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Direct simulation of the von Neumann dynamics for a general (pure or mixed) quantum 
state can often be expensive. One prominent example is the real-time time-dependent 
density functional theory (rt-TDDFT), a widely used framework for the first principle 
description of many-electron dynamics in chemical and materials systems. Practical rt-
TDDFT calculations often avoid the direct simulation of the von Neumann equation, and 
solve instead a set of Schrödinger equations, of which the dynamics is equivalent to that 
of the von Neumann equation. However, the time step size employed by the Schrödinger 
dynamics is often much smaller. In order to improve the time step size and the overall 
efficiency of the simulation, we generalize a recent work of the parallel transport (PT) 
dynamics for simulating pure states [An, Lin, Multiscale Model. Simul. 18, 612, 2020] to 
general quantum states. The PT dynamics provides the optimal gauge choice, and can 
employ a time step size comparable to that of the von Neumann dynamics. Going beyond 
the linear and near adiabatic regime in previous studies, we find that the error of the PT 
dynamics can be bounded by certain commutators between Hamiltonians, density matrices, 
and their derived quantities. Such a commutator structure is not present in the Schrödinger 
dynamics. We demonstrate that the parallel transport-implicit midpoint (PT-IM) method is 
a suitable method for simulating the PT dynamics, especially when the spectral radius of 
the Hamiltonian is large. The commutator structure of the error bound, and numerical 
results for model rt-TDDFT calculations in both linear and nonlinear regimes, confirm the 
advantage of the PT dynamics.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Consider the problem of solving a finite dimensional, (possibly) nonlinear von Neumann equation

i∂tρ(t) = [H(t,ρ(t)),ρ(t)], ρ(0) = ρ0, (1.1)

where ρ0 ∈ CNg×Ng is a Hermitian matrix satisfying ρ2
0 � ρ0. Here [A, B] = AB − B A is the commutator of A and B , and 

A � B means that A − B is a negative semidefinite matrix. The initial quantum state ρ0 is called a pure state if ρ2
0 = ρ0, 

and a mixed state if ρ2
0 ≺ ρ0. Eq. (1.1) can be used to describe the dynamics of a closed quantum system in a very general 
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setting, and we allow the time-dependent Hamiltonian H(t, ρ(t)) ∈ CNg×Ng to have a nonlinear dependence on entries of 
ρ(t). One prominent application is the real-time time-dependent density functional theory (rt-TDDFT) [39,45,35,43], which 
is one of the most widely used techniques for studying ultrafast properties of electrons, and has resulted in a variety of 
applications in quantum physics, chemistry, and materials science.

In practice, ρ0 is often of low-rank, or can be very well approximated by a low-rank matrix. For simplicity, let the rank of 
ρ0 be denoted by N and assume N � Ng . The von Neumann dynamics neglects the low-rank structure and propagates ρ(t)
directly as a dense matrix. For rt-TDDFT calculations with a fine discretization scheme (e.g. the planewave basis set, or the 
finite difference discretization), Ng can be 106 or larger, and the direct propagation of Eq. (1.1) becomes extremely expensive. 
In this case, the von Neumann dynamics is often replaced by a set of nonlinear Schrödinger equations (see Eq. (2.1)), and the 
simulation variables become the electron wavefunctions described by a much smaller matrix �(t) ∈ CNg×N . However, such 
a rank reduction can come at the cost of the time step size, denoted by h. In many applications, h for the von Neumann 
dynamics (1.1) can be chosen to be at the sub-femtosecond scale (1 fs= 10−15 s), while h for the Schrödinger dynamics 
needs to be sub-attosecond scale (1 as= 10−18 s) [6,40,12].

This attosecond–femtosecond time scale separation has inspired the development of new numerical methods in the past 
few years [44,32,18,47,1]. In fact, when ρ0 is a pure state, such a time scale separation is unphysical and originates purely 
from a gauge choice of electron wavefunctions in the Schrödinger representation. In the simplest case, when the rank of the 
pure state ρ0 is 1, the gauge is only a time-dependent complex phase factor. When the rank of the pure state ρ0 is N , the 
gauge is an N × N unitary matrix. The gauge choice does not affect ρ . In other words, a gauge transformed dynamics may 
solve a different set of variables from those in the Schrödinger dynamics, but results in the same physical observables.

Given a pure initial state, among all possible gauge choices, the parallel transport (PT) gauge [18,1] yields the slowest 
gauge-transformed dynamics at any given time. Compared to the Schrödinger dynamics, the time step h in the PT dynamics 
can be chosen to be much larger and is comparable to that of the von Neumann dynamics Eq. (1.1). When combined with 
implicit integrators (such as the Crank-Nicolson method or the implicit midpoint rule), the PT dynamics has been applied to 
rt-TDDFT simulations for real materials with thousands of atoms at the level of semi-local exchange-correlation functionals 
(such as the Perdew–Burke–Ernzerhof [36] functional) [18] and hybrid exchange-correlation functionals (such as the Heyd–
Scuseria–Ernzerhof [16] functional) [19,20].

In previous works, the PT dynamics was derived for a pure initial state, and its efficiency has been justified in the linear, 
near adiabatic regime [1] in terms of a singularly perturbed linear system. The pure initial state is suitable for describing 
molecules and insulating materials at zero temperature. On the other hand, in practice, the initial state is often a low-
energy excited state [8,10,4], or a thermal state [46] especially for metallic systems. This inspires us to consider the most 
general setting when ρ0 is given by a mixed state (for instance, the occupation number of ρ0 is given by the Fermi-Dirac 
distribution).

Contribution:
By assuming a dynamical low-rank factorization ρ(t) ≈ �(t)σ (t)�†(t), where �(t) ∈CNg×N and σ(t) ∈ CN×N , we derive 

the PT dynamics in terms of its low-rank factors �(t), σ(t). The PT dynamics with a pure initial state is recovered by setting 
σ(t) = IN . When the spectral radius of the Hamiltonian is large, the time step h is simultaneously constrained by accuracy 
and stability requirements, and implicit integrators are more suited for efficient propagation of the PT dynamics. Using the 
implicit midpoint (IM) rule (also known as the second order Gauss-Legendre method, GL2) as an example, we derive the 
discretized numerical scheme, and prove that the resulting PT-IM scheme has certain orthogonality and trace-preserving 
properties.

We then derive a new error bound for the discretized PT dynamics. Instead of relying on the linear quantum adiabatic 
theorem to obtain an a priori error bound of the solution, our new error bound expresses the local truncation error directly 
in terms of the Hamiltonian, density matrix, and their derived quantities. Our analysis shows that an upper bound of the 
local truncation error of PT dynamics only involves certain commutators between the Hamiltonian (or its time derivatives) 
and the density matrix (or the associated spectral projector), while that of the Schrödinger gauge involves additional terms 
lacking such commutator structures. Using the commutator type error bound, in the near adiabatic regime when the a priori
estimate is available from the quantum adiabatic theorem, our new result shows the PT dynamics gains one extra order of 
accuracy in terms of the singularly perturbed parameter ε than the Schrödinger dynamics, which reproduces the previous 
result [1]. Recently, the quantum adiabatic theorem has been extended to certain weakly nonlinear systems [9,11]. Our 
commutator type error analysis can be directly combined with such analysis leading to results comparable to that of [1] in 
the weakly nonlinear regime. Away from the near adiabatic regime, the commutator scaling of the PT dynamics can still 
lead to a significantly smaller error than that of the Schrödinger dynamics. We illustrate the numerical performance of the 
PT dynamics for a number of one-dimensional model metallic systems, which also verifies the effectiveness of the new error 
bound.

Related works:
Numerical integrators for rt-TDDFT simulation following the Schrödinger dynamics is a well-studied subject (see an 

early paper [6], and also [12,38] for recent comparative studies of a variety of standard numerical integrators), but the 
importance and the benefit of gauge-transformed dynamics have only been realized recently (see [47] for another type of 
gauge-transformed dynamics using Wannier functions).
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At the continuous level, the PT dynamics is a special case of the dynamical low-rank approximation (DLRA) developed 
by Lubich et al. (see [26,30] for examples; DLRA is intimately related to the Dirac–Frenkel/McLachlan variational principle 
in the physics literature). The basic strategy of DLRA is to update a low-rank decomposition (such as eigenvalue or singular 
value decomposition) of a large matrix (in this case ρ(t)) on the fly. For a mixed initial state, a direct application of DLRA 
involves σ−1(t) in the equation of the low-rank factors, which in general can be a source of numerical instability [26,31]. 
Our derivation of the PT dynamics with a mixed initial state uses the structure of the von Neumann equation and can be 
viewed as a simplified derivation of DLRA. It also naturally shows that the pathological term σ−1(t) does not appear, so the 
PT dynamics is numerically stable even if one overestimates the numerical rank of ρ(t).

