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Each state in the USA exhibited a unique response to the COVID-
19 outbreak, along with variable levels of testing, leading to
different actual case burdens in the country. In this study, via per
capita testing dependent ascertainment rates, along with case
and death data, we fit a minimal epidemic model for each state.
We estimate infection-level responsive lockdown/self-quarantine
entry and exit rates (representing government and behavioural
reaction), along with the true number of cases as of 31 May 2020.
Ultimately, we provide error-corrected estimates for commonly
used metrics such as infection fatality ratio and overall case
ascertainment for all 55 states and territories considered, along
with the USA in aggregate, in order to correlate outbreak
severity with first wave intervention attributes and suggest
potential management strategies for future outbreaks. We
observe a theoretically predicted inverse proportionality relation
between outbreak size and lockdown rate, with scale dependent
on the underlying reproduction number and simulations
suggesting a critical population quarantine ‘half-life” of 30 days
independent of other model parameters.

1. Introduction

The COVID-19 pandemic began in Wuhan, China and spread
rapidly throughout the world in early 2020 provoking a wide
range of interventions. China gained rapid control of its
epidemic, probably due to its rapid and strict lockdown as
discussed in several studies [1-3], in contrast to several other
countries with slower and less unified efforts. In particular, the
USA employed a heterogeneous response, with different scales of
quarantine measures (stay-at-home orders and business closures),
despite the first reported case of COVID-19 occurring on 21
January 2020 in Washington state and cases being reported in all
50 states by mid-March [4]. Furthermore, each state displayed
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distinct exit strategies and lockdown fatigue, and corresponding fatigue half-life (time until 50% of
population which has entered self-quarantine/lockdown returns to normalcy) even though cases never
were brought down to low levels on a national scale. Another feature of the US response was variable
testing through time and by state, growing from sparsely to more widely available tests, leading to
distinct increasing trends of case detection.

Each state represents distinct realizations of how different response characteristics and case ascertainment
correlated to true case burden in the United States, which provides fertile ground for testing outbreak
containment strategies. However, successfully fitting an epidemic model to this heterogeneous response
exhibited in the first wave COVID-19 outbreak in the USA presents a number of challenges. The
multitude of epidemic curve shapes induced by the distinct dynamic behavioural and government
interventions can lead to issues of over-fitting or a large number of parameters that blur the most
important factors [5]. In addition, the unknown true number of cases calls for methods to incorporate
testing, mortality or other sources of data (e.g. seroprevalence studies), which is complicated by changing
quantities, such as detection [6-8], or antibody levels [8]. Here, we focus on a unified model both simple
and flexible enough to fit the wide range of COVID-19 outcomes in the USA (to 31 May 2020), which
incorporates the critical factors in epidemic trajectory. Furthermore, we construct an appropriate per capita
testing dependent ascertainment rate calibrated with mortality data to both allow more accurate model
fits and provide a means of estimating the actual number of cases.

The wide range of (self) quarantine responses in the different states and resultant outcomes allow us to
analyse potential responses to future outbreaks using correlation and sensitivity analyses as well as
counterfactual simulation studies. In this way, our minimal number of identifiable parameter values
can be compared among the states representing crucial control quantities, such as lockdown speed and
fatigue half-life, and via analytically derived relations, we link outbreak size as inversely proportional to
population (self) quarantine rate. We also provide estimates of commonly used quantifiers of outbreak
severity, epidemic trajectory and effectiveness of control measures, such as infection fatality ratio (IFR)
and the ratio of (estimated) true cases to reported cases, accounting for common sources of error in their
prediction [9,10]. By estimating these quantities for all states and territories under one modelling
framework we provide a comprehensive overview of the first wave outbreak in the USA. Ultimately we
synthesize these results into a range of potential future responses which highlight the critical nature of
widespread, swift quarantine measures, with a model suggested critical duration, for a rapidly spreading
outbreak. These results can be used to inform management strategies both in locales where COVID-19
vaccines are not yet widely available, and for future outbreaks of emergent pathogens.

2. Model

First, we formulate an epidemic model which can account for the heterogeneous response to COVID-19
outbreaks exhibited in the USA. In [1], we developed an SIR-type model applied to the outbreak in China
incorporating terms for responsive self-quarantine (lockdowns) and contact tracing, where the rate of
both control actions depend upon current infection rates. Here, we focus our modelling framework to
fit the wide range of reactionary lockdown measures and testing observed in different states during
the first wave of COVID-19. Consider the following system (see also figure 1) for susceptible (S) and
quarantined (or socially distanced) susceptible (S,) population, and infected (I) individuals who
ultimately progress to reported (R), unreported (U), or dead (D) cases.

d%g” = —(1+ WBS(HI(H)/N + aSy(h),
dscgt(t) — YBS(HI(t)/N — aS,(b),
B0 _ siw/N — 110,
d];_gt) ] @I(t)/ (2.1)
U _1opl
and D(t) ~ & “EPCI L iy -y
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Figure 1. Model compartments are susceptible individuals (5), self-quarantined individuals (S,), infected individuals (/), reported
cases (R), unreported cases (U) and deaths (D), see also table 1. Note that the solid lines and corresponding model terms correspond
to per capita transition rates, while the cumulative death amount term is indicated by the dashed line.

