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Gaussian Orthogonal Latent Factor Processes
for Large Incomplete Matrices of Correlated
Data*

Mengyang Gu' and Hanmo Li

Abstract. We introduce Gaussian orthogonal latent factor processes for model-
ing and predicting large correlated data. To handle the computational challenge,
we first decompose the likelihood function of the Gaussian random field with
a multi-dimensional input domain into a product of densities at the orthogonal
components with lower-dimensional inputs. The continuous-time Kalman filter is
implemented to compute the likelihood function efficiently without making ap-
proximations. We also show that the posterior distribution of the factor processes
is independent, as a consequence of prior independence of factor processes and or-
thogonal factor loading matrix. For studies with large sample sizes, we propose a
flexible way to model the mean, and we derive the marginal posterior distribution
to solve identifiability issues in sampling these parameters. Both simulated and
real data applications confirm the outstanding performance of this method.
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1 Introduction

Large spatial, spatio-temporal, and functional data are commonly used in various stud-
ies, including geological hazard quantification, engineering, and medical imaging, to
facilitate scientific discoveries. Many data sets are observed on incomplete matrices
with missing values due to the limitation of the technique or computational cost.

Gaussian processes (GPs) are widely used for modeling correlated data (Banerjee
et al., 2014; Cressie and Cassie, 1993). Computing the likelihood function from a GP
model, however, generally takes O(N2) operations in finding the inverse and determinant
of the covariance matrix, where N, is the number of observations. The computational
bottleneck prevents modeling a large correlated data set by GPs directly. Tremendous
efforts have been made to approximate a GP model in recent studies, including, for
example, stochastic partial differential equation approach (Lindgren et al., 2011; Rue
et al., 2009), hierarchical nearest neighbor methods (Datta et al., 2016), multi-resolution
process (Katzfuss, 2017), local Gaussian process approach (Gramacy and Apley, 2015),
periodic embedding (Guinness and Fuentes, 2017; Stroud et al., 2017) and covariance
tapering (Kaufman et al., 2008), which have obtained wide attention in recent years.
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2 Gaussian Orthogonal Latent Factor Processes

Compared to a large number of studies on approximating GPs, less progress have
been made on efficiently computing the likelihood function without approximation. In
this work, we propose a flexible and computationally feasible approach to model large
incomplete matrix observations of correlated data, called Gaussian orthogonal latent
factor (GOLF) processes. Bayesian inference was derived to assess the uncertainty in
parameter estimation and predictions. GPs with product covariance functions on lattice
observations or semiparametric latent factor models (Sacks et al., 1989; Kennedy and
O’Hagan, 2001; Teh et al., 2005) can be represented as full-rank GOLF processes, which
permit much smaller computational costs than directly computing the likelihood func-
tion and making predictions. Further reducing the computational cost can be achieved
by low-rank GOLF processes, where the computational cost is similar to the order of
principal component analysis.

We highlight a few contributions of this work. We first show that for GPs with
product covariance functions or semiparametric latent factor models, if the latent fac-
tor loading matrix is orthogonal, prior independence of latent factor processes implies
posterior independence of factor processes. The new finding allows one to decompose
the likelihood function of lattice data into a product of densities of projected output,
which greatly reduces the computational complexity. Separate continuous-time Kalman
filters can be applied to compute the posterior distributions of factor processes at lower
dimensional inputs in parallel, which has linear computational operations with respect
to the number of observations. Second, as a large number of observations provide rich
information, we introduce a flexible way to model the mean function and derive the
marginal posterior distribution of the linear coefficients, to solve identifiability issues
in posterior sampling. Furthermore, compared with the maximum marginal likelihood
estimation of factor loadings derived in Gu and Shen (2020), our approach is applicable
to model observations on incomplete lattice. Finally, we developed Bayesian inference
for uncertainty assessment, which is critically important for inverse problems in appli-
cations (Kennedy and O’Hagan, 2001; Bayarri et al., 2007).

The purpose of this work is twofold. First, we aim to develop a pipeline of compu-
tationally efficient methods of modeling correlated data with multi-dimensional input
without approximating the likelihood function. Properties of GOLF processes derived
in this work are useful for developing an efficient approximation algorithm for scenar-
ios with multi-dimensional input variables. Besides, the nonseparable covariance and
coordinate-specific mean coefficients proposed in this work provide flexible choices for
models of local information. Second, we primarily focus on applications based on images,
which include inverse problems by satellite radar interferograms (Anderson et al., 2019),
and estimating dynamic information from microscopic videos (Cerbino and Trappe,
2008). Our approach allows for efficient Bayesian inference in a large sample scenario.

The rest of the article is organized as follows. In Section 2.1, we introduce the GOLF
model with an emphasis on the orthogonal decomposition of the likelihood function and
posterior independence of latent factor processes. The flexible mean function, spatial la-
tent factor loading matrix and kernel functions are discussed in Sections 2.2-2.4, respec-
tively. We introduce the Markov Chain Monte Carlo (MCMC) algorithm and discuss the
computational complexity in Section 3.1. In Section 3.2, we introduce the continuous-
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time Kalman filter in computing the likelihood function with linear computational com-
plexity. Section 4 compares our approach with other alternatives, and numerical results
for comparing these approaches are presented in Sections 5-6. We conclude this work
and discuss several potential extensions in Section 7. Proofs of lemmas and theorems
are given in Supplementary Materials (Gu and Li, 2022). The data and code used in
this paper are publicly available (https://github.com/UncertaintyQuantification/
GOLF).

2 Gaussian orthogonal latent factor processes

2.1 Orthogonal decomposition and posterior independence

Let yo(x) = (ys,(X), ..., ¥s,, (x))" be an n; x 1 vector of observations at coordinates
s = (s1,...,8,,)7 with s; € RP* for i = 1,...,n; and input x € RP2. For spatially
correlated data, for instance, s and x denote the latitude and longitude, respectively,
and in spatio-temporal models, the spatial coordinates and time points can be defined
as s and x, respectively.

Consider the latent factor model:
Vs(x) = my(x) + Agz(x) + €, (2.1)

where A = [aj,...,a4] is a ny x d factor loading matrix and z(x) = (z1(x), . .., zq(x))?
is a d-dimensional factor processes with d < ny, € ~ N(0,021,,) being independent
Gaussian noises. The mean function mg(x) = (ms, (%), ..., ms,, (x))T is typically mod-
eled via a linear trend of regressors, which will be discussed in Section 2.2.

As data are typically positively correlated at two nearby inputs, we assume z;(+) inde-
pendently follows a zero-mean Gaussian process (GP), meaning that for any

{X1,. s Xny by ZF = (Zi(x1), - -, Zi(Xn,))T is a multivariate normal distribution:

(Z] | =) ~ N(0,%) (2.2)
where the (i,;)th entry of the covariance matrix is 07 K;(x;,x;) with kernel function
K;(-,-) and variance parameter 012, for I = 1,...,d. Here we assume independence

between the factor processes a priori. A detailed comparison between our approach and
other related approaches is discussed in Section 4.

Note that only the d-dimensional linear subspace of factor loadings A can be iden-
tified if not further specification of factor loading matrix A is made, as the model (2.1)
is unchanged if the pair (A,,z(x)) is replaced by (A,G, G 'z(x)) for any invertible
matrix G. Besides, the computation could be challenging when the number of factors
or input parameters is large. Thus, we assume that the column of A is orthonormal.

