning *a

The fluidity of biological tissues – whether cells can change neighbors and rearrange – is important

for their function. In traditional materials, researchers have used linear response functions, such as the

shear modulus, to accurately predict whether a material will behave as a fluid. Similarly, in disordered

2D vertex models for confluent biological tissues, the shear modulus becomes zero precisely when the

cells can change neighbors and the tissue fluidizes, at a critical value of control parameter s0* = 3.81.

However, the ordered ground states of 2D vertex models become linearly unstable at a lower value of

control parameter (3.72), suggesting that there may be a decoupling between linear and nonlinear

response. We demonstrate that the linear response does not correctly predict the nonlinear behavior

in these systems: when the control parameter is between 3.72 and 3.81, cells cannot freely change

neighbors even though the shear modulus is zero. These results highlight that the linear response of

vertex models should not be expected to generically predict their rheology. We develop a simple

geometric ansatz that correctly predicts the nonlinear response, which may serve as a framework for

making nonlinear predictions in other vertex-like models.

1 Introduction

The rheological properties of a biological tissue – how a tissue
responds to stresses and strains – and the regulation of
such properties are crucial for many biological processes. For
example, mature skin tissue typically behaves like an elastic
material, where cells maintain their neighbors and the tissue
returns to its original shape after being stretched, just like a
solid. However, in processes like wound healing, individual
cells can change neighbors and migrate over long distances3,4

just as in a fluid. Tissues that transition between solid and fluid
states have recently been shown to play an important role in
development5 and disease.6 Thus, we would like to understand
how the emergent material properties, such as the rheology, of
the tissue are determined and regulated.

In traditional materials, the rheology of a material is usually
characterized by a linear response variable, such as the shear
modulus that describes how the mechanical stress in the

material changes in response to a very small strain. More
recently, it has been recognized that some biological materials
behave very differently when they experience large strains
instead of small strains. For example, extracellular matrix
stiffens by several orders of magnitude when strained past a
critical threshold.7 In addition, it has recently been shown that
models for heterogeneous confluent epithelial layers, with
two cell types and an interfacial tension between them, has
non-analytic cusps in the potential energy landscape so that the
linear and nonlinear response are completely decoupled.8 Both
of these observations suggest that we should not necessary
expect the linear response of a biological tissue to predict its
nonlinear response.

Biologists and biomedical engineers are often interested in
processes that involve very large strains, such as convergent
extension to elongate the body of a developing embryo, or cells
moving over tens or hundreds of cell diameters to close a
wound. Therefore, it is important to understand whether the
standard tools of linear response are valid in these systems,
and if not, develop new approaches to predict the nonlinear
response.

To explore this question further, we focus on homogeneous
confluent epithelial monolayers composed of a single cell type.
Vertex models represent these tissues as a 2D network of edges
and vertices, and associate a mechanical energy with the shape
of each individual cell in a tessellation. Such simple models
have been surprisingly successful at describing the statistics
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and behavior of many biological tissues.1,9–12 The mechanical
energy associated with cell shape is based on experimental
observations in cell doublets and triplets: cells with more
cadherin-based adhesion tend to share longer joint interfaces,
while those with higher cortical tension tend to have smaller
shared interfaces.13,14 In all of this work, an important control
parameter of the model is the dimensionless cell shape index
s0, which is the ratio between the cell’s cross-sectional peri-
meter and the square root of the cell’s cross-sectional area.

The next step is to understand how cell shapes influence the
large-scale rheological properties. Within the framework of
vertex models, Farhadifar et al.1 and Staple et al.2 performed
a beautiful and comprehensive investigation of the linear
response of ordered tessellations, which are the ground states
of the vertex model. They demonstrated that the shear modulus
of ordered ground states of the 2D vertex model disappear for
all shapes with s0 4 3.722 = shex, the perimeter to area ratio of a
regular hexagon. In other words, the energy landscape is flat
with respect to small perturbations for s0 4 3.722. However,
these works did not investigate the nonlinear response – how
cells rearrange and change neighbors at larger strains.