Our model assumes susceptible individuals become infected relative to force of infection A(t) = I(t)/N,
where f is the transmission rate and N is the population size. We model the primary mechanism of
lockdown/ self-quarantine—sheltering large portions of susceptible population—by having susceptible
individuals transition to quarantined state S, at rate wA(t), where w is a proportionality constant with
respect to force of infection A(t), denoted as the self-quarantine (rate) factor. The product of y with force of
infection is a phenomenological relation between lockdown/self-quarantine rates and current infection
levels. Indeed, several works [11-15] have shown that population activity measures (e.g. mobility,
economic transactions, percentage of people staying/working at home) were primarily driven by
individual reaction to media and perceived risk tied to COVID-19 case incidence, and secondarily
influenced by government mandates. State lockdown orders are also inherently related to case counts, but
may be enacted in a temporally discrete manner with other factors affecting their proclamation. Although
reporting accuracy and delays in response complicate the relationship of human behavioural changes and
government action with raw infection incidence, our formulation offers a simple measure of population
self-quarantine rate relative to case incidence (see [1] for re-scaled rates accounting for reporting delay).

While individuals are in self-quarantine it is assumed that they do not contact with infected population,
and that individuals exit quarantine with rate a lockdown fatigue. On the population level, & measures
lockdown fatigue, in other words the tendency for individuals and government to revert to normal
regardless of infection level after a certain amount of time. Even though « is not linked to force of
infection, the incidence levels will inevitably drop after lockdown (dependent on magnitude of ),
so population will revert to normalcy when the disease is more under control than before lockdown/
self-quarantine (given the range of y and a parameters fitted for each state detailed in next section).
Other approaches for capturing large-scale social distancing/self-quarantine in populations have been
used, such as assuming time-dependent transmission/contact rates (5(t)) [16,17] or considering constant
rate of susceptible transition to quarantined state [18]. While there are advantages/disadvantages to each
modelling approach, we contend that our nonlinear social distancing rate captures a contagion-like
behavioural response to rising infected cases, and allows us to derive novel formulae for final and peak
outbreak size (see §4). Furthermore, by tying quarantine to new infection rate, we capture the observed
rapid large-scale response of varying strength across states, which saturates and wanes as cases drop and
fatigue sets in, mimicking mobility data from [11] (figure 7). Our model also captures the social nature of
v in the positive relationship between y and Ry, discussed further in the Results section (figure 5).

Infected individuals either have their cases reported (model compartment R), or fail to have their
cases reported (model compartment U), with mean time until case is reported T = 7.5 days, with the
proportion of individuals in each compartment determined by ascertainment rate p(t), or the
proportion of true cases at a given time captured by testing. Regardless of report status death is
expected to occur with infection fatality ratio (IFR), represented by model parameter &, following a
gamma-distributed delay after infection with mean of w =21 days, based upon [19]. The model
parameters and descriptions are also listed in table 1. In addition to the fixed parameter values for
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Figure 2. () Time variable reproduction number; R, (t), states with later reported first case have higher basic reproduction
number Ry = R,(0). (b) Time variable ascertainment rate. (c) Tests as per cent of individual states population. (d)
Ascertainment rate as variable of daily tests, ascertainment saturates as daily tests increase.

mean time until case is reported, T, and mean time until death, 4, we fit the remaining parameters of the
model as described in the next section, obtaining good fits for the data from all 50 states, Washington DC
Guam, Puerto Rico, the Northern Mariana Islands and the US Virgin Islands (see figure 8; electronic
supplementary material, figures S1-514).

3. Methods

We now describe the methods of our fitting procedure and analysis of the model. All relevant data and
code are available at [22]. Where shown, indicated stay-at-home orders are based upon [23]. Population
levels are from US Census Bureau 2019 projections [20]. To obtain parameter estimates for our model in
each state and territory, we used cumulative death and case totals [24] as well as daily testing data,
inferred from [21]. The data used for the whole US fit was obtained by combining data from all
subsidiary states and territories due to concerns about data reliability at the federal level [25]. Even at
the state level, the raw testing data contained a number of reporting irregularities, as evidenced by
several days with negative daily testing instance. To account for this, we smoothed the data by
averaging with nearest neighbours in such a way as to not change the cumulative testing totals prior
to finding the moving average.
We define the ascertainment rate function p(t) as

k(7(t)/N)

p(t) = A/N + 78N + ko, (3.1)

where 7(t) is the 3-day moving average of the raw daily testing totals, with parameters k as maximum
ascertainment rate, A as half saturation point in terms of tests, and ky as minimum ascertainment rate.
Observe that p(f) is chosen to be a saturating function of daily tests as a proportion of population (see
figures 2b-d and 3e), and that p has an inversely proportional relationship with test positivity (see the
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Figure 3. Model baseline fit (lines) together with 95% confidence intervals (shaded regions) for USA.