Regarding the time discretization, existing works of DLRA mostly use explicit integrators, although the possibility of 
using implicit integrators has also been mentioned in certain settings [31]. Our previous studies suggest that for rt-TDDFT 
calculations, the combined use of the PT dynamics and implicit integrators is the key for efficient propagation in real 
chemical and materials systems [18,1]. The PT dynamics with a mixed initial state can also be viewed as a special case of 
the low-rank approximation for solving Lindblad equations by Le Bris et al. [27,28] (since the von Neumann equation can 
be viewed as the Lindblad equation without the decoherence operator), which is also derived independently of DLRA. It is 
worth pointing out that [27] introduces an arbitrary Hermitian matrix that can be freely determined. We demonstrate that 
in the context of the von Neumann dynamics, setting this arbitrary matrix to H(t) (the instantaneous Hamiltonian matrix), 
and 0 (the zero matrix) leads to the Schrödinger dynamics and the PT dynamics, respectively.

Organization:
The rest of the paper is organized as follows. In Section 2, we introduce some preliminaries of rt-TDDFT and the PT dy-

namics with a pure initial state. We derive the PT dynamics with a mixed initial state in Section 3, and an implicit numerical 
propagator for the PT dynamics in Section 4. Section 5 analyzes the numerical errors of the PT and the Schrödinger dynam-
ics. Finally, we validate the error analysis with numerical results in Section 6. For completeness, an alternative derivation 
of the PT dynamics that explicitly uses the structure of the tangent manifold (which is also a simplified derivation of [27]) 
is given in Appendix A. Appendix B describes Anderson’s mixing method for solving the set of nonlinear equations in the 
PT-IM method, and provides a brief analysis of the computational cost.

2. Preliminaries

In this section, we briefly review the key idea of deriving PT dynamics with a pure initial state [1]. In the setting with 
a pure initial state, real-time time-dependent density functional theory (rt-TDDFT) solves the following set of Schrödinger 
equations

i∂t�(t) = H(t,ρ(t))�(t), �(0) = �0. (2.1)

Here �(t) = [ψ1(t), . . . , ψN (t)] is the collection of electron wavefunctions (also called electron orbitals), and the number of 
columns N is equal to the number of electrons denoted by Ne (spin degeneracy omitted). The initial set of wavefunctions 
satisfy the orthonormality condition �(0)†�(0) = IN . Here A† denotes the Hermitian conjugate of a matrix or vector A. The 
density matrix is ρ(t) = �(t)�†(t) ≡ ∑N

i=1 ψi(t)ψ
†
i (t).

Throughout the paper we are concerned with time propagation instead of spatial discretization. Unless otherwise spec-
ified, Eq. (2.1) represents a discrete, finite dimensional quantum system, i.e. H(t, ρ) is a Hermitian matrix with finite 
dimension Ng . If the quantum system is spatially continuous, we may first find a set of orthonormal basis functions and 
expand the continuous wavefunction under this basis. Then after a Galerkin projection, Eq. (2.1) becomes an Ng -dimensional 
quantum system, and ψ j(t) represents the coefficient vector under the basis for the j-th wavefunction.

The time-dependent Hamiltonian operator H(t, ρ(t)) is Hermitian for all t and ρ , and its precise form is not important 
for the purpose of this paper. Starting from a pure initial state ρ0 := ρ(0) (that is when ρ2

0 = ρ0 = �(0)�(0)†), the orthog-
onality condition �(t)†�(t) = IN is satisfied for all t � 0, and hence ρ(t) is a pure state for all t satisfying ρ2(t) = ρ(t). 
Throughout the paper, we may use the notations ∂tρ = ρt = ρ̇ interchangeably for the time-derivatives. For composite func-
tions such as H(t, ρ(t)), we use the notation Ḣ := d

dt H(t, ρ(t)) = Ht + Hρρt , where the tensor contractions are defined such 
that the chain rule holds. For example, the tensor contraction between the 4-tensor Hρ and the matrix ρt is defined such 
that the chain rule d

dt H(t, ρ(t)) = Ht + Hρρt follows the element-wise operation

d

dt
Hij(t,ρ(t)) = ∂t Hij(t,ρ(t)) +

∑
k,l

∂Hij

∂ρkl
(t,ρ(t))

∂ρkl(t)

∂t
.

The set of Schrödinger equations (2.1) is equivalent to the von Neumann dynamics (1.1). Note that if we right multiply 
�(t) by a time-dependent unitary matrix U (t) ∈ CN×N and let �(t) = �(t)U (t), then

ρ(t) = �(t)�†(t) = �(t)
[
U †(t)U (t)

]
�†(t) = �(t)�†(t). (2.2)

The unitary rotation matrix U (t) is called the gauge matrix, and Eq. (2.2) indicates that the density matrix is gauge-invariant. 
In particular, the choice U (t) = IN is referred to as the Schrödinger gauge.
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Since all physical observables can be derived from the von Neumann equation (1.1) and the density matrix ρ(t), the 
choice of the gauge matrix U (t) has no measurable effects. On the other hand, the gauge matrix introduces additional 
degrees of freedom, and can oscillate at a different time scale from that of the corresponding wavefunctions. It is then 
desirable to optimize the gauge matrix, so that the transformed wavefunctions �(t) vary as slowly as possible, without 
changing the density matrix. This results in the following variational problem

min
U (t)

∥∥�̇
∥∥2
F , s.t. �(t) = �(t)U (t),U †(t)U (t) = IN . (2.3)

Here 
∥∥�̇

∥∥2
F := Tr[�̇†�̇] measures the Frobenius norm of the time derivative of the transformed orbitals.

The minimizer of (2.3), in terms of �, satisfies the following equation

ρ�̇ = 0. (2.4)

We refer readers to [1] for the derivation. Eq. (2.4) has an intuitive explanation that the optimal dynamics should minimize 
the “internal” rotations within the range of ρ . Eq. (2.4) implicitly defines a gauge choice for each U (t), and this gauge 
is called the parallel transport gauge. The name “parallel transport” comes from that �(t) can be identified as the unique 
horizontal lift [34] of ρ(t) from the Grassmann manifold to the Stiefel manifold, starting from the initial condition �0 . This 
will be further explained in Section 5.

From Eq. (2.4), the governing equation of �(t) can be concisely written down as

i∂t�(t) = H(t,ρ(t))�(t) − �(t)(�†(t)H(t,ρ(t))�(t)), �(0) = �0, (2.5)

where ρ(t) = �(t)�†(t). Notice that Eq. (2.5) introduces one extra term compared to the original dynamics Eq. (2.1) under 
Schrödinger gauge, and directly provides a self-contained definition of the transformed wavefunctions under the optimal 
gauge. In practice, we can directly solve Eq. (2.5) by numerical schemes to approximate the dynamics, instead of computing 
the PT gauge explicitly.

To observe the advantage of the parallel transport dynamics, consider the extreme case that each column of �0 is already 
an eigenstate of H(0) and H(t, ρ(t)) ≡ H(0) is a time-independent matrix. Then Eq. (2.5) is reduced to

i∂t�(t) = 0.

Hence �(t) = �(0) holds for all t � 0, while each column of the solution Schrödinger dynamics (2.1) rotates with a time-
dependent phase factor. For less trivial dynamics, the temporal oscillation of gauge-transformed wavefunctions �(t) can still 
be significantly slower than that of �(t).

3. Parallel transport dynamics with a mixed initial state

In this section, we first discuss the rt-TDDFT set-up with a mixed initial state and its corresponding Schrödinger dynam-
ics, and then provide a derivation of the PT dynamics with a mixed initial state, which is equivalent to Schödinger dynamics 
under a gauge transformation.

