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ABSTRACT: The calculation of the MP2 correlation energy for
extended systems can be viewed as a multidimensional integral in
the thermodynamic limit, and the standard method for evaluating
the MP2 energy can be viewed as a trapezoidal quadrature scheme.
We demonstrate that the existing analysis neglects certain
contributions due to the nonsmoothness of the integrand and
may significantly underestimate finite-size errors. We propose a
new staggered mesh method, which uses two staggered
Monkhorst−Pack meshes for occupied and virtual orbitals,
respectively, to compute the MP2 energy. The staggered mesh
method circumvents a significant error source in the standard
method in which certain quadrature nodes are always placed on
points where the integrand is discontinuous. One significant
advantage of the proposed method is that there are no tunable parameters, and the additional numerical effort needed can be
negligible compared to the standard MP2 calculation. Numerical results indicate that the staggered mesh method can be particularly
advantageous for quasi-1D systems as well as quasi-2D and 3D systems with certain symmetries.

1. INTRODUCTION

Correlated wavefunction-based methods have long been the
standard in quantum chemistry for accurate solution of the
many-electron Schrödinger equation in molecular systems. In
recent years, they are also increasingly used for evaluating
energies beyond the mean-field level in extended systems.1−6 In
contrast to the zero-dimensional molecular systems, properties
in bulk solids, surfaces, and other low-dimensional extended
systems need to be calculated properly in the thermodynamic
limit (TDL). Due to the steep increase of the computational cost
with respect to the system size, reaching convergence in a brute
force fashion is often beyond reach, and finite-size corrections
must be applied. Common correction methods used to reduce
the finite-size errors in correlation energy calculations include
power-law extrapolation,1,7−10 structure-factor interpola-
tion,6,8,11 and twist averaging.6,9,12

Unless otherwise stated, throughout the paper, we assume the
system extends along all three dimensions, and a standard
Monkhorst−Pack (MP) mesh with Nk points sampled in the
first Brillouin zone (BZ) is used. The power-law extrapolation
typically assumes that the finite-size error is proportional to
Nk

−1/3,Nk
−1, or their linear combinations. TheNk

−1/3 scaling is due
to the fact that the correlation energy may inherit the −N( )k

1/3

finite-size error in HF orbital energies.5 The finite-size errors in
the orbital energies can be reduced to −N( )k

1 via theMadelung-
constant correction.13,14 With this error removed, it has been

argued based on structure-factor analysis that the finite-size error
in the correlation energy scales as −N( )k

1 due to the omission of
certain terms in the structure factor.6,8 The structure-factor
interpolation method, as its name suggests, computes the finite-
size correction by extrapolating the omitted structure factor
around the singular point of the Coulomb kernel in the
reciprocal space. The twist averaging technique calculates and
averages the structure factors, and consequently the correlation
energies using a set of shifted k-point meshes, and is often used
as a preprocessor for power-law extrapolation and structure-
factor interpolation. The effectiveness of these correction
methods can often be strongly system-dependent in practice.6,8

In this paper, we focus on the finite-size error of correlation
energy calculations and its correction in the simplest scenario,
namely, the correlation energy from the second-order Møller−
Plesset perturbation theory (MP2) for insulating systems (the
MP2 energies for metallic systems may diverge).2,15 In the TDL,
the MP2 energy can be expressed as an integral in the BZ. The
numerical evaluation of the MP2 energy then uses a trapezoidal
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quadrature to replace the integral by a finite sum over the MP
mesh. Correspondingly, the finite-size error in MP2 energy
arises from two sources: the error of the integrand and the error
of the numerical quadrature. The first error comes from the basis
set incompleteness and finite-size errors in orbitals and orbital
energies, and can be reduced by various existing techni-
ques.1,16,17

The integrand of the MP2 energy calculation generally has
many discontinuous points. In this paper, we demonstrate that
the existing structure-factor-based error analysis6,8 neglects
certain contributions due to the discontinuous behavior of the
integrand and underestimates the finite-size errors from the
numerical quadrature. We show that the error of the numerical
quadrature comes from placing certain quadrature nodes at
points of discontinuity, and also from the overall nonsmooth-
ness of the integrand. In particular, the standardMP2 calculation
uses the same MP mesh for both occupied and virtual orbitals.
This leads to the sampling of certain q points (the difference
between the k points of an occupied−virtual orbital pair) on
which the integrand is discontinuous. The error due to such
improper placement of the quadrature nodes is −N( )k