rightmost column of figure 8 and figure 3c; electronic supplementary material, figures S1-514). As the
number of tests increased, so did the ascertainment rate, because the increase in tests was not driven
by more demand solely based on rising case numbers, but wider availability and convenience leading
more individuals overall to take the tests. The negative concavity of p as a function of number of tests
reflects the principle of diminishing returns associated with wait times, and also a larger influence of
demand due to actual rising cases once tests become widely available, which together lead to
saturation of p to a maximum level. While this form of p(f) is a phenomenological relationship with
7(t) and there is no formal derivation, we can sketch further justification of a saturating p(t) when the
number of tests, 7(t), increases with f, as observed over the time frame considered. Indeed, we
propose the informal differential equation for p(t),

; (1) d [I(t)
ﬁzwm-mm—%ﬁﬂcﬁ)

reflecting increase due to testing availability (at first increasing with testing but linear decreasing as
higher proportion tested results in complacency and/or longer waits) and the change in p(t) from the
flux in positivity rate, respectively. Under appropriate conditions, then p(t) will increase to a limit in
saturating form as t — .

Additionally, we note that resulting cumulative ascertainment ratio,

4, = hlott Doy 52

Jo A(H)S(t) dt
for Connecticut matches very well with a similar figure in [8] (see electronic supplementary material,
figure S15). It is assumed even absent or at low testing, there is a minimal ascertainment rate
calibrated based upon low ascertainment levels during the early stages of an outbreak with bounds of
0.005 and 0.03 for the whole of the USA and its territories, and for each state or territory, respectively.
This difference in lower bound was chosen because, as indicated by figure 51, many states’ outbreak
began significantly before their first reported case, thus when considering the USA as a whole, few
cases were ascertained in the initial phase of the outbreak. For each state and territory fit and the
whole US fit, the maximum ascertainment rate was fixed based upon the maximum daily test count
as a per cent of the states population (table 1). This bound was set based in part on the mean
cumulative ascertainment ratio for Connecticut and New York City at the end of May 2020 provided
in [8]. For the USA, the bound was set based upon combined model estimated cumulative case total
for all states and territories. The half saturation constants were fit to each state, calibrated by the
simultaneous fit of mortality and reported cases, to reflect state-specific relationships between testing
and ascertainment (figure 2). The obtained ratios of total to reported cases (table 2) are in line with
CDC estimates [6,23].
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Table 1. Key model parameters and quantities with description.

quantity description notes
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We numerically solved the nonlinear least-squares problem, using the interior-reflexive Newton
method as implemented by MatLab’s Isqcurvefit function, minimizing objective function

J(t) = enR(t) + @2 D(t), (3.3)

where
o =[REOI™ and @ = ADEN] ™ (3.4)

were the chosen positive weights for each state, and tf, t}) are the reported cumulative case and death
totals on 31 May and 21 June 2020, respectively. For New York ¢=1.25, for Iowa ¢=0.75, for
Mississippi £ =1.0, for North Dakota ¢=5.91 (after running a search algorithm for ¢€[0.75, 8] while
retaining visual quality of fits, for where average relative error (ARE) for & was minimal), for all other
states and territories £=2.5, and for the USA ¢=2.75. For each state or territory, the time interval
considered was from the first confirmed case up until 31 May 2020 for cases, by which time most
states’” mandated stay-at-home orders had ended [6,23], and 21 June 2020 for deaths. For our fittings,
the mean time until case is reported was fixed at T =7.5 days and the mean to death at x =21 days
to improve model identifiability. These values are in line with the weighted (by proportion of total
cases) mean parameter values obtained from fitting the model without fixing these parameters (see
program files on GitHub). All other model parameters, as well as I, the initial case total, were fit for
each state or territory. The fit values (see table 2 and the electronic supplementary material for all
parameter values) were then used to provide approximate true cumulative case totals for the time
period considered

¢

C = J A(H)S(t) dt, (3.5)
0

where A(t) is the force of infection (table 1). We found that fitting both case ascertainment, p, and infection

fatality ratio, £ (bounded within a feasible range from 0.001 to 0.05), were necessary to obtain good fits

across all states and territories.
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In order to compare % model predicted positives (MPP) with % positives inferred from the data (PID) and [ 7 |

to highlight the relationship between test positivity and p(t), for each state and territory, we plotted these
three quantities together,

PID = 100 (%) and MPP = 100 (%) (3.6)

where d(t) is the 3-day rolling average of case totals inferred from reported cumulative case totals after
applying the same smoothing to daily case totals as was applied to daily testing incidence, and &(t) is the
daily reported case incidence inferred from the fit cumulative case totals (figures 3 and 8).

