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ABSTRACT: We propose a staggered mesh method for
correlation energy calculations of periodic systems under the
random phase approximation (RPA), which generalizes the
recently developed staggered mesh method for periodic second
order Møller−Plesset perturbation theory (MP2) calculations
[Xing; Li; Lin J. Chem. Theory Comput. 2021]. Compared to
standard RPA calculations, the staggered mesh method introduces
negligible additional computational cost. It avoids a significant
portion of the finite-size error and can be asymptotically
advantageous for quasi-1D systems and certain quasi-2D and 3D
systems with high symmetries. We demonstrate the applicability of
the method using two different formalisms: the direct ring coupled
cluster doubles (drCCD) theory, and the adiabatic-connection
(AC) fluctuation−dissipation theory. In the drCCD formalism, the second order screened exchange (SOSEX) correction can also be
readily obtained using the staggered mesh method. In the AC formalism, the staggered mesh method naturally avoids the need of
performing “head/wing” corrections to the dielectric operator. The effectiveness of the staggered mesh method for insulating
systems is theoretically justified by investigating the finite-size error of each individual perturbative term in the RPA correlation
energy, expanded as an infinite series of terms associated with ring diagrams. As a side contribution, our analysis provides proof that
the finite-size error of each perturbative term of standard RPA and SOSEX calculations scales as N( )k

1− , where Nk is the number of
grid points in a Monkhorst−Pack mesh.

1. INTRODUCTION

Correlated wave function based methods are nowadays
increasingly widely used for calculations of periodic sys-
tems,1−4 thanks to the improvement of numerical algorithms
and the increase of computational powers. Since physical
observables are defined in the thermodynamic limit (TDL),
one key issue is to understand and to correct the finite-size
error. In the past few decades, significant progress has been
achieved in the understanding of finite-size error in density
functional theory (DFT) and Hartree−Fock theory,5−7 wave
function methods,8−10 and quantum Monte Carlo meth-
ods.11−16 Despite such progress, there has been very limited
rigorous understanding of the scaling of finite-size errors for
general systems. To our knowledge, our recent work17

accounts for the first rigorous treatment of finite-size errors
in periodic Hartree−Fock exchange energy calculations, and
periodic second order Møller−Plesset correlation energy
(MP2) calculations (which are among the simpest wave
function methods) for general insulating systems. The key
technical difficulty of analyzing the convergence toward the
thermodynamic limit boils down to an analysis of quadrature

error for a special class of nonsmooth integrands (corollary 16
in ref 17). The analysis also suggests a new algorithm for
reducing the finite-size error, which employs two staggered
Monkhorst−Pack meshes for occupied and virtual orbitals,
respectively. This naturally avoids the error contribution due to
the zero momentum transfer between the occupied and virtual
orbitals and can significantly reduce the finite-size errors in
MP2 calculations.18

The main contribution of this paper is to generalize the
staggered mesh method and the numerical analysis to
correlation energy calculations based on the random phase
approximation (RPA). In the past decade, there has been a
revival of interest in RPA and its variants for post-Hartree−
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Fock/post-Kohn−Sham correlation energy calculations.19−25

The calculation of the RPA correlation energy has a long
history dating back to the 1950s.26 Since then, the concept of
the “RPA correlation energy” has arisen in several different
contexts with very different expressions, including adiabatic-
connection (AC) fluctuation−dissipation theory,27−29 time-
dependent Hartree−Fock theory and time-dependent density
functional theory,30 many-body Green’s function theory,31 and
direct ring coupled cluster doubles theory (drCCD).32−34

Despite significant progress in reducing the computational cost
of RPA calculations,35−40 it can still be very expensive to
approach the RPA correlation energy in the TDL by brute
force. To our knowledge, the only finite-size correction
schemes available for RPA calculations are the power-law
extrapolation and the structure factor interpolation methods.8,9

Throughout this paper, we only focus on insulating systems.
We consider two equivalent formalisms (drCCD and AC) for
RPA correlation energy calculations. In both formalisms, the
staggered mesh method can be directly employed; i.e., the
occupied orbitals belong to one Monkhorst−Pack grid, and the
virtual orbitals belong to a shifted Monkhorst−Pack grid.
Compared to standard RPA calculations, the additional cost
introduced by the use of the staggered mesh is negligible. In
the drCCD formalism, once the amplitude equations are
solved, we can also readily obtain the second order screened
exchange (SOSEX) correction25 to RPA using the staggered
mesh. We compare the numerical performance of the standard
and the staggered mesh methods for RPA and RPA-SOSEX
correlation energy calculations on periodic hydrogen dimer,
lithium hydride, silicon, and diamond in the quasi-1D, quasi-
2D, and 3D bulk settings using the PySCF software package.41

Numerical results indicate that the use of staggered meshes can
significantly accelerate the convergence toward the TDL in two
scenarios: quasi-1D systems and certain quasi-2D or 3D bulk
systems with high symmetries. Such performance is consistent
with that in MP2 energy calculations.18 In the AC formalism,
one additional advantage of the staggered mesh method is that
it naturally avoids the need for so-called “head/wing”
corrections to the dielectric operator.42−44