1 .
We propose a simple modification to address this problem

with negligible additional costs. Our staggered mesh method
uses one MP mesh for occupied orbitals and another MP mesh
shifted by half mesh size for virtual orbitals. We show that the
integrand is well defined on all q points in the numerical
calculation, thus circumventing the need for structure-factor
interpolation. The staggered mesh method has no tunable
parameters, and the additional cost required can be negligible
when compared to that of the standard MP2 calculations. We
show that the finite-size error of the staggered mesh method is
mainly affected by the intrinsic nonsmoothness of the integrand
in the MP2 calculation.
We compare the performance of the staggered mesh method,

the standard method, and the structure-factor interpolation
method6,8 for a model system, where the mean-field orbital
energies and wavefunctions are obtained accurately from a given
effective potential. We then demonstrate numerical tests on
periodic hydrogen dimer, lithium hydride, silicon, and diamond
systems in the quasi-1D, quasi-2D, and 3D bulk settings using
the PySCF18 package. Our results indicate that the use of the
staggered mesh can significantly accelerate the convergence
toward the TDL in two scenarios: (1) quasi-1D systems, where
the nonsmoothness of the integrand is removable and (2) quasi-
2D or 3D bulk systems with certain symmetries.

2. THEORY
Let Ω be the unit cell, |Ω| be its volume, and Ω* be the
associated BZ. The Bravais lattice is denoted by  and its
associated reciprocal lattice is denoted by * . The MP mesh is
used for k-point sampling in Ω* and Nk denotes the total
number of k points. When the MP mesh contains the Γ-point,
the system can be identified with a periodic supercell ΩS with
volume |ΩS| = Nk|Ω|. Each molecular orbital can be written as

∑ψ = =
|Ω|

̂·

∈ *

+ ·


N

u
N

ur r G( )
1

e ( )
1

( )en n nk
k

k r
k

k G
k

k G ri i( )

where n is a generic band index and unk is periodic with respect to
the unit cell. Although we choose to use the plane-wave basis set
for convenience, our analysis is applicable to other periodic basis
sets as well (e.g., the periodic Gaussian basis set5,19) for orbital
representations, by expressing these basis functions as a linear

combination of plane waves. Our analysis mainly concerns the
low-frequency modes (in particular, around G = 0) and is thus
insensitive to the choice of basis sets. We also define the pair
product (of the periodic components) as

∑ϱ = * ≔
|Ω|

ϱ̂′ ′ ′ ′
∈ *

′ ′
·



u ur r r G( ) ( ) ( )
1

( )en n nk nk k nk
G

k nk
G r

, ,
i

Throughout the paper, n∈ {i, j} refers to the occupied orbital
and n∈ {a, b} refers to the unoccupied orbital. The two-electron
repulsion integral (ERI) tensor in the molecular orbital basis can
be written as

∑ π⟨ | ⟩ =
|Ω |

′
| + |

ϱ̂

ϱ̂ −
∈ *

i j a bk k k k
q G

G

G G

, ,
1 4

( )

( )

i j a b S i a

j b

G
k k

k k k k
k k

2 ,

, ,
,

i a

j b i j
a b

(1)

where ka − ki ≕ q and we have

≔ + − − ∈ *G k k k ki j a bk k
k k
,
,
i j
a b

by crystal momentum conservation. The notation∑′
∈ *G means

that the possible term with q + G = 0 is excluded.
According to Nesbet’s theorem, the correlation energy per

unit cell in general is given by

∑ ∑= ⟨ | ⟩

− ⟨ | ⟩

E
N

i j a b

i j b a T

k k k k

k k k k

1
(2 , ,

, , )

c
ijab

i j a b

i j b a i j
a b

k k k k k

k k
k k
,
,

i j a b

i j
a b

(2)

where ki, kj, ka, kb ∈ Ω*. Here Tiki,jkj
aka,bkb = tiki,jkj

aka,bkb + tiki
aka tjkj

bkb and tiki
aka

and tiki,jkj
aka,bkb are singles and doubles amplitudes obtained from the

solution of related amplitude equations. In the coupled cluster
doubles (CCD) theory, we have tiki

aka = 0 and the MP2 energy is
further given by setting the doubles amplitude to

ε ε ε ε
=

⟨ | ⟩
+ − −

t
a b i jk k k k, ,

i j
a b a b i j

i j a b
k k
k k

k k k k
,
,

i j
a b

i j a b (3)