For all states and territories, with the exception of North Dakota when comparing a (due to this being
the only parameter not practically identifiable across all states and territories), the relationship between
model parameters and outbreak trajectory was assessed. The reproduction number Ry can be used as a
single parameter. Indeed, for model (2.1),

Ro = BT, (3.7)

(noting that the susceptible quarantine does not affect Ry because it is proportional to force of infection).
Then since T is fixed (at 7.5 days), the quantity Ry can be identified with parameter 8. We computed time
and test variable ascertainment rate, p(z(f)) as well as time variable reproduction number, R, = (S/N)Rg
(figure 2). We also analysed the association of estimated parameter values with outbreak measures, along
with correlation between parameters, using Spearman’s rank correlation (see figure 5; electronic
supplementary material, figure 519 for statistically significant results).

To assess identifiability and confidence in our fitting procedure, we conducted uncertainty analysis.
Similarly to [26], this analysis was carried out in the following manner (note we assume normal error
structure instead of Poisson error structure because the Poisson assumption generates datasets with
less variation than the original data (see electronic supplementary material, figure S17)):

(i) Simultaneously fit the model (2.1) to cumulative case and death totals, and testing data as
described above.

(ii) Obtain the inferred fit daily case and daily death curves, and under the assumption that the
reporting error is normally distributed and relative in magnitude to the reported total at each
data point,

vi=g(x(t),0) + & €~n(0,y -5,

where g is the true number of daily cases (deaths) and 6 the set of true parameter values.

(iii) Generate 200 daily case (death) datasets with noise levels of 40% and 70% for the USA and
individual states, respectively; we then summed these daily case results to generate cumulative
case (death) datasets and simultaneously refit the model to each of these generated datasets.
These noise levels were used because for the USA this value causes the generated datasets to
cover the original data (see electronic supplementary material, figure S17), and for individual
states a higher noise level was used to account for greater variability in the segregated data.

(iv) Arrange the generated values in increasing order and remove the top and bottom 2.5% in order to
obtain the desired approximate 95% confidence intervals.

The resulting fit, confidence intervals, and average relative errors (see figure 3 and table 5 for the USA,
and tables 3 and 4 for individual states) indicate that the key model parameters are all practically
identifiable except for « in one state, North Dakota, assuming assigned noise levels in daily case
(death) reporting. Thus North Dakota was excluded from any correlation analysis involving « (or half-
life fatigue).

In addition, to further examine the relationship between y, Ry, @ and outbreak trajectories, we also
highlight several states with different relative relationships between y and a representing the range of
outbreak responses in the USA, and conduct both sensitivity analysis and counterfactual simulation
studies with these examples (see figures 9-11; electronic supplementary material, figure S16). We fixed
model parameters as those obtained from our fitting process, and varied Ry, ¥ and o to examine their
differential impacts on epidemic trajectory. The fit plots for all states and territories are included in
the electronic supplementary material.

~
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4. Results

Our unified model simultaneously fits each state’s cumulative mortality and reported case data, along
with daily per cent positive tests through our calibrated ascertainment rate, starting at first reported
case to 31 May 2020 (as described in Methods). The estimated parameters, particularly quarantine
(rate) factor, y, fatigue half-life, log(Z)a_l, reproduction number, Ry, and infection fatality ratio, &,
provide key information about the variability of COVID-19 spread and response in the USA. The
resulting parameter values (table 2) and associated fits provide true cumulative case estimates for all
55 states and territories considered. These range in value from as low as 0.30% (confidence interval
0.25-0.39) of population (Hawaii) to as high as 10.06% (CI (8.57-12.78) of population (New York
State) over the time period, with an estimated 3.07% of the entire US population having been infected
as of 31 May 2020 (CI 2.76-3.37% population). These values represent both the wide range of
observed outcomes and highlight the importance of incorporating testing data to obtain sufficient
model flexibility (figures 3 and 8; electronic supplementary material, figures S1-S14). Indeed, the ratio
of true cumulative cases to reported cases across states ranged from as low as 2.24 (Rhode Island, CI
2.05-2.37) to as high as 17.70 (Puerto Rico, CI 16.12-19.23) with a value of 5.85 (CI 3.51-6.30) for the
USA, in line with CDC estimates [23]. Our fit IFR, both for every state and for the entire USA, works
to counter both a common source of overestimation and a common source of underestimation [9,10].
Indeed, our gamma distributed delay (mean u =21) of days after infection until death and fitted true
cumulative case totals with ascertainment rate p(t), together estimate IFR ranging from as low as 0.001
(Guam, CI 0.0010-0.0014) to as high as 0.0283 (New Jersey, CI 0.024-0.035). There were outbreaks from
mild to severe toll; with the fit IFR for the USA being 0.012 (CI 0.0108-0.0133) as of 21 June (cut-off
date for deaths associated with infections on or before 31 May), similar to estimates from a different
retrospective study [10].