Our analysis of the finite-size error in RPA calculations using
the standard and the staggered mesh methods is mainly based
on the drCCD formalism. Using a fixed point iteration of the
amplitude equations, the RPA correlation energy can be
expressed as an infinite series of terms associated with rings
diagrams. For each individual term, the nonsmooth integrand
satisfies the requirement of corollary 16 in ref 17, and hence
the associated finite-size error can be analyzed to be N( )k

1−

for general systems. Furthermore, for quasi-1D systems and
certain quasi-2D or 3D bulk systems with high symmetries, the
finite-size error due to the nonsmooth integrand can be
o(Nk

−1). However, the standard RPA calculation always places
certain quadrature nodes at the points of discontinuity of the
integrand, resulting in another N( )k

1− quadrature error. Thus,
the overall quadrature error of each energy term in standard
RPA always scales as N( )k

1− . Such a scaling is also
numerically observed in section 4. The staggered mesh method
completely avoids the error due to the improper placement of
quadrature nodes, and the finite-size error can be improved to
o(Nk

−1). This explains its superior performance over the
standard method observed in the numerical results. Similar
error analysis is also applicable to the second order screened
exchange (SOSEX) correction.

2. BACKGROUND
Throughout the paper, we consider the spin-restricted setting,
and all of the discussions can be generalized straightforwardly
to the spin-unrestricted case. Let Ω be the unit cell, |Ω| be its
volume, and Ω* be the associated Brillouin zone (BZ). Let 
and * be the Bravais lattice and its associated reciprocal
lattice, respectively. In numerical calculations, we sample a
uniform mesh in Ω* (called the Monkhorst−Pack (MP)
mesh) and denote Nk as the number of k points in . For a
mean-field calculation with , each spatial molecular orbital is
characterized by a k-point and a band index n and written as

N
u

N
ur r G( )

1
e ( )

1
( )en n n

i
k

k

k r
k

k G
k

k G ri ( )∑ψ = =
|Ω|

̂·
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associated with an orbital energy εnk. The pair product is
defined as
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1
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and a two-electron repulsion integral (ERI) is then computed
as
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(1)

where Gk1,k2
k3,k4 = k1 + k2 − k3 − k4 and G∑′

∈ *
excludes the

possible term with k3 − k1 + G = 0. Such an ERI can be
nonzero only when Gk k

k k
,
,
1 2
3 4 ∈ * , corresponding to the crystal

momentum conservation. We use band indices i, j, k, and l (a,
b, c, and d) to refer to the occupied (virtual) bands,
respectively. In this paper, we only focus on systems with a
direct gap between occupied and virtual orbital energies, i.e.,
εiki − εaka ≤ − εg < 0 for any i, a and ki, ka.
In the drCCD formalism, RPA correlation energy calcu-

lations keep all the particle-hole ring contractions in the
standard coupled cluster double amplitude equation and
remove all the exchange terms. Specifically, the drCCD
amplitude equation can be written as the following algebraic
Riccati equation:

t
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∈

∈

∈ (2)

for each set of band indices i, j, a, and b and momentum
vectors k k k k, , ,i j a b ∈ that satisfy the crystal momentum
conservation relation, i.e., k k k ki j a b+ − − ∈ * . Momen-

tum vectors kc and kd in the equation are restricted to be in
and are uniquely determined by other related momentum
vectors using crystal momentum conservation. After solving
the double amplitudes tiki, jkj

aka, bkb, the drCCD correlation energy
(which is also the RPA correlation energy, or more precisely
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the direct RPA correlation energy33) per unit cell is computed
as

E N
N

i j a b tk k k k( )
1

2 , ,
ijab

i j a b i j
a b

k
k k k k

k k
k k

rpa
, ,

,
,

i j a

i j
a b∑ ∑= ⟨ | ⟩

∈

(3)

One advantage of the drCCD formalism is that once the t-
amplitudes are computed, the second order screened exchange
(SOSEX) correction can be readily obtained, so that the RPA-
SOSEX correlation energy takes the form39

E N
N

i j a b

i j b a t

k k k k
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1
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− ⟨ | ⟩

−
∈

(4)

Compared to the RPA correlation energy, the SOSEX
correction adds an exchange energy term, and the additional
computational cost is small.
In the AC formalism, the RPA correlation energy is

computed in terms of an integral along the imaginary energy
axis as

E N
N

v v( )
1 1

4
Tr(log(1 (i ) ) (i ) ) dk

k
rpa 0 C 0 C∫π

χ ω χ ω ω= − +
−∞

∞

(5)

Here, vC is the Coulomb operator and χ0(iω) is the
(independent particle) polarizability operator along the
imaginary energy axis. In the real space, χ0(iω) takes the form

r r r r r

r

( , ; i ) 4 ( ) ( ) ( )

( )
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i a i

a
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∑ ∑χ ω ψ ψ ψ

ψ
ω

′ = * * ′ ′

ϵ − ϵ

+ ϵ − ϵ

∈

(6)

In numerical calculation, this formalism requires discretizing
the integral over ω by a numerical quadrature scheme and also
discretizing the two operators in a finite basis set, such as a
planewave basis set, for the trace computation. The drCCD
and the AC formalisms are equivalent in terms of the
computation of Erpa.