Note that eq (2) can be rewritten as

∑ ∑=
|Ω |

⟨ | ⟩ ̃E
N

i j a b Tk k k k
1

, ,c S
ijab

i j a b i j
a b

k k k k k
k k
k k
,
,

i j a b

i j

a b

(4)

where we have absorbed the exchange term into the redefined
amplitude

Figure 1. Illustration of the staggered meshes occ and vir for a quasi-
2D system.
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̃ = |Ω | −T T T(2 )i j
a b S

i j
a b

i j
b a

k k
k k

k k
k k

k k
k k

,
,

,
,

,
,

i j

a b

i j
a b

i j
b a

and the scaling factor |ΩS| ensures that each entry T̃iki,jkj
aka,bkb does

not vanish in the TDL.
To write down the correlation energy in the TDL, we use the

fact that both the ERI tensor and the T amplitude do not change
if we replace any k by k + G for some ∈ *G . Then, fixing ki ∈
Ω*, we may shift ka by some G vector so that the difference q =
ka− ki∈Ω*. Similarly, further fixing kj∈Ω*, we may shift kb so

that Gki,kj
ka,kb = 0, i.e., kb = kj − q. Note that this requires redefining

ϱ̂n′k′,nk to accommodate the case where k is outside Ω*. More
importantly, such manipulation is only formal and is introduced
to simplify the theoretical analysis. In practical calculations, we
may still keep ki, kj, ka, kb ∈Ω* as in standard implementations.
After such modifications, Ec in the TDL as Nk → ∞ can be
concisely written as a triple integral over BZ (which is a 9-
dimensional integral for 3D bulk systems)

∫ ∫ ∫

∑ ∑
π

π

=

|Ω| ′
| + |

ϱ̂ ϱ̂ −

̃

Ω* Ω* Ω*

∈ *
+ −

+ −


E

T

q k k

q G
G G

d d d

(2 )
4

( ) ( )

c i j

ijab
i a j b

i j
a b

G
k k q k k q

k k
k q k q

TDL

9 2 , ( ) , ( )

,
( ), ( )

i i j j

i j

i j

(5)

Using the fact that the intersection of Ω* and * only includes
the Γ-point, the singularity set of the integrand above
{ + = ∈ Ω* ∈ *} = { = = }q G 0 q G q 0 G 0, , , is only
an isolated point. Hence, in this continuous formulation, we

may also write∑′
∈ *G simply as the regular summation∑ ∈ *G .

2.1. Error Analysis.All numerical schemes for evaluating the
correlation energy in the TDL amount to approximating the
triple integral (eq 5). The quality of the numerical
approximation can be affected by the following error sources:
(1) The error introduced by replacing the integral (eq 5) by a
numerical quadrature (eq 4), (2) the mean-field orbital energies
{εnk} and orbitals {unk(r)} are not evaluated in the TDL, (3)

Figure 2. Illustration of discontinuities in T̃iki,jkj
a(ki + q), b(kj−q), h(q), and Sq(G) for a quasi-1D model system with the anisotropic Gaussian effective

potential field. All sampled k points are of the form (0, 0, k) with k∈ [−π, π]. The structure factor Sq(G) withG = (0, 0, Gz),Gz∈ {0,±2π,±4π, ...} is
plotted. The six notable discontinuous points in Sq(G) correspond to q = 0 and Gz = ±2π, ±4π, ±6π. The two lines of discontinuities in T̃iki,jkj

a(ki+q),b(kj−q)

are kj − ki − (π/2) = 0 and kj − ki − (π/2) = −2π.
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basis set incompleteness error, and (4) error in evaluating the T
amplitudes. The last three sources contribute to the errors of the
integrand values used in the numerical quadrature (eq 4).
This paper only concerns the first error, i.e., the quadrature

error. We assume that mean-field calculations are less expensive
than correlation energy calculations, and the finite-size error of
the orbitals and orbital energies could be reduced using other
correction methods and/or a large enough MP mesh if needed.
Even when the same MP mesh is used to evaluate mean-field
energies and orbitals, after the Madelung-constant correction to
the occupied orbital energies, the contribution to the finite-size
error from the orbital energies becomes −N( )k

1 .5 The error due
to the incompleteness of the basis set is more difficult to assess.
Although such error can be reduced via power-law extrap-
olation1 or explicit correlationmethods,16,17 we will not consider
such improvements in this paper. We will also only consider the
evaluation of the MP2 energy, where the T amplitudes are given
explicitly by orbital energies and ERIs. We demonstrate below
that even under such assumptions, the finite-size effect due to
the quadrature error remains significant.
To connect to the commonly used argument in the

literature6,8,11 to analyze the quadrature error using structure
factors, we note that the structure factor Sq(G) corresponds to a
part of the integrand in eq (5) as

∫ ∫ ∑
π

= |Ω| ϱ̂

ϱ̂ − ̃

Ω* Ω* +

−
+ −

S

T

G k k G

G

( ) d d
(2 )

( )

( )

i j
ijab

i a

j b i j
a b

q k k q

k k q k k
k q k q

9 , ( )

, ( ) ,
( ), ( )

i i

j j i j

i j

(6)

The correlation energy is then

∫ ∑ π= ′
| + |Ω* ∈ *

E Sq
q G

Gd
4

( )c
G

q
TDL

2
(7)

Wemay also combine the information from the structure factors
and define the integrand of eq (7) as

∑ π= ′
| + |∈ *

h Sq
q G

G( )
4

( )
G

q2
(8)