3.1. Schrödinger dynamics with a mixed initial state

In rt-TDDFT calculations, the pure initial state can be used for simulating insulating systems starting from the ground 
state, or a well-defined excited state. In many other cases the initial state should be a mixed state. For instance, for metallic 
systems at finite temperature, the initial state often takes the form of the Fermi-Dirac distribution

ρ(0) = (1+ exp (β(H(0) − μ)))−1 , (3.1)

where β = 1/(kBT ), kB is the Boltzmann constant, T is the temperature. The chemical potential μ is a Lagrange multiplier, 
which should be adjusted to satisfy the normalization condition

Tr[ρ(0)] = Ne, (3.2)

where Ne is the number of electrons. If we diagonalize H(0) according to H(0)ψi(0) = εi(0)ψi(0), then the occupation 
number

si(0) := 〈ψi(0)|ρ(0)|ψi(0)〉 = (1+ exp (β(εi(0) − μ)))−1 .

Hence when β is large (e.g. at room temperature 300 K, β ≈ 103 in the atomic unit), si(0) is very close to 0 when εi(0) −
μ � β−1. Therefore, ρ(0) can be very well approximated by a low rank matrix, with its approximate rank denoted by N . 
In particular, the singular values of the Fermi-Dirac distribution (see Fig. 1b) decay exponentially beyond μ and hence one 
can truncate the singular values according to a certain energy threshold. In other words, we can set
4
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ρ(0) =
N∑

i=1

ψi(0)si(0)ψ
†
i (0) = �(0)σ (0)�†(0),

with the chemical potential μ slightly adjusted so that the normalization condition (3.2) is still satisfied. Here σ0 := σ(0) =
diag[s1(0), . . . , sN(0)] is a diagonal matrix. Since the occupation number satisfies 0 < si(0) < 1, we have N > Ne , and ρ2(0) ≺
ρ(0). We also assume Ng � N . Note that different from the case of a pure state, the density matrix ρ for a mixed state is 
no longer a projection operator.

If �(t) is the solution to the nonlinear Schrödinger equation (2.1), then

ρ(t) = �(t)σ0�
†(t), (3.3)

is the unique solution of Eq. (1.1) (viewed as a large ODE system) with the initial state ρ(0). Hence in practice, we only 
need to solve Eq. (2.1) in the same way as for the pure initial state, but weigh the contribution of each time-dependent 
vector ψi(t) always by the initial occupation number σi(0). This fact that the occupation number σ(t) remains as a constant 
matrix σ0 can also be derived directly (see Eq. (A.9) in Appendix A). However, similar to the case with a pure initial state, 
Eq. (2.1) can require a relatively small time step size.

3.2. PT dynamics with a mixed initial state

Note that we may still apply a gauge matrix U (t) ∈ CN×N and define �(t) = �(t)U (t) with initial condition U (0) = IN . 
In such a case, we must also redefine the occupation number matrix as

σ(t) = U †(t)σ0U (t), (3.4)

so that

ρ(t) = �(t)σ (t)�†(t) (3.5)

is satisfied. Here σ(t) is now a Hermitian matrix of size N and may no longer be diagonal for t > 0. We would like to solve 
again the optimization problem in Eq. (2.3) so that the gauge-transformed wavefunctions �(t) vary as slowly as possible. 
For simplicity, we may also define a gauge-invariant projector

P (t) = �(t)�†(t) = �(t)�†(t),

so that

P� = �, Ṗ� + P�̇ = �̇ (3.6)

The objective in the optimization Eq. (2.3) becomes

‖�̇‖2F = ‖P�̇‖2F + ‖(I − P )�̇‖2F .
The second term is in fact independent of the choice of the gauge (or the wave function �), because

‖(I − P )�̇‖2F = ‖ Ṗ�‖2F = Tr(�† Ṗ † Ṗ�) = Tr( Ṗ † Ṗ��†) = Tr( Ṗ † Ṗ P ),

where we used the fact that Tr(AB) = Tr(B A). Therefore, the optimization problem again leads to the PT condition

P�̇ = 0. (3.7)

Plugging back into Eq. (3.6) we obtain

i�̇ = i Ṗ� = [H, P ]� = H� − P H�,

or equivalently,

i∂t�(t) = (I − P (t))H(t,ρ(t))�(t).

Here the identity matrix is given as I = INg , and we have used that P (t)�(t) = �(t).
In order to close the equation, it remains to identify the equation of motion of σ(t). First, by differentiating the equation 

�(t)U (t) = �(t) and using (2.5), we may derive the dynamics of the gauge U (t), i.e.

(i∂t�(t))U (t) + �(t)(i∂tU (t)) = H(t,ρ(t))�(t)U (t) − �(t)�†(t)H(t,ρ(t))�(t)U (t).

This gives
5
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i∂tU (t) = −(�†(t)H(t,ρ(t))�(t))U (t). (3.8)

By differentiating both sides of Eq. (3.4) and using Eq. (3.8), we have

i∂tσ(t) = (i∂tU
†(t))σ0U (t) + U †(t)σ0(i∂tU (t))

= U †(t)(�†(t)H(t,ρ(t))�(t))σ0U (t) − U †(t)σ0(�
†(t)H(t,ρ(t))�(t))U (t)

= �†(t)H(t,ρ(t))�(t)σ (t) − σ(t)�†(t)H(t,ρ(t))�(t)

= [�†(t)H(t,ρ(t))�(t),σ (t)].
Therefore the equation of motion for σ(t) only depends on the slowly varying gauge-transformed wavefunctions �(t).

In summary, the parallel transport dynamics with a general initial state consists of the following set of equations

i∂t�(t) = (I − P (t))H(t,ρ(t))�(t),

i∂tσ(t) = [�†(t)H(t,ρ(t))�(t),σ (t)],
ρ(t) = �(t)σ (t)�†(t), P (t) = �(t)�†(t),

�(0) = �0, σ (0) = σ0.

(3.9)

Eq. (3.9) gives a self-contained definition of the transformed wavefunctions �(t) and the matrix σ(t) under the optimal 
gauge. Therefore, we can directly solve Eq. (3.9) to numerically approximate the state ρ(t) without computing the PT gauge 
matrix explicitly. Notice that, compared to the Schrödinger dynamics in which one can set σ(t) = σ(0), the PT dynamics 
in Eq. (3.9) introduces one extra nonlinear term in the propagation of the wavefunctions, and enlarges the size of the ODE 
system via a non-trivial dynamics of the transformed σ(t). This is different from the pure state setting where only an extra 
term in the equation of � is added. However, due to the assumption that Ng � N , the increase of the number of variables 
by N2 due to σ(t) does not add too much overhead in the numerical simulation.

In Appendix A, we provide an alternative derivation of Eq. (3.9) using the tangent space formulation, which follows the 
derivation in [27,28] for Lindblad equations, and is more analogous to the derivation of the dynamical low-rank approxima-
tion. The derivation also provides an alternative perspective of the gauge choice in terms of an auxiliary Hamiltonian.

4. Numerical propagation of the parallel transport dynamics

In order to solve Eq. (3.9) numerically, for simplicity we assume that a uniform time discretization tn = nh, and h is the 
time step size. The numerical values of �(t), σ(t), ρ(t), P (t) at time t = tn are denoted by �n, σn, ρn, Pn , respectively, and 
we define Hn = H(tn, ρn). Previous studies suggested that when the spectral radius of H is large, the PT dynamics should 
be solved using implicit time integrators [18,1]. This allows one to use a time step much larger than ‖H‖−1, and the result 
from the PT dynamics can be much more accurate than that from the Schrödinger dynamics using the same step size.

In order to discretize the PT dynamics with a mixed initial state, we consider the implicit midpoint (IM) rule (also known 
as the Gauss-Legendre method of order 2). We introduce the shorthand notations

�n+ 1
2

= 1

2
(�n + �n+1), σn+ 1

2
= 1

2
(σn + σn+1), (4.1)

and accordingly

Pn+ 1
2

= �n+ 1
2
(�

†
n+ 1

2
�n+ 1

2
)−1�

†
n+ 1

2
, ρn+ 1

2
= �n+ 1

2
σn+ 1

2
�

†
n+ 1

2
, Hn+ 1

2
= H

(
tn+ 1

2
,ρn+ 1

2

)
. (4.2)

We remark that ρn+ 1
2

is only a shorthand notation and may not be an admissible density matrix. In particular, even if 
Tr[ρn] = Tr[ρn+1] = Ne (see Proposition 1), we may not have Tr[ρn+ 1

2
] = Ne . On the other hand, Pn+ 1

2
is still a projector 

satisfying Pn+ 1
2
�n+ 1

2
= �n+ 1

2
.

