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NUMERICAL SOLUTION OF LARGE SCALE HARTREE–FOCK–BOGOLIUBOV
EQUATIONS

Lin Lin1,2 and Xiaojie Wu1,*

Abstract. The Hartree–Fock–Bogoliubov (HFB) theory is the starting point for treating supercon-
ducting systems. However, the computational cost for solving large scale HFB equations can be much
larger than that of the Hartree–Fock equations, particularly when the Hamiltonian matrix is sparse,
and the number of electrons 𝑁 is relatively small compared to the matrix size 𝑁𝑏. We first provide
a concise and relatively self-contained review of the HFB theory for general finite sized quantum sys-
tems, with special focus on the treatment of spin symmetries from a linear algebra perspective. We then
demonstrate that the pole expansion and selected inversion (PEXSI) method can be particularly well
suited for solving large scale HFB equations. For a Hubbard-type Hamiltonian, the cost of PEXSI is at
most 𝒪(𝑁2

𝑏 ) for both gapped and gapless systems, which can be significantly faster than the standard
cubic scaling diagonalization methods. We show that PEXSI can solve a two-dimensional Hubbard-
Hofstadter model with 𝑁𝑏 up to 2.88× 106, and the wall clock time is less than 100 s using 17 280 CPU
cores. This enables the simulation of physical systems under experimentally realizable magnetic fields,
which cannot be otherwise simulated with smaller systems.
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1. Introduction

The Hartree–Fock (HF) theory plays a fundamental role in quantum physics and chemistry. Similarly, the
Hartree–Fock–Bogoliubov (HFB) theory is the simplest first principle method for treating superconducting
systems. The HFB theory generalizes the celebrated Bardeen–Cooper–Schrieffer (BCS) theory [3, 4], which
successfully explained superconducting phenomena when the phase transition temperature (denoted by 𝑇𝑐) is
low. Even for high 𝑇𝑐 superconductors (HTC) where the HFB theory is not effective by itself, it is still the
starting point and a key component in more advanced theories, such as those based on quantum Monte Carlo
methods [9, 49, 50] and quantum embedding theories [57, 58]. A distinctive feature of HFB is the existence of
the pairing effect. When pairing occurs, the number of particles is no longer a good quantum number, and a
fluctuating number of particles is the premise of the superconducting phenomena.
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Consider a quantum many-body system discretized using 𝑁𝑏 basis functions (called spin orbitals in quantum
physics literature) with 𝑁 electrons (for HFB, this is defined in the sense of an ensemble average). Both the
HF and HFB equations are nonlinear equations, which can be solved iteratively via the self-consistent field
(SCF) iteration. However, the computational cost for solving the HFB equations can be much higher, due to
the following two reasons. (1) HF calculations require computing the lowest 𝑁 eigenfunctions of a Hamiltonian
matrix of size 𝑁𝑏, while HFB requires computing the lowest 𝑁𝑏 eigenfunctions of a quasi-Hamiltonian matrix
of size 2𝑁𝑏, i.e. 50% of the eigenpairs. This essentially forbids the efficient usage of iterative eigensolvers, even
if 𝑁𝑏 ≫ 𝑁 (such as the case of a large basis set or low-doping) or if the HFB Hamiltonian is sparse. (2)
The constraint of the number of electrons in the HF theory can be trivially satisfied by taking the lowest 𝑁
eigenfunctions. Such a constraint in the HFB theory can only be satisfied by iteratively adjusting the chemical
potential, which can increase the number of SCF iterations. Therefore in practice it can be difficult to perform
HFB calculations for large scale systems, such as the treatment of superconductors under an experimentally
realizable magnetic field [59], large quantum dots [12,19], nano-transport phenomena [28], to name a few.

Contribution

The contribution of this paper is two-fold. First, we attempt to provide a relatively concise and self contained
derivation of the HFB theory. While the HFB theory itself is certainly well-known in the physics literature, our
experience indicated that the derivation of its general form for finite sized quantum systems, and the associated
linear algebra structures, are not commonly presented in detail. This is partly because many textbooks in
physics discuss the HFB and BCS theories together, and often focus on certain special cases such as the spin-
singlet coupling case or translational invariant systems. While these settings indeed occur most frequently in
practice, if one starts from such settings, some amount of reverse engineering could be needed to grasp the overall
picture. Our perspective largely follows that of the excellent textbook by Blaizot and Ripka [6]1, which focuses
on finite sized systems that can be described using finite dimensional matrices. We compare the differences
between the numerical solution of HF equations and that of HFB equations, especially when 𝑁𝑏 is large. We
also introduce the concept of spin-singlet and spin-triplet couplings from a linear algebra perspective, which
reduces the dimension of the Hamiltonian. We hope our presentation would be useful for interested readers not
familiar with the matter.

Second, we propose to accelerate large scale HFB calculations using the pole expansion and selected inversion
(PEXSI) method [37, 41], which is a Fermi operator expansion (FOE) method for solving electronic structure
problems [18]. While the computational cost for diagonalizing the HFB Hamiltonian scales as 𝑂(𝑁3

𝑏 ), PEXSI
can evaluate the generalized density matrix with cost that scales at most as 𝒪(𝑁2

𝑏 ) for certain sparse Hamilto-
nians (such as Hubbard-type Hamiltonians). As mentioned before, diagonalization methods for HF calculations
only need to evaluate the lowest 𝑁 eigenpairs, and can immediately identify the chemical potential once the
eigenvalues are available. On the other hand, the cost of PEXSI only depends on 𝑁𝑏 (independent of 𝑁), and the
chemical potential can only be determined iteratively. Therefore for HF calculations, PEXSI only becomes faster
than diagonalization methods when the system size becomes relatively large. The advantage of diagonalization
methods no longer holds for HFB calculations, and therefore PEXSI can become advantageous at rather small
system sizes. Furthermore, the PEXSI method is ideally suited for parallel computing, and can be scaled to
104 ∼ 105 processors.

Using a two-dimensional Hubbard-Hofstadter model for example, we demonstrate that the PEXSI method
can already be more efficient than diagonalization methods for small systems of less than 400 sites. Thanks
to the reduced complexity, we perform large scale HFB calculations for systems of 1.44 × 106 sites, and the
wall clock time of each calculation of grand canonical ensemble is less than 100 s using 17 280 CPU cores. A
diagonalization method would require using a dense eigensolver for a complex matrix of size 2.88× 106, which
is prohibitively expensive. This allows us to approach the experimentally realizable range of magnetic fields of
around 20 Tesla, using a lattice of around 2×106 sites (and the matrix size is 4×106). We also demonstrate the

1Unfortunately, we found that this book seems to be out of production now.
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usage of the PEXSI based HFB method for studying phase diagrams and striped orders of the pairing potential
for large systems.

Related works. The general mathematical formulation of of the HFB theory was studied comprehensively
by Bach et al. [2], which leads to many subsequent works [7, 15, 16, 29, 30, 33]. In particular, Kraus and Cirac
[29] presented a detailed discussion of HFB in terms of the Majorana picture and the fermionic Gaussian
states (FGS). The first study of HFB from the perspective of numerical analysis only appeared a few years
ago by Lewin and Paul [34], which focused on the self-consistent field iterations in HFB calculations. Besides
diagonalization methods, Fermi operator expansion methods (based on the Chebyshev expansion) have also
been used to accelerate the solution of HFB equations [11,44,56].

Organization. The rest of the paper is organized as follows. We first introduce some background information,
including the HF theory and a corollary of Wick’s theorem in Section 2. This allows us to introduce the HFB
theory in Section 3, in a way that is parallel to the discussion of the HF theory. The numerical solution of HFB
equations using diagonalization methods, and the symmetry considerations are discussed in Section 4. We then
introduce the PEXSI method for HFB calculations in Section 5. We demonstrate the numerical performance of
PEXSI in Section 6. The conclusion and discussion are given in Section 7.

2. Preliminaries

Throughout the paper, we use the Dirac bra–ket notation for quantum states. For a matrix 𝐴 ∈ C𝑚×𝑛, its
transpose, complex conjugate (entry-wise), and Hermitian conjugate are denoted by 𝐴⊤, 𝐴,𝐴†, respectively.
Unless otherwise mentioned, a vector is always viewed as a column vector.

In the second-quantized formulation, the state space is called the Fock space, denoted by ℱ . The Fock
space is the direct sum of tensor products of multiple replicas of single-particle Hilbert space ℋ. Given a basis
{|𝜓𝑖⟩}𝑖=1,...,𝑁𝑏

of ℋ, the occupancy number basis set for the Fock space is

{|𝑠1, . . . , 𝑠𝑁𝑏
⟩ = |𝜓1⟩𝑠1 . . . |𝜓𝑁𝑏

⟩𝑠𝑁𝑏 } , 𝑠𝑖 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑁𝑏,

which is an orthonormal basis set satisfying⟨
𝑠𝑖1 , . . . , 𝑠𝑖𝑁𝑏

|𝑠𝑗1 , . . . , 𝑠𝑗𝑁𝑏

⟩
= 𝛿𝑖1𝑗1 · · · 𝛿𝑖𝑁𝑏

𝑗𝑁𝑏
. (2.1)

Here 𝑁𝑏 is the number of basis functions, or the number of sites in the single-particle space ℋ. Hence, the
dimension of Fock space is 2𝑁𝑏 .

A state |Ψ⟩ ∈ ℱ will be written as a linear combination of occupancy number basis elements as follows:

|Ψ⟩ =
∑︁

𝑠1,...,𝑠𝑁𝑏
∈{0,1}

Ψ (𝑠1, . . . , 𝑠𝑁𝑏
) |𝑠1, . . . , 𝑠𝑁𝑏

⟩ , Ψ (𝑠1, . . . , 𝑠𝑁𝑏
) ∈ C. (2.2)

Hence the state vector |Ψ⟩ can be identified with a vector Ψ ∈ C2𝑁𝑏 , and ℱ ∼= C2𝑁𝑏 . Without loss of generality
we always assume |Ψ⟩ is normalized, i.e.