The standard MP2 calculation (eq 4) can be interpreted as two
quadrature steps in estimating each Sq(G) at a finite set of q
points and Ec

TDL as

i

k

jjjjjjj
y

{

zzzzzzz

∑ ∑
π

≈ |Ω*| |Ω| ϱ̂

ϱ̂ − ̃

≕ ̃ ∈ ∈ *

∈
+

−
+ −



S
N

T

S

G G

G

G q G

( )
(2 )

( )

( )

( ), ,

ijab
i a

j b i j
a b

q
k k k

k k q

k k q k k
k q k q

q q

2

2
,

9 , ( )

, ( ) ,
( ), ( )

i j
i i

j j i j

i j

(9)

i

k
jjjjjj

y

{
zzzzzz∑ ∑ π≈ |Ω*| ′

| + |
̃

∈ ∈ *

E
N

S
q G

G
4

( )c
k q G

q
TDL

2
q (10)

where denotes theMPmesh and q is a same-sizedMPmesh
containing all q ∈ Ω* defined as the minimum image of ka − ki
with ∈k k,i a . Furthermore, q always includes the Γ-point.
These two steps apply the trapezoidal rules with uniformmeshes

× and q for eqs (6) and (7), respectively.
Note that the integrand in eq (7) is discontinuous in the

presence of zero momentum transfer (i.e., at q = 0), and its value
at this point is indeterminate due to the term (4π/|q|2) Sq(0). It
has been argued that for q + G ≠ 0, Sq(G) converges quickly,

8

and hence the error is mainly due to the neglect of this
discontinuous term from the primed summation in eq (10),
which scales asNk

−1∼ |ΩS|−1. However, such an analysis neglects
two other sources of discontinuity.
(1) Fixing q and G, the amplitude T̃iki,jkj

a(ki + q),b(kj − q) in the
integrand for Sq(G) in eq (6) is discontinuous as a function of
(ki, kj) when − − ∈ *k k qj i due to its exchange part, i.e.,

ε ε ε ε

|Ω |

=
∑′ ϱ̂* ′ ϱ̂* − ′

+ − −

π
′

− +

′∈ * | − − + | − +

− +



T

G G( ) ( )

S
i j
b a

i b j a

i j b a

k k
k q k q

G k k q G k k q k k q

k k k q k q

,
( ), ( )

4
, ( ) , ( )

( ) ( )

i j

j i

j i i j j i

i j j i

2

For each pair (ki, kj) satisfying the relation − − ∈ *k k qj i ,
the exchange term above neglects the summation term
associated with kj − ki − q + G′ = 0, leading to Nk

−2 ∼ |ΩS|−2

error in the associated volume element corresponding to the
multi-index (ki, kj). For each ∈q q, there are N( )k such

pairs ∈ ×k k( , )i j . Overall, neglecting the discontinuous

terms when evaluating T̃iki,jkj
a(ki+q),b(kj−q) at these quadrature nodes

leads to −N( )k
1 error in computing each Sq(G). This leads to

−N( )k
1 error in computing the sum∑′ π

∈ * | + |
S G( )G q G q

4
2 at each

∈q q in eq (10), and hence additional −N( )k
1 error in

computing Ec
TDL.

(2) For q = 0 and G ≠ 0, the amplitude T̃iki,jkj
a(ki+q),b(kj−q) in the

integrand for Sq(G) also neglects another discontinuous term in
its direct part, i.e.,

Figure 3. Illustration of h(q) computed by the standard and staggered
mesh methods with the mesh size of 1 × 1 × 10 for a quasi-1D model
system with the anisotropic Gaussian effective potential field. All
sampled q points are of the form (0, 0, qz) with qz ∈ [−π, π]. The
reference curve for h(q) is computed based on the standard method
with the mesh size of 1 × 1 × 300. The discontinuity of the reference
value h(q = 0) is removable.
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ε ε ε ε

|Ω |

=
∑′ ϱ̂* ′ ϱ̂* − ′

+ − −

π
′

+ −

′∈ * | + | + −

− +



T

G G( ) ( )

S
i j
a b

i a j b

i j b a

k k
k q k q

G q G k k q k k q

k k k q k q

,
( ), ( )

4
, ( ) , ( )

( ) ( )

i j

i j

i i j j

i j j i

2

The terms ϱ̂* ϱ̂*π
| | + −0 0( ) ( )i a j bq k k q k k q
4

, ( ) , ( )i i j j
2 are neglected at q = 0

for any ki, kj, leading to (1) error in computing Sq(G) at q = 0,
G ≠ 0. This leads to (1) error in computing the sum

∑′ π
∈ * | + |

S G( )G q G q
4

2 at q = 0 in eq (10). Taking the prefactor

Nk
−1 into account, neglecting these discontinuous terms leads to

−N( )k
1 error in computing Ec

TDL.