With these notations, the parallel transport-implicit midpoint scheme (PT-IM) reads

i
�n+1 − �n

h
= (I − Pn+ 1

2
)Hn+ 1

2
�n+ 1

2
, (4.3)

i
σn+1 − σn

h
=

[
�

†
n+ 1

2
Hn+ 1

2
�n+ 1

2
,σn+ 1

2

]
, (4.4)

which form a set of nonlinear algebraic equations and need to be solved self-consistently. We can rewrite Eqs. (4.3) and 
(4.4) as

�n+1 = �n + h

i
(I − Pn+ 1

2
)Hn+ 1

2
�n+ 1

2
,

σn+1 = σn + h
[
�

†
n+ 1 Hn+ 1

2
�n+ 1

2
,σn+ 1

2

]
.

(4.5)
i 2

6
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If we choose (�n+1, σn+1) to be the unknowns and identify it with a vector x ∈ CNgN+N2
, then Eqs. (4.3) and (4.4) can be 

viewed as a fixed point equation in the abstract form

x = T (x).

The structure of this fixed point problem resembles that of the self-consistent field iterations (SCF) in standard electronic 
structure calculations [33]. Here we use Anderson’s mixing method [2] to solve this fixed problem (see Appendix B). Other 
numerical schemes for SCF iteration may also be applied [25,7,17,24,37] (also see [23] for general discussions on solving 
fixed point problems).

It may seem that the implementation of the PT dynamics has a large overhead compared to the direct propagation of 
the SD dynamics using an explicit integrator. When N � Ng and N is not very large, the cost of rt-TDDFT calculations is 
mostly given by the number of operations of the form H�. Due to the removal of the fast oscillating gauge degrees of 
freedom, the time step in the PT-dynamics can be chosen to be much larger than that in the SD dynamics, which effectively 
reduces the number of H� operations. The computational advantage has been demonstrated in rt-TDDFT calculations for 
real chemical systems for semi-local exchange-correlation functionals [18,1], and the advantage is even more pronounced 
for the more expensive hybrid exchange-correlation functionals calculations [19,20]. These calculations have been performed 
with a pure initial state, and we expect that similar savings can be observed in rt-TDDFT calculations for real systems. The 
computational cost per iteration of the Anderson mixing method is given in Appendix B.

The following proposition shows that PT-IM preserves the orthogonality as well as the trace condition.

Proposition 1. Assume �†
n�n = IN , σn = σ

†
n , Tr[σn] = Ne, and that Eqs. (4.3)and (4.4) have a unique solution (�n+1, σn+1), then 

the solution satisfies

�
†
n+1�n+1 = IN , (4.6)

and

σ
†
n+1 = σn+1, Tr[σn+1] = Ne, Tr[σ 2

n+1] = Tr[σ 2
n ]. (4.7)

As a consequence, we have Tr[ρn+1] = Tr[ρn] = Ne.

Proof. First, use the definition in (4.1) and apply �†
n+ 1

2
to both sides of (4.3), we obtain

i

2h
(�

†
n+1�n+1 − �

†
n�n) − i

2h
(�

†
n+1�n − �

†
n�n+1) = �

†
n+ 1

2
(I − Pn+ 1

2
)Hn+ 1

2
�n+ 1

2
= 0.

On the left-hand side, the first term is anti-Hermitian and the second term is Hermitian. So both terms must vanish, and

�
†
n+1�n+1 = �

†
n�n = IN .

This proves Eq. (4.6).
Second, denote by H̃ := �

†
n+ 1

2
Hn+ 1

2
�n+ 1

2
, we may solve the equation

σn+1 − σn = − ih

2
[H̃,σn] − ih

2
[H̃,σn+1]

to obtain σn+1. Applying the Hermite conjugation to both sides and using that H̃ , σn are Hermitian matrices, we have

σ
†
n+1 − σn = − ih

2
[H̃,σn] − ih

2
[H̃,σ

†
n+1].

The uniqueness of σn+1 implies σn+1 = σ
†
n+1. Moreover, since the right-hand side of Eq. (4.4) is traceless, we have Tr[σn+1] =

Tr[σn].
Finally, applying σn+ 1

2
from the left to both sides of Eq. (4.4), we have

i

2h
(σ 2

n+1 − σ 2
n − σn+1σn + σnσn+1) = σn+ 1

2
[H̃,σn+ 1

2
].

Since the right-hand side is traceless, by taking trace of both sides we obtain

Tr[σ 2
n+1] = Tr[σ 2

n ].
This finishes the proof of the equalities in (4.7). �

Eq. (4.6) can be viewed as a consequence of the general fact that the PT-IM method preserves quadratic invariants, and in 
particular orthogonality constraints (see e.g. [14, pp 132] for a more general description of orthogonality preserving Runge-
Kutta methods). Proposition 1 confirms that the PT-IM scheme preserves orthogonality of �(t), as well as the number of 
electrons.
7
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5. Error analysis

In this section, we consider the numerical error of the PT-IM scheme for concreteness, and compare the form of the error 
terms with those from the Schrödinger dynamics. The error analysis can also be extended to other Runge-Kutta methods 
and linear multistep methods.

5.1. Error analysis of the PT dynamics

Before proceeding with the detailed error analysis, we first provide some abstract perspectives. Let the local truncation 
error be defined as ek(X) = X(tk) − X̃k , where tk = kh and X̃k represents the numerical solution of X at the k-th step with 

previous step to be exactly X(tk−1), where X is the concatenation of � and σ , namely 
(

�

σ

)
. Since IM is a second order 

method, the local truncation error can be bounded in terms of the third order derivatives [15]

‖ek(X)‖ � C max
t∈[tk−1,tk]

∥∥∥∂3
t X(t)

∥∥∥h3. (5.1)

Here C is an absolute constant depending only on the choice of the numerical scheme.
Note that P is a rank-N projector, and can be identified with the Grassmann manifold Gr(Ng, N; C), i.e. the N-

dimensional subspace of CNg . On the other hand, the gauge-transformed wavefunctions � belongs to the Stiefel manifold 
St(Ng , N; C), which is the set of first N columns of an Ng -dimensional unitary matrices. The Grassmann manifold is the 
quotient space of St(Ng, N; C) by U(N), denoted by

Gr(Ng,N;C) = St(Ng,N;C)/U(N)

The projector P (t) can be identified with a curve in Gr(Ng, N; C), obtained by solving the von Neumann equation. On the 
other hand, the wavefunctions �(t), �(t) in the Schrödinger and the parallel transport gauge are lifts of the curve P (t) from 
the quotient space to St(Ng, N; C). In particular, �(t) can be identified as the unique horizontal lift [34] of P (t), starting 
from the initial condition �0 (which fixes a gauge choice initially). We have demonstrated that the parallel transport gauge 
yields the slowest dynamics in the sense of minimizing ‖∂t�‖F . For simplicity, in the following discussions we will consider 
the operator norm ‖·‖ for �, P and their time derivative. We expect that the size of the k-th order time derivative 

∥∥∂k
t �

∥∥
should also be bounded by that of 

∥∥∂k
t P

∥∥. On the other hand, 
∥∥∂k

t �
∥∥ may not be bounded by 

∥∥∂k
t P

∥∥ due to the gauge 
matrix.

Recall the relation

P� = �, P∂t� = 0,

and this gives

∂t� = (∂t P )�.

Keep differentiating and obtain

∂2
t � = [∂2

t P + (∂t P )2]�, ∂3
t � = [∂3

t P + 2(∂2
t P )(∂t P ) + (∂t P )(∂2

t P ) + (∂t P )3]�.

Using the fact that ‖�‖ = 1, we have

‖∂t�‖� ‖∂t P‖ .

Similarly∥∥∥∂2
t �

∥∥∥�
∥∥∥∂2

t P + (∂t P )2
∥∥∥�

∥∥∥∂2
t P

∥∥∥ + ‖(∂t P )‖2 ,

and ∥∥∥∂3
t �

∥∥∥�
∥∥∥∂3

t P
∥∥∥ + 3

∥∥∥∂2
t P

∥∥∥‖∂t P‖ + ‖∂t P‖3 .