Assumption 1.
ATA, =1, (2.3)

Assumption (1) may be replaced by AT A, = A, where A is a diagonal matrix. Since

we estimate variance parameters o? = (a%, RN Uﬁ)T of latent factor processes by data,

diagonal terms of A are redundant. Thus we proceed with the Assumption 1.
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Let us first assume we have an n; X ng matrix of observations Y = [y4(x1),...,
Vs(Xn,)] at inputs {x1,...,X,,}, and then we extend our method to incomplete matrix
observations in the Section 3. Denote B the regression parameters in the n; X no mean
matrix M = (mg(x1),...,m4(X,,)). Denote ® = (A, B, 0%, ), which contains the
factor loadings, mean parameters, variance parameters and range parameters in the
kernel functions. Further let Ap = [Ag, A.] = a1, a9, ...,a,,], where A, is an ny X (n;—
d) matrix of the orthogonal complement of A. Assumption 1 allows us to decompose
the marginal likelihood (after integrating out the random factor Z) into a product of
multivariate normal densities of the outcomes at the projected coordinates:

d ni
p(Y |©) =][PNF1:0,%) [ PN(§::0,08L,,), (2.4)
=1 l=d+1

where y; = (Y—-M)Ta; forl =1,...,d, and y; = (Y —M)"a; with a; being the (I—d)th
column of A, for I = d+1,...,n1, ¥ = ¥, + 021,, and PN (-;u,X) denotes the
density of the multivariate normal distribution with mean g and covariance matrix .
In practice, note that we can avoid computing A by using the identity A,AT + A AT =
I,,,. The derivation of Equation (2.4) is given in the Supplementary Materials.

The orthogonal factor loading matrix in Assumption 1 and prior independence of
factor processes lead to the posterior independence of the factor processes, introduced
in the following corollary.

Corollary 1. For model (2.1) with Assumption 1:

1. The covariance of the posterior marginal distributions of any two factor processes
is zero: Cov[Zl',ZL | Y,©] = 0,,xn,, where I = 1,...,d, m = 1,....,d and
L #m.

2. Forl = 1,...,d, the posterior distribution (Z] | Y,®) follows a multivariate
normal distribution
ZZT I Y, 0~ N(Hsz Ezz) ) (2'5)

where pz, = Elf]l_ljfl and Xz, =3, — Elf]l_lill with $; = X, + oil,,.

We call the latent factor processes in (2.1) with Assumption 1 Gaussian orthogonal
latent factor (GOLF) processes, because of orthogonal decomposition of the likelihood
function and posterior independence between two factor processes. The main idea is to
decompose the likelihood of GP models with multi-dimensional inputs by a product of
densities with low dimension input and to utilize the continuous-time Kalman filter for
fast computation. As we will see in Section 3, these two properties dramatically ease
the computational burden.

2.2 Flexible mean function and marginalization

The mean function mg(+) plays an important role in modeling and predicting correlated
data. Computer models (such as the numerical solution of partial differential equations),
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Figure 1: Estimated linear coefficients for temperature observations in Heaton et al.
(2019). In the left panel, the dots are the estimated coefficients in a linear regression of
observations at each longitude separately using latitudes as regressors. The estimated
linear coefficients for the observations at each latitude are graphed in the right panel,
where longitudes are used as regressors.

for example, can be included as a part of the mean in an inverse problem (Kennedy
and O’Hagan, 2001). Here for simplicity, we use only a linear basis function of s and x,
whereas additional terms may be included in the mean if available.

In a GP model, the regression coefficients are often assumed to be the same across one
basis function. For instance, the mean function may be modeled as m,(x) = hy(s)b1 o,
or m,(x) = ha(x)ba,g, where h;(s) and hy(x) are a set of 1 X ¢; and 1 X g mean basis
functions with by ¢ and bg g being ¢; x 1 and g2 X 1 regression coefficients, respectively.
The regression coeflicients by o, for example, are shared across each x.

The shared regression coefficients may be a restrictive assumption when data sets
are large. Consider, for instance, the temperature data set used in Heaton et al. (2019),
where the temperature values are shown in Figure 5. In Figure 1, we graph the fitted
linear regression coefficients using latitudes or longitudes as regressors. The estimated
regression coefficients are not the same across latitude or longitude. A natural exten-
sion of modeling the mean function, therefore, is to allow the mean parameters at
each row or column of the observations to be different, e.g. my, (x;) = hy(s;)by;, or
my, (x;) = ha(x;)ba;, for i = 1,...,n; and j = 1,...,n2. Some choices of the indi-
vidual mean functions are summarized in Table 1. The mean function may be specified
based on model interpretation or exploratory data analysis. Models with different re-
gression coeflicients across different types of coordinates are more suitable to model a
large number of observations, as they are more flexible to capture the trend.

To implement full Bayesian inference of the parameters, one may sample from the
posterior distribution of regression parameters p(B | ©_p5,Y,Z). However, we found a
severe identifiability problem between the mean M and AZ, when the regression coeffi-
cients B are sampled from the full posterior distribution. This is because the likelihood
function of the mean parameters is flat when data are very correlated. Consequently,
the absolute values of the entries of these two matrices can be both big, making the
MCMC algorithm very unstable. To alleviate the identifiability problem, we first inte-
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Individual mean my, (X;) M coefficients B
Linear trend of s hi(s;)b1 ; H;B; B,
Linear trend of x hy(x;)bs; (HyB»)T B,

Mixed linear trend hl (Si)bl,j + hg(Xj)bg)i H1B1 + (HQBQ)T [B]_7 BQ}

Table 1: Summary of the mean function studied in this work. In the third column, H; =
(h¥(s1),...,hT(s,, )T and Hy = (h1'(x1),...,hl(x,,))T are n; x ¢; and ny X g mean
basis matrices, respectively. Regression coefficients are denoted as By = (b1,1,...,b1.n,)
and By = (ba1,...,ba,, ) for the basis function h;(-) and ha(-), respectively.

grate out factors and sample regression parameters from the marginal posterior distribu-
tion p(B | ®_p,Y). The marginal posterior distributions of the regression parameters
are given in the following Theorem 1 and Theorem 2.

Theorem 1. 1. (Row regression coefficients). Assume M = H1By and the objective
prior m(B1) < 1 for By. After marginalizing out the factor Z, the posterior samples
of By from p(B1 | Y,©_p,) can be obtained by

B, = B, + (H{Hy) 'H{ A,BY , + oo(H{ Hy) 'H] (I,, — A,AT)Zo1 (2.6)

where By = (HTH,)'HTY, Bl,o,s 15 an ny X d matriz with the lth column inde-
pendently sampled from N(0,%;) forl=1,...,d, and Zo, is an ny X ny matriz
with each entry independently sampled from the standard normal distribution.

2. (Column regression coefficients). Assume M = (HaB2)T and the objective prior
m(B2) o 1 for the regression parameters Bo. After marginalizing out the factor
Z, the posterior samples of Bo from p(Ba | Y,©®_p,) can be obtained by

B2 = BQ + B2707SAZ + GoLH2 Z072(In1 - ASAZ)7 (27)

where By =" (HY S Hy) 'HY S 'Y Tajal +(HI Hy) 'HE YT (I, — A AT)
and Bao s is a g2 X d matriz with the [th column independently sampled from
N(0,(HIZ, 'Hy) ™) forl =1,...,d. Lg, is a ga X g2 matriz such that Ly, L}, =
(H%"Hg)_1 and Zoo s a g2 X 1 matriz with each entry independently sampled
from the standard normal distribution.