⟨Ψ|Ψ⟩ =
∑︁

𝑠1,...,𝑠𝑁𝑏
∈{0,1}

|Ψ(𝑠1, . . . , 𝑠𝑁𝑏
)|2 = 1. (2.3)

The fermionic creation and annihilation operators, which add and remove one particle in the quantum state,
are respectively defined as (𝑝 = 1, . . . , 𝑁𝑏)

𝑎̂†𝑝 |𝑠1, . . . , 𝑠𝑁𝑏
⟩ = (−1)

∑︀𝑝−1
𝑞=1 𝑠𝑞 (1− 𝑠𝑝) |𝑠1, . . . , 1− 𝑠𝑝, . . . , 𝑠𝑁𝑏

⟩ ,

𝑎̂𝑝 |𝑠1, . . . , 𝑠𝑁𝑏
⟩ = (−1)

∑︀𝑝−1
𝑞=1 𝑠𝑞𝑠𝑝 |𝑠1, . . . , 1− 𝑠𝑝, . . . , 𝑠𝑁𝑏

⟩ .
(2.4)
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They satisfy the canonical anti-communication relation (CAR){︀
𝑎̂†𝑝, 𝑎̂𝑞

}︀
= 𝛿𝑝𝑞,

{︀
𝑎̂†𝑝, 𝑎̂

†
𝑞

}︀
= 0, {𝑎̂𝑝, 𝑎̂𝑞} = 0, 𝑝, 𝑞 = 1, . . . , 𝑁𝑏. (2.5)

The number operator defined as 𝑛̂𝑝 := 𝑎̂†𝑝𝑎̂𝑝 satisfies

𝑛̂𝑝 |𝑠1, . . . , 𝑠𝑁𝑏
⟩ = 𝑠𝑝 |𝑠1, . . . , 𝑠𝑁𝑏

⟩ , 𝑝 = 1, . . . , 𝑁𝑏. (2.6)

The eigenvalues of number operators are either 0 or 1. We also define 𝑁̂ =
∑︀𝑁𝑏

𝑝=1 𝑛̂𝑝 to be the total number
operator.

The state |0⟩ := |0, . . . , 0⟩ is called the vacuum state. In particular, an annihilation operator acting on the
vacuum state always vanishes, i.e.

𝑎̂𝑝 |0⟩ = 0, 𝑝 = 1, . . . , 𝑁𝑏. (2.7)

In fact, equation (2.7) can also be viewed as the defining equation for the vacuum corresponding to a set of
creation and annihilation operators satisfying the CAR. For a given state |Ψ⟩ ∈ ℱ and a self-adjoint operator
𝑂̂, we define ⟨𝑂̂⟩ := ⟨Ψ|𝑂̂|Ψ⟩ to be the expectation value of 𝑂̂.

In this paper, we assume that the quantum many-body Hamiltonian takes the form

𝐻̂ =
𝑁𝑏∑︁

𝑝,𝑞=1

ℎ0
𝑝𝑞𝑎̂

†
𝑝𝑎̂𝑞 +

1
4

𝑁𝑏∑︁
𝑝,𝑞,𝑟,𝑠=1

𝑉𝑝𝑞𝑟𝑠𝑎̂
†
𝑝𝑎̂

†
𝑞𝑎̂𝑠𝑎̂𝑟. (2.8)

Here ℎ0 ∈ C𝑁𝑏×𝑁𝑏 is a Hermitian matrix. The superscript 0 means that ℎ0 only comes from the single-particle
contribution. 𝑉 is a 4-tensor and characterizes the two-particle interaction. Due to the CAR, without loss of
generality we may require 𝑉 to satisfy the following symmetry properties

𝑉𝑝𝑞𝑟𝑠 = −𝑉𝑝𝑞𝑠𝑟 = −𝑉𝑞𝑝𝑟𝑠 = 𝑉𝑞𝑝𝑠𝑟. (2.9)

In other words, 𝑉 ∈ C𝑁𝑏×𝑁𝑏×𝑁𝑏×𝑁𝑏 is an anti-symmetric 4-tensor with respect to the permutation of indices
𝑝, 𝑞 or 𝑟, 𝑠. Furthermore, 𝑉𝑝𝑞𝑟𝑠 = 𝑉 𝑟𝑠𝑝𝑞. More general Hamiltonians such as those containing a cubic term with
respect to the creation and annihilation operators can be treated similarly. Note that the Hamiltonian should be
viewed as a discretized model, obtained by discretizing a quantum many-body Hamiltonian in the continuous
space using 𝑁𝑏 spin orbitals. In quantum chemistry, the symmetry requirement of 𝑉 in equation (2.9) implies
that we use the anti-symmetrized form of the two-electron integral [51]. For simplicity we omit the Hamiltonian
in the continuous space and the detailed form of the spin orbitals, and directly focus on the discretized model.
If an operator 𝑂̂ commutes with the total number operator, i.e. [𝑂̂, 𝑁̂ ] = 0, then 𝑂̂ is called a particle number
preserving operator. It is clear that the many-body Hamiltonian 𝐻̂ is a particle number preserving operator. In
the discussion below, when the context is clear we may drop the range of the summation.

Our goal is to compute the ground-state energy of (2.8), which can be obtained by variational principle as

𝐸0 = inf
|Ψ⟩∈ℱ : ⟨Ψ|Ψ⟩=1

⟨Ψ| 𝐻̂ − 𝜇𝑁̂ |Ψ⟩ . (2.10)

The chemical potential 𝜇 is a Lagrange multiplier to be determined so that the ground state wavefunction |Ψ⟩
has a number of electrons equal to a pre-specified integer 𝑁 ∈ {0, 1, . . . , 𝑁𝑏}, that is

⟨Ψ|𝑁̂ |Ψ⟩ = 𝑁. (2.11)

In the Hartree–Fock theory, the wavefunction is not minimized with respect to the entire Fock space, but is
assumed to be of the form

|Ψ⟩ = 𝑐†1 · · · 𝑐
†
𝑁 |0⟩ . (2.12)
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Here we defined a new set of creation operators

𝑐†𝑖 =
𝑁𝑏∑︁
𝑝=1

𝑎̂†𝑝Φ𝑝𝑖, 𝑖 = 1, . . . , 𝑁. (2.13)

The columns of the matrix Φ ∈ C𝑁𝑏×𝑁 are a set of orthonormal vectors, and the new set creation operators
satisfy the CAR {︁

𝑐†𝑖 , 𝑐𝑗

}︁
= 𝛿𝑖𝑗 ,

{︁
𝑐†𝑖 , 𝑐

†
𝑗

}︁
= 0, {𝑐𝑖, 𝑐𝑗} = 0.

By extending Φ to be a unitary matrix ̃︀Φ of size 𝑁𝑏 × 𝑁𝑏, we may define 𝑁𝑏 creation operators
{︁
𝑐†𝑖

}︁𝑁𝑏

𝑖=1
,

and correspondingly the annihilation operators {𝑐𝑖}𝑁𝑏

𝑖=1 that satisfy the CAR. Let us introduce the short hand
notation

𝑎̂† =
(︁
𝑎̂†1, . . . , 𝑎̂

†
𝑁𝑏

)︁
, 𝑎̂ = (𝑎̂1, . . . , 𝑎̂𝑁𝑏

)⊤ ,

and correspondingly
𝑐† =

(︁
𝑐†1, . . . , 𝑐

†
𝑁𝑏

)︁
, 𝑐 = (𝑐1, . . . , 𝑐𝑁𝑏

)⊤ .

They satisfy
𝑐† = 𝑎̂†̃︀Φ, 𝑐 = ̃︀Φ†𝑎̂.

A wavefunction of the form (2.12) is called a Slater determinant. The term “determinant” comes from that
the wavefunction (2.12) in the first quantized representation can be written as a determinant [51]. The set of
all Slater determinants is denoted by 𝒮HF. It can be directly verified that any Slater determinant satisfies the
constraint for the number of electrons (2.11). Hence the chemical potential only contributes a constant term
𝜇𝑁 to the energy and can be neglected. Then the Hartree–Fock theory can be concisely formulated as

𝐸HF
0 = inf

|Ψ⟩∈𝒮HF
⟨Ψ|𝐻̂|Ψ⟩ . (2.14)

Note that each state |Ψ⟩ ∈ 𝒮HF is automatically normalized due to the orthonormal constraint of the matrix Φ.
Using the CAR (more specifically 𝑐†𝑖 𝑐

†
𝑖 = 0), we have for any |Ψ⟩ ∈ 𝒮HF parameterized by equation (2.12)

𝑐†𝑖 |Ψ⟩ = 0, 𝑖 = 1, . . . , 𝑁.

In quantum physics, the creation and annihilation operators are often renamed as follows

𝑏̂𝑖 = 𝑐†𝑖 , 𝑏̂†𝑖 = 𝑐𝑖, 𝑖 = 1, . . . , 𝑁,

𝑏̂𝑖 = 𝑐𝑖, 𝑏̂†𝑖 = 𝑐†𝑖 , 𝑖 = 𝑁 + 1, . . . , 𝑁𝑏.
(2.15)

We can readily verify that {𝑏̂†𝑖 , 𝑏̂𝑖} satisfy the CAR. Equation (2.15) is often referred to as the particle-hole
transformation, where the states 𝑖 = 1, . . . , 𝑁 defining the Slater determinant are called “holes”, and the rest
of the states 𝑖 = 𝑁 + 1, . . . , 𝑁𝑏 are called “particles” [6]. Using the particle-hole transformation, the Slater
determinant satisfies

𝑏̂𝑖 |Ψ⟩ = 0, 𝑖 = 1, . . . , 𝑁𝑏. (2.16)

Recall that the property (2.7) for the vacuum state |0⟩, we find that a state |Ψ⟩ ∈ 𝒮HF can be viewed as
a vacuum operator defined by the annihilation operators {𝑏̂𝑖}𝑁𝑏

𝑖=1. In this sense, |Ψ⟩ is called a quasi-particle
vacuum state [6].

The advantage of viewing |Ψ⟩ as a quasi-particle vacuum state is that one may concisely derive the Hartree–
Fock equations using Wick’s theorem (see e.g. [6, 46, 51]). We omit the general formulation of Wick’s theorem
here, and only give the particular instance of Wick’s theorem useful for the purpose of this paper below.
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Proposition 2.1 (Wick’s theorem). If |Ψ⟩ is a quasi-particle vacuum state with respect to a set of creation and
annihilation operators satisfying the CAR, then the expectation value ⟨𝐴1𝐴2𝐴3𝐴4⟩ := ⟨Ψ|𝐴1𝐴2𝐴3𝐴4|Ψ⟩ with
respect to four operators 𝐴1, 𝐴2, 𝐴3, 𝐴4 (𝐴𝑖’s can be either creation or annihilation operators) can be evaluated
as

⟨𝐴1𝐴2𝐴3𝐴4⟩ = ⟨𝐴1𝐴2⟩ ⟨𝐴3𝐴4⟩ − ⟨𝐴1𝐴3⟩ ⟨𝐴2𝐴4⟩+ ⟨𝐴1𝐴4⟩ ⟨𝐴2𝐴3⟩ . (2.17)

For any |Ψ⟩ ∈ ℱ , we may define the density matrix as

𝜌𝑝𝑞 := ⟨𝑎̂†𝑞𝑎̂𝑝⟩ , 𝑝, 𝑞 = 1, . . . , 𝑁𝑏. (2.18)

Then if |Ψ⟩ ∈ 𝒮HF, by Wick’s theorem

⟨𝑎̂†𝑝𝑎̂†𝑞𝑎̂𝑠𝑎̂𝑟⟩ = ⟨𝑎̂†𝑝𝑎̂𝑟⟩ ⟨𝑎̂†𝑞𝑎̂𝑠⟩ − ⟨𝑎̂†𝑝𝑎̂𝑠⟩ ⟨𝑎̂†𝑞𝑎̂𝑟⟩+ ⟨𝑎̂†𝑝𝑎̂†𝑞⟩ ⟨𝑎̂𝑠𝑎̂𝑟⟩
= 𝜌𝑟𝑝𝜌𝑠𝑞 − 𝜌𝑠𝑝𝜌𝑟𝑞.