This implies that 
∥∥∂k

t �
∥∥ is controlled by 

∥∥∂�
t P

∥∥ with � � k. On the other hand,

σ = �†ρ�

implies that the time derivative 
∥∥∂k

t σ(t)
∥∥ is controlled by 

∥∥∂�
t �

∥∥ and 
∥∥∂�

t ρ
∥∥ with � � k. To be specific, a direct computation 

gives
8
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∂3
t σ =(∂3

t �†)ρ� + �†(∂3
t ρ)� + �†ρ(∂3

t �) + 6(∂t�
†)(∂tρ)(∂t�)

+ 3(∂2
t �†)(∂tρ)� + 3(∂2

t �†)ρ(∂t�) + 3(∂t�
†)(∂2

t ρ)� + 3(∂t�
†)ρ(∂2

t �) + 3�†(∂2
t ρ)(∂t�)

+ 3�†(∂tρ)(∂2
t �),

and hence∥∥∥∂3
t σ

∥∥∥�2
∥∥∥∂3

t �

∥∥∥ +
∥∥∥∂3

t ρ
∥∥∥ + 6

∥∥∥∂t�
†
∥∥∥‖∂tρ‖‖∂t�‖

+ 6
∥∥∥∂2

t �

∥∥∥‖∂tρ‖ + 6
∥∥∥∂2

t �

∥∥∥‖∂t�‖ + 6‖∂t�‖
∥∥∥∂2

t ρ
∥∥∥ ,

where we used the facts that ‖�‖ = 1 and ‖ρ‖� 1.
To summarize, the error analysis of the PT dynamics is reduced to the estimate of 

∥∥∂k
t P

∥∥ and 
∥∥∂k

t ρ
∥∥. In particular, for 

the analysis of PT-IM, we need k � 3.

Lemma 2. Suppose H(t, ρ) is continuously differentiable in terms of t and ρ up to second order. Then the derivatives of P satisfy

‖∂t P‖�‖[H, P ]‖ , (5.2)∥∥∥∂2
t P

∥∥∥�‖[Ht, P ]‖ + ∥∥Hρ [H,ρ]∥∥ + ‖[H, [H, P ]]‖ , (5.3)∥∥∥∂3
t P

∥∥∥�‖[Htt, P ]‖ + 2
∥∥(Ht)ρ [H,ρ]∥∥ +

∥∥∥Hρρ([H,ρ])2
∥∥∥ + ∥∥Hρ [Ht,ρ]∥∥

+ ∥∥Hρ [Hρ [H,ρ],ρ]∥∥ + ∥∥Hρ [H, [H,ρ]]∥∥ + 2‖[Ht, [H, P ]]‖ + 2
∥∥[Hρ [H,ρ], [H, P ]]∥∥

+ ‖[H, [Ht, P ]]‖ + ∥∥[H, [Hρ [H,ρ], P ]]∥∥ + ‖[H, [H, [H, P ]]]‖ , (5.4)

where the subscripts denote the partial derivatives.

Proof. The first inequality is trivial. To prepare for the differentiation of P , we start by computing the derivatives of H . For 
notational simplicity, we use the subscripts to denote the partial derivative and omit the explicit (t, ρ(t)) dependence in H . 
The first order derivative of H reads

Ḣ := d

dt
H(t,ρ(t)) = Ht + Hρρt = Ht − iHρ [H,ρ], (5.5)

and the second order derivative of H is given by

Ḧ := d2

dt2
H(t,ρ(t)) = d

dt
Ht − i

d

dt
(Hρ [H,ρ])

=Htt + (Ht)ρρt − i(Ht)ρ [H,ρ] − iHρρρt[H,ρ] − iHρ [Ḣ,ρ] − iHρ [H,ρt].
It follows from i∂tρ = [H, ρ] that

Ḧ =Htt − 2i(Ht)ρ [H,ρ] − Hρρ([H,ρ])2
− iHρ [Ht,ρ] − Hρ [Hρ [H,ρ],ρ] − Hρ [H, [H,ρ]]. (5.6)

The second order derivative of P becomes

∂2
t P = −i

d

dt
([H(t,ρ(t)), P (t)]) = −i[Ḣ, P ] − i[H, ∂t P ]

= −i[Ht, P ] − [Hρ [H,ρ], P ] − [H, [H, P ]],
(5.7)

together with the fact that ‖P‖ � 1, we obtain (5.3). Similarly, the third order derivative of P can be computed explicitly 
via

∂3
t P = −i[Ḧ, P ] − 2i[Ḣ, ∂t P ] − i[H, ∂2

t P ].
Plugging in (5.5), (5.6) and (5.7), one obtains

∂3
t P = − i[Htt, P ] − 2[(Ht)ρ [H,ρ], P ] + i[Hρρ([H,ρ])2, P ] − [Hρ [Ht,ρ], P ]

+ i[Hρ [Hρ [H,ρ],ρ], P ] + i[Hρ [H, [H,ρ]], P ] − 2[Ht, [H, P ]]
+ 2i[Hρ [H,ρ], [H, P ]] − [H, [Ht, P ]] + i[H, [Hρ [H,ρ], P ]] + i[H, [H, [H, P ]]].

Taking the norm yields the desired result. �

9
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Lemma 3. Suppose H(t, ρ) is continuously differentiable in terms of t and ρ up to second order. The derivatives of ρ satisfy

‖∂tρ‖�‖[H,ρ]‖ , (5.8)∥∥∥∂2
t ρ

∥∥∥�‖[Ht,ρ]‖ + ∥∥[Hρ [H,ρ],ρ]∥∥ + ‖[H, [H,ρ]]‖ , (5.9)∥∥∥∂3
t ρ

∥∥∥�‖[Htt,ρ]‖ + 2
∥∥[(Ht)ρ [H,ρ],ρ]∥∥ +

∥∥∥[Hρρ([H,ρ])2,ρ]
∥∥∥ + ∥∥[Hρ [Ht,ρ],ρ]∥∥

+ ∥∥[Hρ [Hρ [H,ρ],ρ],ρ]∥∥ + ∥∥[Hρ [H, [H,ρ]],ρ]∥∥ + 2‖[Ht, [H,ρ]]‖ + ‖[H, [Ht,ρ]]‖
+ 2

∥∥[Hρ [H,ρ], [H,ρ]]∥∥ + ∥∥[H, [Hρ [H,ρ],ρ]]∥∥ + ‖[H, [H, [H,ρ]]]‖ , (5.10)

where the subscripts denote the partial derivatives.

Proof. The proof is similar as Lemma 2 since ρ satisfies the equation i∂tρ = [H, ρ], which has the same form of that for 
P . �

Therefore, the local truncation errors of the PT dynamics can be bounded by terms involving commutators of [H, P ], 
[H, ρ], [Ht, ρ], [Htt, ρ], [Ht, P ], [Htt, P ].

5.2. Comparison to the Schrödinger dynamics

In this section, we discuss the local truncation error of the Schrödinger dynamics and the global errors of the PT and 
Schrödinger dynamics. The local truncation error can be summarized in the following lemma. Note that in the bound, we 
keep the wavefunction � for the terms without commutator structures, such as 

∥∥H3�
∥∥, instead of replacing it by the 

operator norm 
∥∥H3

∥∥, because the latter could be significantly larger than the former.

Lemma 4. For the IM scheme, the local truncation errors of Schrödinger dynamics (2.1) can be bounded as

‖ek(�)‖�C
(∥∥∥H3�

∥∥∥ + ‖HHt�‖ + 2‖HtH�‖ + ‖Htt�‖
+ ∥∥HHρ [H,ρ]∥∥ + 2

∥∥Hρ [H,ρ]H∥∥ + 2
∥∥(Ht)ρ [H,ρ]∥∥ +

∥∥∥Hρρ([H,ρ])2
∥∥∥

+ ∥∥Hρ [Ht,ρ]∥∥ + ∥∥Hρ [Hρ [H,ρ],ρ]∥∥ + ∥∥Hρ [H, [H,ρ]]∥∥ )
,

(5.11)

for some constant C that does not depend on tk, h.

Proof. It suffices to calculate the derivatives of �. The second order derivative is computed as

∂2
t � = −iH∂t� − iḢ� = −H2� − iḢ�

and the third order derivative can be computed as

∂3
t � = − iH�̈ − 2iḢ�̇ − iḦ�

=iH3� − H Ḣ� − 2ḢH� − iḦ�

=iH3� − HHt� + iHHρ [H,ρ]� − 2HtH�

+ 2iHρ [H,ρ]H� − iHtt� + 2(Ht)ρ [H,ρ]� + iHρρ([H,ρ])2�
− Hρ [Ht,ρ]� + iHρ [Hρ [H,ρ],ρ]� + iHρ [H, [H,ρ]]�.

Taking the norm and applying (5.1), we obtain the desired result. �
Lemma 2, Lemma 3 and Lemma 4 give the local truncation error errors of both PT and Schrödinger dynamics. Following 

the standard stability analysis [29], we obtain the global error bounds.