When both the row regression coeflicients and column regression coeflicients are in
the model, we found that M; = H;B; and My = (HyB5)” are not identifiable, if we
sample B; and By from the full conditional distribution. To avoid this problem, we first
marginalize out B, and Z to sample B; and then we condition B; to sample Bs.

Theorem 2. Assume M = H;B; + (H2B2)T and let the objective prior 7(B1, Bg) x 1
for the regression parameters B1 and Ba.

1. After marginalizing out Z and By, the marginal posterior sample of By from
p(B1|Y,®_p, _p,) can be obtained by

B, = B+ (HH,) 'H A,B] , +0o(H{ Hy) 'H] (I,, - A,AT)Z, 1Py, (2.8)
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where B, = (HTH,)'HTY, P’LQ is an no X d matriz with the lth column
independently sampled from N(0,Qq ), with Q1 = Plf)l_lPl where Py = 1,,, —
Hg(Hgileg)_ngifl forl =1,...,d. Zo1 is an ny X ny matric with each
entry independently sampled from standard normal distribution and Py = (I, —
Hy(HJH,) 'HJ).

2. Posterior samples of By from p(Bs | Yg,,@®_p,) can be obtained through equation
(2.7) by replacing Y by Y — H Bj.

In Theorem 1 and Theorem 2, the marginal posterior distribution of the regression
coefficients depends on the n; x d factor loading matrix, but not the complement of the
factor loading matrix (A.). Since we do not need to compute A., the most computa-
tionally intensive terms are those containing the covariance matrix ¥; and its inverse.
Fortunately, each term can be computed with linear complexity with respect to ns
instead of n3 when the Matérn covariance is used, discussed in Section 3.2.

2.3 Spatial latent factor loading matrix

This section discusses a model of the latent factor loading matrix A that satisfies
the orthogonal constraint in (2.3). As output values are marginally correlated at two
inputs s, and s, a natural choice is to let A; be the eigenvectors corresponding to the
largest d eigenvalues in the eigendecomposition of the correlation matrix R, where the
(4,7)th entry is specified by a kernel function K,(s;,s;), for 1 < 4,5 < n;. We give a
few examples of models that can be written as special cases of the GOLF model when
the A is specified as eigenvectors of R,. For simplicity, we assume the mean is zero.
The first and second classes of models are the GP models with separable covariance
functions of input with two dimensions and three dimensions, respectively.

Example 1 (Spatial model with separable covariance). Consider a spatial model of Y
at a regular nqy X no lattice, where the (i, j)th input is (s;, ;) with s; and x; denoting the
ith latitude coordinate and jth longitude coordinate, respectively. Assume the covariance
of the spatial process is separable, meaning that’ Y ~ N(0,0°Rs @ Ry, + 031, ,), where
the (I1,m1) term of R is parameterized by the kernel function K(si,,Sm,) and the
(la,ma) term of Ry is K (2, Tm,) for 1 < li,m; < ny and 1 < ly,mg < ng. Let
R, = USASUZ, where Uy is a matriz of eigenvectors and Ay is a diagonal matrixz of
eigenvalues of Ry with the lth diagonal term A;. The density of this spatial model is
equivalent to model (2.1) with Ay = Uy, 3 = 02 \R, and d = n,.

Example 2 (Spatio-temporal model with separable covariance). Consider a spatio-
temporal model of Y at ni 1 Xny 2 Xng lattice, where the (i, 7, k)th input is (s1,4, 2.5, Tk),
with s1; and sz ; denoting the ith latitude coordinate and jth longitude coordinate, re-
spectively, and xy, denoting the kth time point. Let ni = ni1 X ni 2. Assume the co-
variance of the spatio-temporal process is separable, meaning that Y ~ N(0,0°Rs, ®
R, @ Ry + 021, xn,) with the (I;, m;)th term of R, parameterized by the kernel func-
tion Kq(si;,8m,;) with 1 < l;;m; < ny,; for i = 1,2, and the (I3, ms)th term of Ry
being Ky (zi,, Smy) with 1 < l3,ms < na. Let Ry, = U;A;UT where U; is a matriz
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of eigenvectors and A; is a diagonal matriz of eigenvalues X;, for 1 < I; < ny; and
i = 1,2. The density of this spatio-temporal model is equivalent to model (2.1) with
As = U1 ®U2, El = 02>\l1>\l2RfL‘ with 1 S l,,mz S M1 fOT’i = 1,2, = ll + (12 — 1)’/7,172
and d = nq.

The separable covariance is widely used in emulating and calibrating computation-
ally expensive computer models with scalar output (Sacks et al., 1989) and vector output
(Conti and O’Hagan, 2010; Paulo et al., 2012), whereas the isotropic covariance, i.e.,
the covariance as a function of Euclidean distance of inputs, is used more often in mod-
eling spatially correlated data (Gelfand et al., 2010). Some anisotropic kernels, such
as the geometrically anisotropic kernel, were studied in Zimmerman (1993) for model-
ing spatially correlated observations. Note that the covariance of GOLF processes in
(2.1) is not separable in general, as the variance and kernel parameters of each factor
process z(-) can be different. Different kernel parameters make the model more flex-
ible, as the factor processes corresponding to large eigenvalues are often found to be
smoother than the ones corresponding to small eigenvalues. Separable covariance may
be restrictive in this regard as factor processes are assumed to have the same kernel and
parameters.

Computing the likelihood of GP with separable covariance on a complete nxn lattice
data generally takes O(N 3/ 2) operations through eigen-decomposition of sub covariance
matrices. This work generalizes this approach to nonseparable covariance for both com-
plete and incomplete lattice observations. One can further reduce the computational
complexity by selecting d eigenvectors corresponding to the d largest eigenvectors from
the eigendecomposition of the correlation matrix R;. The proportion of summation of
the d largest eigenvalues over the summation of total eigenvalues shall be chosen as large
as possible to allow the model to explain the most variability of the signal (Higdon et al.,
2008). We found that using more factors than the truth typically will not incur a large
reduction of predictive accuracy, whereas using a much smaller number of factors than
the truth will cause a large predictive error (Example 4 in simulated studies). Thus one
should be cautious about using a very small number of factors.

2.4 Kernel functions

We first discuss the kernel function for the factor process Z;(-), | = 1,...,d. We as-
sume a product kernel between the inputs (Sacks et al., 1989), i.e. for any input
Xa = (Ta1s .. Tap,) and Xp = (Tp1, ..., Topy ), Ki(Xa, xp) = [172 Kp,i(|2a;i — 20i]), where
K;,;(+) is a kernel of the Ith coordinate of the input for [ =1,...,dand i =1,...,ps.