In a confluent tissue with no cellular proliferation or death,
the only way for a cell to change neighbors and diffuse over large
distances is to make a series of topological rearrangements, or
T1 transitions. During this process, an edge between two cell
shrinks to zero length and then a new edge grows between two
new cells, as illustrated in Fig. 1(a)–(c). Many such exchanges
lead to cell diffusion. Therefore, an important parameter that
controls the nonlinear response of the tissue is the height of the
mechanical energy barrier associated with a T1 transition.

Work by Bi et al.15 on homogeneous disordered tessellations of
cells demonstrated that the T1 energy barriers’ height depends

sensitively on the target shape index (s0) of cells. For the 2D vertex
model, this energy barrier vanishes if for cells with shape para-
meter s0 4 3.81. In addition, a careful numerical analysis showed
that the shear modulus also vanishes at the same critical value of
3.81, which is different from the critical value of 3.722 identified
in the ordered systems.

This presents an interesting open question, which is – what
is the nature of the nonlinear mechanical response of ordered
tissues? One possibility is that the energy barriers also vanish
for s0 4 3.722, similar to the scenario in jammed particulate
matter, where there is an ordered and disordered branch to the
equation of state and linear response is highly predictive of
nonlinear response.16 An alternate possibility is that the energy
barriers for ordered tessellations vanish at some other value
of s0, indicating a decoupling between the linear and nonlinear
response.

Understanding this point is important for several reasons.
First, there are several examples where formation and main-
tenance of ordered 2D tessellations are important in biology,
including the fruit fly wing,17 the sensory hairs in cochlea,18 and
lens fibre cells in the vertebrate eye.19,20 In addition, scientists are
investigating extensions to vertex models such as non-confluent
systems,21,22 and vertex models with additional signaling-based
dynamics.23,24 Therefore, it is important to understand whether
we should generically expect a strong correlation between
linear and nonlinear response in these extended models, or if
the correlation observed the simplest disordered homogeneous
vertex model may be a special feature unique to that model.

In this work we quantify the energy barriers to T1 transitions
in an ordered tissue. We find that although tissues with
s0 4 3.722 are linearly unstable, T1 transitions cost finite
energy up to s0* = 3.81, due to cusps in the potential energy
landscape along those trajectories in configuration space. This
establishes that the linear and nonlinear response of ordered
tissues are decoupled – cells cannot change neighbors even
though the linear response indicates the tissue is floppy.
To go beyond linear response, we develop a simple, mean-field
geometric construction that describes this process and correctly
quantitatively predicts features of nonlinear stabilization, and
discuss implications for extensions of vertex models.

2 Model and methods

To find the transition point based on T1 energy barriers, we simulate
a 2D confluent monolayer using a Vertex model.1,2,9,10,15,25–28

Vertex models describe the energy of a 2D tissue containing
N cells as

E ¼
XN
j

KAj Aj � A0j

� �2þKPj Pj � P0j

� �2
: (1)

Here the first term represents cell volume incompressibility,
and Aj and A0j are the actual and preferred areas of cell j. The
second term models actomyosin contractility and adhesion
between the cells, where Pj and P0j are the actual and preferred
perimeter of cell j. KAj and KPj are the area and perimeter

Fig. 1 Energetics of an ordered T1 transition: (a) A T1 edge, highlighted in
red, at its rest length, (b) the T1 edge shrinks to zero length (c) the T1 edge
rotates by 901 and is then expanded. (d) A typical energy profile across the
T1 transition plotted with respect to the T1 edge length l during T1 junction
remodelling, for s0 = 3.71, 3.72, 3.73 and 3.75 (light red to dark red). The T1
energy barrier for the lowest s0 is the peak height (highlighted in blue
vertical line).
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moduli, respectively. We consider the homogeneous case where
all single-cell properties are equal (KAj = KA, KPj = KP, A0j = A0,
P0j = P0). The energy functional in eqn (1) can be non-
dimensionalized in length