Theorem 5 (Global error). For the IM schemes of (2.1) and (3.9) up to the time tn = T , there exists some constant C depending on T
and ‖H‖ such that

1. The errors for the PT dynamics (3.9) satisfy

‖�(tn) − �n‖ + ‖σ(tn) − σn‖ ≤ C f1(H,ρ, P )h2, (5.12)

where f1 is a function of H, ρ, P that is a linear combination of products of nested commutators up to three layers of the form
10
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‖[A4, A3[A2, A1A0]]‖ (5.13)

with A0 being one of the following

[H, P ], [Ht, P ], [Htt, P ], [H,ρ], [Ht,ρ], [Htt,ρ] (5.14)

and Ai (i = 1, · · · , 4) being the identity matrix I , functions of H, ρ, P or derivatives of H.
2. The error for the Schrödinger dynamics (2.1) satisfies

‖�(tn) − �n‖ ≤ C
(
f2(H,ρ, P ) +

∥∥∥H3�

∥∥∥ + ‖HHt�‖ + 2‖HtH�‖ + ‖Htt�‖
)
h2, (5.15)

where f2 has the same form as f1.

Theorem 5 shows that the error bound of PT dynamics exhibits commutator scaling while that of the Schrödinger equa-
tion does not. Intuitively, the commutator terms oscillate on the time scale of the density matrices and projectors, which 
are gauge-invariant. These terms can be much smaller than those on the right-hand-side of the Schrödinger estimate acting 
on the fast-varying wavefunctions. For example, [H, ρ] = iρ̇ oscillates on the scale of the density matrix, and H� = i�̇
oscillates on the scale of the wavefunction. This observation is also illustrated numerically in Section 6. Moreoever, in the 
next section, we show rigorously that in the near adiabatic regime, the PT dynamics gains one extra order of accuracy in a 
singularly perturbation parameter ε compared to that of the Schrödinger dynamics.

We remark that the worst-case dependence of the constant C on the norm of H can be very pessimistic, which is 
due to the standard stability analysis through the Grönwall type estimates. However, the Schrödinger equation inherits a 
Hamiltonian structure and, together with the fact that IM is a symplectic scheme, this preconstant C may be dramatically 
improved such that it depends linearly on T and is even possibly independent of ‖H‖ [14]. In order to formally employ the 
symplectic properties, however, the PT-IM scheme needs to be slightly modified. This has been demonstrated in [1] for pure 
states. Numerical results in [1] also demonstrate that the performance of the schemes with and without the modification are 
almost the same, so the modification may only be of theoretical interest. For simplicity, we do not detail such modification 
here.

5.3. Near adiabatic regime

In the near adiabatic regime, we can use commutator structure to demonstrate provable advantage of the PT dynamics 
over the Schrödinger dynamics. Consider the singular perturbed Schrödinger equation:

iε∂t�
ε(t) = H(t,ρε(t))�ε(t), ε � 1. (5.16)

Here ρε(0) is a pure state, and �ε(0) consists of the eigenfunctions of H(0, ρε(0)) corresponding to the algebraically lowest 
N eigenvalues.

Let ρε = P ε = �ε�ε †. Then the PT dynamics become

iε∂t�
ε(t) = H(t,ρε(t))�ε(t) − �ε(t)(�ε †(t)H(t,ρε(t))�ε(t)), �ε(0) = �ε(0). (5.17)

In the linear case (H(t, ρ(t)) = H(t) is independent of ρ), if the gap condition is satisfied, i.e. there exists a positive gap 
between the N-th and (N + 1)-th smallest eigenvalues of H(t) for all t ∈ [0, T ]. The adiabatic theorem (see for example, 
[42,13,21,22]) for the Schrödinger dynamics (5.16) states that

�ε(t) = �a(t) +O(ε), (5.18)

where the columns of �a(t) are the eigenvectors of the Hamiltonian, namely, there exists a time-dependent diagonal matrix 
�(t) whose diagonal entries are eigenvalues of the Hamiltonian such that

H(t)�a(t) = �a(t)�(t).

The adiabatic theorem can also be generalized to certain linear systems without a gap condition [3,41], and for some 
weakly nonlinear systems [9,11]. A detailed discussion of the technical conditions for the adiabatic approximation is beyond 
the scope of this paper. However, when such a priori estimate is available, we can evaluate the commutator as

[H,ρε ] = H�a�
†
a − �a�

†
aH +O(ε) = �a��

†
a − �a��

†
a +O(ε) = O(ε). (5.19)

We now examine the commutator terms in Lemma 3. Note that in the singular perturbed regime, one should replace the H
in Lemma 3 by H/ε , and hence the leading order terms in ε are

ε−3
∥∥∥[Hρερε ([H,ρε ])2,ρε ]

∥∥∥ + ε−3
∥∥[Hρε [Hρε [H,ρε ],ρε ],ρε ]∥∥ + ε−3

∥∥[Hρε [H, [H,ρε ]],ρε ]∥∥
+ ε−3

∥∥[Hρε [H,ρε ], [H,ρε ]]∥∥ + ε−3
∥∥[H, [Hρε [H,ρε ],ρε ]]∥∥ + ε−3

∥∥[H, [H, [H,ρε ]]]∥∥ = O(ε−2),
11
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Fig. 1. Left panel: The potentials V (x) (red solid) and W (t, x) at time t = 0.2 (blue dashed) and t = 0.4 (green dotted), respectively, where W is of time 
period 1/8. Right panel: The initial occupation of the Fermi-Dirac statistics. L = 4, β = 1.453, and the chemical potential is chosen such that the initial 
number of occupation Ne = Tr(ρ(0)) = 20.

thanks to (5.19). However, by replacing H in Lemma 4 by H/ε , we obtain 
∥∥∂3

t �
∥∥ = O(ε−3) for the Schrödinger dynamics. 

Finally applying Theorem 5, we find that the numerical schemes for the PT dynamics can gain an order of magnitude in 
terms of the accuracy in ε , which recovers the result in [1] for the linear case, and generalizes the result to the nonlinear 
case (provided that adiabatic theorems can be established).

6. Numerical results

In this section, we provide the numerical results of the parallel transport dynamics. Extensive numerical results and 
implementations on real chemical systems have been demonstrated for the PT dynamics with pure initial states [1,18–20]. 
Hence, we focus on the case of a mixed initial state in this section. In numerical examples, the relative numerical errors are 
computed by

sup
0≤k≤n

‖Xk − X(tk)‖
‖X(tk)‖ ,

where k = 0, 1, · · · , n and tn is the final time, and X is the reference values of �, σ or � with Xn represents the numerical 
results of the quantity X at the time tn .

Our model system is defined by a periodic potential field given by a one-dimensional lattice structure with Hamiltonian

H(t) = −1

2

 + V (x) + W (x, t). (6.1)

Here V (x) = cos(x) is a static potential. The external time-dependent potential with frequency ω is

W (x, t) = 10 sin
( x

L

)
sin(ωt), (6.2)

and L denotes the number of unit cells. The length of the lattice (the computational domain) is 2π L. Fig. 1a shows a typical 
plot for the two potentials over the lattice cells. The parameters in the system are chosen as L = 4, β = 1.453, ω = 16π
and the chemical potential μ = 3.299. The initial occupation number according to the Fermi-Dirac distribution is in Fig. 1b. 
Each unit cell is discretized via 64 equidistant grid points, and hence the total number of grid points is Ng = 64L.

We first verify the Proposition 1 numerically by simulating the PT dynamics to Tfinal = 4 using the PT-IM scheme with 
a step size h = 0.01. We set Ne = 20, and N = 64. The norm of �†

n+1�n+1 and values of Trσn and Trσ 2
n are plotted for 

the simulation time in Fig. 2. It can be seen that the values of all three quantities are constant throughout the simulation, 
which agrees with Proposition 1. In comparison, we also plot the higher order trace Trσ 3

n , which is not a conserved quantity. 
Nonetheless, the fluctuation of Trσ 3

n is still very small and on the order of 10−6.
Next, we compare the numerical errors in simulating the Schrödinger dynamics (SD) and PT dynamics. Both dynamics 

are simulated using IM schemes to Tfinal = 1. We set μ = 26.893 (corresponding to Ne = 60) and N = 80. In order to verify 
the convergence rate numerically, we set the time steps to be 0.05, 0.02, 0.01, 0.005, 0.002, 0.001. The reference solution is 
computed using a fine time step of 2 × 10−5. Fig. 3a shows that both SD-IM and PT-IM are second order methods, but the 
preconstant of PT-IM is much smaller. The accuracy of the PT dynamics can also be shown in terms of physical observables, 
e.g. the dipole moment:
12
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Fig. 2. Numerical verification (time step h = 0.01) of the orthogonality of � and the trace preservation of σ and σ 2, as shown in Proposition 1. On the 
other hand, the trace of higher powers of σ (e.g. σ 3) may not be preserved in the PT-IM scheme.