We focus on Matérn covariance (Handcock and Stein, 1993) as kernel function K ;(-)
in this work. Each kernel contains positive roughness parameter v, ; and a nonnegative
range parameter y;; for I = 1,...,d and ¢ = 1,...,p2. The roughness parameter of
the Matérn kernel controls the smoothness of the process. When v;; = %, the Matérn
kernel becomes the exponential kernel: Kj;(|xq; — @pi|) = exp(—|Tai — Zvil /Y1), and
when v;; — oo, the Matérn kernel becomes the Gaussian kernel: Kj;(|zai — zwi]) =

exp(—|zq; — xbi|2/(2'yl27i)). The half-integer Matérn kernel (i.e. (2v;; +1)/2 € N) has a
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closed form expression. When v;; = 5/2, for example, the Matérn kernel is

BlCa; — 51|  5|Tas — zoi? Bla; — b
Koa(|ai — 2) = <1+\/_17a1 Tpil L |Zai 2%1\ )exp <_M), (2.9)

Vi 3'71 i VYi,i

)

forl=1,...,dandi=1,...,ps.

In constructing GOLF processes, we decompose the density of the GP model with
multi-dimensional input into a product of the orthogonal components with lower-dimen-
sional input. This is because the likelihood and the predictive distribution of a GP model
with a half-integer Matérn covariance can be computed through linear operations with
respect to the sample size by the continuous-time Kalman filter (Sarkké and Hartikainen,
2012) when py = 1. The computational advantage will be discussed in Section 3.2.

For the factor loading matrix, we let A, be the first d eigenvectors of Rs. The kernel
functions for Ry can be chosen similarly as the kernel for the latent factor processes.
Without the loss of generality, we assume R is parameterized by a product kernel with
the range parameters 7y, and the Matérn kernel being used for each coordinate of s.

3 Posterior sampling for GOLF processes

3.1 A Markov chain Monte Carlo approach

In many applications, the observations contain missing values. Denote Y7 and Y} the
vectors of observed data and missing data in matrix Y with size N, and N,,, respectively.
Directly computing the likelihood includes calculating the inverse and determinant of
an N, x N, covariance matrix, which has computational operations O(N2) in general,
making it infeasible for large number of observations. Here we discuss a computationally
feasible way for the GOLF model when observations are from incomplete matrices.

We start with a set of initial values at the locations with missing observations. Denote
Y = vee(Y®) = [(YO)T, (YL )TIT an N-vector, where Y2 and Y& are vectors
of observations and samples at the missing locations in the tth iteration, ¢t =1,...,T.
First, we use a Metropolis algorithm to sample @t from the marginal posterior
distribution p(® | Y®), where the marginal density is given in Equation (2.4). In
the second step, we sample ZZ(H'I) from p(Zl(tH) | Y® @t+1) by Equation (2.5) for
l=1,...,d, and then we generate Y+ = A+DZE+) L BEO+D  where E¢HD is an
n1 X ng matrix of white noise with variance UétH) and A®TD is a ny x d matrix of the d
eigenvectors corresponding to the d largest eigenvalues from the eigendecomposition of
the correlation matrix Ry in the (¢ + 1)th iteration. We can obtain YLt by the last
N, terms in qutﬂ), for t =1,...,T. Note that the observed data Y is never changed.

For computational reasons, we define the nugget parameter in each kernel (i.e. the
inverse of the signal variance to the noise variance ratio parameter) n, = 03 /o7 for
Il =1,2,...,d, and the inverse range parameter 5, = 1/, ;, where i = 1,...,p; when
Il =0,and ¢ = 1,...,py when [ > 1. The transformed parameters © contain the
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Algorithm 1 MCMC algorithm when the kernel parameters are different.

(1) For il =1,...,d, sample (3, (1) (H_l)) from p(B;, n | y )

) Sample BO) from p(ﬁ(t) | Y ®) ﬁ(tH) (tH),B(t)).

) Sample o D) from p(a(tH) | Y ),,3(”1),17(”1),B(t)).

) Sample B(“rl from p(BtHD | Y®) g+ p(t+1)) Update the mean matrix

M+ and the projected observations y( )= = (Y - MEITa

(5) For I =1,...,d, sample thH) from p(Z l(tH | j'll(t , B ,n(t+1)) by Corollary 1
and sample Y **+1) by model (2.1). Update Yff’(tﬂ) by the last N, terms in
Y(t+1) and let y(t+1) _ (Y(t+1) M(t+1))

6) Update the posterior p (tH), n (¢+1) y (t+1) and go back to (1) when t < T.
I 1

mean parameters B, inverse range parameters 3 = (o, ...,84), nugget parameters
1n = (N1,...,nq) of the factor processes and the variance of the noise o3.

For mean and noise variance parameters, we use an objective prior WR(B,O'%) x
1/02. We assume the jointly robust (JR) prior for the kernel parameters: 77/%(3;,n;)
(3P (cr2Bit+m)) " exp(—cr3 > b2 (e Bri+m)) with default parameters ¢; 1 = 1/2—
p2, c2 = 1/2, and ¢; 3 being the average distance between the Ith coordinate of two
inputs for{ =1,...,d (Gu, 2018). Note here ¢; 1 = 1/2—ps is the default prior parameter
for posterior sampling, whereas the prior parameter is different if one maximizes the
marginal posterior distribution for estimating kernel parameters. The jointly robust
prior is equivalent to the inverse gamma prior when the input dimension is one without
a nugget parameter. The inverse gamma prior is assumed for each coordinate of 3y with
shape and rate parameter being —1/2 and 1, respectively. The JR prior can alleviate the
potential numerical problem when the estimated range and nugget parameters are close
to the boundary of the parameter space, as the density of the JR prior is close to zero
at these scenarios. As the sample size is large, the bias inserted from the prior is small.

The MCMC algorithm of the GOLF model is given in Algorithm 1. In step (1)
to step (4) of Algorithm 1, we marginalize out the factor processes to compute the
posterior distribution of the parameters. This is critically important as we found severe
identifiability problems between the mean matrix M and AZ if the parameters are
sampled from the full conditional distributions. Moreover, after marginalizing out the
factor processes, the covariance matrix of the distribution PA(y;;0, %) in (2.4) contains
a nugget term, which makes the computation stable.

The Algorithm 1 can be easily modified for different scenarios. When the factor
processes have the same covariance matrix, we can combine step (1) and step (2) to
sample the shared kernel and nugget parameter. Step (4) may be skipped if one has
zero-mean or modified if one has the shared regression coefficients in the model.

Denote X; = L;L] where L; is a lower triangular matrix in the Cholesky decom-
position of X;. We need to efficiently compute the terms |X], Lflvl, L;v; for any
real-valued vector v; := (vj1,...,V,,)7 and sample (Zl(H'l))T from p((Zl(tH))T |
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&gt),ﬁ(t“),n(t*l)) for I = 1,...,d. Direct computation of the Cholesky decomposi-
tion of X; requires O(n3) computational operations for each [ = 1,...,d. Luckily, for
Matérn covariance with a half-integer roughness parameter and one-dimensional input,
computing any of these terms only takes O(ns) operations without approximation.