To summarize, there is −N( )k
1 error in the evaluation of each

Sq(G) at ∈ ∈ *q G,q due to neglecting discontinuous

terms in the exchange part of the amplitude, and there is (1)
error in the evaluation of Sq(G) at q = 0,G≠ 0 due to neglecting
discontinuous terms in the direct part. The contribution from
both error sources is −N( )k

1 in computing Ec
TDL. This is in

addition to the −N( )k
1 error due to the neglect of 4π/|q|2Sq(0)

at q = 0. As a result, correction schemes only aiming at
recovering the value of 4π/|q|2Sq(0) at q = 0 cannot lead to
asymptotic improvement of accuracy in general.
Our analysis above is also applicable to quasi-1D and quasi-

2D systems, which sample k points on the corresponding 1D axis
and 2D plane in Ω*. Without loss of generality, we may assume
the MP mesh includes k points of the form k = (0, 0, kz) for
quasi-1D systems and k = (0, ky, kz) for quasi-2D systems. The
correlation energies of this model in the TDL can be written in
an integral form similar to eq (5), while only changing the
integration domains for ki, kj, and q from Ω* to the
corresponding axis/plane in Ω*. The discontinuity of the
integrands in eqs (6) and (7) described for 3D systems earlier is
also present in low-dimensional systems, and neglecting
discontinuous terms also leads to −N( )k

1 quadrature error in
the MP2 energy.

2.2. Staggered Mesh Method. Based on the above
analysis, the standard method for MP2 calculations places
certain quadrature nodes on points of discontinuity of the

Figure 4. Estimate of h(q) at q1/q2/q3 using the standard and staggered mesh methods for quasi-1D/quasi-2D/3D model systems with isotropic and
anisotropic Gaussian effective potential fields. Each of these curve fittings omits the first two data points.
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integrand, which leads to finite-size errors of size −N( )k
1 . We

propose a simple modification of the procedure to evaluate the
MP2 energy, called the staggered mesh method. The main idea is
to use an MP mesh occ for occupied momentum vectors ki, kj,
but a different, same-sized MP mesh vir for virtual momentum
vectors ka, kb, where vir is obtained by shifting occ with half
mesh size in all extended directions to create a staggered mesh
(see Figure 1). The MP2 energy is then computed as

∑ ∑ ∑=
|Ω |

⟨ | ⟩

̃

∈ ∈
E

N
i j a b

T

k k k k
1

, ,c S
ijab

i j a b

i j
a b

k k k k k

k k
k k

staggered

, ,

,
,

i j a b

i j

a b

occ vir

(11)

with = | | = | |Nk occ vir and |ΩS|= Nk |Ω|.
This calculation (eq 11) can still be interpreted as a two-step

numerical quadrature scheme in eqs (9) and (10), but with a
different set of quadrature nodes. The induced mesh q in eq

(10) shifts theΓ-centeredMPmesh by half mesh size (recall that
q is the set of all possible minimum images of ka − ki with
∈ ∈k k,a ivir occ) and does not contain q = 0. Recall that in

eq (9) for computing Sq(G), the integrand becomes
discontinuous when − − ∈ *k k qj i . In the staggered mesh

method, for each ∈q q , all possible values of kj − ki − q (for
any ∈k k,i j occ) belong to q and are always outside * . As a
result, all of the defined quadrature nodes in the staggered mesh
method do not overlap with any points of discontinuity of the
integrand for computing Sq(G), h(q), or Ec

TDL. This completely
eliminates the error due to the neglect of discontinuous terms
when evaluating the integrand at those points of discontinuity.
To implement the staggered mesh method, we need to obtain

the orbitals and orbital energies on the shifted MP mesh. Once
the self-consistent Hartree−Fock equations are solved, these
quantities can be evaluated by solving the Hartree−Fock
equations non-self-consistently on the shifted mesh, and such
additional cost calculations can be negligible compared to the

Figure 5.MP2 energy per unit cell computed by the standard method, the staggered mesh method, and the structure-factor interpolation method for
quasi-1D, quasi-2D, and 3Dmodel systems with isotropic and anisotropic Gaussian effective potential fields. Each of these curve fittings omits the first
two or three data points. In most cases, the decay rate of finite-size error in the staggeredmeshmethod is unclear, and thus no curve fitting is plotted for
the method in all of the figures. Due to excessive computational cost, results of the structure-factor interpolationmethod for some large systems are not
provided. Separate plots of the direct and the exchange parts of the MP2 energies are given in the Appendix.
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Figure 6. MP2 energy per unit cell computed by the standard and staggered mesh methods for periodic hydrogen dimer systems.