Fig. 3. Left Panel: Log-log plot of the relative errors of �, σ , � and the density matrix ρ computed via both PT and Schrödinger dynamics (SD). Right 
Panel: Evolution of the dipole moment for PT-IM with h = 0.02, SD-IM with h = 0.02, and SD-IM with h = 0.0001 (reference solution).

〈x(t)〉 := Tr (xρ(t)).

Fig. 3b compares the dipole moment computed in three different scenarios: PT-IM with h = 0.02, SD-IM with h = 0.02, and 
SD-IM using a very small time step h = 0.0001. We find that the difference between the time-dependent dipole moment 
obtained from PT-IM with a large time step h = 0.02 is almost the same as that from the reference solution. However, 
SD-IM with the same time step size is only accurate for a short periodic of time, and its accuracy significantly deteriorates 
as t increases.

In order to demonstrate that the commutator scaling in Theorem 5, we now vary the number of electrons Ne , and 
compare the results of PT-IM and SD-IM. The chemical potential μ is set to 3.299, 7.028, 12.291, 18.951, 26.893, and the 
13
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Fig. 4. Relative errors versus the number of occupation Ne in semi-log scale. Left panel: relative errors for the wavefunctions � in PT gauge and � in the 
Schrödinger gauge. Right panel: the commutator bounds on the right-hand-sides of ∂3

t P in Lemma 2 and ∂3
t ρ in Lemma 3 versus 

∥∥H3�
∥∥h2 that appears 

in Lemma 4. The commutator bounds (as in PT) are significant smaller than 
∥∥H3�

∥∥h2 term (as in the Schrödinger gauge).

Fig. 5. Plots of the relative errors of ρ versus the number of occupation Ne . Left panel: relative errors in 2-norm. Right panel: the relative errors in the 
Frobenius norm (F-norm).

corresponding Ne are 10, 20, 30, 40, 50, 60, respectively. We also set N = Ne + 20, h = 0.01, and Tfinal = 1. The reference 
solution is computed using a very small step size h = 2 × 10−5.

We plot the relative errors of both the PT and the Schrödinger dynamics in comparison with our theoretical bounds. 
It can be seen in Fig. 4 that as Ne increases, the relative error of the wavefunction in the Schrödinger dynamics grows 
much faster than that in the PT dynamics. Fig. 4 also plots the terms in the error bounds with or without the commuta-
tor structures, respectively. We find that the term without commutator structures can be much larger in magnitude, and 
the qualitative trend of the growth of the error bound with respect to Ne matches that of the error from the numerical 
simulation.

We also plot the relative errors in 2-norm of the density matrix ρ in Fig. 5a and Fig. 5b. The errors (measured in both the 
operator norm and the Frobenius norm) from the PT dynamics is smaller than that from the Schrödinger dynamics. Further-
more, as Ne increases, the relative error in the Frobenius norm from the PT dynamics in fact decreases. This phenomenon 
can be intuitively explained as follows. Note that the initial σ0 is a diagonal matrix of the following form⎛

⎝ Im0 0 0
0 σ∗ 0
0 0 0

⎞
⎠ ,

where m0 is the number of fully occupied states and σ∗ is a diagonal matrix representing the fractional states whose 
diagonal elements has values in (0, 1). Then we expect that the fully occupied states are approximately in the near adiabatic 
regime, and their contribution to the error is much smaller than those from the fractionally occupied ones according to the 
commutator bound. In this example, m0 increases with Ne , but the size of σ∗ does not change much with respect to Ne . 
Therefore, the error of the density matrix should be dominated by a small number of orbitals near the Fermi surface. To 
verify this statement, we plot in Fig. 6 the histogram of the errors in the vector 2-norm for all orbitals. Indeed, as Ne

increases, the errors are dominant by only a few orbitals near the corresponding chemical potential μ, and the number 
14
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Fig. 6. Plot of the error histogram of all orbitals for various Ne in the PT dynamics.

of the orbitals with significant errors does not increase with Ne . On the other hand, the Frobenius norm of the density 
matrix ‖ρ‖F =O(

√
Ne). This explains the decay of the relative error of ρ in the PT-dynamics in Fig. 5b. By comparison, the 

histogram of the errors in the vector 2-norm for all orbitals in the Schrödinger gauge is provided in Fig. 7. We find that in 
the Schrödinger dynamics, the errors are propagated much more widely along the energy spectrum among a larger number 
of orbitals. It is also interesting to note that the maximal magnitude of the error increases significantly with respect to Ne

in the Schrödinger dynamics, but the maximal error is nearly a constant and is much smaller in the PT dynamics.
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Fig. 7. Plot of the error histogram of all orbitals for various Ne in the Schrödinger dynamics.

Finally, we demonstrate that the PT dynamics remains equally effective in the nonlinear regime. The rt-TDDFT Hamilto-
nian takes the following general form

H(t,ρ(t)) = −1

 + Vext(x, t) + VHxc[ρ(t)] + VX[ρ(t)], (6.3)
2
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Fig. 8. Left Panel: The log-log plot of the relative errors of �, σ in the model nonlinear rt-TDDFT calculation with Eq. (6.4), computed via PT-IM and SD-IM. 
Right Panel: a comparison of the dipole moment.

where Vext represents the electron-ion interaction and when the external field changes with respect to time, Vext may also 
depend on time t . VHxc is the Hartree and local exchange-correlation contribution and depends only on the diagonal part 
of ρ(t), and VX is the Fock exchange operator depending on the entire ρ(t). More specifically, VX is an integral operator 
defined by

[(VX[ρ])φ](x) = −
∫

K (x, y)ρ(x, y)φ(y)dy

with the kernel K (x, y) represents the electron-electron interaction.
Following Eq. (6.3), we consider the following model problem

H(t,ρ) = −1

2

 + V (x) + W (x, t) + U [ρ], (6.4)

where V = x2, and W is as defined in (6.2) and the nonlinear term U [ρ] models V X [ρ] with the Yukawa kernel

K (x, y) = 2π

κε0
e−κ |x−y|.

Note that as κ → 0, the Yukawa kernel approaches to the Coulomb interaction that diverges in one dimension and hence 
is typically used in place of the bare Coulomb interaction for one-dimensional problems. The parameters are chosen as 
ε0 = 100 and κ = 0.01 so that the range of the electrostatic interaction is sufficiently long. Here μ = 148.99 so that Ne = 60
and we choose N = 80. We simulate the system using PT-IM and SD-IM up to Tfinal = 0.5 and compare the relative errors. 
As shown in Fig. 8a, the errors from PT-IM are significantly smaller. A comparison of the dipole moment is presented in 
Fig. 8b. We also compute the dipole moment using h = 0.01 and compare the results with the reference solution obtained 
using SD-IM with a very fine time step h = 0.0001. It can be seen that the result using the PT dynamics agrees well with 
the reference, which is not the case for the Schrödinger dynamics with the same step size.

7. Conclusion

In this paper, we have introduced the PT dynamics for mixed quantum states, which generalizes the PT dynamics for 
pure states presented in [1]. Both the PT and Schrödinger dynamics employ the low-rank structure of the density matrix, 
and can produce the same density matrix and all derived physical observables (such as dipole moments) as those from the 
von Neumann equation in the continuous time limit. The PT dynamics differ from the Schrödinger dynamics in terms of 
the choice of the gauge. In particular, the PT gauge yields the slowest possible dynamics for the wavefunctions. This allows 
us to significantly increase the time step size in the numerical simulation while maintaining accuracy. This is particularly 
useful when Ng � N and we only have access to the matrix-vector multiplication operations in the form of H�. This is the 
case when, e.g. planewaves and finite difference methods are used for the spatial discretization.