To further dissect the relationships between model parameters and estimated quantities we next turn to
correlation analysis. The following notable pairs of epidemiologically and statistically significant variables
were found: I, versus date of first reported case (after 21 January) with Spearman correlation ¢ = 0.32 (p =
1.7 x 107%); mortality (% population) versus y with @ = —0.67 (p = 1.4 x 107®); true case estimate versus y
with @ =-0.85 (p=2.2 x 107'°); y versus half-life fatigue with g = —0.52 (p =4.2 x 107°); peak daily cases
versus y with @ = —0.89 (p=8.5x107>"); Ry versus y with @ =0.43 (p="7.3 x 107); time to peak daily
cases (relative to first reported case in USA) @ = —0.62 (p =2.7 x 1077); cumulative reported cases versus
IFR with @ =0.46 (p=4.0x 107%); cumulative case estimate/reported cases versus IFR with @ = —0.60
(p=13x107°%. This analysis (see figure 5; electronic supplementary material, figure S18 for all
correlation plots, as well as electronic supplementary material, figure S19 for correlation values between
all parameters and calculated quantities) together with our three variable scatter plots in figure 4 suggest
that y dominates fatigue half-life and R in terms of statistically significant correlation between model
parameters and quantities of interest such as cumulative and peak daily case totals, daily cases on
31 May 2020, and half-life fatigue.

Furthermore, we observe that y and estimated true case totals (shown in figure 5¢) as well as peak
daily case totals ((d) of the same figure) follow an inverse proportionality relationship with respect to
v. Indeed, as derived in [1], for the case =0 (indefinite quarantine period), the final cumulative
infected, C = [;” A()S(t)dt and peak infected, P = max %, (as % of population) of model (2.1) satisfy

ln(Soo) = RO(Soo — 1), C = m(l — Soo) (41)
and
P 1Ry -mRo-1 (42)
14+ ¢ R 0 MR ! '

where s, =1lim;_,S(t)/N and Iy~0 (at start of outbreak). In each formula, the factor 1/(1+w) is
multiplied by the corresponding classical relations for final and peak outbreak size. In view of our
model fitting, the true cumulative and peak case estimates of each state fall roughly into an inverse
proportionality with y, although states with low fatigue half-life (¢ much larger than zero) stray from
this pattern, as shown in figure 6. In particular, by simply calibrating the inverse proportionality
relation, C = Kyy/(1 + ), to the estimated parameters and cumulative cases of New York (which has
small ¥ and a=0), we approximately fit the rest of the state values, with the analogous result for
peak cases (see figure 6). The different values of Ry and « in each state, however, shift the respective
case numbers from the expected values predicted by inverse relation with y (figure 6). Thus while y
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highlighted values.

has strongest impact (figures 4-6), with rapidly escalating costs as the lockdown (rate) factor decreases
below a critical value, R and « still have an influence on outcome (figures 9 and 10). We will examine
these relationships further with counterfactual simulation studies (figure 9).
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Also of note is the suggested relationships between Ry and I as well as Ry and time to peak daily
case incidence. Figure 51 shows the aforementioned positive correlation between estimated I, and date of
first reported case (in terms of days after 21 January). This is further supported by the plots of time
variable R, in figure 2a where it can be seen that, in general, states which have a later date for their
first reported case tend to have higher reproduction number (for specific values see table 2). Two
relationships of note are the positive relationship between IFR and reported case estimate and the
negative relationship between IFR and ratio of true to reported cases. The positive relationship
between IFR and reported case estimate and the negative relationship between IFR and ratio of true
to reported cases probably explain each other: as more cases and deaths were recorded greater effort
was put into case reporting. And even in locales with successful outbreak responses such as Finland
[7], or Hawaii in our own model (figure 8), we note that the proportion of cases undetected in the
early days of the outbreak is very high. For our US fit, we estimated an IFR of 0.012 (95% confidence
interval 0.0108 to 0.0133), which is in line with the observed IFR for countries with very high levels of
testing such as South Korea [25] and Finland [7].

Correlation analysis alone does not give the full picture. To further examine and differentiate the
effects of o, ¥ and Ry on epidemic trajectories and suggest potential alternative strategies for
management of subsequent waves of COVID-19 we carried out both counterfactual simulation studies
and sensitivity analysis on these key model parameters (figures 9-11; electronic supplementary
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material, figure S16). This was done using the fit model parameters for selected states which broadly
speaking represent the range of outbreak responses which occurred in the USA. These are, in order of
increasing cumulative outbreak size as of 31 May (figure 8):

(i) rapid lockdown with high half-life (RLHH) as represented by Hawaii;

(i) rapid lockdown with low half-life (RLLH) as represented by Tennessee;
(iii) intermediate lockdown with intermediate half-life (ILIH) as represented by Georgia;
(iv) slow lockdown with high half-life (SLHH) as represented by New York.