45 Meanwhile, it is also possible to use
the computation in the AC formalism to retrieve the exact t-
amplitude in the drCCD formalism46 and thus to compute
Erpa−sosex according to eq 4.

3. STAGGERED MESH METHOD FOR RPA AND
RPA-SOSEX

So far, all of the momentum vectors are sampled on the same
MP mesh . A significant amount of the finite-size error is due
to the zero momentum transfer between occupied and virtual
orbitals. To reduce this finite-size error, in a recent work18 for
MP2 correlation energy, we proposed to use two different but
same-sized MP meshes occ and vir for the occupied and
virtual orbitals, respectively. Here, occ can be an arbitrarily
chosen MP mesh, and vir is obtained by shifting occ in all
extended directions by half mesh size (see Figure 1 for a 2D
illustration). In the following, we apply the same staggered
mesh method to RPA and RPA-SOSEX correlation energy
calculations in both drCCD and AC formalisms. We first detail
the procedure below. The analysis of this method will be given
in section 5.

The staggered mesh version of the drCCD amplitude
equation samples all occupied momentum vectors on occ and
all virtual ones on vir:

t
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for each set of band indices i, j, a, and b and momentum
vectors k k k k, and ,i j a bocc vir∈ ∈ . It is important to note
that all of the virtual momentum vectors kc and kd in the
equation are restricted to be in vir and are uniquely
determined using other related momentum vectors by crystal
momentum conservation. For example, both the ERI term
⟨kkk, bkb|ckc, jkj⟩ and the t-amplitude tkkk, jkj

ckc, bkb above have
k k,k j occ∈ , and kb vir∈ . Therefore, the minimum image
of kk + kb − kj defining kc always lies in vir. The staggered
mesh versions of the RPA and RPA-SOSEX correlation
energies per unit cell are then calculated as
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N
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where momentum vector kb is in vir and uniquely determined
by ki, kj, and ka.
Similarly, the staggered mesh version of the AC formalism

can be written as

E N
N

v

v

( )
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4
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0
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Figure 1. 2D illustration of two staggered meshes occ and vir.
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Here, the only difference is that the polarizability operator is
computed with two staggered meshes, i.e., the occupied
momentum vectors are taken from occ and all virtual ones
from vir as

r r r r

r r

( , ; i ) 4 ( ) ( )

( ) ( )
( )

ia
i a

i a
i a

a i

k k
k k

k k
k k

k k

0
stagger

,

2 2

i a
i a

i a

i a

a i

occ vir

∑ ∑χ ω ψ ψ

ψ ψ
ω

′ = * * ′

′
ϵ − ϵ

+ ϵ − ϵ

∈ ∈

To implement the staggered mesh method, we solve the self-
consistent mean-field equation using one MP mesh, say, occ,
and then evaluate the orbitals and orbital energies on the
shifted mesh vir by solving the mean-field equations non-self-
consistently on vir. Another option is to solve the self-
consistent mean-field equation using a larger MP mesh that
contains occ and vir as two submeshes. The additional cost
from the non-self-consistent calculation or the self-consistent
calculation with a larger MP mesh can be negligible, compared
to the computational cost of the RPA/RPA-SOSEX correlation
energy calculations. The remaining computational cost of the
staggered mesh method is the same as that of the standard
method.
For both the standard and the staggered mesh methods

(using either drCCD or AC formalisms), direct calculation of
the RPA and RPA-SOSEX correlation energies has N( )6

computational cost with respect to system size N. It is worth
pointing out that the staggered mesh method can also be
combined with existing acceleration techniques developed for
the standard method, e .g . , resolut ion of iden-
tity,25,35,36,38,40,42,47 to reduce the computational cost to

N( )4 or even less.

4. NUMERICAL EXAMPLES
In practical calculations, the finite-size error in molecular
orbitals and orbital energies at the Hartree−Fock level also
contributes to the overall finite-size errors in the standard and
the staggered mesh methods. This error can be reduced using
other correction methods4,15−17 or a large MP mesh in mean-
field calculations. We will not consider these improvements

and focus on numerical comparisons between the standard and
the staggered mesh methods for RPA and RPA-SOSEX energy
calculations. For a given system, we first perform a self-
consistent HF calculation with a fixed k-point mesh. All
orbitals and orbital energies used in RPA and RPA-SOSEX
energy calculations are then evaluated via non-self-consistent
HF calculations at any required k points and mesh sizes. In this
way, orbitals and orbital energies are generated from a fixed
effective (nonlocal) potential field and do not require further
correction to the finite-size errors.
We consider four sets of periodic systems: hydrogen dimer,

lithium hydride, silicon, and diamond. The hydrogen dimer is
placed at the center of a cubic unit cell of the edge (the lattice
constant is 6 Bohr) pointing in the x direction, and the bond
distance is 1.8 Bohr. For lithium hydride, silicon, and diamond
systems, we use primitive unit cells each containing two atoms.
The reference HF calculations for all of the tests use a 3 × 3 ×
3 Γ-centered MP mesh. All of the tested systems are insulating
systems with a direct gap between occupied and virtual
orbitals.
We implement the staggered mesh method in the PySCF41