ffiffiffiffiffiffi
A0

p
resulting an effective target

shape index s0 ¼ P0

� ffiffiffiffiffiffi
A0

p
which has been shown to control

rigidity or glass-like transitions in such systems.15

Cell neighbor exchanges happen through T1 transitions.
A typical T1 process is shown in Fig. 1(a)–(c). As the T1 edge l
shrinks from its rest length, l0, (Fig. 1(a)), it eventually achieves
a transition state at l = 0 with a 4-fold vertex where all 4 cells are
neighbors (Fig. 1(b)). This is followed by a 901 reorientation of
the T1 edge and expansion along the new direction (Fig. 1(c)).
We find that the mechanical energy of the tissue is maximized
at the transition state with the 4-fold coordinated vertex. As in
previous work, we describe the difference between the initial
energy and maximum energy as an energy barrier that must
be overcome for cells to change neighbors. In analogy with
activation energies required for diffusion in Arrhenius processes,
we can then think of the T1 edge-length (l) as a reaction
coordinate.15,29

We focus on the first part of the T1 process for the rest of
this paper, as this is sufficient to compute the energy barrier
(shown in blue vertical line in Fig. 1). We choose the sign
convention as positive for this part of the transition, which is
different from the convention used for l in work that studies
both sides of the transition.15

The difference between the peak energy Ef and the initial
energy Ei gives the T1 energy barrier (Fig. 1 vertical line in blue),

DE(l) = Ef � Ei = E(l) � E(0). (2)

For the bulk simulations, we use the open source cellGPU
code.30 A FIRE minimization protocol31 is used for bulk energy
minimization. The initial FIRE step, dt, is set to 0.01. The T1
protocol is such that a T1 transition forms whenever the
distance between two vertices is less than a critical value, lc.
We chose lc = 0.006 for the ordered tissue simulations.

As discussed in the ESI,† we apply the same procedure to
compute the transition point in disordered systems. Unlike
ordered systems, which have a unique hexagonal initialization,
in a disordered systems we average the energy barrier profile
over different initializations. See the ESI† for more details.

Recent work32 has shown that the transition point in vertex
models is unaffected by the choice of KA. Here, we choose KA =
100, which enforces that cells remain close to their preferred
area A0 = 1.

2.1 Many-cell system

To test the transition point of ordered tissues subject to a specific
non-linear perturbation, we construct a rectangular periodic box
that can accommodate an integer number of hexagons, with a

length-to-width ratio of
3m

2
ffiffiffi
3

p
n
; wherem is the number of hexagons

along the vertical axis and n is the number of hexagons along the
horizontal axis. We investigate small systems with N = 90 such
that n = 9 and m = 10, simulated using cellGPU code.

A random edge of the ordered confluent tissue is chosen to
undergo a T1 transition, and the energy profile is analyzed
across different s0 values. A typical T1 edge, with its neighbour-
hood, is shown in Fig. 2(a) along with energy profiles for
different s0 values (Fig. 2(d)). For values of s0 o 3.722, any
perturbations of edge lengths costs finite energy, as illustrated
by the red curve in Fig. 2(d). For values of s0 4 3.722, we find
that small perturbations of l require zero energy as previously
predicted1,2 using linear response. This is indicated by values
of E(l) near zero on the left-hand side of Fig. 2(d). A similar
transition can be seen by studying the normal modes of the
system. We find that the number of nontrivial normal modes
with zero frequency (i.e. ‘‘zero modes’’, Fig. SI2, ESI†) is zero for
s0 o 3.722 and immediately rises to 3N, where N is the number
of cells in the tesselation, for s0 slightly above 3.722.

But as the T1 process proceeds further, the energy becomes
finite at a critical lengthscale l*. In practice, we identify l* as
the point at which the energy first rises above a cutoff value of
10�7 shown by the dashed yellow line in Fig. 2(d). We find
that l* diminishes with increasing s0, and drops to zero at
s0* = 3.81, which is the same value identified in disordered
systems, as shown in Fig. 2(e). We note that the lowest value
of l* accessible in our simulations is limited by the T1 thresh-
old length, lc = 0.006.