(2.19)

Note that |Ψ⟩ is an eigenstate of 𝑁̂ , and hence the anomalous term ⟨𝑎̂†𝑝𝑎̂†𝑞⟩ = ⟨𝑎̂𝑠𝑎̂𝑟⟩ = 0.
Furthermore, through direct computation we can verify

𝜌𝑝𝑞 =
𝑁∑︁

𝑖=1

Φ𝑝𝑖Φ𝑞𝑖, 𝑝, 𝑞 = 1, . . . , 𝑁𝑏,

or in matrix form
𝜌 = ΦΦ†.

Therefore the density matrix for a Slater determinant is a Hermitian, idempotent matrix and its trace is equal
to 𝑁 . In fact this defines the set of admissible density matrices as

𝒟HF =
{︀
𝜌 ∈ C𝑁𝑏×𝑁𝑏 |𝜌† = 𝜌, 𝜌2 = 𝜌, Tr[𝜌] = 𝑁

}︀
. (2.20)

The total energy functional with respect to |Ψ⟩ ∈ 𝒮HF can be written as a functional of 𝜌 as

ℰHF[𝜌] := ⟨𝐻̂⟩

=
∑︁
𝑝𝑞

ℎ0
𝑝𝑞𝜌𝑞𝑝 +

1
4

∑︁
𝑝𝑞𝑟𝑠

𝑉𝑝𝑞𝑟𝑠(𝜌𝑟𝑝𝜌𝑠𝑞 − 𝜌𝑠𝑝𝜌𝑟𝑞)

=
∑︁
𝑝𝑞

ℎ0
𝑝𝑞𝜌𝑞𝑝 +

1
2

∑︁
𝑝𝑞𝑟𝑠

𝑉𝑝𝑞𝑟𝑠𝜌𝑟𝑝𝜌𝑠𝑞.

(2.21)

In the last equality, we have used the anti-symmetry condition 𝑉𝑝𝑞𝑟𝑠 = −𝑉𝑝𝑞𝑠𝑟.
To solve the minimization problem (2.14), we define

ℎ𝑝𝑞[𝜌] :=
𝜕ℰHF

𝜕𝜌𝑞𝑝
= ℎ0

𝑝𝑞 +
∑︁
𝑟𝑠

𝑉𝑝𝑟𝑞𝑠𝜌𝑠𝑟. (2.22)

Let 𝜌 be the minimizer of equation (2.10) with the energy functional defined in equation (2.21), and assume
that there is a positive energy gap between the 𝑁 -th and (𝑁+1)-th eigenvalues of ℎ[𝜌]. Then the corresponding
Euler–Lagrange equation gives the following nonlinear eigenvalue problem

ℎ[𝜌]Φ = ΦΛ, 𝜌 = ΦΦ†. (2.23)

Here all columns of Φ ∈ C𝑁𝑏×𝑁 form an orthonormal set of 𝑁 vectors, and Λ = diag(𝜀1, . . . , 𝜀𝑁 ) ∈ R𝑁×𝑁 is a
diagonal matrix, i.e. (Λ,Φ) are the eigenpairs corresponding to the lowest 𝑁 eigenvalues of ℎ[𝜌]. Equation (2.23)
is called the Hartree–Fock equation, which needs to be solved self-consistently until convergence. The choice of
taking the lowest 𝑁 eigenpairs is called the aufbau principle in the quantum physics literature, which can be
rigorously proved for certain choice of two-particle interaction 𝑉 [2].
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3. Hartree–Fock–Bogoliubov theory

In the Hartree–Fock theory, a state |Ψ⟩ ∈ 𝒮HF has a well defined number of electrons 𝑁 , and the Hartree–Fock
Hamiltonian is a particle number preserving operator. The Hartree–Fock–Bogoliubov (HFB) theory relaxes such
a constraint and allows the particle number to fluctuate. We first group the annihilation operators as a column
vector as

𝛼̂ =
(︂
𝑎̂
𝑎̂†

)︂
, (3.1)

i.e. 𝛼̂𝑝 = 𝑎̂𝑝, 𝛼̂𝑁𝑏+𝑝 = 𝑎̂†𝑝, 𝑝 = 1, . . . , 𝑁𝑏, and the Hermitian conjugate of 𝛼̂ as 𝛼̂† =
(︀
𝑎̂†, 𝑎̂

)︀
. Note that

{𝛼̂†, 𝛼̂} are only formal notations. In particular, they do not satisfy the CAR (just note that for any 1 ≤ 𝑝 ≤ 𝑁𝑏,
{𝛼̂𝑝, 𝛼̂𝑝+𝑁𝑏

} = {𝑎̂𝑝, 𝑎̂
†
𝑝} = 1 ̸= 0).

In parallel to the Hartree–Fock theory, the ground state wavefunction |Ψ⟩ in the HFB theory is assumed to
be a generalized Slater determinant

|Ψ⟩ = 𝑐†1 · · · 𝑐
†
𝑁𝑏
|0⟩ . (3.2)

Note that there are 𝑁𝑏 instead of 𝑁 creation operators acting on the vacuum state. In fact, we shall define 𝑁𝑏

creation operators

𝑐†𝑖 =
2𝑁𝑏∑︁
𝑝=1

𝛼̂†
𝑝Φ𝑝𝑖, 𝑖 = 1, . . . , 𝑁𝑏. (3.3)

We shall demonstrate below that by a proper choice of Φ ∈ C2𝑁𝑏×𝑁𝑏 , the new creation and annihilation operators
{𝑐†𝑖 , 𝑐𝑖}

𝑁𝑏
𝑖=1 indeed satisfy the CAR. If so, we may perform a new (and trivial) particle-hole transformation as

𝑏̂𝑖 = 𝑐†𝑖 , 𝑏̂†𝑖 = 𝑐𝑖, 𝑖 = 1, . . . , 𝑁𝑏. (3.4)

Then {𝑏̂†𝑖 , 𝑏̂𝑖}
𝑁𝑏
𝑖=1 satisfy the CAR, and the generalized Slater determinant (3.2) satisfies

𝑏̂𝑖 |Ψ⟩ = 0, 𝑖 = 1, . . . , 𝑁𝑏, (3.5)

i.e. it is a quasi-particle vacuum state. The set of all such generalized Slater determinants is denoted by 𝒮HFB.
We define the density matrix 𝜌, and the pair matrix 𝜅 associated with a state |Ψ⟩, respectively as

𝜌𝑝𝑞 := ⟨𝑎̂†𝑞𝑎̂𝑝⟩ , 𝜅𝑝𝑞 := ⟨𝑎̂𝑞𝑎̂𝑝⟩ , 𝑝, 𝑞 = 1, . . . , 𝑁𝑏. (3.6)

Note that |Ψ⟩ ∈ 𝒮HFB does not necessarily have a well defined particle number, i.e. |Ψ⟩ is not an eigenstate of
𝑁̂ , and the pair matrix 𝜅 may not vanish. From the CAR we find that the density matrix and the pair matrix
satisfy the symmetry properties

𝜌† = 𝜌, 𝜅⊤ = −𝜅. (3.7)

We also define the generalized density matrix,

𝑅𝑝𝑞 :=
⟨︀
𝛼̂†

𝑞𝛼̂𝑝

⟩︀
, (3.8)

and its block structure is recorded in Proposition 3.1.

Proposition 3.1. In a matrix block form, the generalized density matrix 𝑅 can be written as

𝑅 =
(︂
𝜌 𝜅
−𝜅 𝐼 − 𝜌

)︂
, (3.9)

where 𝐼 is the identity matrix of size 𝑁𝑏. Furthermore, 𝑅 is Hermitian.
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Proof. According to the block partition of 𝛼̂, let us first partition 𝑅 in a 2× 2 matrix block form as

𝑅 =
(︂
𝐴 𝐵
𝐶 𝐷

)︂
. (3.10)

Then clearly the (1, 1) matrix block 𝐴 = 𝜌, and the (1, 2) matrix block 𝐵 = 𝜅. The (2, 1) block is

𝐶𝑝𝑞 =
⟨︀
𝑎̂†𝑞𝑎̂

†
𝑝

⟩︀
= ⟨𝑎̂𝑝𝑎̂𝑞⟩ = 𝜅𝑞𝑝.

Using the condition 𝜅 = −𝜅⊤, we have 𝜅𝑞𝑝 = −𝜅𝑝𝑞, and hence 𝐶 = −𝜅.
Similarly, the (2, 2)-block can be computed as

𝐷𝑝𝑞 =
⟨︀
𝑎̂𝑞𝑎̂

†
𝑝

⟩︀
= 𝛿𝑝𝑞 −

⟨︀
𝑎̂†𝑝𝑎̂𝑞

⟩︀
= 𝛿𝑝𝑞 − 𝜌𝑞𝑝.

Since 𝜌 = 𝜌†, we have 𝜌𝑞𝑝 = 𝜌𝑝𝑞, and hence 𝐷 = 𝐼 − 𝜌. This proves the form (3.9).
Again using symmetry properties of 𝜌, 𝜅, we have

𝑅† =
(︂
𝜌† −𝜅⊤
𝜅† 𝐼 − 𝜌†

)︂
=
(︂
𝜌 𝜅
−𝜅 𝐼 − 𝜌

)︂
= 𝑅.

Hence 𝑅 is Hermitian. �

For |Ψ⟩ ∈ 𝒮HFB, we can apply Wick’s theorem in Proposition 2.1 again to evaluate expectation values⟨︀
𝑎̂†𝑝𝑎̂

†
𝑞𝑎̂𝑠𝑎̂𝑟

⟩︀
=
⟨︀
𝑎̂†𝑝𝑎̂𝑟

⟩︀ ⟨︀
𝑎̂†𝑞𝑎̂𝑠

⟩︀
−
⟨︀
𝑎̂†𝑝𝑎̂𝑠

⟩︀ ⟨︀
𝑎̂†𝑞𝑎̂𝑟

⟩︀
+
⟨︀
𝑎̂†𝑝𝑎̂

†
𝑞

⟩︀
⟨𝑎̂𝑠𝑎̂𝑟⟩

= 𝜌𝑟𝑝𝜌𝑠𝑞 − 𝜌𝑠𝑝𝜌𝑟𝑞 + 𝜅𝑝𝑞𝜅𝑟𝑠.
(3.11)

Due to the breaking of the particle number symmetry, there is an anomalous term in the energy defined in
terms of the pair matrix 𝜅 and its conjugate. Furthermore, 𝑅 can be written as

𝑅𝑝𝑞 =
𝑁𝑏∑︁
𝑖=1

Φ𝑝𝑖Φ𝑞𝑖, 𝑝, 𝑞 = 1, . . . , 2𝑁𝑏,

or in matrix form
𝑅 = ΦΦ†.