software package. Our implementation of the drCCD method
using the standard and staggered meshes follow that of the
“kccsd” module in PySCF. Our implementation of the
staggered mesh AC method uses the PyRPA package,48

which is modified from the recent implementation of the all-
electron G0W0 method in PySCF.42 Our AC implementation
by PyRPA is accelerated by Gaussian density fitting,47 which
scales as N( )4 . This is asymptotically faster than our current
drCCD implementation, which scales as N( )6 . In all of the
AC calculations, a modified Gauss-Legendre grid38 with 40
grid points is used for the integration over the imaginary
energy axis. In all of the tests below, we employ the gth-szv
basis set and the gth-pade pseudopotential. Additional results
with the larger gth-dzvp basis set are given in the Appendix.
The kinetic energy cutoff for plane-wave calculations is set to
100 au. We employ the spherical cutoff method15 (given by the
option exxdiv = “vcut_sph” in PySCF) in the reference HF
calculations to reduce the finite-size error due to the Fock
exchange operator. We always use a Γ-centered MP mesh for
virtual orbitals. The standard method uses the same MP mesh

Figure 2. Difference between RPA correlation energies computed using the drCCD and AC formalisms in both the standard and the staggered
mesh methods.
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for occupied orbitals. The staggered mesh method shifts the
MP mesh by half mesh size for occupied orbitals. For quasi-1D,
quasi-2D, and 3D systems, the MP meshes are of size 1 × 1 ×
Nk, 1 × Nk

1/2 × Nk
1/2, and Nk

1/3 × Nk
1/3 × Nk

1/3, respectively.
Atomic units are used in all of the tests.
Figure 2 plots the difference between RPA correlation

energies computed using the drCCD and AC formalisms. The
Gaussian density fitting is also used to evaluate the ERIs in the
drCCD-based calculation for the comparison. Despite the very
different implementations, the difference between the results
from drCCD and AC is negligible. This is the case in both the
standard and the staggered mesh methods. Having established
the numerical equivalence of the two methods, in the
numerical tests below, the RPA correlation energy is always
computed using the AC formalism due to lower computational
complexity in our implementation. But the RPA-SOSEX
correlation energy will still be computed using the drCCD

formalism, which restricts our calculations to systems with
relatively small sizes.
Figure 3 and Figure 4 plot the RPA and RPA-SOSEX

correlation energies, computed by the standard and the
staggered mesh methods for quasi-1D, quasi-2D, and 3D
systems, respectively. Using the standard mesh, the finite-size
errors of RPA and RPA-SOSEX correlation energy calculations
scale as N( )k

1− . In almost all cases, the finite-size error is
significantly reduced using the staggered mesh method.
Specifically, the staggered mesh method outperforms the
standard one in all the quasi-1D systems. The finite-size errors
decay rapidly with respect to Nk and the curves are nearly flat.
For quasi-2D and 3D cases, the reduction of the error in the
staggered mesh method is more pronounced for isotropic
systems (silicon and diamond) than for anisotropic systems
(hydrogen dimer and lithium hydride). Such a behavior agrees
with the behavior of the staggered mesh method for MP2

Figure 3. RPA correlation energy per unit cell computed by the standard and the staggered mesh methods using the AC formalism. The fluctuation
in LiH results is likely due to the small size of the basis set. This is confirmed by the results in Figure 8 using a larger gth-dzvp basis set.
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calculations in the previous study18 and can be explained based
on our analysis in the next section.

5. ANALYSIS
In this section, we analyze the finite-size error in the staggered
mesh method for RPA and RPA-SOSEX energy calculations
proposed in section 3 and provide explanation of its
performance in different systems as numerically observed in
section 4. Due to the equivalence between the drCCD and AC
formalisms for RPA, we choose to focus on the analysis using
the drCCD formalism.
Section 5.1 first expands the RPA and RPA-SOSEX

correlation energies into two infinite partial summations
based on fixed point iterations for solving the drCCD
amplitude equation. In particular, the leading terms of the
expansions contain the direct and the exchange terms of the
MP2 correlation energy. Section 5.2 briefly reviews the basic
idea of the original staggered mesh method for MP2. Section
5.3 further shows that the method for analyzing the
performance of the staggered mesh method for MP2

calculations can be generalized to analyze the performance of

the staggered mesh method for RPA and RPA-SOSEX

correlation energies, in an order-by-order fashion. Section 5.4

provides a similar finite-size error analysis for RPA in the AC

formalism. Interestingly, our analysis as well as numerical

results indicate that for RPA correlation energy calculations,

the “head/wing” correction to the dielectric operator is not

needed in the staggered mesh method.
5.1. Perturbative Expansions of RPA and RPA-SOSEX

Energy. For brevity of notation, we use the capital letter P to

denote an index pair (p, kp). The standard method for RPA

and RPA-SOSEX correlation energies with one MP mesh

requires solving the nonlinear drCCD amplitude equation in

eq 2. This equation can be solved, for instance, by the fixed

point iteration method as

Figure 4. RPA-SOSEX correlation energy per unit cell computed by the standard and the staggered mesh methods using the drCCD formalism.