As can be seen in these figures, the states all reported their first confirmed case within a week of one
another, but had significantly different outcomes. Taken as per cent of population, Hawaii had both the
lowest cumulative case total across all states and territories and one of the briefest outbreaks in terms of

[0z 8 1;53"@&0‘"-35;?9'"";as;/.‘eu;aa;r,'s;a:s'u;q;‘nqaax;s!sa;.‘exa =



Downloaded from https://royalsocietypublishing.org/ on 08 October 2021

Hawaii Tennessee
(a) - ) 0.6 ~
B = oo R 3
00 =% o 05 =
s S 600 ® s s 600 &
, 400 = > 800 400 : ~
) 200 2z 5 200 g 04
g 2 g 2 4 (9 =
s poy = 600 03 =
g g z 5
g g 2 400 02 %
2 S = B
= 200 \ 0.1 >
E \ E

20 40 60 80 100 120 20 40 60 80 100 120

(c) Georgia 14 (d) New York
s a
300 12 & 2
> IS S
= 250 s = <
IS ) I} )
& 200 08= 3 -
g 0.6 = g e
g 150 © 8 g 8
3 04§ 2 2
2 100 S 2 3
02 > s
50 }\ 3 3

20 40 60 80 100 120 20 40 60 80 100 120
fatigue half-life (days) fatigue half-life (days)

Figure 10. Daily cases on 31 May 2020 and peak daily cases (see insert) as functions of w, lockdown fatigue half-life and v, R,
respectively, magnitude of change is primarily determined by y as can be seen by the scales of the y-axes. o determines duration
of outbreak, with critical half-life threshold of 30-60 days. Points indicate fit parameter values.

0.15 1.40 . 1.60
1.35 1.55
0.14 130 ] . 1.50
1.45
0.13 125 & 0.1
5 1.40
1.20 4
0.12 . 135
1.15 S
0.11 o1l 1.30
o I—
5 6

,\
Q
=
—_
S
=

o
[

0.14

=3
W

prop. fit y
prop. fit y
prop. fit y

=}
®
prop. TN/HI peak cases

prop. TN/HI cum. cases

o
prop. TN/HI 31 May cases

0. 10E

1 2 3

0 RU

Figure 11. Ratio of Tennessee to Hawaii (a) cumulative cases; (b) peak cases; (c) daily cases on 31 May as v is varied from its 15%
to 10% its fit value. Given similar fit y values difference in peak and daily cases is attributable to differing half-life fatigue with
magnitude determined by change in y, whereas ratio of cumulative cases approaching one reflects the inverse proportionality
relationship between y and cumulative cases (figure 6, equation (4.2), [1]).

increasing daily case totals. All other considerations aside response RLHH represents the optimal
strategy in terms of both peak and cumulative daily case totals (see figure 8 and table 2; electronic
supplementary material, figures 51-514).

Tennessee highlights the importance of fatigue half-life. In the baseline fit epidemic trajectory, despite
having a lockdown factor similar to Hawaii, 362.6 versus 354.5 (CIs 188.0-408.1 versus 274.4-432.1),
Tennessee’s cumulative case totals are an more than eight times (2.57%, CI 2.27-2.86% versus 0.30%
CI 0.25-0.39%) as high as a result of significant linear growth in daily cases not far off the peak value.
While this response could potentially keep hospitals from being overwhelmed provided sufficiently
high y (see figure 8), it both prolongs the outbreak and leads to more cases than response RLHH (see
figures 8, 10, 11; electronic supplementary material, figure S16).

Georgia represents a number of states for which both the fit  and fatigue half-life values fall into a
middle ground between the maximal and minimal fit values across all states and territories, 111.0 (CI
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84.9-153.6) and 16.3 (CI (11.2-20.8)) days, respectively. As can be seen in the fit trajectory (figure 8 and
table 2) despite having a y value much lower than that of Tennessee and similar dates of first reported
case, the two states have relatively similar cumulative case totals, (CI 2.05-2.57%) for Georgia, suggesting
that there may be a critical threshold for fatigue half-life which is examined further below (figures 9-11).

New York is representative of the final observed response, slow lockdown with high fatigue half-life
(CIs 7.0-11.3 and 77.5-138.6 days). Despite having both the highest reported cumulative and estimated
true case totals across all states and territories New York’s outbreak was essentially over at a time when
many states were experiencing significant daily case totals despite similar dates of first reported case (see
figure 8; electronic supplementary material, figures S1-514).

Our results suggest that the optimal response strategy in terms of case totals, and therefore also
fatalities, remains rapid lockdown with high fatigue half-life (response RLHH) (see figures 4, 8 and 9
and table 2; electronic supplementary material, figures S1-S14). Here, the speed of lockdown is the
critical factor as our model considers that individuals and/or government will eventually react to
escalating cases, reaching similar numbers of self-quarantined (distinct for each state parameter set) in
the counter-factual simulations of varying y with the difference being delayed lockdown resulting in
order of magnitude more cases. While no substitute for the rapid lockdown strategy, the next best
intervention may be sustained public social distancing and mask wearing, targeting transmission
reduction rather than removing susceptibles all together, to reduce R, see figures 9 and 10. This has
the added benefit of reducing the number of individuals that need to be quarantined, with those that
are able to self-quarantine doing so preferentially throughout the entire outbreak, but with at least
half the quarantined population not returning to normalcy for a period of 30 days (figure 10). Indeed,
across all four example states, and regardless of model parameters, self-quarantine periods lasting
longer than this threshold greatly reduce the daily case total on 31 May, suggesting that if this is
achieved, other methods of managing the outbreak, such as contact tracing, could then be employed
to manage subsequent cases.