Hence 𝑅 is an idempotent matrix if the columns of Φ are orthonormal vectors. And we always have Tr[𝑅] = 𝑁𝑏.
In the HFB theory, the number of electrons cannot be set by the rank condition of the generalized density
matrix 𝑅. Instead it is given by the trace of the density matrix 𝜌, i.e. Tr[𝜌] = 𝑁 . The set of the generalized
density matrix is defined as

𝒟HFB =
{︀
𝑅 ∈ C2𝑁𝑏×2𝑁𝑏 satisfying properties in Proposition 3.1 | 𝑅2 = 𝑅, Tr[𝜌] = 𝑁

}︀
. (3.12)

The total energy functional of the HFB theory is

ℰHFB[𝑅] := ⟨𝐻̂ − 𝜇𝑁̂⟩

=
∑︁
𝑝𝑞

(ℎ0
𝑝𝑞 − 𝜇𝛿𝑝𝑞)𝜌𝑞𝑝 +

1
4

∑︁
𝑝𝑞𝑟𝑠

𝑉𝑝𝑞𝑟𝑠 (𝜌𝑟𝑝𝜌𝑠𝑞 − 𝜌𝑠𝑝𝜌𝑟𝑞 + 𝜅𝑝𝑞𝜅𝑟𝑠)

=
∑︁
𝑝𝑞

(ℎ0
𝑝𝑞 − 𝜇𝛿𝑝𝑞)𝜌𝑞𝑝 +

1
2

∑︁
𝑝𝑞𝑟𝑠

𝑉𝑝𝑞𝑟𝑠𝜌𝑟𝑝𝜌𝑠𝑞 +
1
4

∑︁
𝑝𝑞𝑟𝑠

𝑉𝑝𝑞𝑟𝑠𝜅𝑝𝑞𝜅𝑟𝑠.

(3.13)
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Let 𝑅 be the minimizer of the following problem

𝐸HFB
0 = inf

𝑅∈𝒟HFB
ℰHFB[𝑅], (3.14)

with its energy functional defined in equation (3.13). Similar to equation (2.22), the linearized Hamiltonian due
to the variation with respect to 𝜌 is (the only addition is a diagonal term due to the chemical potential)

ℎ𝑝𝑞[𝜌] :=
𝜕ℰHFB[𝑅]
𝜕𝜌𝑞𝑝

= ℎ0
𝑝𝑞 − 𝜇𝛿𝑝𝑞 +

∑︁
𝑟𝑠

𝑉𝑝𝑟𝑞𝑠𝜌𝑠𝑟. (3.15)

Due to the pair matrix, we also define the pairing field (also called the pairing potential, or gap function in the
setting of translation-invariant systems) as

∆𝑝𝑞[𝜅] :=
𝜕ℰHFB[𝑅]
𝜕𝜅𝑝𝑞

=
1
4

∑︁
𝑟𝑠

𝑉𝑝𝑞𝑟𝑠𝜅𝑟𝑠 −
1
4

∑︁
𝑟𝑠

𝑉𝑞𝑝𝑟𝑠𝜅𝑟𝑠 =
1
2

∑︁
𝑟𝑠

𝑉𝑝𝑞𝑟𝑠𝜅𝑟𝑠. (3.16)

Note the difference between the order of the 𝑝, 𝑞 indices in ℎ and ∆. Here we have used the anti-symmetry
property of 𝜅 (and hence 𝜅), as well as the anti-symmetry property of 𝑉 . Similar to 𝜌 and 𝜅, the matrices ℎ[𝜌]
and ∆[𝜅] satisfy the symmetry properties

ℎ = ℎ†, ∆ = −∆⊤. (3.17)

Then the Euler–Lagrange equation corresponding to the minimization problem (3.14) gives the following
nonlinear eigenvalue problem

H [𝑅]Φ = ΦΛ, 𝑅 = ΦΦ†. (3.18)

Here the quasi-particle Hamiltonian H [𝑅] is defined as

H [𝑅] =
(︂
ℎ[𝜌] ∆[𝜅]
−∆[𝜅] −ℎ[𝜌]

)︂
. (3.19)

H [𝑅] is a Hermitian matrix due to the symmetry properties of ℎ and ∆. The eigenvalues are ordered non-
decreasingly as 𝜀1 ≤ 𝜀2 . . . ≤ 𝜀𝑁𝑏

, and Λ = diag(𝜀1, . . . , 𝜀𝑁𝑏
). The eigenvectors Φ ∈ C2𝑁𝑏×𝑁𝑏 are an orthonormal

set of 𝑁𝑏 vectors, and (Λ,Φ) are the eigenpairs corresponding to the lowest 𝑁𝑏 eigenvalues of H [𝑅]. The
chemical potential 𝜇 should be adjusted so that

𝑁 = ⟨Ψ|𝑁̂ |Ψ⟩ = Tr[𝜌]. (3.20)

Again, the aufbau principle, or the choice of taking the algebraically lowest 𝑁𝑏 eigenpairs, does not always hold,
but the principle can be rigorously proved for repulsive potentials [2, 34, 36]. In this case, the ground state of
(3.18) degenerates to a Slater determinant with 𝜅 = ∆[𝜅] = 0. The eigenvalue problem (3.18) is called the
Hartree–Fock–Bogoliubov (HFB) equation, which is also called the Bogoliubov–de Gennes (BdG) equation.

4. Solving Hartree–Fock–Bogoliubov equations

Similar to Hartree–Fock equations, HFB equations are often solved using self-consistent field iterations. At
the ℓ-th iteration, the density matrix and pair matrix are denoted by 𝜌(ℓ) and 𝜅(ℓ), respectively. We may
then construct the generalized density matrix 𝑅(ℓ) and the quasi-particle Hamiltonian H [𝑅(ℓ)]. The lowest 𝑁𝑏

eigenpairs of H [𝑅(ℓ)] further can be used to define 𝜌(ℓ+1), 𝜅(ℓ+1), and may continue the iteration until reaching
self-consistency. Then we may compute the total energy using equation (3.13). We discuss the diagonalization
method for solving HFB equations for general quasi-particle Hamiltonians in Section 4.1. In practice, the quasi-
particle Hamiltonian often exhibits an additional sparsity pattern due to the separation between spatial and
spin degrees of freedom. In such a case, the Hamiltonian can be block-diagonalized. This will be discussed in
Section 4.2.
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4.1. General formulation

The quasi-particle Hamiltonian H is a highly structured matrix. The corresponding structure of its eigenpairs
is recorded in Proposition 4.1.

Proposition 4.1. The eigenvalues of H are real and symmetric with respect to 0. Assuming there is no zero
eigenvalue, H can be diagonalized in the following form

H

(︂
𝑈 𝑉
𝑉 𝑈

)︂
=
(︂
𝑈 𝑉
𝑉 𝑈

)︂(︂
Λ 0
0 −Λ

)︂
. (4.1)

Here Λ ∈ R𝑁𝑏×𝑁𝑏 is a diagonal matrix with positive entries, and the matrix(︂
𝑈 𝑉
𝑉 𝑈

)︂
∈ 𝑈(2𝑁𝑏).

Proof. Without loss of generality let (𝑢⊤, 𝑣⊤)⊤ be an eigenvector with eigenvalue 𝜆 > 0, i.e.

H

(︂
𝑢
𝑣

)︂
= 𝜆

(︂
𝑢
𝑣

)︂
,

or
ℎ𝑢+ ∆𝑣 = 𝜆𝑢, −ℎ𝑣 −∆𝑢 = 𝜆𝑣.

Taking the complex conjugate and negating both equations, we have

−ℎ𝑢−∆𝑣 = −𝜆𝑢, ℎ𝑣 + ∆𝑢 = 𝜆𝑣.

In the matrix form, this becomes

H

(︂
𝑣
𝑣

)︂
= −𝜆

(︂
𝑣
𝑣

)︂
.

This holds for every eigenpair, and we prove the form of the decomposition (4.1). The eigenvectors form a
unitary matrix directly follow from that H is Hermitian. �

Due to Proposition 4.1, the lowest 𝑁𝑏 eigenvalues are always non-positive and are denoted by

Λ = diag(𝜀1, . . . , 𝜀𝑁𝑏
), 𝜀𝑖 ≤ 0.

Then according to equation (3.18), we find that

Φ =
(︂
𝑉
𝑈

)︂
.

The generalized density matrix can be constructed from the eigenvectors associated with negative eigenvalues
as

𝑅 =
(︂
𝑉
𝑈

)︂(︀
𝑉 ⊤ 𝑈⊤)︀ . (4.2)

Compared to equation (3.9), we find that

𝜌 = 𝑉 𝑉 ⊤, 𝜅 = 𝑉 𝑈⊤. (4.3)

It remains to show that the creation and annihilation operators defined in equation (3.3) satisfy the CAR.
Rewrite equation (3.3) as

𝑐†𝑖 =
𝑁𝑏∑︁
𝑝=1

𝛼̂†
𝑝𝑉 𝑝𝑖 +

𝑁𝑏∑︁
𝑞=1

𝛼̂𝑞𝑈 𝑞𝑖, 𝑖 = 1, . . . , 𝑁𝑏.
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Correspondingly the annihilation operators are defined as

𝑐𝑖 =
𝑁𝑏∑︁
𝑝=1

𝛼̂𝑝𝑉𝑝𝑖 +
𝑁𝑏∑︁
𝑞=1

𝛼̂†
𝑞𝑈𝑞𝑖, 𝑖 = 1, . . . , 𝑁𝑏.

If we group
(︀
𝑐† 𝑐

)︀
as a row vector, which has the same size as 𝛼̂† =

(︀
𝑎̂†, 𝑎̂

)︀
, then we have the matrix form

(︀
𝑐† 𝑐

)︀
=
(︀
𝑎̂† 𝑎̂

)︀(︂𝑉 𝑈
𝑈 𝑉

)︂
, (4.4)

which is a unitary transformation of the fermionic creation and annihilation operators from Proposition 4.1.
Therefore {𝑐†𝑖 , 𝑐𝑖}

𝑁𝑏
𝑖=1 indeed satisfy the CAR, |Ψ⟩ ∈ 𝒮HFB is a quasi-particle vacuum, and Wick’s theorem is

applicable.
Due to the symmetry of eigenvalues according to Proposition 4.1, the existence of a positive gap ∆𝑔 :=

𝜀𝑁𝑏+1 − 𝜀𝑁𝑏
is equivalent to the statement that H does not have a zero eigenvalue. Then the generalized

density matrix can be compactly written using a matrix function as

𝑅 = 1(−∞,0)(H ),

where 1(−∞,0)(·) is the indicator function on (−∞, 0).
In the case when H has zero eigenvalues or if the energy gap ∆𝑔 is small, we need to employ the finite

temperature formulation. Let 𝛽 = 𝑇−1 be the inverse temperature (the Boltzmann constant is taken to be 1),
then the generalized density matrix should be weighted by the Fermi-Dirac distribution as

𝑅 = 𝑓𝛽(H ) :=
1

𝑒𝛽H + 1
·

In the finite temperature formulation, 𝑅 is the minimizer of the Helmholtz free energy, defined as

ℱ = 𝐸 − 1
𝛽
𝑆. (4.5)

Here

𝑆 = −
2𝑁𝑏∑︁
𝑖=1

[𝑓𝑖 log 𝑓𝑖 + (1− 𝑓𝑖) log(1− 𝑓𝑖)] (4.6)

is the entropy, and 𝑓𝑖 = (1 + 𝑒𝛽𝜀𝑖)−1 is the Fermi-Dirac distribution.
When solving HFB equations self-consistently, we should note that there are in fact “two chemical potentials”.