3.2 Continuous-time Kalman filter

We briefly review the continuous-time Kalman filter algorithm and the connection
between the Gaussian Markov random field and GP with Matérn covariance. The
spectral density of the Matérn covariance with the half-integer roughness parameter
was shown to be the same as a continuous-time autoregressive process defined as a
stochastic differential equation (SDE) (Whittle, 1963). Suppose the observations are
yi= (011, - 01n,) - For j=1,...,np and [ = 1,...,d, starting from the initial state
0:(so) ~ MN(0,W;(s9)), the solution of the SDE follows (Hartikainen and Sarkka,
2010):

U5 = FOi(x;) + e 5,

01(z;) = Gi(xj-1)01(zj-1) + wWi(z;), (3.1)

where w;(z;) ~ N(0,W;(s;)), €, is an independent white noise for [ = 1,...,d and
j=1,...,no. For the Matérn kernel with a half-integer roughness parameter, the terms
Gi(z;), Wi(z;), and F can be expressed explicitly as a function of |z; — z;_1| and
the range parameter of the kernel. Thus, the forward filtering and backward smoothing
algorithm (FFBS) can be applied to compute the likelihood and to make predictions
with linear computational operations of the number of observations (see e.g. Chapter 4 in
West and Harrison (1997) and Chapter 2 in Petris et al. (2009) for the FFBS algorithm).
The likelihood function and predictive distribution of a GP model having the Matérn
kernel with roughness parameters being 1/2 and 5/2 through the FFBS algorithm are
implemented in FastGaSP package available at CRAN. The computational complexity
of the FFBS algorithm is only O(n2), with ns being the number of observations.

We briefly discuss how to apply the FFBS algorithm to compute terms Lflj'fl and
\f]l| needed in Algorithm 1, for [ = 1,...,d. In the FFBS algorithm, the one-step-ahead
predictive distribution (g, ; | 91,1:j-1) ~ N (fi(x;), Qi(x;)) can be derived iteratively for
j=1,...,np and for each =1, ..., d. Closed form expressions of f;(x;) and Q;(z;) for
the Matérn covariance in (2.9) are given in Gu and Xu (2020). For l = 1,...,d, we have
following expressions for the computational expensive terms in the likelihood function:

no ~ ~ T
5) _ D, d L% = yl,l_fl,l’.“’yl,l_fl,nz '
|33 jl:[le(x]) an 7! < oo wC)

We use the backward sampling algorithm (Petris et al., 2009) to sample 6, ,,, from
p(al,ng | 5’,[@)7 /G(t+1)7 n(t+1)) and Bl,j from p(alﬂ ‘ S,l(t)v 0l,j+17ﬂ(t+1)7 n(t+1)) SequentiaHY7
for j = ny — 1,...,1. Posterior samples Z] = (z;(z1),.. ., 2z1(xn,))" can be obtained
by the first entry of the posterior sample 8, ; from the backward sampling algorithm,
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for j = 1,...,ne. Furthermore, for any ny x 1 real vector v;, we have Lyv; = (fi1 +

\/Ql($1)vl71, .. '7fl7”2 =+ Ql(l'nz)vl,nz)T for [ = 1, .. .,d and j = 1, .o, No.

3.3 Computational complexity

Denote p = p1 X po the total dimension of the inputs (s, x) and suppose the observational
matrix is nq X ng with irregular missing values, where ny < ng and N = nins. We discuss
the computational complexity for three scenarios with p = 2 (e.g. spatially correlated
data), p = 3 (e.g. spatio-temporal data) and p > 3 (e.g. functional data).

When p = 2, the computational complexity of the GOLF model with the half-
integer Matérn kernel is O(Nd). First, we compute the first d eigenvectors of 3 to
obtain A, which has O(n?d) operations (see e.g. Chapter 4.5.5 in Bai et al. 2000).
Second, computing the marginal likelihood and sampling the factor processes by the
FFBS algorithm only cost O(nad) operations. The largest computational order is from
the matrix multiplication Y7 = (Y — M)T A, which is at the order of O(Nd).

For p = 3, we let A; = A, ® Ag,, where A;, and A;, are the first d; and ds
eigenvectors of nq; x m1,; matrix 3, and n; 2 X n; o matrix X,,, respectively, with
n11 X Ny =n; and 3, ® X, = X,. Without the loss of generality, assume d; < da
and nqy < no. Let the total number of factor processes be d = dyds. The computational
order of the GOLF model with a half-integer Matérn covariance function is O(n1n2dmaz)
where d,q, is the maximum of d; and ds (noting this is smaller than O(ninad)). To
see this, computing the eigendecomposition of 3, and X, requires O(dm%l) and
O(dgn%Q) operations, respectively. Second, using the FFBS algorithm to compute the
marginal likelihood and to sample factor processes costs O(dns) operations. At last, we
do NOT directly compute Y7 A as its computation operations are O(Nd). Instead, we
first write the observations as an ng X nj 2 X ny,1 array Ygr, where the (i, 7, k)th entry
being the outcome at (s1,;, s2,5, x%). Then we do a 3-mode matrix product followed by
a 2-mode matrix product Y7 x5 A, x5 A,, (Kolda and Bader, 2009), which has the
computation operations O(ngnidy) and O(ngng 2d), respectively. Finally we concatenate

the second and third dimensions of Y~'aTT to obtain the ny x d matrix Y7

For the case when p > 3, there might be two scenarios. In the first scenario, the data
are observed in an ny,; X112 X...Xny i X ng tensor with irregular missing values, where
n1,1 X N2 X ... X Ny = ni. In this scenario, the computation will be Ndy,,,, where
dmaz 18 the maximum of dy,...,d; with similar deduction for the case with p = 3. In
the second scenario, we have p, > 1. Examples include emulating a computationally
expensive computer output with multivariate output (Conti and O’Hagan, 2010; Paulo,
2005). In this case, the Kalman filter algorithm may not be applied, so the additional
computational order is O(n3), when the covariance of the factor process is the same. If
the covariance is not the same, we need to additionally compute the inverse of covariance
matrices of d multivariate normal distributions, which is at the order of O(dn3).

In sum, the computational complexity of GOLF for all scenarios considered herein is
much smaller than O(N2) from directly inverting the covariance matrices. Besides, a few
steps in the MCMC algorithm can be computed in parallel, such as FFBS algorithm
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to compute the product of d marginal densities of projected output and the matrix
multiplication Y7 = (Y — M)T A, to further reduce the computational complexity.

4 Comparison and connection with other related models

GOLF processes are closely connected to a wide range of approaches on approximating
GPs for modeling large correlated data. Model (2.1) is a linear model of coregionalization
(LMC) (Gelfand et al., 2004), where the factor loading matrix is parameterized by input
variables. Another widely used model for multivariate functional data is the semipara-
metric latent factor model (SLFM) (Teh et al., 2005), where the factor loading matrix
can be estimated by the principal component analysis (PCA) (Higdon et al., 2008).
However, the linear subspace estimated by PCA is equivalent to maximum marginal
likelihood estimator (MMLE) with independent factors (Tipping and Bishop, 1999),
whereas the latent factors at different input variables are assumed to be correlated. The
MMLE of factor loadings with correlated factors was derived in Gu and Shen (2020),
called the generalized probabilistic principal component analysis (GPPCA). Our ap-
proach has two distinctions. First, our approach applies to observations with irregular
missing values, whereas the observations are required to be matrices in GPPCA. Second,
both inputs s and x are used for estimation, whereas only the input in latent processes
is used in GPPCA and predictions can be more accurate.