Figure 7.MP2 energy per unit cell computed by the standard and staggered mesh methods for periodic LiH systems. The fluctuation might be due to
the small size of the basis set, as the amount of fluctuation is reduced when using the larger gth-dzvp basis set in Figure 13.

Figure 8. MP2 energy per unit cell computed by the standard and staggered mesh methods for periodic silicon systems.
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cost of MP2 calculations. The remaining cost of the staggered
mesh method is exactly the same as that of the standard method.

3. NUMERICAL RESULTS

According to the discussion in Section 2.1, there are multiple
factors contributing to the finite-size errors of the MP2
correlation energy. To focus on the contribution from the
quadrature error, we first compare the performance of the
standard and staggeredmeshmethods forMP2 calculations for a
series of model systems with given effective potentials in Section
3.1. We then compare the performance of the two methods for
periodic hydrogen dimer, lithium hydride, silicon, and diamond
systems in Section 3.2, using the PySCF software package.18

In all of the following tests, the MP mesh for virtual orbitals
includes the Γ point. The standard method uses the same MP
mesh for occupied orbitals. The staggered mesh method shifts
the MP mesh by half mesh size for occupied orbitals. For quasi-
1D, quasi-2D, and 3D systems, theMPmeshes are of size 1× 1×
Nk, 1×Nk

1/2×Nk
1/2, andNk

1/3×Nk
1/3×Nk

1/3, respectively. Atomic
units are used in all of the tests.

3.1. Model Systems. We first study a model system with a
(possibly anisotropic) Gaussian effective potential field. In this
model, no finite-size error correction is needed for orbitals and
orbital energies. More specifically, let the unit cell be [0,1]3, and
use 14 × 14 × 14 plane-wave basis functions to discretize
functions in the unit cell. The Gaussian effective potential takes
the form

i
k
jjj

y
{
zzz∑= − + − Σ + −

∈

−



V Cr r R r r R r( ) exp
1
2
( ) ( )

R
0
T 1

0

(12)

with r0 = (0.5, 0.5, 0.5). For each momentum vector k inΩ*, we
solve the corresponding effective Kohn−Sham equation to
obtain nocc occupied orbitals and nvir virtual orbitals. The
covariance matrix Σ controls the isotropicity of the system. For
the isotropic case, we choose Σ = diag(0.22, 0.22, 0.22), C =
−200, nocc = 1, and nvir = 3. For the anisotropic case, we chooseΣ
= diag(0.12, 0.22, 0.32), C = −200, nocc = 1, and nvir = 1. For such
model problems, the selected nvir virtual bands are separated
from the remaining virtual bands, which ensures that the MP2
correlation energy with a fixed number of virtual bands is a well-

Figure 9. MP2 energy per unit cell computed by the standard and staggered mesh methods for periodic diamond systems.

Figure 10. Illustration of discontinuities in h(q) from two quasi-2D model problems with unit cell [0,1]3, which have isotropic and anisotropic
Gaussian effective potential fields, respectively, as described in As a. All sampled q points are of the form (0, qy, qz) with qy, qz ∈ [−π, π].
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defined problem. There is also a direct gap between the occupied
and virtual bands in all cases.
Figure 2 first illustrates the discontinuities of T̃iki,jkj

a(ki+q),b(kj−q),
Sq(G), and h(q) for a quasi-1D model system. According to the
discussion in Section 2.1, such discontinuous behaviors are
generic in MP2 calculations. The standardMP2 calculation with
any k-point mesh always places some of its quadrature nodes
at such points of discontinuity.
Figure 3 illustrates the q-point mesh q and the computed

h(q) in the standard and staggeredmeshmethods for a quasi-1D
model system. We note that the staggered mesh method
successfully avoids sampling h(q) at q = 0. It also avoids
sampling discontinuous points of the integrand in eq (6), and
the computed values of h(q) are more accurate than those
computed by the standard method at every sampled point.
We further consider the error for estimating the integrand

h(q) in eq (8) with different mesh sizes. For quasi-1D systems,
we consider the evaluation of h(q) at q1 = (0, 0, π). This
particular point is selected because h(q1) can be directly
evaluated by the standard method when Nk is even, and by the
staggered mesh method when Nk is odd. Similarly, for quasi-2D

and 3D systems, we consider the evaluation of h(q) at q2 = (0, π,
π) and q3 = (π, π, π), respectively.
Figure 4 demonstrates the convergence of h(q) with respect

toNk using the standard and staggered mesh methods. For all of
the systems, we find that the finite-size error of the staggered
mesh method in estimating h(q) at q ≠ 0 is much smaller than
that of the standard method, regardless of the dimension or the
anisotropicity of the system.
Figure 5 demonstrates the convergence of the MP2

correlation energy per unit cell computed by the standard
method, the staggered mesh method, and the structure-factor
interpolation method6,8 for quasi-1D, quasi-2D, and 3D model
systems. For each system, the structure factor Sq(G) is
computed by the standard method and then extrapolated by
cubic interpolation to a mesh that is 50 times finer along each
extended dimension compared to the original mesh for q + G.
For quasi-1D systems, we find that the finite-size errors in the
staggered mesh method decay very rapidly with respect to Nk,
and the curve is nearly flat. For quasi-2D and 3Dmodel systems,
the finite-size errors of the staggeredmeshmethod are alsomuch
smaller for the isotropic systems. However, for the anisotropic
systems, the convergence rates of the two methods are