One chemical potential is used to separate the wanted and unwanted eigenpairs. This chemical potential is always
set to 0 due to Proposition 4.1. The other chemical potential, or the “true” chemical potential denoted by 𝜇,
is used to control the number of electrons so that equation (3.20) is satisfied. These two chemical potentials
coincide in standard Hartree–Fock type of calculations, and can be identified directly after a single step of
diagonalization. In HFB, the number of electrons cannot be exactly controlled even if we fully diagonalize the
system as in equation (4.1). This is because the total number operator 𝑁̂ does not commute with 𝐻̂. Hence the
constraint on the number of electrons can only be satisfied by the dynamic adjustment of the chemical potential
𝜇. For clarity, we summarize the differences between HF and HFB in Table 1, when diagonalization type methods
are used. The reason why HFB is not suitable for an iterative solver is that the number of eigenpairs to compute
is always 𝑁𝑏, i.e. half of the eigenpairs. In this regime, Krylov type iterative solvers are not efficient.
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Table 1. Comparison between parameters for solving Hartree–Fock theory and Hartree–Fock–
Bogoliubov theory based on a diagonalization procedure.

HF HFB

Matrix size 𝑁𝑏 2𝑁𝑏

Number of eigenpairs to compute 𝑁 𝑁𝑏

Number of “holes” 𝑁 𝑁𝑏

Number of “particles” 𝑁𝑏 −𝑁 𝑁𝑏

Fixed number of particles Yes No
Directly obtain 𝜇 after diagonalization Yes No
Good for iterative methods Yes No

4.2. Spin symmetry

In the previous discussion, each site 𝑝 refers to a general spin orbital. In practice 𝑝 is often resolved into a
spatial index 𝑖, and a spin index 𝜎 ∈ {↑, ↓}. We denote by ̃︀𝑁𝑏 = 𝑁𝑏/2 the number of spatial orbitals. We further
assume that partitioned according to the spin index, ℎ is a 2× 2 block diagonal matrix as

ℎ =
(︂
ℎ↑ 0
0 ℎ↓

)︂
. (4.7)

In other words, we assume that there is no spin-orbit coupling effect in ℎ. The pairing field can be expressed
generally in the matrix block form as

∆ =
(︂

∆↑↑ ∆↑↓
∆↓↑ ∆↓↓

)︂
. (4.8)

Define the grouped creation operator 𝛼̂† = (𝑎̂†↑, 𝑎̂
†
↓, 𝑎̂↑, 𝑎̂↓), and let 𝛼̂ be the corresponding annihilation operator,

then the corresponding quasi-particle Hamiltonian takes the form

H =

⎛⎜⎜⎝
ℎ↑ 0 ∆↑↑ ∆↑↓
0 ℎ↓ ∆↓↑ ∆↓↓
−∆↑↑ −∆↑↓ −ℎ↑ 0
−∆↓↑ −∆↓↓ 0 −ℎ↓

⎞⎟⎟⎠ . (4.9)

The pairing field ∆ can be generally decomposed as

∆ =
3∑︁

𝛼=0

𝜒𝛼 ⊗∆𝛼 =
(︂
−∆1 + i∆2 ∆0 + ∆3

−∆0 + ∆3 ∆1 + i∆2

)︂
, (4.10)

where

𝜒0 =
(︂

0 1
−1 0

)︂
, 𝜒1 =

(︂
−1 0
0 1

)︂
, 𝜒2 =

(︂
i 0
0 i

)︂
, 𝜒3 =

(︂
0 1
1 0

)︂
. (4.11)

The matrices {𝜒𝛼} are related to the Pauli matrices, and its convention follows that in [59]. Since ∆ should be
an anti-symmetric matrix, we have

∆0 = ∆⊤
0 , ∆1 = −∆⊤

1 , ∆2 = −∆⊤
2 , ∆3 = −∆⊤

3 . (4.12)

When only ∆0 is present, it is called the spin-singlet coupling regime, and the total spin satisfies 𝑆𝑧 = 0.
This is the most common regime, as is found in conventional superconductors, iron-based superconductors
etc. Correspondingly, when ∆0 vanishes and only ∆1,∆2,∆3 are present, it is called the spin-triplet coupling
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regime, and the total spin satisfies 𝑆𝑧 = 1. The spin-triplet coupling is less common, and has been found in 3He
superfluid as well as certain heavy-fermion superconductors [59].

In order to reduce the dimension of H , following the structure in (4.9), ∆ needs to be either a block-diagonal
matrix, or a block-off-diagonal matrix.
∆ is a block-off-diagonal matrix. In this case, only ∆0,∆3 can be present. The quasi-particle Hamilto-
nian (4.9) is then block diagonalized in terms of the following two Hermitian matrix blocks.

H↑↓ :=
(︂

ℎ↑ ∆0 + ∆3

∆0 −∆3 −ℎ↓

)︂
, H↓↑ :=

(︂
ℎ↓ −∆0 + ∆3

−∆0 −∆3 −ℎ↑

)︂
. (4.13)

Define 𝐽 =
(︂

0 𝐼 ̃︀𝑁𝑏

𝐼 ̃︀𝑁𝑏
0

)︂
, then we have the relation

H↓↑ = −𝐽H ↑↓𝐽.

This suggests that for an eigenpair of H↑↓,

H↑↓

(︂
𝑢
𝑣

)︂
= 𝜆

(︂
𝑢
𝑣

)︂
, 𝜆 ∈ R, (4.14)

we have

H↓↑

(︂
𝑣
𝑢

)︂
= −𝜆

(︂
𝑣
𝑢

)︂
. (4.15)

Therefore the negative eigenvalues of H↑↓ can be mapped to the positive eigenvalues of H↓↑, and vice versa.
This is in fact a direct corollary of Proposition 4.1. In order to solve HFB, we only need to diagonalize H↑↓ as

H↑↓

(︂
𝑈↑↓ 𝑉 ↓↑
𝑉↑↓ 𝑈↓↑

)︂
=
(︂
𝑈↑↓ 𝑉 ↓↑
𝑉↑↓ 𝑈↓↑

)︂(︂
Λ+
↑↓ 0
0 −Λ+

↓↑

)︂
(4.16)

where Λ+
↑↓ and Λ+

↓↑ are the diagonal matrices formed by the positive eigenvalues of H↑↓ and H↓↑. Note that in
general, the number of negative eigenpairs contained in Λ+

↓↑ may not be equal to ̃︀𝑁𝑏. Accordingly, 𝑈↑↓, 𝑉↑↓, 𝑈↓↑
and 𝑉↓↑ are not necessarily square matrices. The positive eigenpairs of H↑↓ can be mapped to the negative
eigenpairs of H↓↑. Hence, the total number of negative eigenpairs of H remains 𝑁𝑏. Each block has the same
dimension. The density matrix associated with H is constructed as

𝑅 =

⎛⎜⎜⎝
𝑉 ↓↑𝑉

⊤
↓↑ 0 0 𝑉 ↓↑𝑈

⊤
↓↑

0 𝑉 ↑↓𝑉
⊤
↑↓ 𝑉 ↑↓𝑈

⊤
↑↓ 0

0 𝑈↑↓𝑉
⊤
↑↓ 𝑈↑↓𝑈

⊤
↑↓ 0

𝑈↓↑𝑉
⊤
↓↑ 0 0 𝑈↓↑𝑈

⊤
↓↑

⎞⎟⎟⎠ . (4.17)

Then the density matrix is

𝜌 =
(︂
𝑉 ↓↑𝑉

⊤
↓↑ 0

0 𝑉 ↑↓𝑉
⊤
↑↓

)︂
.

Due to the orthogonality of the eigenvectors of H↑↓, the relation

𝐼 − 𝜌 =
(︂
𝑈↑↓𝑈

⊤
↑↓ 0

0 𝑈↓↑𝑈
⊤
↓↑

)︂
is indeed satisfied. We may define the spin-up matrix 𝜌↑ = 𝑉 ↓↑𝑉

⊤
↓↑, the spin-down density matrix 𝜌↓ = 𝑉 ↑↓𝑉

⊤
↑↓,

and the pair matrix 𝜅↑↓ = 𝑉 ↓↑𝑈
⊤
↓↑. The (spin) reduced density matrix is

𝑃 =
(︂
𝜌↑ 𝜅↑↓
𝜅†↑↓ 𝐼 − 𝜌↓,

)︂
. (4.18)
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The total number of electrons should satisfy

𝑁 = Tr[𝜌↑] + Tr[𝜌↓]. (4.19)

In particular, the number of electrons cannot be evaluated as Tr[𝑃 ] as in standard Hartree–Fock calculations.
∆ is a block-diagonal matrix. In this case, the quasi-particle Hamiltonian (4.9) can be decomposed into the
two following Hermitian matrices:

H↑↑ :=
(︂

ℎ↑ −∆1 + i∆2

−∆†
1 − i∆†

2 −ℎ↑

)︂
and H↓↓ :=

(︂
ℎ↓ ∆1 + i∆2

∆†
1 − i∆†

2 −ℎ↓

)︂
. (4.20)

Unlike the block-diagonal case, H↑↑ and H↓↓ may not be directly related. However, these two matrices them-
selves can be diagonalized into the following two forms

H↑↑

(︂
𝑈↑↑ 𝑉 ↑↑
𝑉↑↑ 𝑈↑↑

)︂
=
(︂
𝑈↑↑ 𝑉 ↑↑
𝑉↑↑ 𝑈↑↑

)︂(︂
Λ↑ 0
0 −Λ↑

)︂
(4.21)

and

H↓↓

(︂
𝑈↓↓ 𝑉 ↓↓
𝑉↓↓ 𝑈↓↓

)︂
=
(︂
𝑈↓↓ 𝑉 ↓↓
𝑉↓↓ 𝑈↓↓

)︂(︂
Λ↓ 0
0 −Λ↓

)︂
. (4.22)

By Proposition 4.1, each eigenvalue problem has ̃︀𝑁𝑏 positive eigenvalues and ̃︀𝑁𝑏 negative eigenvalues, respec-
tively. And all the blocks of eigenvector matrices have the same size ̃︀𝑁𝑏 by ̃︀𝑁𝑏. The reduced density matrices
𝑃↑ and 𝑃↓ can also be constructed separately,

𝑃↑ =
(︂
𝜌↑ 𝜅↑↑
𝜅†↑↑ 𝐼 − 𝜌↑

)︂
and 𝑃↓ =

(︂
𝜌↓ 𝜅↓↓
𝜅†↓↓ 𝐼 − 𝜌↓

)︂
. (4.23)

Here we defined 𝜌↑ = 𝑉 ↑↑𝑉
⊤
↑↑, 𝜅↑↑= = 𝑉 ↑↑𝑈

⊤
↑↑ and 𝜌↓ = 𝑉 ↓↓𝑉

⊤
↓↓, 𝜅↓↓= = 𝑉 ↓↓𝑈

⊤
↓↓. The total number of electrons

is still defined as 𝑁 = Tr[𝜌↑] + Tr[𝜌↓].