To overcome the computational bottleneck of GPs, we project observations on or-
thogonal coordinates in a GOLF model, as the complexity of computing the likelihood of
GPs with Matérn covariances with one dimension input is fast by the continuous-time
Kalman Filter. The computational complexity can be further reduced by only using
factor processes with large eigenvalues. The reduced rank approach is used widely in
modeling correlated data. For instance, the predictive process by a set of pre-specified
knots was studied in Banerjee et al. (2008), and the multiresolution local bisqaure func-
tions were used in Cressie and Johannesson (2008). Limitations of the reduced-rank
method are studied in Stein (2014). Note that even for the full rank covariance, the
computational order of GOLF is much less than O(N2). The primary goal is not to
propose a reduced rank model herein, but to reduce the computational complexity of a
GP model with a full-rank, flexible covariance function through orthogonal projections.

Many other approximation methods for GPs follow the framework of Vecchia’s ap-
proximation (Katzfuss and Guinness, 2017; Vecchia, 1988). Vecchia’s approximation is
a broad framework that assumes the sparsity of the inverse of Cholesky decomposition
of the covariance matrix of the latent processes, where the key is on selecting the or-
der of the latent variables and imposing sensible conditional independence assumptions
between variables. GOLF processes with Matérn kernel is closely related to Vecchia’s
approximation, in the sense that the model can be written as a vector autoregressive
model with orthogonal factor loading matrix. Our way of computing likelihood and pre-
dictions based on the FFBS algorithm is exact, rather than an approximation to the
likelihood function. We compare our approach with a few other methods that fall into
the framework of Vecchia’s approximation in Section 6.1.
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5 Simulated studies

We discuss two simulated examples in this section. We first study a simulated example
with a small sample size to study the predictive performance and parameter inference
between GOLF processes and the exact GP model by directly computing the inversion
and determinant of the covariance matrix in the likelihood function. In the second
simulated example, we generate observations from separable and nonseparable models to
study the predictive performance of GOLF processes with a different number of factors,
and with the same or different kernel parameters. For both examples, we implement
J = 100 experiments in each scenario, and we generate T' = 5,000 MCMC samples for
each method with the first 20% of the samples used as the burn-in samples.

Denote y; ; the ith held-out data in the jth simulated experiment in each scenario, for
i=1,...,n"and j =1,...,J. Let g;; and C1;;(95%) be the predictive mean and 95%
predictive credible interval of the ith held-out data at the jth experiment, respectively.
For both simulated examples, we record the root mean square error, the percentage of
held-out observations percentage covered in the 95% predictive interval, and the average
length of the 95% predictive interval of the jth experiment (Lcp, (95%)):

N* (% *
\/Zi—l(yij - yz’j)2

RMSE; = N , (5.1)
1
Per, (95%) = N*Zl{y;‘j € CI;(95%)}, (5.2)
i=1
N
1
Ler, (95%) = > length{C1;;(95%)}, (5.3)
i=1
for 5 = 1,...,J. We compute average values of these three quantities over J = 100

simulations to evaluate each approach. A precise method should have a small average
RMSE, Pc1(95%) close to the 95% nominal level, and short predictive interval lengths.
Here we only consider the pairwise interval of responses at each coordinate as outputs
are univariate on spatial or spatio-temporal domain. Simultaneous credible interval can
be used for applications with multivariate responses (Serbye and Rue, 2011).

Example 3 (GOLF processes and exact GP model). Data are sampled from a zero-
mean separable GP model with two-dimensional inputs at a 25 X 25 reqular lattice in
[0,1]2. Two missing patterns are considered, where the data are missing at random in
the first case, and a disk in the centroid of the lattice is missing in the second case.

We assume a small sample size in Example 3 because of the computational bur-
den by the exact Gaussian process model. We use the unit-variance covariance ma-
trix parameterized by the exponential kernel and the Matérn kernel in (2.9) to gen-

erate the data. The range parameters of Matérn kernel are chosen as 79 = 1 and
Y1 = ... = 74 = 1/3. The range parameters of exponential kernel are chosen to be
v =4 and y; = ... =4 = 1. All the range parameters, the variance of the kernel, and

noise are estimated by each method based on the MCMC algorithm.
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Missing value GOLF Exact GP model Difference
Kernel | Percentage Pattern | RMSE  Prr(95%) Lcr(95%) | RMSE  Por(95%) Leir(95%) | ARMSE AL AU
50% random | 0.106 0.954 0.425 0.106 0.952 0.423 0.002 0.006 0.006
Matérn 20% random | 0.103 0.952 0.410 0.103 0.952 0.411 0.001 0.007 0.007
20% disk 0.108 0.909 0.430 0.108 0.913 0.431 0.005 0.008  0.009
50% random | 0.129 0.955 0.518 0.128 0.953 0.513 0.005 0.009  0.008
Exp 20% random | 0.120 0.947 0.472 0.120 0.948 0.471 0.003 0.009  0.009
20% disk 0.156 0.941 0.602 0.154 0.946 0.605 0.013 0.019 0.019

Table 2: Comparison between the exact GP model and GOLF processes. J = 100
simulated experiments are conducted for each scenario. ARMSE= %ijl ARMSE;
measures the average Lo distance by the two methods, where ARMSE; =
(= Eivzl (@5j.coLr —ijgp)z)lm with 97 corp and §;; ¢ p denote the predictive mean
by GOLF processes and exact GP model, respectively. AL and AU measure the aver-
age absolute difference between the lower bound and upper bound of 95% predictive
intervals of the GOLF processes and the exact GP model, respectively.

We compare GOLF processes and the exact GP model where the inverse and de-
terminant of the covariance matrix are directly computed. Both models use the same
prior and proposal distribution in the MCMC algorithm to sample the kernel param-
eters. Table 2 gives the predictive performance of both methods for three scenarios,
where 50% and 20% of the output are missing at random in the first two scenarios,
and approximately 20% of the output is missing in a disk in the centroid of the lattice
in the third scenario. Graphs of the observed data, full data, predictions, and trace
plots of the posterior samples in one simulation are given in the Supplementary Mate-
rials.

As shown in Table 2, both methods have accurate predictions and uncertainty as-
sessment for all scenarios. Out-of-sample RMSE for predicting the held out observations
is close to 0.1, the standard deviation of the noise. The 95% predictive confidence in-
tervals cover around 95% of the held-out observations, and the average length of the
predictive confidence interval is small. Predictions of both methods are more precise for
the cases when the data are missing at random than the ones when a disk of output is
missing in the centroid of the lattice, as the estimated correlation between the held-out
test output and nearby observations are relatively accurate.

For Example 3, note that GOLF processes and the exact GP model are the same
with two different computational strategies. For GOLF processes, we sample the missing
values to use the fast computational strategy, whereas the inverse and determinant of
the covariance matrix are computed in the exact GP model directly. Therefore, the two
different strategies have significantly different computational operations. The computa-
tional operations of GOLF processes is O(Nd) with N = n; xns (d = ny in Example 3),
whereas the computational operations of the exact GP model is O(N2), where N, is the
number of observations. Thus, GOLF processes are computationally feasible for a large
data set. On the other hand, the difference in predictions and uncertainty assessment
between the exact GP model and GOLF is small (last three columns in Table 2), since
we do not make any approximation in computing GOLF processes.