We focus on T1 processes for the transition path through
configuration space because they are simple to parameterize
and correctly capture the rigidity transition in disordered
systems.15 However, there are other possible transition paths,
including one of the 3N nontrivial zero modes identified by a
normal mode analysis. However, a visual inspection of these
modes shows no obvious spatial structure (Fig. SI2(a), ESI†) and
because there are so many modes with the same degenerate

Fig. 2 Many-cell energy profile: (a–c) a snapshot from an ordered tessel-
lation of 90 cells with s0 = 3.76. A randomly chosen edge (highlighted in
red), shrinks to zero length (left to right as directed by the arrows). (d) In this
process, the total energy of the tissue, E, is plotted against the shrinking T1
edgelength l for increasing values of s0 (3.72 to 3.81 in steps of 0.01
and 3.810 to 3.825 in steps of 0.001) varying from red to green. The energy
cut-off is shown by yellow dash-dot line. (e) The critical edgelength l*
associated to the cut-off shown in (d) is plotted for each s0 value in yellow
circles. The dashed line indicates critical s0* found for disordered tissues.

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
7 

Ja
nu

ar
y 

20
20

. D
ow

nl
oa

de
d 

by
 S

yr
ac

us
e 

U
ni

ve
rs

ity
 L

ib
ra

rie
s o

n 
4/

21
/2

02
2 

1:
17

:2
6 

PM
. 

View Article Online

https://doi.org/10.1039/c9sm01068h


This journal is©The Royal Society of Chemistry 2020 Soft Matter, 2020, 16, 1850--1856 | 1853

eigenvalue (where any linear combination of them would also
be a zero mode), an exhaustive search of these possibilities is
beyond the scope of this work. Nevertheless, we find that as we
execute a T1 trajectory, the number of zero modes starts
to decrease precisely at the cusp in the energy landscape
Fig. SI2(c) (ESI†), suggesting that some zero modes start to cost
finite energy at that point in configuration space.

Our data is consistent with the hypothesis that the energy
landscape is locally flat in many directions for s0 4 3.772, but
that any finite displacement in configuration space will cost
finite energy if the displacement is large enough. More work to
study many paths in configuration space would be required to
confirm this hypothesis.

2.2 Single cell prediction

In both many-cell and 4-cell systems (Fig. SI1, ESI†), the ordered
polygons that undergo a T1 transition start out as perfect
hexagons but become pentagons as the edgelength (l) shrinks
to zero (Fig. 2(c) and Fig. SI1(c), ESI†). For disordered systems,
the formation of a pentagon was proposed as a mean-field lower
bound on the T1 transition point previously by Bi et al.15

Here we construct a simple geometric ansatz to predict the
T1 edgelength (l*) at which the energy barrier becomes non-
zero. We restrict ourselves to study a polygon whose vertices lie
on a circle of radius R (Fig. 3(a)). This constraint is a simple way
to enforce that the polygon remains roughly isotropic, consis-
tent with our observations from simulations. To model the
ordered case, we enforce that the polygon has six sides, one of
which is constrained to shrink and subtends an angle y at the
center. We assume the remaining sides adjust themselves to be
of equal length, which minimizes the remaining perimeter
subject to having one constrained edge, as illustrated in Fig. 3.

In the ESI† we show that the minimum energy geometry in
numerical simulations is slightly more complex than our
simple ansatz, because the non-T1 sides of the polygon have
two different edgelengths instead of one. On the other hand, if
we compare the equal-edge assumption to a generalized ansatz
(Fig. SI3, ESI†), the simplest one-edgelength assumption gen-
erates a lower bound on the transition length l* (see Fig SI4,
ESI†) that is highly predictive, as shown below.

We can then study the perimeter change of this polygon as it
transforms from a uniform hexagon to a uniform pentagon. We

constrain the area of the polygon to unity to account for
incompressibility of cells.

The area of the polygon can be written in terms of the area of
six triangles that make up the polygon. Five of them are
congruent to each other, since they subtend the same angle a
at the center and the sides are of length R (triangle Da, labelled
in violet in Fig. 3). The leftover triangle subtends angle y at the
center and will be referred to as Dy.

The area constraint ensures 5Ar(Da) + Ar(Dy) = 1. Substituting
the area in terms of angles and radius R, the radius of the circle
is determined as a function of y:

RðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

sinðyÞ þ 5 sinðaÞÞ

s

where y + 5a = 2p.
Adding all the edgelengths, the total perimeter P,

of the polygon is PðyÞ ¼ 2RðyÞ sinðy=2Þ þ 5 sinða=2Þf g ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

sinðyÞ þ 5 sinðaÞ

r
2 sinðy=2Þ þ 5 sinða=2Þf g:

For this T1 process, the edge facing y mimics the T1 edge
that shrinks to zero as shown in Fig. 4(a). This T1 edge-length
can be easily determined from y as l(y) = 2R(y)sin(y/2).