5. Pole expansion and selected inversion method for solving large-scale
HFB calculations

When the number of sites 𝑁𝑏 becomes large (e.g. 𝑁𝑏 & 104), the direct diagonalization of the quasi-particle
Hamiltonian H can be prohibitively expensive. On the other hand, if H is a sparse matrix, we do not need
to evaluate all entries of the generalized density matrix 𝑅, which is generically a dense matrix (and hence 𝜌
and 𝜅 are generically dense matrices). This is because in each step of the SCF iteration, in order to update H ,
we only need to evaluate the nonzero entries of ℎ,∆. Hence when ℎ0 is a sparse matrix and 𝑉𝑖𝑗𝑘𝑙 is a sparse
4-tensor (such as in the case of the Hubbard-type models), then ℎ,∆ are also sparse matrices.

Define the sparsity pattern of ℎ,∆ as 𝒮ℎ = {(𝑝, 𝑞)|ℎ𝑝𝑞 ̸= 0}, 𝒮Δ = {(𝑝, 𝑞)|∆𝑝𝑞 ̸= 0}, which can be obtained
by evaluating equations (3.15), (3.16), respectively. Then {𝒮ℎ,𝒮Δ} defines the sparsity pattern of H . Then to
solve HFB equations self-consistently, it is sufficient to evaluate {𝜌𝑝𝑞|(𝑝, 𝑞) ∈ 𝒮ℎ} and {𝜅𝑝𝑞|(𝑝, 𝑞) ∈ 𝒮Δ} during
each iteration. This is guaranteed by Proposition 5.1.

Proposition 5.1. Let 𝑅 be the generalized density matrix of H0 with sparsity pattern {𝒮ℎ,𝒮Δ}, then generically
the evaluation of H [𝑅] only requires the entries of 𝑅 restricted to the same sparsity pattern {𝒮ℎ,𝒮Δ}.

Proof. Assume the statement is not true. Since ℎ only depends only on 𝜌, and ∆ only depends on 𝜅, respectively,
we first consider the evaluation of ℎ[𝜌]. Then there exists a pair of indices (𝑘, 𝑙) /∈ 𝒮ℎ such that 𝜌𝑘𝑙 is needed
to evaluate some nonzero entry ℎ𝑖𝑗 . From equation (3.15), this requires 𝑉𝑖𝑘𝑗𝑙 ̸= 0. From the symmetry property
of 𝑉 , we have 𝑉𝑘𝑖𝑙𝑗 = 𝑉𝑖𝑘𝑗𝑙 ̸= 0. Since 𝜌 is generically a dense matrix, the sum

∑︀
𝑖𝑗 𝑉𝑘𝑖𝑙𝑗𝜌𝑗𝑖 is generically
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nonzero, and hence ℎ𝑘𝑙 is generically nonzero. This contradicts the assumption that (𝑘, 𝑙) /∈ 𝒮ℎ. Similarly for
𝜅, if (𝑘, 𝑙) /∈ 𝒮Δ such that 𝜅𝑘𝑙 is needed in order to evaluate some nonzero entry ∆𝑖𝑗 , then by equation (3.16)
we have 𝑉𝑖𝑗𝑘𝑙 ̸= 0. This means 𝑉𝑘𝑙𝑖𝑗 = 𝑉𝑖𝑗𝑘𝑙 ̸= 0. Then

∑︀
𝑘𝑙 𝑉𝑘𝑙𝑖𝑗𝜅𝑖𝑗 and therefore ∆𝑘𝑙 are generically nonzero,

which is a contradiction. �

Proposition 5.1 states that unless certain matrix entries of ℎ,∆ accidentally cancel (hence these cases are
excluded in a generic setup), the sparsity pattern {𝒮ℎ,𝒮Δ} is fully determined by the sparsity pattern of ℎ0

and 𝑉 . In particular, the sparsity pattern does not change during the SCF iterations. Therefore Proposition 5.1
allows us to use the pole expansion and selected inversion method (PEXSI) [38,40] to solve HFB efficiently for
large systems. PEXSI is a reduced scaling algorithm, its computational cost is at most 𝒪(𝑁2

𝑏 ), and is uniformly
applicable to gapped and gapless systems. Consider a gapped system for simplicity, and we would like to choose
a contour 𝒞 encircling only the negative part of the spectrum of H . Then by Cauchy’s contour integral formula

𝑅 =
1

2𝜋i

∮︁
𝒞
(𝑧 −H )−1 d𝑧. (5.1)

After proper discretization of 𝒞 using a quadrature, we have

𝑅 ≈
𝑁poles∑︁
𝑙=1

𝜔𝑙(𝑧𝑙 −H )−1 :=
𝑁poles∑︁
𝑙=1

𝜔𝑙G𝑙. (5.2)

Here G𝑙 is a quasi-particle Green’s function, and can be computed via a matrix inversion. More generally, when
the finite temperature is under consideration (for gapped and gapless systems), the contour 𝒞 can be chosen to
be a dumbbell shaped contour encircling the entire spectrum of H , while avoiding the poles of the Fermi-Dirac
function. These poles are defined as 𝑥𝑘 = (2𝑘 + 1)i𝜋/𝛽, 𝑘 ∈ Z, which are called the Matsubara poles [46]. After
discretizing the contour, the pole expansion still takes the form (5.2). Figures 1a and 1b illustrate schematically
the choice of the contour and its discretization with and without a gap. The discretization points (poles) {𝑧𝑙}
can be chosen to be distributed symmetrically with respect to the real axis, which allows us to only evaluate
half of the quasi-particle Green’s functions. This step can be performed using any rational approximation for
the Fermi-Dirac function. In particular, the pole expansion in [37] only scales as log(𝛽∆𝐸/𝜖), where ∆𝐸 is the
spectral radius of H , and 𝜖 is the target accuracy. The pre-constant of the logarithmic scaling factor can be
further optimized to be numerically near-optimal [43] for approximating Fermi-Dirac functions.

Assuming {𝑧𝑙, 𝜔𝑙} are given, according to Proposition 5.1, we need to evaluate the matrix entries of 𝑅
corresponding to the sparsity pattern {𝒮ℎ,𝒮Δ}, called the selected elements of 𝑅. This can be performed
efficiently using the selected inversion method [13,22,23,31,38,39,52], as stated in Proposition 5.2.

Proposition 5.2 (Erisman and Tinney [13]). For a matrix 𝐴 ∈ C𝑁×𝑁 , let 𝐴 = 𝐿𝑈 be its 𝐿𝑈 factorization,
and 𝐿,𝑈 are invertible matrices. For any 1 ≤ 𝑘 < 𝑁 , define

𝒞𝐿 = {𝑖|𝐿𝑖,𝑘 ̸= 0}, 𝒞𝑈 = {𝑗|𝑈𝑘,𝑗 ̸= 0}. (5.3)

Then all entries {𝐴−1
𝑖,𝑘 |𝑖 ∈ 𝒞𝑈}, {𝐴

−1
𝑘,𝑗 |𝑗 ∈ 𝒞𝐿}, and 𝐴−1

𝑘,𝑘 can be computed using only {𝐿𝑗,𝑘|𝑗 ∈ 𝒞𝐿}, {𝑈𝑘,𝑖|𝑖 ∈ 𝒞𝑈}
and {𝐴−1

𝑖,𝑗 |(𝐿+ 𝑈)𝑗,𝑖 ̸= 0, 𝑖, 𝑗 ≥ 𝑘}.

Therefore in order to evaluate the selected elements of 𝑅, we only need to evaluate the selected elements of G𝑙

according to the sparsity pattern of the 𝐿𝑈 factorization of H . This can lead to significant savings in terms of the
computational cost. For a 𝑑-dimensional lattice system with nearest neighbor interaction (satisfied by Hubbard-
type Hamiltonians), the cost for evaluating the selected elements of 𝑅 scales as 𝒪

(︁
𝑁

max{3(𝑑−1)/𝑑,1}
𝑏

)︁
[38,39]. In

particular, the cost for 𝑑 = 2 and 𝑑 = 3 is 𝒪(𝑁1.5
𝑏 ) and 𝒪(𝑁2

𝑏 ), respectively (and we always consider 𝑑 ≤ 3).
When using the PEXSI method, we should in fact distinguish the cases when H is real symmetric or

Hermitian. This is because in the real symmetric case, 𝑧𝑙 −H is a complex symmetric matrix. Then its 𝐿𝑈



778 L. LIN AND X. WU

Figure 1. Schematic illustration of the contour and its discretization for solving BCS when
the quasi-particle Hamiltonian (A) has a relatively large gap; (B) has a small gap or no gap.
The yellow points along the imaginary axis indicate the Matsubara poles. The eigenvalues of
the quasi-Hamiltonian are always symmetric with respect to the origin.

factorization can be simplified using the complex symmetric 𝐿𝐷𝐿⊤ factorization, and correspondingly the
symmetric version of selected inversion can be used[22]. When H is Hermitian, the matrix 𝑧𝑙 −H is neither
Hermitian nor complex symmetric, but only a structurally symmetric matrix. In such a case, the general 𝐿𝑈
factorization should be used (e.g. using SuperLU DIST[35]), and correspondingly the selected inversion method
for general asymmetric matrices should be used [23]. When H can be block diagonalized, e.g. in the case of spin-
singlet and spin-triplet couplings, we may apply PEXSI to each of the sub-matrices of size 𝑁𝑏×𝑁𝑏, and the overall
density matrix and pair matrix can be constructed accordingly. This makes PEXSI more favorable compared
to diagonalization methods for large systems. A pseudocode summarizing the solution of HFB equations is
described in Algorithm 1.