Figure 2 shows the histogram of the 4000 after burn-in posterior samples from the
GOLF processes and exact GP model in one simulation of Example 3. The posterior
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Figure 2: The histogram of posterior samples of the logarithm of the inverse range
parameters and nugget parameters in one simulation of Example 3, where the data are
generated using the Matérn kernel in (2.9) with 50% of the values missing at random.

samples of the two methods are close to each other. The difference becomes even smaller
when we increase the number of MCMC samples.

Example 4 (GOLF processes with different number of factors and kernel parameters).
The data are sampled from two scenarios with two-dimensional inputs being a 100 x 100
lattice in [0,1]%. In the first scenario, the range parameters of the kernel of each factor
process are the same, whereas these parameters are chosen to be different in the second
scenario. In both scenarios, a disk of output in the centroid of the lattice is masked out
for testing, corresponding to approximately 20% of the total number of data. We use
d =30 (low-rank) and d = 100 (full-rank) factors to generate the data. We test GOLF
processes with a different number of factors, same or different range parameters.

In Example 4, the factor processes are assumed to have the Matérn kernel in (2.9)
and unit variance. The kernel parameter is shared in the first scenario, where vy = 1/4
and 4; = 1/2, and in the second scenario v9 = 1/3 and v, = 1/, for I = 1,...,d. We
estimate these parameters through the posterior samples from the MCMC algorithm.

Predictive performance of different approaches for data simulated by d = 30 latent
processes are graphed in Figure 3. In the first row of the panels, since data are simulated
by GOLF processes with different kernel parameters, nonseparable GOLF processes have
smaller predictive RMSE and a shorter interval that covers almost 95% of the data. In
the second row of the panels, GOLF processes with the same kernel parameter seem
to be slightly better, as the true factor process has the same kernel parameter. The
difference between the two methods in the second row is smaller, as the GOLF model
with a separable kernel is a special case of the one with different kernel parameters.

From Figure 3, we found that when we use d = 20 factor processes or more, the
predictive results seem to be similar, as the data are simulated using d = 30 factor
processes. The way of selecting the number of factors is currently ad-hoc. One may
select the number of factors to ensure a large proportion of the variance explained by
the sum of the eigenvalues of the correlation matrix Rg. This simulation suggests that
using more factors may be better in prediction than using very few factors.
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Figure 3: The predictive performance of GOLF process with d = 5,10, 20, 30,40 and
50 factors for Example 4. in the first row of panels, kernel parameters are different
in simulating the data, whereas the parameters are the same in for simulation in the
second row of panels. Blue curves and red curves denote the GOLF processes with
different kernel parameters and the same kernel parameter, respectively. In the left
panels, the solid curves denote the RMSE for predicting the (noisy) observations, and the
dashed curve denotes the RMSE for predicting the mean of the observations. Proportions
of observations covered in the 95% predictive interval and the average length of the
predictive interval are graphed in the middle and right panels, respectively.

In Figure 4, we graph the simulated observations, simulated mean, and the prediction
from the GOLF model with d = 30 in one simulation. Predictions look reasonably
accurate. Results when the data are generated by a full rank kernel (d = 100) are
provided in Figure S3 in Supplementary Materials. Results are very similar to Figure 3.

6 Real applications

6.1 Predicting large spatial data on an incomplete lattice

We compare GOLF processes with different approaches on predicting the missing tem-
perature values in Heaton et al. (2019). This data set contains daytime land surface
temperatures on August 4, 2016, at 300 x 500 spatial grids with the latitude and longi-
tude ranging from 34.30 to 37.07, and from —95.91 to —91.28, respectively. The complete
data set consists of 148,309 observations with 1,791 missing values due to cloud cover.
The training data (plotted in the left panel in Figure 1) consists of 105,569 observations,
whereas 42,740 observations were held out as the test data. Training observations and
full observations are graphed in the upper panel in Figure 5.
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Figure 4: The left figure shows the observed data in one simulation of Example 4, where
a disk of observations is missing. The middle figure contains the mean of the data and
the right figure is the prediction from GOLF process.

We define GOLF processes on this dataset with s being latitude and x being longi-
tude. Since areas with higher latitude typically have lower temperature on average, we
assume a mean parameter for each latitude value, i.e. M = (HZBQ)T, where Hy = 1,,,
and By = (ba.1,...,b2,,)7. We let d = ny/2 and use exponential kernels with distinct
variances and range parameters sampled from the marginal posterior distribution for
GOLF processes. We compute M = 6000 posterior samples where the first 20% were
used as the burn-in samples. Results of longer MCMC chains and different initial values
of the parameters are given in the Supplementary Materials.

In Heaton et al. (2019), 12 groups of researchers across the globe implemented their
methods to predict missing temperature values for competition. Among this cohort of
researchers are authors that conjured up some of the most popular methods for large
spatially correlated data. Other than GOLF processes, we implement 8 of 12 approaches
based on the code provided in Heaton et al. (2019). We could not implement the other
4 approaches due to memory limitation of the computing facility or unavailability of
the code. All computations are operated on a 3.60 GHz 8 cores Intel i9 processor with
32 GB of RAM on a macOS Mojave operating system.

The predictive performance of different approaches is recorded in Table 3. Most of
the results are consistent with what is shown in Heaton et al. (2019), whereas small
differences remain for those requiring random starts or stochastic algorithms. E.g., 5
implementation of the SPDE method gives different RMSE ranging from 1.55 to 1.88.
Besides, running time of some methods are slightly different. For SPDE and LatticeKrig,
for instance, it takes 35 mins and 214 mins to run in our system, respectively, whereas
it takes 138 mins and 78 mins to run in Heaton et al. (2019), respectively.

We acknowledge that held-out observations were not released in Heaton et al. (2019),
adding difficulty for model specification. The good performance of the GOLF model
may be explained by two reasons. First, different mean parameters are assumed at
each latitude, which is more flexible to capture information from a large number of
observations. Second, we assume different range and variance parameters of the factor
processes, which are more flexible than the separable or isotropic kernel functions.
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Methods RMSE  Pc;(95%) Ler(95%) Run time (mins)

FRK 3.16 0.77 6.09 3.53
Gapfill 1.86 0.35 1.44 6.98
GOLF 1.46 0.92 4.95 48.6
LAGP 2.07 0.84 5.70 3.76
LatticeKrig 1.68 0.963 6.58 214.25
MRA 1.85 0.92 5.54 4.99
NNGP 1.64 0.95 5.84 1.14
Partition 1.80 0.82 4.56 827.37
SPDE 1.55 0.97 7.87 34.8

Table 3: Comparison for the dataset in Heaton et al. (2019). The standard deviation of
observations is 4.07. For each method, we compute RMSE, Pcr(95%) and Lo (95%) de-
fined in (5.1)—(5.3). A satisfying method should have small RMSE and small Ler(95%)
and Pc1(95%) closed to be 95% nominal level. We compare the fixed rank kriging (FRK)
(Cressie and Johannesson, 2008), the Gapfill method (Gerber et al., 2018), GOLF pro-
cesses, the local approximate Gaussian processes (LAGP) (Gramacy and Apley, 2015),
the lattice kriging (LatticeKrig) (Nychka et al., 2015), the multiresolution approxima-
tion (MRA) (Katzfuss, 2017), the nearest neighbor Gaussian processes (NNGP) (Datta
et al., 2016), the spatial partitioning (Partition) (Heaton et al., 2017), and stochastic
partial differential equations (SPDE) (Lindgren et al., 2011).