Figure 5. Four forms of interaction vertices that constitute a ring diagram (in the Goldstone diagram formalism49).
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starting with the initial guess (tIJ
AB)(0) = ⟨AB|IJ⟩/ϵIJ

AB. Here, ϵIJ
AB

= ϵI + ϵJ − ϵA − ϵB. After n iterations, the two correlation
energies can be approximated by
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Expanding the representation of (tIJ
AB)(n) shows that Erpa

(n) (Nk)
consists of a subset of finite order many-body perturbation
energies computed with MP mesh that are associated with
ring diagrams, i.e., diagrams constructed by combining
interaction vertices in the four forms in Figure 5. Similarly,
Erpa−sosex
(n) (Nk) contains additional perturbation terms that are

associated with specific exchange terms of ring diagrams, i.e.,
with ⟨IJ|AB⟩ replaced by ⟨IJ|BA⟩.
For example, Erpa

(n)(Nk) and Erpa−sosex
(n) (Nk) with n ≥ 1 contain

two second order terms:
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and four third-order terms as

E N
N

IJ AB AC IK KB CJ

E N
N

IJ AB AK IC CB KJ

E N
N

IJ BA AC IK KB CJ

E N
N

IJ BA AK IC CB KJ

( )
4 1 1

( )
4 1 1

( )
2 1 1

( )
2 1 1

IJABKC IJ
AB

IK
AC

IJABKC IJ
AB

JK
BC

IJABKC IJ
AB

IK
AC

IJABKC IJ
AB

JK
BC

k
k

k
k

k
k

k
k

3d,1

3d,2

3x,1

3x,2

∑

∑

∑

∑

= ⟨ | ⟩
ϵ ϵ

⟨ | ⟩⟨ | ⟩

= ⟨ | ⟩
ϵ ϵ

⟨ | ⟩⟨ | ⟩

=− ⟨ | ⟩
ϵ ϵ

⟨ | ⟩⟨ | ⟩

=− ⟨ | ⟩
ϵ ϵ

⟨ | ⟩⟨ | ⟩

(15)

Note that E3d,2 and E3x,2 are the complex conjugates of E3d,1
and E3x,1, respectively (up to the permutation of dummy
variables in the summation). The subscript “d” refers to direct
terms that are contained in Erpa

(n)(Nk) and “x” refers to exchange
terms that are contained in the SOSEX correction
Erpa−sosex

(n) (Nk) − Erpa
(n)(Nk). Figure 6 plots the diagrams

associated with these second and third order energy terms.
5.2. Staggered Mesh Method for MP2 Energy. Before

analyzing the performance of the staggered mesh method for
RPA calculations, we first briefly review the method for
analyzing the performance of MP2 calculations using the
standard and the staggered mesh methods in refs 17 and 18.
This is also because the standard MP2 energy calculation with
one MP mesh is defined as
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which is exactly the two second order terms E2d and E2x in eq
14 included in the RPA and RPA-SOSEX correlation energies.
Assuming that all orbitals and orbital energies are exact, both

analytical and numerical results in refs 17 and 18 show that the
finite-size error in the staggered mesh method decays
superalgebraically (i.e., faster than any polynomial rate) for
general quasi-1D systems, and scales as N N( )/ ( )k k

2 5/3− − for
special quasi-2D/3D systems of high symmetries. For general
quasi-2D/3D systems, the method still has N( )k

1− error but
avoids a significant portion of the N( )k

1− error in the standard
method.
Below, we use the direct term E2d to demonstrate the basic

idea of the analysis of the staggered mesh method. In the
standard method, this direct energy term is computed as
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where ⟨n1k1, n2k2|n3k3, n4k4⟩# ≔ Nk ⟨n1k1, n2k2|n3k3, n4k4⟩
denotes a normalized ERI term. Recall that kb ∈ is uniquely

Figure 6. Second and third order perturbation energies E2d, E2x, E3d,1, and E3x,1 included in the RPA and RPA-SOSEX correlation energies.
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determined by ki, kj, and ka. In the TDL, the summation

N k
1

k
∑ ∈ converges to the integral kd1 ∫|Ω*| Ω*

, and E2d(Nk)

converges to an integral

E Fk k k k k k
1

d d d ( , , )i j a i j a2d
TDL

3 2d∫ ∫ ∫=
|Ω*| Ω* Ω* Ω*

Thus, E2d(Nk) can be interpreted as a numerical quadrature for
E2d
TDL using a trapezoidal rule with uniform mesh × ×

for variables (ki, kj, ka). If the integrand F2d(ki, kj, ka) can be
evaluated exactly, then the finite-size error E2d

TDL − E2d(Nk) is
simply the quadrature error.
Note that ⟨n1k1, n2k2|n3k3, n4k4⟩# as a function of k1, k2, and

k3 is discontinuous at k k3 1− ∈ * . This is because the
fraction in eq 1 is ill-defined when k3 − k1 + G = 0. This
difference k3 − k1 is referred to as the momentum transfer.
Thus, F2d(ki, kj, ka) is only discontinuous at k ka i− ∈ * due
to the two ERIs in its definition. Ref 17 shows that the
quadrature error of F2d, thus the finite-size error in E2d(Nk),
has two main sources: the lack of overall smoothness and the
placement of quadrature nodes at points where F2d is
discontinuous. In general, both sources lead to N( )k

1−

quadrature error. The standard method samples ki and ka on
and thus always has many quadrature nodes at ka − ki = 0,

i.e., the zero momentum transfer, resulting in N( )k
1−

quadrature error from the second source.
The staggered mesh method avoids the second error source.