Sulfficiently low fatigue half-life can lead to sustained linear growth in cumulative cases (or sustained
steady state of daily cases) regardless of y value (figures 9-11). Despite Tennessee and Hawaii having
similar fit y values, the daily case load on 31 May and the peak daily case incidence for Tennessee (as
percentage of state population) are approximately 300% and 160% greater than those of Hawaii
respectively when y is reduced by 90%, suggesting that this is attributable to their different « values
(figure 11), which fall on opposite ends of the considered range. Cumulative cases in contrast become
approximately equal, highlighting the inverse proportional relationship between cumulative cases and
v (figure 6, equation (4.2), [1]). Thus our model suggests that lockdown fatigue, @, primarily affects
whether or not daily case incidence on 31 May is close to zero relative to peak cases, where lockdown
factor (or speed), ¥, modulates the peak level. A similar result is suggested with respect to Ry and
peak daily case total as well as date of peak, importantly with low fatigue half-life significantly
dampening the impact of lowered R, (see figures 9 and 10). While caution must be exercised with
short-duration or high-turnover lockdowns (responsive to accumulating cases), governments and
individuals are also reluctant to return to strict lockdown. Given this reality, while response RLHH
has the best outcomes, it is important to consider the viability of alternative strategies which might be
implemented for future outbreaks.

5. Discussion

In this study, we fit a unified model to case, death and testing data from all 50 states as well as
Washington DC and four outlying territories in order to quantify impacts of a wide variety of
lockdown entry/exit responses, which we correlate with true case estimates for insight into the
dynamic COVID-19 outbreak control in the USA. Despite the heterogeneous nature of exhibited
responses to the outbreak within each state, we were able to obtain quality fits for all considered
states and territories. A crucial step in doing so was incorporating testing data, 7(t), by calibrating the
ascertainment rate, p(z(t)), as a saturating function of per capita tests, which provided extra confidence
in our fitting because daily per cent positive tests were mimicked in each state (see figures 3 and 8;
electronic supplementary material, figures S1-S14). The inferred true cumulative case totals
demonstrate high varying levels of under-reporting, with an estimated 5.85 (CI 5.31-6.30) cases per
reported cases (cumulative) overall in the USA up to 31 May 2020. Furthermore, our modelling
framework allows us to infer infection fatality ratio, found to be 1.2% for the USA over the time
period considered (CI 1.08-1.33%). These are probably only estimates for (reported and unreported)
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symptomatic cases which do not account for a significant extent of asymptomatic individuals, since [ 15 |

testing, reported case and mortality data are all derived mostly from symptomatic infections.

Our model captured increasing case ascertainment rates through time (as testing increased), with a
significant positive correlation to the amount of cases reported in a state (figure 5; electronic
supplementary material, figures S18 and 519), in contrast to a recent study in France showing a negative
relationship between ascertainment ratio and reported cases as larger case counts hampered their
substantial contact tracing programme [7]. In the USA, comparatively little effort was put into contact
tracing, and the particular geographical or political features of COVID-19 spread, along with higher case
burden focusing community attention on the disease, may have contributed to the reverse correlation.
Faced with a spreading outbreak, high numbers of undetected infection, and no nationwide control
policy, the USA adopted heterogeneous responses centred around some form of lockdown, which we
characterize according to parameter fits of quarantine entry/exit rate for each state (table 2).

Our model fitting results suggest, broadly speaking, that the distinct responses can be divided into one
of four categories (see figure 8 and table 2; electronic supplementary material) (arranged in order of
generally increasing cumulative case totals): RLHH, RLLH, ILIH and SLHH. Using correlation analysis
of the key parameters (figures 2 and 5; electronic supplementary material, figures S18 and S19), and
outcomes over all US states, along with counterfactual simulation studies and sensitivity analysis
(figures 9-11, electronic supplementary material, figure 516) for representative states of these range of
responses (Hawaii, Tennessee, Georgia and New York), we translate the unified model fits into assessing
the variable aspects of reactive lockdowns or self-quarantine (speed, scale, duration/fatigue) (figures 6
and 9-11; electronic supplementary material, figure S16) in combination with sustained interventions
aimed at reducing Ry, such as public face mask wearing, social distancing and contact tracing.

Lockdown (rate) factor y played the largest role in outbreak severity (figures 4 and 9-11; electronic
supplementary material, figure S16), in particular both cumulative and peak cases roughly followed an
inverse proportionality relationship with y (figure 6), which was theoretically derived and applied to the
epidemic in China [1] in the instance self-quarantine (lockdown) exit rate, ¢, is zero. Differences in Ry
also influenced outbreak shape, where its reduction mainly results in both a delayed peak in daily case
totals and decreased size of peak daily case incidence, along with lessening the scale of lockdown
needed to control the disease (figures 9-11; electronic supplementary material, figure S516). Low fatigue
half-life (o significantly larger than zero) in some US states did impact their outbreaks though, the daily
case load at the end of the time-frame considered (31 May) being large, with magnitude determined
primarily by y, but also R (figures 8-10). Importantly, independent of all other model parameters our
model suggests a critical threshold of 30-60 days for half-life return to normalcy, that is for 50% of the
quarantined population to exit lockdown (see figures 10 and 11; electronic supplementary material,
figure 516). With this threshold indicating the approximate point at which there is significant reduction
in daily case load within approximately 90 days of first reported case, perhaps allowing for other less
invasive control methods, such as contact tracing, to be implemented.