Figure 11.Direct and exchange parts of theMP2 energy per unit cell computed by the standardmethod, the staggeredmeshmethod, and the structure-
factor interpolation method for anisotropic quasi-1D, anisotropic quasi-2D, and isotropic 3D model systems.
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comparable and both numerically close to −N( )k
1 , though the

error of the staggered mesh method still exhibits a smaller
preconstant. The varying performance of the staggered mesh
method in different systems, and the remaining −N( )k

1

quadrature error in the staggered mesh method for anisotropic
quasi-2D and 3D systems are both closely related to the lack of
overall smoothness in the integrand of MP2 calculation (eq 5),
which will be discussed in more details in Section 4.
We also observe that the performance of the structure-factor

interpolation lies between that of the standard and staggered
mesh methods. This is because the quality of the interpolation
still suffers from the inherent discontinuity (see Figure 2c) and
the quadrature error in the structure factor computed from the
standard MP2 method.
3.2. Real Systems. We have implemented the staggered

mesh method in the PySCF18 software package. To focus on the
quadrature error, we perform our comparisons between the
standard and staggered mesh methods as follows. For each
system, we first perform a self-consistent HF calculation with a
fixed k-point mesh and employ the spherical cutoff method20

(given by the option exxdiv=‘vcut_sph’ in PySCF) to reduce the

finite-size error due to the Fock exchange operator. All orbitals
and orbital energies used in MP2 calculations are then evaluated
via non-self-consistent HF calculations at any required k points
and mesh sizes. Therefore, the orbitals and orbital energies are
generated from an effective (nonlocal) potential field and do not
require further correction to the finite-size errors. We employ
the gth-szv basis set and the gth-pade pseudopotential in all tests.
Results with the larger gth-dzvp basis set are given in the
Appendix. The kinetic energy cutoff for plane-wave calculations
is set to 100 a.u. in all tests.
We consider four sets of periodic systems: hydrogen dimer,

lithium hydride, silicon, and diamond. The hydrogen dimer is
placed at the center of a cubic unit cell of edge length 6 Bohr
pointing in the x-direction and has a separating distance of 1.8
Bohr. Lithium hydride has a cubic crystal structure, and silicon
and diamond have a diamond cubic crystal structure. For these
three systems, we use primitive unit cells containing two atoms.
Note that lithium hydride, silicon, and diamond systems have
higher degrees of symmetry than the hydrogen dimer system.
The reference HF calculations for all of the tests are based on a 3
× 3 × 3 k-point mesh. Figures 6−9 show the MP2 energy results

Figure 12. Direct and exchange parts of the MP2 energy per unit cell computed by the standard method and staggered mesh method for quasi-1D
hydrogen dimer, quasi-2D silicon, and 3D diamond systems.
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for quasi-1D, quasi-2D, and 3D systems for the four periodic
systems.
The staggered mesh method outperforms the standard one in

quasi-1D case for all of the systems. For quasi-2D and 3D cases,
the staggered mesh method performs significantly better than
the standard one for lithium hydride, silicon, and diamond. In
comparison, the performance of the two methods becomes
similar for the quasi-2D and 3D hydrogen dimer systems. These
observations are consistent with those over model systems, and
the staggered mesh method can significantly outperform the
standard method over all quasi-1D systems and over certain
quasi-2D and 3D systems with high symmetries.

4. FURTHER DISCUSSIONS

Numerical results in Section 3 indicate that for anisotropic
systems (model and real systems), the finite-size errors in the
staggeredmeshmethod can still be −N( )k

1 . The staggeredmesh
method significantly reduces the error in the evaluation of the
integrand for Ec

TDL. However, in the presence of discontinuity,
the remaining quadrature error to the trapezoidal rule may still
be significant due to the overall nonsmoothness of the integrand,

even when the integrand can be evaluated exactly on each well-
defined point.
More specifically, the integrand of eq (7) in MP2 calculation,

i.e., h(q), is periodic but not smooth. The error of a trapezoidal
rule can be generally analyzed using the well-known Euler−
Maclaurin formula. Let δk denote the mesh size along each
direction (i.e., Nk ∼ δk−d for systems that extend along d
dimensions). For a periodic function with continuous
derivatives up to mth order, the quadrature error can be as
small as δk( )m . However, the integrand for Ec