Specifically, the quadrature nodes for F2d over (ki, kj, ka) are
occ occ vir× × , which satisfies k ka i− ∉ * for any

k k,i aocc vir∈ ∈ . As a result, the quadrature error of the
method only comes from the lack of overall smoothness in F2d.
A detailed analysis shows that the nonsmooth terms in F2d are
in the following two forms:
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where f denotes a generic smooth function compactly
supported in Ω* and q is the minimum image of ka − ki in Ω*.
Unfortunately, the standard Euler-Maclaurin type of analysis

of the quadrature error applied to integrand of the form in eq
17 gives overly pessimistic results and in particular provides no
meaningful result of the convergence rate. A major improve-
ment has been obtained by corollary 16 in ref 17, which proves
that these nonsmooth terms lead to dominant N( )k

1−

quadrature error in the staggered mesh method, and the
convergence rate is sharp for general systems. However, for
quasi-1D systems and certain quasi-2D/3D systems, the
discontinuity of these terms is removable, and the error from
the first source can be o(Nk

−1). In these cases, the staggered
mesh method has asymptotically smaller finite-size error than
the standard method for computing E2d

TDL. Below is a simple
example to illustrate the connections between removable
discontinuity and improved quadrature error.

Consider h Hq q( ) ( )Mq q
q

T

2=
| |

in a hypercube V where M is a

matrix and H(q) is smooth and compactly supported in V.
Here, h(0) is indeterminate and usually set to 0 in numerical
calculation. For a trapezoidal rule with Nk quadrature nodes
that include q = 0, setting h(0) = 0 introduces N( )k

1− error. If
M is a scaled identity matrix αI, then limq→0 h(q) = αH(0). We

can then redefine h(0) = limq→0h(q), and the resulting h(q) is
a smooth, compactly supported function. In this case, h(q) is
said to have removable discontinuity and a trapezoidal rule
without q = 0 has superalgebraically decaying error according
to the Euler−Maclaurin formula. Otherwise, limq→0 h(q) does
not exist, and the quadrature error can be shown to scale as

N( )k
1− 17 even if q = 0 is not a quadrature node. Similar

discussion can give quantitative conditions17 for the removable
discontinuity of the nonsmooth terms of eq 17 in MP2
calculations. Numerical observations suggest that systems with
higher symmetries, such as these silicon and diamond systems
tested in section 4, are more likely to satisfy these conditions
and thus have asymptotically smaller finite-size errors using
staggered mesh method.
A similar discussion also applies to the exchange term in

MP2 energy but with additional nonsmooth terms in the form

f
f

q q
q q

q q q q
( , )

with ( , ) ( )2 2
2 2′

| | | ′|
′ = | | | ′|

where q′ denotes the minimum image of ka − kj in Ω* and
f(q,q′) is compactly supported in Ω* × Ω*. We refer readers
to ref 17 for details.

5.3. Staggered Mesh Method for RPA/RPA-SOSEX in
the drCCD Formalism. Now consider an mth order
perturbation energy term included in RPA/RPA-SOSEX
energy expansions discussed in section 5.1. Denote its standard
calculation using one MP mesh as Em(Nk). The TDL energy
Em
TDL can be formulated as an integral over m + 1 momentum

vectors in Ω*, and Em(Nk) corresponds to a trapezoidal
quadrature rule for estimating Em

TDL. If the integrand can be
accurately evaluated, the finite-size error Em

TDL − Em(Nk) is
given by the quadrature error. Similar to the case of MP2
calculations, the quadrature error for Em

TDL has two main
sources: the lack of overall smoothness in the integrand and
the placement of quadrature nodes at points of discontinuity.
For gapped systems, the integrand for Em

TDL has its points of
discontinuity described by a simple rule: it is discontinuous at
k k3 1− ∈ * for each involved ERI ⟨n1k1, n2k2|n3k3, n4k4⟩. For
example, the integrand for E3x,1

TDL in eq 15 is a function of ki, kj,
ka , and kk and is discontinuous at k ka i− ∈ * ,
k k ,i a− ∈ * or k kc k− ∈ * due to the three involved
ERIs (kc = ka + kk − ki by crystal momentum conservation).
For the standard method with all k on the same mesh , the
calculation of Em(Nk) triggers zero momentum transfer k3 − k1
= 0 in many involved ERIs, and the error due to the placement
of quadrature nodes at points of discontinuity can be shown to
be N( )k