Our results provide insights for management of future outbreaks. The optimal strategy purely in
terms of cumulative and peak daily cases, and therefore also fatalities, remains response RLHH (rapid
lockdown with high half-life) (figures 9-11; electronic supplementary material, figure 516). However,
in order to balance economic/social concerns in addition to the purely epidemiological, we suggest a
new response to an outbreak compared with those observed in the USA first wave: rapid measured
lockdown with intermediate half-life. This strategy describes implementation of rapid reactive
lockdown as soon as possible in conjunction with subsequent wave being detected, lasting at least 30
days before 50% return to normalcy, with the underlying Ry and public adherence to proper social
distancing and mask wearing determining the scale of closures during lockdown (where at-risk or
sectors responsible for large-scale spread are preferentially included in quarantine).

Both y and o (or lockdown fatigue) are measures of social mobility responses influenced by public
perception of risk [12], with y tied to disease incidence (figure 7). By contrast, o is not directly assumed
dependent upon force of infection, but rather represents either a perception that the disease has been
brought under control or individual/government fatigue from lockdown after corresponding amount of
time characterized by the population’s quarantine half-life. Thus if public health officials wish to use them
as levers to control an outbreak; consideration must be given to how these factors can be effected by the
actions of government officials. A study of multiple proxies of social distancing and government actions, at
both local and state levels, [12], found that early information focused efforts and emergency declarations
had measurable effect on individual behaviour. Thus we propose that when testing results indicate the
potentiality for a subsequent wave of COVID-19 that public health officials rapidly disseminate
information about both the need for a return to self-quarantine measures and for individuals to continue
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such measures for at least 30 days, with emphasis on return to normalcy not at the first sign of reduced spread,
but rather after a period of sustained reduction in spread.

The quick response and critical duration of quarantined sectors will perhaps allow case numbers to
be sulfficiently reduced after the 30-day period for contact tracing to be feasible (figures 9 and 10) and in
combination with broader measures aimed at lowering R (e.g. face masks) can potentially prevent any
substantial subsequent wave until effective vaccines are widely taken by the population (figure 9;
electronic supplementary material, figure S16; [1]).
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Appendix A

(See tables 2-5)

Table 2. Key parameter values and inferred quantities. True case estimate is as of May 31, 2020. All parameters are practically
identifiable except « for North Dakota.
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Table 4. Average relative error (ARE) for states and territories. All parameters are practically identifiable at a noise level of 70% m
except for North Dakota fatigue half-life.

T. case/ D. cases

F. half-life IFR C. cases I. case 31 May

Alabama 1233 2945 263 730 3053 610 225 8.67
L et sttt
e 1
 Arkansas 933 w8 74 M55 3003 580 337 608
1 S 1

Colorado 550 125 3147 74 813 597 3.36 B3
S 1 S

Delaware 505 1149 492 83 2799 691 5,05 1479
1 O
AT 1 S
s A

Guam 237 83 840 830 3301 676 648 2431
1 S e O s S S
e 1 o
o A St
 Indiana 405 15 312 1145 2664 741 608 1598
1 s S 1

Kansas 873 1014 972 778 703 646 427 9.85
i

Louisiana 618 739 828 151 068 62 5.15 273
1 . S
— 1 ot e O
Smoes o m mw o ms s an ms

Michigan 547 641 592 728 349 55 409 985
1t O A
e s S S
11 1

Montana 815 719 6.95 842 305 643 428 1337
1 S 1

Nevada 503 967 1459 821 2809 579 543 12.00
R

New Jersey 466 810 1321 779 3158 644 6.43 14.35
e s s S
. s O S
T T

North Dakota 653 302 1298 673 2678 5% 331 123
Ao mn ms o me xs ws ma mn
i 1 s
1t s S

Oregon 4.09 8.33 16.28 10.05 25.09 6.88 4.55 16.84
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Table 4. (Continued.)

fatigue halflife

lo

Pennsylvania 478
Puerto Rico 5.98
R
South Carolina 6.33
e e
e
B v
o o1
e
Virgin Islands 991
“Wa‘shi‘rig‘ton e
Wisconsin 3.81
Wyommg R

Table 5. Approximate 95% confidence intervals, United States; quantity is said to be practically identifiable if its average relative
error (ARE) is less than the noise level of 40%.

quantity

v

cum. case (%)

true cases/Rep. cases

(
(
(
g R
(
(
(
(

D. cases 731 May (%)
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