For a cell of unit area the total vertex energy depends only
on the deviation of the perimeter from its target value. The
target perimeter equals the actual perimeter when the angle
y* associated with a T1 edgelength l* satisfies the following
analytic equation:

P y�ð Þ ¼ P0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

sin y�ð Þ þ 5 sin a�ð Þ

s
2 sin

y�

2

� �
þ 5 sin

a�

2

� �� 	
: (3)

Fig. 3 A geometric mechanism for formation of a uniform pentagon: the
6-sided polygon has five sides equal to each other and one that is allowed
to be different subjected to the constraints that the polygon lies on a circle
and its area remains unity. The angles correspond to two different types of
sides (a and y) are highlighted in pink and green.

Fig. 4 Single-cell energy profile: (a–c) for a single cell inscribed on a
circle, the T1 edge (highlighted in red) shrinks to zero length (right to left as
directed by the arrows). (d) In this process, the total energy E is plotted
against the shrinking T1 edgelength l, for increasing values of s0 (3.72 to
3.81 in steps of 0.01) varying from red to green. (e) The critical edgelength
l* associated to the drop shown in (d) is plotted for each s0 value in blue
dot-dashed line. The blue dashed line indicates critical s0* found for
disordered tissues.
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For each value of P0, this equation then identifies the l* at
which the energy barrier goes to zero, as shown in Fig. 4(d).
These results are quantitatively consistent with the results for
l* for the 4-cell and bulk simulations, demonstrating that a
very simple geometric ansatz predicts the onset of nonlinear
stabilization in the ordered vertex model. All the models exhibit
very similar behavior, as shown in Fig. 5, with l* dropping to
zero when l* B 3.81.

3 Discussion and conclusion

We have demonstrated that the ordered ground states of the
frequently-used 2D vertex model for biological tissues are stable
with respect to localized cell rearrangements when the target
shape parameter s0 is between 3.72 and 3.81. This is surprising,
as previous analytic calculations for the linear response high-
lights that the ordered states become linearly unstable for all s0
values greater than 3.72.1,2

We demonstrate this nonlinear stabilization in a full simu-
lation of the vertex model, and also in two toy models, one of
which is analytically tractable. In all three models, we find that
for values of s0 between 3.72 and 3.81, small perturbations to
the structure cost zero energy, in line with previous calculations
of linear response. However, there is a finite scale of perturba-
tion at which the energy suddenly becomes non-zero. In ordered
systems, we characterize this behavior in terms of the edge-
length l* at which the energy first becomes non-zero, and find
that l* decreases monotonically from the ordered edge length
l0 at s0 = 3.72 to zero at s0 B 3.81. In the simplest analytically
tractable and purely geometric model, we see that l* vanishes
precisely at s0 B 3.81 because that is the point at which an
isotropic pentagon costs zero energy.

As discussed in the ESI,† a very similar analysis can be
performed on disordered configurations of the 2D vertex
model. While the data is noisier due to the disorder in edge
length, it is clear that in disordered tissues the smallest values
of l* remains on the order of the average edge length in

the tissue for all s0 o 3.81, and drops precipitously to zero
for s0 4 3.81. This Heavyside-function-like behavior is consis-
tent with the hypothesis that disordered tissues also destabilize
when it is possible for an isotropic pentagon to form at zero
cost, as postulated previously.15 An interesting direction for
future work would be to carefully characterize how the statistics
of short edge-lengths and l*s vary as a function of system
size and model parameters in disordered systems, extending
previous work demonstrating the importance of edge length
statistics to rigidity in Vertex models.33

Overall, this result is interesting because it suggests that
unlike particulate glassy materials, where there are two branches
to the equation of state associated with ordered and disordered
states,16 vertex models are ultimately destabilized at the same
point (or at least very nearly the same point) on the state
diagram, at s0 B 3.81, regardless of the degree of disorder.