The 95% predictive interval of the GOLF model is the shortest, and it covers around
92% of the held out test data, as shown in Table 3. In Supplementary Materials, we
provide diagnostic plots of the fitted values from the GOLF model and predictive perfor-
mance based on several configurations, including 40,000 MCMC samples and different
initial parameters. The predictive performance of the GOLF model at different config-
urations is similar. Besides, the computational time of GOLF per one MCMC iteration
is around 0.49 s for this example, which is comparable to NNGP (0.53 s) and faster
than MRA (3.29 s) for one iteration. The posterior sampling obtained here provided
uncertainty quantification of model parameters, whereas most of the methods provided
in Table 3 only provide a point estimator of the parameters. Future works are needed
to reduce the number of iterations in GOLF to achieve a similar level of predictive
accuracy.

The predictive mean of the GOLF processes and SPDE are graphed in the middle
panel and right panel in Figure 5, respectively. Predictions from the GOLF processes
are more accurate for predicting temperatures in areas with high latitude, possibly due
to flexible mean parameters estimated from data. Both methods seem to be slightly
oversmoothing. Yet predicting the missing values of this data set is challenging, as
the observations are missing in spatial blocks. Both methods seem precise in predic-
tion.
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Figure 5: The top panels show the observed temperature and full temperature, respec-
tively, where the gray area contains unobservable points. The bottom panels are the
predictions from two methods, GOLF and SPDE, respectively.

6.2 Analysis of large spatio-temporal data set

We consider the monthly gridded temperature anomalies from U.S. National Oceanic
and Atmospheric Administration (NOAA).!

The data set contains the average air and marine temperate anomalies at 5 degrees
longitude-latitude grids with respect to 1981-2010 base period. R code and examples
to load NOAA gridded data can be found in Shen (2017). We compare the predictive
performance using the data from Jan 1999 to Dec 2018. For each month, we observe the
temperature anomalies at n; = 36 x 28 spatial grids with longitude ranging from 182.5
to 357.5 and with latitude ranging from —62.5 to 72.5, respectively. There are 11,122
missing data, leaving the total number of observations to be 230,798. We held out 50%
randomly sampled temperature anomalies as the missing data, and the rest 50% is used
as training data (i.e., n = n* = 115,399). Predicting the missing values in this scenario
is more difficult than the example in Gu and Shen (2020), where the data are missing
in a set of locations over the same months.

We fit the GOLF processes with the covariance of each spatial coordinate modeled
by the Matérn covariance, and the factors processes are defined on the temporal input
with different kernel parameters. Due to computational limitation, we let the number
of factors be d = 0.752n; = 567 and assume the factor loadings to be a Kronecker
product of the first three-quarters of the eigenvectors of the sub-covariance matrices
for longitude and latitude. Although we have a large number of factors, the compu-
tational complexity is O(Ndqaz) With dpaz = 0.75 X 36 = 48 rather than O(Nd;ds)

Lftp://ftp.ncdc.noaa.gov/pub/data/noaaglobaltemp/operational.
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Methods RMSE  Pc;(95%) Ler(95%) Run time (mins)
FRK 0.846 0.967 3.92 29.4
GOLF 0.325 0.942 1.08 43.9
LAGP 0.695 0.951 1.80 6.18
Spatial model 1 0.365 0.928 2.09 26.5
Spatial model 2 0.348 0.928 2.02 42.7

Table 4: Predictive performance of different approaches for the NOAA monthly gridded
temperature dataset. The standard deviation of the outcomes in this dataset is 0.940.
Results of the FRK, GOLF, and LAGP are given in the first to the third rows. For the
results in the fourth and fifth rows, spatial models were fitted using the RobustGaSP
package with one initial value and two initial values of the range and nugget parameters
for finding their marginal posterior mode, respectively.

by the mode multiplication of tensor (see Section 3.3 for the discussion). We assume
the coefficients of the intercept and linear coefficients are different at each location, i.e.
M = (H3B3)T where Hy = [1,,,,x], with x being 240 months and B, being a matrix
of 2 x n; coefficients. We use M = 3000 MCMC samples with the first 20% as the
burn-in samples, as posterior samples converge at a small number of iterations in this
example.

In Table 4, we compare the GOLF processes with a few other spatial and spatio-
temporal methods for the NOAA dataset. We fit two spatial models separately for each
month using the RobustGaSP package available on CRAN. Also implemented are FRK
and LAGP based on their packages (Zammit-Mangion et al., 2017; Gramacy, 2016).

As shown in Table 4, GOLF processes have the smallest predictive RMSE and the
shortest predictive interval that covers around 94% of the held-out output. Since the
temporal input is not used, it is not surprising that the RMSE and the length of the
predictive interval of the two spatial models are larger than the ones by GOLF processes.
If we include the temporal inputs, the computation cost is too large for inverting the
covariance matrix directly. FRK and LAGP also seem to have a larger predictive error,
though both the spatial and temporal inputs are used in these methods.

Predictions from GOLF processes are more accurate due to three reasons. First,
we can compute the model with a large number of factors efficiently, and no further
approximation of the likelihood function is required. Second, mean and trend parameters
at each location are different, making the model flexible to capture the dynamic trend of
temperature values at different locations. Finally, Latent factor processes have different
kernel parameters that fit diverse smoothness levels of projected observations.

In Figure 6, we graph the full temperature anomalies in Jan 2018, predictions from
the GOLF and spatial GP model by RobustGaSP package. 50% of the observation in
the left panel are held out for testing. Both models seem to be accurate. Since the
temporal coordinate is used in prediction, the predictive error by GOLF processes is
smaller.
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Figure 6: Full temperature anomalies in Jan 2018, predictions by the GOLF model and
the spatial model by RobustGaSP package are shown in left, middle and right panels,
respectively.

7 Concluding remarks

We have introduced GOLF processes as a computationally feasible approach to model
large incomplete lattice observations. For GPs with a product covariance function or
LMC with orthogonal latent factor loadings, the likelihood can be decomposed into a
product of multivariate normal densities, and prior independence of factor processes
leads to posterior independence of factor processes. These two properties allow one to
reduce the computational burden of GPs on incomplete lattice observations without
approximating the likelihood function. Further computational reduction can be made
by reducing the number of factors as well. Besides, we have introduced a flexible way to
model the mean function and the closed-form marginal likelihood is derived to alleviate
the identifiability issue. Finally, we have developed an MCMC algorithm for Bayesian
inference for large incomplete matrices of spatial and spatio-temporal data.

The computational tools developed in this work require observations from a lattice
with potential missing values. Approximation methods such as the NNGP approach
may be integrated to model correlated data with a more general design. Besides, further
computational reduction can be made by reducing the number of factors, and a principle
way to select the number of factors will be useful. Finally, direct marginalization of factor
processes based on an elementwise representation of GPs may be feasible to reduce the
computation time from drawing a large number of posterior samples.

Supplementary Material

Supplementary materials: Gaussian orthogonal latent factor processes for large incom-
plete matrices of correlated data (DOIL: 10.1214/21-BA1295SUPP; .pdf). The supple-
mentary material consists of proofs for Section 2, additional results of simulated studies
and real applications.
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