1− .
Following the analysis in ref 17, it can be shown similarly

that the nonsmooth terms in the integrand associated with ring
diagrams for Em

TDL are in the following form:

f
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Here, f(q) denotes a generic smooth function compactly
supported in Ω* and q is the minimum image of ka − ki in Ω*.
If Em

TDL is associated with an exchange term, there are
additional nonsmooth terms of form:

f
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q q
q q

q q q q
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where q′ denotes the minimum image of ka − kj in Ω*. It is
important to realize that corollary 16 in ref 17 is also applicable
to the nonsmooth forms in eqs 18 and 19. Therefore, their
resulting quadrature errors still scale as N( )k

1− .
Overall, the quadrature error in the standard calculation of

each finite order energy term in RPA and RPA-SOSEX
correlation energies, i.e., Em

TDL − Em(Nk), scales as N( )k
1− .

Using the drCCD formalism, it can be shown that the
numerical calculation of each finite order energy term induced
by the standard calculation of RPA and RPA-SOSEX uses
exactly the same mesh . This error estimate is consistent
with the numerical results in section 4.
In order to reduce the finite-size error, we first note that

from the diagram representation of Em(Nk), all of the
interaction vertices (including both ring diagrams and their
exchanges) are in the four forms in Figure 7, corresponding to
ERIs of forms ⟨vv|oo⟩, ⟨vo|ov⟩, ⟨ov|vo⟩, and ⟨oo|vv⟩ where “v”
and “o” stand for virtual and occupied orbitals, respectively.
Thus, all of the ERIs in the integrand for Em

TDL belong to these
four forms, and the points of discontinuity of the integrand, or
equivalently the zero momentum transfers of all the involved
ERIs, are always associated with the difference between a pair
of occupied and virtual momentum vectors being in * .
In the standard calculation, all occupied and virtual

momentum vectors belong to , and there are always
quadrature nodes at those points of discontinuity (with zero
momentum transfer), resulting in N( )k

1−
finite-size error. In

the staggered mesh method, the difference between any two
sampled occupied and virtual momentum vectors is guaranteed
not to be in * . The staggered mesh method thus completely
avoids the second error source above, and its quadrature error
only comes from the lack of overall smoothness in the
integrand. Similar to the discussion in ref 17, the discontinuity
of the nonsmooth forms in eqs 18 and 19 can be removable for
quasi-1D and certain quasi-2D/3D systems with high
symmetries. In these cases, the quadrature error of the
staggered mesh method can be o(Nk

−1).
5.4. Staggered Mesh Method for RPA in the AC

Formalism. The analysis of the finite-size errors in section 5.3
is mainly based on the special structure of ring diagrams. Now
we demonstrate a preliminary analysis of the finite-size error in
the AC formalism. For convenience of the discussion of the
“head/wing” correction later, we use a planewave basis set. The
AC formula in eq 5 for RPA can be rewritten as
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where the symmetrized dielectric operator ε(iω,q) indexed by
G G, ′ ∈ * is defined as
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Here, q is defined as the minimum image of ka − ki in the first
Brillouin zone, and q is an MP mesh for q induced by
sampling k k,i a ∈ in the standard method. In this case, q

contains the Γ point q = 0 and is of the same size as .
In the TDL, the summations

N q
1

k q
∑ ∈ in eq 20 and

N k
1

ik
∑ ∈ in eq 22 converge to the integrals qd1 ∫|Ω*| Ω*

and

kd i
1 ∫|Ω*| Ω*

, respectively. Assuming all the orbitals and orbital

energies are obtained exactly, the finite-size error Erpa(Nk) −
Erpa
TDL comes from the quadrature errors in the integrals over q

and ki. First note that, given ω, G, G′, and q, the integrand for
ΠG,G′(iω,q) in eq 22 is smooth and periodic with respect to ki.
Thus, the quadrature error for computing each ΠG,G′(iω,q)
decays superalgebraically according to the Euler−Maclaurin
formula for trapezoidal quadrature rules. In other words, the
dominant finite-size error in RPA energy calculation comes
from the integral over q in eq 20.
For the integration over q in eq 20, we note that εG,G′(iω,q)

is discontinuous and indeterminate at q = 0 when G or G′
equals 0 by the definition in eq 21. More specifically,
ε0,0(iω,q), ε0,G(iω,q), and εG,0(iω,q) with G ≠ 0 are (1)
for q near 0 but do not converge when q → 0. The standard
method (which has 0 q∈ ) neglects these (1) discontin-
uous terms in eq 21 at q = 0 and sets ε0,0(iω,0) = 1, ε0,G(iω,0)
= εG,0(iω,0) = 0. As a result, there is (1) quadrature error in
the