Algorithm 1. Solve a general Hartree–Fock–Bogoliubov problem.
Input: ℎ0, 𝑉 , 𝜌0, 𝜅0, 𝜖, ℓ = 0
Output: 𝜌, 𝜅, 𝐸
Compute ℎ, Δ by equations (3.15), (3.16), and form H .
while 𝛿𝐸 < 𝜖 do

while True do
Compute the generalized density matrix 𝑅 by diagonalization or PEXSI.
Update chemical potential 𝜇 in ℎ (using e.g. Newton’s method or bisection).
if |Tr[𝜌↑] + Tr[𝜌↓]−𝑁 | < 𝜖 then

Break
end if

end while
Compute the total energy 𝐸(ℓ+1) by (3.13).
Compute ℎ, Δ by equations (3.15) and (3.16), which gives H [𝑅]
Update H using mixing methods.
Compute the energy difference 𝛿𝐸 = |𝐸(ℓ+1) − 𝐸(ℓ)|.
ℓ← ℓ + 1

end while
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For finite temperature calculations, we may also need to evaluate the Helmholtz free energy at the end of the
calculation. This can be performed using PEXSI as well. First we reformulate the entropy as

𝑆 =
∑︁

𝑖

{︀
𝑓𝑖 log

(︀
1 + 𝑒𝛽𝜀𝑖

)︀
+ (1− 𝑓𝑖) log

(︀
1 + 𝑒−𝛽𝜀𝑖

)︀}︀
=
∑︁

𝑖

{︀
𝑓𝑖𝛽𝜀𝑖 + 𝑓𝑖 log

(︀
1 + 𝑒−𝛽𝜀𝑖

)︀
+ (1− 𝑓𝑖) log

(︀
1 + 𝑒−𝛽𝜀𝑖

)︀}︀
= 𝛽

∑︁
𝑖

𝑓𝑖𝜀𝑖 +
∑︁

𝑖

log
(︀
1 + 𝑒−𝛽𝜀𝑖

)︀
.

(5.4)

Since 𝐸 :=
∑︀

𝑖 𝑓𝑖𝐸𝑖 is the total energy at finite temperature, the Helmholtz free energy ℱ can be expressed as
a matrix function of H as

ℱ = 𝐸 − 1
𝛽
𝑆 = − 1

𝛽

∑︁
𝑖

log
(︀
1 + 𝑒−𝛽𝜀𝑖

)︀
= − 1

𝛽
Tr log

(︀
1 + 𝑒−𝛽H

)︀
. (5.5)

The function log(1+ 𝑒−𝛽𝑧) is analytic in the complex plane, other than at the Matsubara poles. Therefore using
the contour integral formulation, one can use the same poles as those used for computing the charge density to
evaluate the Helmholtz free energy, but with different weights. We refer readers to [40,41] for more details.

6. Numerical experiments

In this section, we use the 2D Hubbard-Hofstadter model to demonstrate the performance of the PEXSI solver
for performing large scale HFB calculations. The Hubbard-Hofstadter model extends the classical Hubbard
model in the presence of a perpendicular magnetic field. The attractive Hubbard-Hofstadter model is one of the
simplest models exhibiting a nontrivial pairing order, and has a rich ground state phase diagram [20, 54]. The
model can be realized in cold atom experiments, which has been used to verify the numerical results [1,10,26].

6.1. Model setup

Consider a rectangular box containing a lattice of size 𝑁𝑥 × 𝑁𝑦. In the Hubbard-Hofstadter model, the
non-interacting part of the Hamiltonian is written as

𝐻̂0 = −
𝑁𝑥∑︁
𝑖=1

𝑁𝑦∑︁
𝑗=1

∑︁
𝜎∈{↑,↓}

[︁
𝑡𝑥𝑎̂

†
𝑖,𝑗,𝜎𝑎̂𝑖+1,𝑗,𝜎 + 𝑡𝜎𝑦 (𝑖)𝑎̂†𝑖,𝑗,𝜎𝑎̂𝑖,𝑗+1,𝜎

]︁
+ h.c.. (6.1)

Here (𝑖, 𝑗) is the label of the sites in the lattice. We set the hopping along the 𝑥-direction to be 𝑡𝑥 = 1. Here
𝑖+1, 𝑗+1 should be interpreted in the sense of periodic boundary conditions. The hopping along the 𝑦-direction
depends on both the spatial and spin indices as

𝑡𝜎𝑦 (ℓ) = 𝑒i𝑠𝜎2𝜋𝛼ℓ. (6.2)

Here 𝑠↑ = 1, 𝑠↓ = −1. The parameter 𝛼 = 𝑝/𝑞 is a rational number, and 𝑝 and 𝑞 are coprimes, and 𝛼 encodes

the strength of the magnetic field through the Peierls substitution [32]. The hopping satisfies 𝑡↑𝑦(ℓ) = 𝑡↓𝑦(ℓ). The
energy spectrum of 𝐻̂0 plotted against 𝛼 exhibits the celebrated pattern of the Hofstadter butterfly [17].

Here we first consider the a relatively large 𝛼 (𝛼 = 1/3 and 1/2) to demonstrate the accuracy of the method,
and will consider smaller values of 𝛼 (i.e. large supercells) later. The interacting part only includes the on-site
attractive interaction as

𝐻̂1 = −𝑈
𝑁𝑦∑︁
𝑖=1

𝑁𝑦∑︁
𝑗=1

𝑛̂𝑖,𝑗,↑𝑛̂𝑖,𝑗,↓. (6.3)
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The total Hamiltonian is then
𝐻̂ = 𝐻̂0 + 𝐻̂1. (6.4)

Using the matrix notation, the non-interacting part can be rewritten as

ℎ0
↑ = 𝑡𝑥𝐼𝑁𝑥

⊗ ℎ𝑁𝑦×𝑁𝑦
+ ℎ𝑁𝑥×𝑁𝑥

⊗ 𝑡↑𝑦
ℎ0
↓ = 𝑡𝑥𝐼𝑁𝑥

⊗ ℎ𝑁𝑦×𝑁𝑦
+ ℎ𝑁𝑥×𝑁𝑥

⊗ 𝑡↓𝑦
(6.5)

where

ℎ𝑁×𝑁 =

⎛⎜⎜⎜⎜⎜⎝
0 −1 −1
−1 0 −1

−1
. . . . . .
. . . 0 −1

−1 −1 0

⎞⎟⎟⎟⎟⎟⎠
𝑁×𝑁

. (6.6)

Hence ℎ0
↑ = ℎ0

↓. With some abuse of the notation, we use 𝑖, 𝑗 as general site indices below. The spatial-spin
index can be identified with the spin-orbital index according to

𝑝← (𝑖, 𝜎1), 𝑞 ← (𝑗, 𝜎2), 𝑟 ← (𝑘, 𝜎3), 𝑠← (𝑙, 𝜎4).

The interacting term is a highly sparse matrix and can be constructed from antisymmetrizing

̃︀𝑉𝑖𝑗𝑘𝑙,𝜎1𝜎2𝜎3𝜎4 =
{︂
−𝑈, 𝑖 = 𝑗 = 𝑘 = 𝑙, 𝜎1 = 𝜎3 =↑, 𝜎2 = 𝜎4 =↓,
0, otherwise. (6.7)

Here we consider the singlet coupling in the Hubbard-Hofstadter model. The HFB energy functional can be
simplified as

ℰHFB[𝜌, 𝜅] := Tr(ℎ0
↑𝜌↑ + ℎ0

↓𝜌↓)− 𝜇Tr(𝜌↑ + 𝜌↓)− 𝑈
∑︁

𝑖

𝜌𝑖𝑖,↑𝜌𝑖𝑖,↓ + 𝑈
∑︁

𝑖

𝜅𝑖𝑖,↑↓𝜅𝑖𝑖,↑↓. (6.8)

According to equations (3.15) and (3.16), the corresponding matrix blocks of the quasi-particle Hamiltonian are
expressed as

ℎ[𝜌] =
(︂
ℎ0
↑ − 𝜇𝐼 ̃︀𝑁𝑏

− 𝑈diag(𝜌↓) 0
0 ℎ0

↓ − 𝜇𝐼 ̃︀𝑁𝑏
− 𝑈diag(𝜌↑)

)︂
(6.9)

and

∆[𝜅] =
(︂

0 −𝑈diag(𝜅↑↓)
−𝑈diag(𝜅↓↑) 0

)︂
. (6.10)

This is a spin-singlet Hamiltonian, and H only depends on the diagonals of the density matrix and the pair
matrix, respectively. Since ∆ is a block-off-diagonal matrix, H can be equivalently reduced to the 𝑁𝑏 × 𝑁𝑏

system

H↑↓[𝜌, 𝜅] =

(︃
ℎ0
↑ − 𝜇𝐼 ̃︀𝑁𝑏

− 𝑈diag(𝜌↓) −𝑈diag(𝜅↑↓)
−𝑈diag(𝜅†↑↓) −ℎ0

↓ + 𝜇𝐼 ̃︀𝑁𝑏
+ 𝑈diag(𝜌⊤↑ )

)︃
. (6.11)

After the solution, we define the following mean pairing potential (with some abuse of notation, denoted by ∆
when the context is clear) as the order parameter to characterize the superconducting phase.

∆ =
𝑈̃︀𝑁𝑏

∑︁
𝑖

𝜅𝑖𝑖,↑↓.
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Figure 2. Number of electrons as a function of the chemical potential at self-consistency.
𝑁𝑥 = 12, 𝑁𝑦 = 12, 𝑈 = 5.0, 𝛼 = 1/3.

6.2. Computational details

Although the periodic boundary condition of the Hubbard-Hofstadter model along the 𝑥 direction allows
us to consider a quasi-1D domain with 𝑁𝑥 ≪ 𝑁𝑦, in order to demonstrate the numerical performance of the

method, in this paper we always consider a square lattice with 𝑁𝑥 = 𝑁𝑦 =
√︁ ̃︀𝑁𝑏. The ground state under the

canonical ensemble (NVT, i.e. the average number of electrons 𝑁 is fixed) and grand canonical ensemble (𝜇VT,
i.e. the chemical potential 𝜇 is fixed) are investigated separately in the following context. In all calculations,
we use a small finite temperature 0.00095 (corresponding to 300 K in the atomic unit). All experiments are
performed on the Cori Haswell supercomputer at NERSC, and each node has 32 cores (2 Intel Xeon Processor
E5-2698 v3) and 128 GB DDR4 2133 MHz memory.

Solvers. We compare the PEXSI solver2 with the dense eigensolver pzheevd in ScaLAPACK [5], and other
eigensolvers such as ELPA [42] can be used as well. SuperLU DIST [35] is used for performing the sparse 𝐿𝑈
factorization, and ParMETIS [24, 25] is used to reorder the matrix. The default choice of the number of poles
𝑁poles is 60, using the contour integral formulation in [37]. For each pole, the nonzero entries of the quasi-
Hamiltonian matrix are distributed across a two-dimensional processor grid of size 𝑁𝑟 ×𝑁𝑐. Therefore, PEXSI
employs 𝑁poles ×𝑁𝑟 ×𝑁𝑐 cores in total. 𝑁poles = 60 is used in most experiments. As a fair comparison, in the
dense solver, all the entries of the quasi-Hamiltonian are distributed in 8𝑁𝑟 × 8𝑁𝑐 processors with the block
cyclic data distribution.