For the temporal discretization, the PT dynamics can be combined with any Runge-Kutta and linear multistep integrators. 
As a concrete example, we propose the parallel transport-implicit midpoint (PT-IM) scheme, which is an implicit method 
suitable for treating Hamiltonians with a large spectral radius. It also preserves certain trace conditions and the orthogonal-
ity of the wavefunctions. We establish a new error bound for the PT dynamics, where all terms in the error bounds involve 
either the commutator of the Hamiltonian (and its derivatives) and the density matrix (or the associated spectral projector). 
As a comparison, the error analysis of the Schrödinger dynamics is also provided, which does not exhibit such commutator 
scaling. This new error bound, together with various numerical experiments, justifies the advantage of the PT dynamics for 
17
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the general mixed states, where the dynamics can be nonlinear, and beyond the near adiabatic regime. Implementation of 
PT-IM for rt-TDDFT calculations of large scale real metallic systems is under progress.
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Appendix A. Alternative derivation of the parallel transport dynamics using the tangent space formulation

In this section, we provide an alternative derivation of the PT dynamics using the tangent space formulation. The pre-
sentation of this derivation consists of three parts: we first write down Eq. (3.5) as well as the domain of the low-rank 
factors. We then derive the equation of motion of the low-rank factors of the rank-N density matrix. Finally, we introduce 
the optimal gauge (i.e. PT gauge).

Let ρ be of rank N (Ne � N < Ng ). Recall Eq. (3.5):

ρ(t) = �(t)σ (t)�†(t), (A.1)

where σ(t) is an N × N positive semidefinite Hermitian matrix, and � is an Ng × N complex-valued matrix that satisfies 
�†� = IN , in other words, � belongs to the Stiefel manifold St(N, Ng) defined as

St(N,Ng) = {� ∈RNg×N : �†� = IN}.
As is explained in Section 3, this decomposition (A.1) in fact admits an equivalence relationship (�, σ) ≡ (�U , U †σU ), 
namely, for any N × N unitary matrix U ,

ρ = �σ�† = (�U )(U †σU )(U †�†).

Consider the infinitesimal variation of the tangent map of (�, σ) �→ �σ�†. As is shown in [5, Lemma 4], the tangent 
space of the Stiefel manifold admits the parametrization iω�, where ω is a Hermitian matrix of size Ng . Denote

�̇ = iω�, σ̇ = ξ,

where ξ is a traceless Hermitian matrix of size N . The infinitesimal variation of ρ can thus be represented as

i[ω,ρ] + �ξ�† = �(i[�†ω�,σ ] + ξ)�†.

We then project ρ̇ onto this tangent space by minimizing the distance between them, namely,

min
∥∥∥−i[H(t,ρ(t)),ρ(t)] − i[ω,ρ] − �ξ�†

∥∥∥
F
.

Hereafter, we drop the (t, ρ) in H for simplicity. The two stationary conditions in ω and ξ read[
−i[H,ρ] − i[ω,ρ] − �ξ�†,ρ

]
= 0, (A.2)

�†(−i[H,ρ] − i[ω,ρ] − �ξ�†)� = λIN , (A.3)

where λ is the Lagrange multiplier introduced to satisfy the traceless condition of ξ . By taking trace on both sides of (A.3), 
we find that

λ = 1

N
Tr

[
�† (−i[H,ρ] − i[ω,ρ])�

]
= 0,

because for any X ,
18



D. An, D. Fang and L. Lin Journal of Computational Physics 451 (2022) 110850
Tr(�†[X,ρ]�) = Tr(�†X�σ�†� − �†�σ�†X�) = Tr(�†X�σ − σ�†X�) = 0.

Define projection operators

P := ��†, Q = I − P ,

and one can express �ξ�† using (A.3) as

ξ = �† (−i[H,ρ] − i[ω,ρ])�, �ξ�† = P (−i[H,ρ] − i[ω,ρ]) P . (A.4)

Together with Eq. (A.2), we obtain

Q (−iHρ − iωρ)ρ = ρ (iρH + iρω) Q .

Note that Pρ = ρ and hence the left-hand side stays in the range of Q while the right-hand side remains in the range of 
P . By orthogonality, both sides of the equation vanish, which imposes some constraints on Q ωP and PωQ . To be specific, 
one has

Q ωρ2 = −Q Hρ2 ⇐⇒ Q ω�σ 2�† = −Q H�σ 2�†.

Right multiply �(σ−1)2�†, one finds that Q ωP = −Q HP . Similarly, we obtain PωQ = −P HQ . The general solution of 
this system of matrix equations is

ω = −Q HP − P HQ − PGP − Q GQ ,

where G is any Hermitian matrix due to the hermiticity of ω. Since �̇ = iω�, the equation for � can be written as

i�̇ = −ω� = Q HP� + P HQ � + PGP� + Q GQ �

= Q H� + PG�,

where the fact that P� = � and Q � = 0 is used. For the equation of ξ , (A.4) yields

iσ̇ = iξ = i�† (−i[H,ρ] − i[ω,ρ])�

= [�†H�,σ ] − [�†G�,σ ].
Finally, we arrive at the dynamics for � and σ in a closed form

i∂t� = (I − ��†)H(t,�σ�†)� + ε��†G�, (A.5)

i∂tσ =
[
�†

(
H(t,�σ�†) − G

)
�,σ

]
, (A.6)

where the Hermitian matrix G is an extra degree of freedom to be chosen.
The next step is to find the optimal choice of G such that the dynamics of � changes the slowest, i.e. to find G such 

that

min‖�̇‖2F = minTr(�̇†�̇). (A.7)

The norm can be split into two parts

‖�̇‖2F = ‖P�̇‖2F + ‖Q �̇‖2F
= ‖��†G�‖2F + ‖Q H�‖2F .

The Frobenius norm of the second term reads

Tr(�†H†Q †Q H�) = Tr(Q †Q H��†H†) = Tr(Q †Q H(t,ρ)P H†(t,ρ)),

which is independent of the gauge choice. Therefore, to optimize (A.7) one can choose G = 0. Now we arrive at the parallel 
transport dynamics

i∂t� = (I − ��†)H(t,�σ�†)�, (A.8)

i∂tσ =
[
�†H(t,�σ�†)�,σ

]
,

which is equivalent to the PT dynamics (3.9) derived in Section 3.
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It is worth pointing out that the Schrödinger gauge in fact corresponds to the choice G = H in (A.5) that gives rise to

i∂t� = H(t,�σ�†)�, (A.9)

∂tσ = 0.

This immediately implies that the number of occupied orbitals remains unchanged throughout the evolution, which verifies 
the validity of the solution in the Schrödinger dynamics in Eq. (3.3).

Appendix B. Anderson’s mixing method for solving nonlinear equations and computational cost

Let xk be the value of (�n+1, σn+1) at the k-th iteration, and define

rk = xk − T (xk), sk = xk − xk−1, yk = rk − rk−1,

then Anderson’s mixing method obtains an update xk+1 according to

xk+1 = xk − Ckrk.

The matrix Ck can be viewed as an approximation to the Jacobian of the mapping x �→ x − T (x). Define

Sk = (
sk, sk−1, . . . , sk−�

)
, Yk = (

yk, yk−1, . . . , yk−�

)
,

where � is called the mixing dimension. The matrix Ck is obtained by solving the minimization problem

min
C

1

2
‖C − C0‖2F

s.t. Sk = CYk,

(B.1)

where C0 is an initial guess to the Jacobian. In the absence of further information, we may choose C0 = α I for some 
constant α. The solution to the minimization problem

Ck = C0 + (
Sk − Ck−1Yk

)
Y+
k ,

where Y+
k =

(
Y †
kYk

)−1
Y †
k is the Moore-Penrose pseudoinverse. Therefore, the update rule for xk+1 is

xk+1 = xk − C0
(
I − YkY

+
k

)
rk − SkY

+
k rk. (B.2)

For the initial step, we may simply take x0 to be the vectorized form of (�n, σn) at the previous time step.
In the numerical solution of the fixed point problem, other than operations of the form H�, the cost of the remaining 

linear algebra operations from xk to xk+1 is O(NgN2 + N3) = O(NgN2) under the assumption that Ng � N . The cost of 
the H� operation is more involved and depends on the choice of the exchange-correlation functionals and basis sets. 
In particular, when hybrid exchange-correlation functionals are used, the cost of H� is generally O(NgN2) with a large 
prefactor (also possibly with a logNg factor when planewave basis functions are used, due to the fast Fourier transform). 
Therefore the computational cost per iteration step is O(NgN2), and is mostly dominated by the H� operation.
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