Nk

|Ω*| -sized volume element centered at q = 0, leading to

overall N( )k
1− quadrature error for the integration over q. In

t h e s t a g g e r ed me sh me thod , q i n du c ed by
k k,i aocc vir∈ ∈ does not contain q = 0, and thus the

above N( )k
1− quadrature error is completely avoided. The

remaining quadrature error of the staggered mesh method
(which also presents in the standard method) is due to the lack
of overall smoothness of the integrand with respect to q in eq
20, i.e.,

q q
1
4

Tr(log( (i , ))) (1 (i , )) d
G

G G,∫ ∑
π

ε ω ε ω ω+ −
−∞

∞

∈ *

The nonsmoothness of this integrand with respect to q can be
difficult to analyze directly due to the Tr(log(·)) operation and

Figure 7. Four types of interaction vertices included in any finite order energies included in RPA and RPA-SOSEX correlation energies (in the
Goldstone diagram formalism).
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the integral over ω. Existing quadrature error analysis results
cannot be applied in this case, and further studies are needed.
One possible approach is to apply the Taylor expansion of
log(ε(iω,q)) = log(I + (ε(iω,q) − I)) with respect to (ε(iω,q)
− I) and then expand the trace operation. Each resulting term
takes the form of a ring diagram, which is similar to that of the
perturbative expansion in the drCCD formalism in section 5.1.
After taking into account the imaginary energy iω, we could
then apply a similar error analysis over each finite order term.
It is worth noting that in periodic GW calculation,42−44 the

“head/wing” correction to the dielectric operator εG,G′(iω,q) is
often used to reduce the finite-size error of the self-energy. In
this correction scheme, ε0,0(iω,0) and ε0,G(iω,0), εG,0(iω,0)
(which are called the head and wings, respectively) are
replaced by their values at some q points that are very close to
0 in numerical calculations. This correction can also be used in
the standard RPA correlation energy calculation. In this case,

the head/wing correction is similar to the staggered mesh
method in that it also compensates for the omitted integrand at
q = 0 (but by computing the integrand value at some
neighboring q points). It is worth mentioning that our analysis
above shows that the staggered mesh method completely
avoids the need of performing such “head/wing” corrections.
Numerical results suggest that such corrections do not provide
significant improvements in standard RPA energy calculations.
We refer readers to Figure 9 in the Appendix.

6. CONCLUSION
We develop a staggered mesh method to reduce finite-size
errors for RPA and RPA-SOSEX correlation energy calcu-
lations for insulating systems. This is demonstrated using the
drCCD and AC formalisms. The two formalisms have
significant differences in terms of their implementation.
Nonetheless, they are equivalent formulations of the RPA

Figure 8. RPA correlation energy per unit cell computed by the standard and the staggered mesh methods using the AC formalism and the larger
gth-dzvp basis set.
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correlation energy, and the numerical values of the energies
can very well match with each other with proper choice of
parameters (e.g., number of quadrature points along the
imaginary energy axis). Numerical evidence and analytic
discussions both show that the staggered mesh method can
significantly reduce the finite-size error compared to the
standard method for quasi-1D and certain quasi-2D and 3D
systems with high symmetries.
Our analysis of the finite-size error is conducted for each

term of the perturbative expansion as ring diagrams. Such a
treatment can be justified when the expansion converges.
However, it would be more desirable if the analysis can be
directly performed for the infinite series (such as eq 20 in the
AC formalism). This can be particularly important for the
treatment of metallic systems, of which each individual
perturbative term may diverge as in the case of the electron
gas. The treatment of metallic systems also introduces other
difficulties, such as the singularity in the orbital energy fraction
terms 1/ϵIJ

AB, which are beyond the scope of the paper.
In the RPA and RPA-SOSEX energy calculations, the

nonsmoothness of the integrand is entirely due to the
transition between a pair of occupied and virtual orbitals,
which is also the foundation of the effectiveness of the
staggered mesh method. An immediate question is whether the
method can be applied to arbitrary perturbation energies
included in other correlation energy calculations such as MP3
and CCSD. Unfortunately, even in the MP3 correlation
energy, there are terms with momentum transfer between two
occupied orbitals or two virtual orbitals, e.g., the four-hole−
two-particle energy term. For instance, the leading nonsmooth

term of ⟨ab∥cd⟩ scales as 1/|q|2 when q → 0. This is similar to
the Fock exchange energy calculation, and the quadrature error
of this term is N( )k

1/3− . It may be necessary to introduce an
additional correction term to remove the singular 1/|q|2 term
before applying the staggered mesh method. Another technical
difficulty is that corollary 16 in ref 17 cannot be readily used to
analyze the finite-size error of such four-hole−two-particle
energy terms. Nonetheless, based on the error analysis of the
drCCD formalism, the staggered mesh method may still be
effective for certain CCD calculations that include more than
the particle-hole ring contractions in drCCD, as long as the
involved ERIs are in the four forms in Figure 7. On the other
hand, from the perspective of the AC formalism, the staggered
mesh method naturally avoids the need of performing “head/
wing” corrections and therefore can be useful in reducing the
finite-size errors of other physical quantities, such as the quasi-
particle energies in GW calculations.

■ APPENDIX

Figure 8 plots the RPA correlation energies computed using
the AC formalism for quasi-1D, quasi-2D, and 3D systems with
the larger gth-dzvp basis set. Figure 9 plots the RPA correlation
energy with the head/wing correction for 3D systems.
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