Self-consistency. We set the initial density matrix to be zero and the initial pair matrix to be an identity
matrix. The self-consistent equation is solved using the direct inversion of the iterative subspace (DIIS) method
[47, 48], which extrapolates the previous up to 7 steps of the quasi-Hamiltonian. Our convergence criterion is
set to be the relative energy difference between two steps (in our calculations 𝐸(ℓ) always has a non-vanishing
amplitude)

|𝐸(ℓ) − 𝐸(ℓ−1)|
|𝐸(ℓ)|

< 10−9. (6.12)

Chemical potential. In the canonical ensemble, the chemical potential is adjusted to meet the requirement
of the average electron of numbers in each step of the self-consistent iterations. Consider the function 𝜈(𝜇) =
Tr[𝜌↑(𝜇)] + Tr[𝜌↓(𝜇)]. Unlike the original HF model where the function 𝜈(𝜇) is a piecewise constant function,
this function in the HFB model is most likely a smooth function as shown in Figure 2.

2http://www.pexsi.org

http://www.pexsi.org
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Figure 3. Difference between the function 𝜈exact(𝜇) and 𝜈PEXSI(𝜇) for 𝑁poles = 20, 30, 40,
50. 𝜈exact(𝜇): the exact function. 𝜈PEXSI(𝜇): the approximated function by PEXSI. 𝑁𝑥 = 12,
𝑁𝑦 = 12, 𝑁 = 144, 𝑈 = 5.0. The exact values of the function is shown in Figure 2.

Here we use Newton’s method to solve the scalar equation

𝜈(𝜇) = 𝑁 (6.13)

within each step of the self-consistent field iteration. The initial guess is set to be zero. Newton’s method may
fail when 𝜈(𝜇) is not continuously differentiable or the initial guess is not close to the exact solution enough.
When the Newton’s method fails, the expensive bisection method can be applied (though we have not observed
such cases in our experiments).

To reduce its iteration number, we employed the chemical potential from the last step as the initial guess
after the first iteration. The convergence criterion is (𝜈(𝜇)−𝑁)/𝑁 < 10−13. One can also use a looser criterion
during the self-consistent loop to save the computational cost.

6.3. Accuracy

The overall error of solving HFB equations by PEXSI is from three aspects: (1) Approximation of the pole
expansion in PEXSI. This is the main error of solving HFB equations caused by the eigensolver PEXSI. The
inaccurate generalized density matrix leads to deviation of chemical potential, and further affects the accuracy of
total energy. (2) Solving chemical potential to meet the particle number by the combination of Newton’s method
and bisection method. (3) Self-consistent error. Both (2) and (3) are shared between PEXSI and diagonalization
methods, and can be systematically reduced to become negligible. The selected inversion is a numerically exact
fast algorithm for evaluating selected elements of Green’s functions. Hence, we concern about the error due to
the pole expansion only. We first investigate the accuracy of the function 𝜈(𝜇). In each iteration of the self-
consistency loop, 𝜈(𝜇) is evaluated at multiple points to adjust the particle number. The accurate evaluation of
𝜈(𝜇) is crucial for solving the HFB equations. From Figure 3, the approximation error uniformly decreases as
one increases the number of poles.

We consider the NVT system, and measure the error in terms of the total energy and pairing field. The exact
results are obtained by ScaLAPACK. The error of the pairing field is measured in 𝑙2 norm. We measure the
error with respect to different choices of the number of poles (from 20 to 80) and different system sizes (24× 24
sites to 96× 96 sites). With 20 poles, the energy error and pairing field error are on the order of 100 and 10−2,
respectively, as shown in Figure 4. The relative error of energy consistently decreases to 10−10 as more poles
are used for all systems, and the error of pairing field can be reduced to 10−9. Figure 4 also shows that the
accuracy of PEXSI is not sensitive to the system size. In most calculations below, we set 𝑁poles = 60.
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Figure 4. Errors of energy (left) and order parameter (right) by PEXSI with respect to the
number of poles. 𝑈 = 5.0.

6.4. Efficiency and scalability

We measure the efficiency of PEXSI in terms of the cost for calculating one step of the self-consistent iteration
for 𝜇VT systems. The efficiency and scalability are investigated by two separated sets of experiments. In the
first set, the total number of processors is fixed to be 64 for ScaLAPACK and 60 for PEXSI respectively. The
exact diagonalization are performed for small systems with 16 × 16 to 80× 80 sites. For PEXSI, we calculated
the systems with 16×16 to 96×96 sites. The comparison of the wall clock time of the two methods is presented
in Figure 5. The cost of exact diagonalization scales asymptotically as 𝒪(𝑁3

𝑏 ). In our experiments, the scaling
is observed to be 𝒪(𝑁2.94

𝑏 ). On the other hand, the asymptotic scaling of the cost of PEXSI is 𝒪(𝑁1.5
𝑏 ) for

2D systems, and the numerically observed scaling is 𝒪(𝑁1.27
𝑏 ). As shown in Figure 5, PEXSI is superior to the

exact diagonalization even for a small system. The crossover occurs when the system size has around 576 sites.
PEXSI is already about 279 times faster than the exact diagonalization for a modestly large 80 × 80 system.

To demonstrate the strong scaling, we fix the system size as 240 × 240 for the exact diagonalization, and
1200× 1200 for the pole expansion method. The number of processors is raised from 1600 to 14 400, and from
2304 to 17 280 for ScaLAPACK and PEXSI, respectively. From Figure 5, we observed PEXSI is significantly
faster than ScaLAPACK, even though PEXSI is solving for a system that is 25 times larger. We further quantify
the strong scaling by

𝜂(𝑛𝑝) =
𝑛𝑝0×𝑊𝑇 (𝑛𝑝0)
𝑛𝑝×𝑊𝑇 (𝑛𝑝)

, 𝑛𝑝0≪ 𝑛𝑝 (6.14)

with 𝑊𝑇 (𝑛𝑝) is the wall clock time when 𝑛𝑝 processors are employed. We observed that the parallel efficiency
of ScaLAPACK significantly drops down when the number of processors is greater than 10 000. For example, in
ScaLAPACK,

𝜂(14 400) ≈ 1600×𝑊𝑇 (1600)
14 400×𝑊𝑇 (14 400)

= 0.65.

While, in PEXSI,

𝜂(17 280) ≈ 2304×𝑊𝑇 (2304)
17 280×𝑊𝑇 (17 280)

= 0.83.

Therefore PEXSI has a better parallel efficiency, therefore is more suitable for large scale parallel computation.

6.5. Phase diagram

We plot the phase diagram of the system with a 180×180 square lattice in terms of the filling factor 𝑛 = 𝑁/𝑁𝑏

and 𝑈 at 𝛼 = 1/3. In terms of the order parameter ∆, the mean-field phase diagram of the 2D Hubbard-
Hofstadter model has two phases [20]: the quantum spin Hall insulator (QSHI) state and the staggered flux
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Figure 5. Computational complexity (left) and parallel efficiency (right) of PEXSI and ScaLA-
PACK for solving HFB equations. Each wall clock time is averaged over 20 experiments. Left:
wall clock time vs. number of sites. 𝛼 = 1/3, 𝑈 = 2.0 and 𝜇 = −1.0. 64 processors are employed
by ScaLAPACK, while 60 processors are employed by PEXSI. The slope for PEXSI is fit using
the last 4 points. The slope of ScaLAPACK is fit using 5 points. Right: wall clock time vs. num-
ber of processors. 𝛼 = 1/3, 𝑈 = 2.0, 𝜇 = −1.0. The system size is 240 × 240 for ScaLAPACK,
and 1200× 1200 for PEXSI.
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Figure 6. Phase diagram of 2D Hubbard-Hofstadter model. 𝛼 = 1/3. 60 poles. The color bar
encodes the order parameter ∆.

(SF) state. We calculated the pairing order parameter of 37× 26 grids in the box with the filling factor 𝑛 from
2/3 to 1, and interaction magnitude 𝑈 from 1.0 to 6.0. The phase diagram is presented in Figure 6. When
𝑛 = 1.0, the system is always in the SF state with a non-vanishing ∆. When 𝑛 = 2/3, the system can transit
from from the QSHI state to the SF state, and the phase transition occurs at 𝑈 ≈ 3.0. In the cases where
𝑛 ∈ (2/3, 1), the order parameter gradually increases with respect to 𝑛. Our phase diagram result calculated
from a finite sized system in real space agrees with that in existing works using both momentum space and real
space representations [21,53,55].

6.6. Small 𝛼 factor

The magnitude of the magnetic field 𝐵 is directly related to the 𝛼 factor according to the relation

𝐵 =
𝛼Φ0

𝑎2
· (6.15)

Here Φ0 = 2.0678×10−15 Wb is called superconducting magnetic flux quantum, and 𝑎 is the lattice spacing. For
example, if 𝛼 is 1/3 and 𝑎 is 4× 10−10 m, the magnetic field has to be about 4308 T, which is much larger than
the strongest magnetic field generated in any laboratory setting so far (around 1200 T) [45]. Therefore in order
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to simulate the Hubbard-Hofstadter model (and related quantum systems) in the presence of an experimentally
achievable magnetic field, we need to be able to simulate with a small 𝛼 factor. Since 𝑡𝜎𝑦 (·) should be periodic
function, the Hubbard-Hofstadter model with a small 𝛼 factor need to be simulated with a large lattice.

To demonstrate the capability of the PEXSI accelerated HFB solver, we set 𝛼 = 1/480. Then with the same
lattice spacing, the corresponding magnetic field is just about 27 T. The corresponding lattice has 1440×1440 ∼
2× 106 sites. We simulate the 𝜇VT ensemble with 𝜇 = −1 and 𝑈 = 2.0. Figure 7 shows the spatial distribution
of the pairing potential. Six complete pair-density wave (PDW) periods are observed. In each period, there are
multiple pair-density waves with shorter wavelength [21].

7. Conclusion

We present the Hartree–Fock–Bogoliubov (HFB) theory from a numerical perspective, and focuses on the
numerical solution of HFB equations for general finite sized quantum systems. When certain spin symmetries
(singlet or triplet) are present, the quasi-particle Hamiltonian, which is a matrix of size 2𝑁𝑏×2𝑁𝑏 can be reduced
to two matrices of size 𝑁𝑏×𝑁𝑏. We propose that the pole expansion and selected inversion (PEXSI) method can
be well suited for solving large scale HFB equations efficiently, when the quasi-particle Hamiltonian is sparse.
The accuracy and efficiency are investigated by the Hubbard-Hofstadter model. We solved a large-scale HFB
equations with a relatively weak magnetic field, which attainable in the laboratory setting. Due to the wide
use of HFB equations, we expect our solver could be useful for studying a number of physical phenomena such
as the Majorana corner in a large scale Hubbard-Hofstadter model [55]. It may also be useful as a mean-field
subroutine in quantum embedding methods for treating strongly correlated systems, such as dynamical mean-
field theory (DMFT) [14] and density matrix embedding theory (DMET) [27]. Such large scale calculations are
necessary for understanding e.g. the superconductivity behavior of twisted bilayer graphene (TBG) with magic
angles [8].
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