TDL already has
unbounded second-order derivatives. Therefore, standard error
analysis predicts that the quadrature error can be

δ = −k N( ) ( )k
2 2/3 , or even worse, for three-dimensional

systems. If so, the finite-size errors would, in general, be
dominated by such quadrature errors. Fortunately, the points of
discontinuity are isolated, and we find that the quadrature error
shou ld be δ = −k N( ) ( )k

3 1 f o r 3D sys t ems and

δ = −k N( ) ( )k
2 1 for quasi-2D systems in the worst case (in

addition to the −N( )k
1 error from possible neglect of

discontinuous terms in integrand evaluation). However, the

Figure 13.MP2 energy per unit cell computed by the standard and staggered mesh methods for periodic hydrogen dimer, lithium hydride, and silicon
systems with the gth-dzvp basis set.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00207
J. Chem. Theory Comput. 2021, 17, 4733−4745

4743

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00207?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00207?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00207?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00207?fig=fig13&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00207?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


analysis is much more involved than the direct application of the
Euler−Maclaurin expansion. Instead, it generalizes the result of
Lyness21 for a class of punctured trapezoidal rules, and we will
report the full numerical analysis in a future publication.
Furthermore, for systems with certain symmetries (for instance,
three-dimensional systems with cubic symmetries), the smooth-
ness condition of the integrand can be improved, which leads to
a quadrature error that decays faster than −N( )k

1 , and such
faster decay agrees with the observations in the literature11,22

and our numerical results in Section 3.
The situation for a quasi-1D system is qualitatively different.

This is because all of the discontinuous points in quasi-1D
systems turn out to be removable, i.e., by properly redefining the
integrand values at these isolated points, h(q) can become a
smooth function (see the numerical examples in Figures 2 and
3). Therefore, with a properly defined integrand, the quadrature
error for quasi-1D systems decays superalgebraically (i.e., the
quadrature error decays asymptotically faster than δk( )m for
any m > 0) according to the Euler−Maclaurin formula. Note
that, in practice, there is no need to find the proper integrand
values at discontinuous points if no quadrature node overlaps
with such points, which is the case for the staggered mesh
method.
The discontinuity of h(q) at q = 0 is generally not removable

in quasi-2D and 3D systems (similarly for the discontinuity of
the integrand in eq (6) for computing Sq(G) and h(q)). For
systems with certain symmetries, limq→0 h(q) may exist.
Redefining h(0) as this limit improves the integrand smoothness
and can lead to quadrature error smaller than −N( )k

1 for a
general trapezoidal rule. In this scenario, the overall quadrature
error is dominated by placing the quadrature nodes at those
discontinuous points, while not properly defining their
integrand values, which is the case in the standard MP2
calculation. As an example, Figure 10 illustrates the discontinuity
of h(q) obtained from two quasi-2D model systems which have
an isotropic and an anisotropic Gaussian effective potential field,
respectively. The additional symmetry from the isotropic
potential leads to the removable discontinuity at q = 0 for
h(q), while in the anisotropic case, the values of h(q) along the
x,y axes are very different near q = 0, and hence limq→0 h(q) is
not well defined.
To summarize, the remaining quadrature error in the

staggered mesh method is closely related to the nonsmoothness
of the integrand for Ec

TDL. For quasi-1D systems and certain
quasi-2D and 3D systems with certain symmetries, the integrand
can have an improved smoothness condition and the staggered
mesh method can have a quadrature error smaller than −N( )k

1 .

5. CONCLUSIONS

The convergence of the MP2 correlation energy toward the
TDL is a fundamental question in materials science. Existing
analysis in the literature focuses on the missing contribution of
the structure factor Sq(G) at q + G = 0, but neglects
contributions from (1) certain quadrature nodes that coincide
with points of discontinuity of the integrand and (2) the
quadrature error due to the intrinsic nonsmoothness of the
integrand. We demonstrate that such contributions can be at
least equally important and scale as −N( )k

1 . We propose the
staggered mesh method that uses a different set of quadrature
nodes for the trapezoidal quadrature, which allows us to
completely avoid the first source of the error with negligible

additional costs. Numerical evidence shows that the staggered
mesh method is particularly advantageous over the standard
method for quasi-1D systems and systems with symmetries,
which reduces the contribution from the second error source.
We expect that the new approach can also be useful for
correlation energy calculations beyond the MP2 level, such as
higher levels of perturbation theories and coupled cluster
theories.

■ APPENDIX

Figures 11 and 12 plot the direct and exchange parts of MP2
energy per unit cell for several model and real systems in
Sections 3.1 and 3.2. Figure 13 plots the MP2 energy results for
quasi-1D and quasi-2D hydrogen dimer, lithium hydride, and
silicon systems using the gth-dzvp basis set.
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