This deep connection between ordered and disordered states
is only possible because the potential energy landscape of vertex
models is non-analytic, or ‘‘cuspy’’. Unlike most particulate
matter, in vertex models there is a decoupling between the linear
response and the non-linear response. In this specific case, the
energy landscape for the ordered tissue is perfectly flat in a ball
of radius l0 � l* from the ordered ground state, and then rises
sharply from zero starting at l*. This cuspy landscape has already
been identified and implicated in other processes in 2D vertex
models, including unexpectedly sharp interfaces between two
tissue types.8 In that work, it was demonstrated that the cuspy
landscape is independent of the exact form of the model
(i.e. Vertex vs. Voronoi). It was also argued that we should expect
non-analytic behavior in any model with topological interactions
between cells, where neighbors are defined as those that share an
edge, instead of metric interactions, where neighbors are defined
by how far apart they are. Additional work by some of us confirms
that many types of models with topological connections, including
underconstrained fiber networks, exhibit universal behavior
governed by an underlying geometric incompatibility.34 Therefore,
it is interesting to conjecture that any model with topological
interactions, such as those for bird flocks and certain biomimetic-
and meta-materials, might have similar features with deep connec-
tions between ordered and disordered states.

Another hint at this deep connection comes from beautiful
work by Moshe et al.,35 who develop an analytic model based
on intrinsic metrics for periodic vertex lattices. In that work,
they focus on an elastic model with no rearrangements where
deformations from target metrics are quadratically penalized,
and they predict from first principles that for s0 4 3.72, the
energy landscape in the space of metrics is also perfectly flat. It
would be interesting to see if extensions of that framework
might be able to account for nonlinearities, and perhaps find
some non-analyticity in the space of metrics, in order to explain
non-linear stabilization in real space. If possible, our work
suggests that may be a productive path towards a first-
principles prediction of rigidity in a disordered system, which
would be very exciting.

A related manuscript that also highlights the importance of
flat energy landscapes in ordered and disordered cellular

Fig. 5 Non-linear stabilization seen in ordered bulk systems can be pro-
duced in 4-cell system and single cell model: critical edgelength l* plotted
against s0 is superimposed for both-many-cell (green circles) and 4-cell
systems (magenta circles). In addition, the analytical prediction from the
geometric mechanism explained in the text is shown in blue dashed line.
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systems is the work by Noll et al.36 on isogonal modes in force-
balanced tension networks. In that work, a different version of
the vertex model, without a P2 term in the energy functional to
act as a restoring force, is coupled with myosin dynamics. The
form of feedback chosen to model the myosin dynamics, which
has recently been confirmed in experiments on fruit flies,23

introduces a different type of restoring force that permits
mechanically stable cellular networks. Although their myosin-
feedback model and our standard ordered vertex model both
possess zero-energy linear modes, their zero modes must be
angle-preserving while perturbations associated with our T1
transitions explicitly change angles. Given this, it would be
interesting to study how the functional form of restoring forces
in the energy functional for vertex models impacts the linear
and nonlinear stability of cellular networks.

Finally, this work focuses on vertex models in the absence of
fluctuations, i.e. at zero temperature. An interesting future direc-
tion would be to study how the effective linear response and
nonlinear stability changes as a function of temperature or self-
propulsion. For example, in ordered systems with 3.72o s0o 3.81
one might expect that at low temperatures, fluctuations typically
remain small and only probe the linear regime with no shear
modulus. At higher temperatures fluctuations would regularly
probe the nonlinear response, so the effective linear response
has a finite shear modulus. Moreover, active or driven fluctuations
with a persistence time would sample these non-linear regions in
different ways, perhaps leading to very rich behavior.

Given the existence and importance of ordered cellular
networks in epithelial layers in developmental systems ranging
from fruit flies to vertebrates, our results might impact how we
think about their form and function. Specifically, we suggest
that the mechanical properties of such tissues are quite exotic,
with interesting nonlinearities and possible fluctuation-
induced solidification. We speculate that perhaps some biolo-
gical tissues tune themselves to take advantage of these inter-
esting properties and functions.
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