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Abstract. We propose a weighted difference of anisotropic and isotropic total variation (TV) as a regularization
for image processing tasks, based on the well-known TV model and natural image statistics. Due to
the form of our model, it is natural to compute via a difference of convex algorithm (DCA). We draw
its connection to the Bregman iteration for convex problems and prove that the iteration generated
from our algorithm converges to a stationary point with the objective function values decreasing
monotonically. A stopping strategy based on the stable oscillatory pattern of the iteration error from
the ground truth is introduced. In numerical experiments on image denoising, image deblurring,
and magnetic resonance imaging (MRI) reconstruction, our method improves on the classical TV
model consistently and is on par with representative state-of-the-art methods.
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1. Introduction. Many image processing tasks can be formulated as an inverse problem,
in which the data f is assumed to be obtained approximately by applying a linear operator A
on an image u with additive noise. For example, A is the identity matrix for image denoising,
a convolution matrix for deblurring, and subsampling of Fourier transform for a magnetic
resonance imaging (MRI) reconstruction problem. In most scenarios, solving « from Au = f
is ill-posed in the sense that directly inverting A would result in bad and possibly multiple
solutions. It is necessary and even desirable to constrain the solutions through regularization,
with the help of prior knowledge of images that one wants to reconstruct. A general model
for such an inverse problem is

(L.1) i = argmin,J(u) + £l Au — £} ,
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where J(u) is the regularization term, p is a positive parameter to balance J(u), the data
fidelity term is ||[Au— f||3, and 4 is an optimal solution of the model or a reconstructed result.
A classical regularization is the total variation (TV) proposed by Rudin—Osher—Fatemi [37],
which is referred to as the ROF model. It is widely used in image processing applications,
such as deconvolution [9, 21, 29], inpainting [8], and superresolution [30], just to name a few.
The TV model originated in [37] and is isotropic, and later an anisotropic formulation was
addressed in the literature (see [12, 15] among others). We give mathematical definitions for
both the isotropic and anisotropic T'V in the discrete setting. Denoting u as the column vector
by a lexicographical ordering of a two-dimensional (2D) image, we have

(1.2) Tisol) := | Dull21 = [|\/|Daul? + | Dyuf?|,
(1.3) Jani(w) = || Dully = || Dyulls + [[Dyull1,

where D,, D, denote the horizontal and vertical partial derivative operators, respectively, and
D = [Dy; Dy is the gradient operator V in the discrete setting. We shall use |Vul[2,; and

|lv/|Dgu|? + |Dyu|?||; interchangeably throughout this paper.

Another interpretation of TV can be given from the perspective of compressive sensing
(CS) [3, 14], which is reconstructing a signal from an underdetermined system provided that
the signal is sufficiently sparse or sparse in a transform domain. For example, a natural image
is mostly sparse after taking the gradient. Mathematically, it amounts to minimizing the Lg
norm of the image gradient, i.e., J(u) = ||Vu||o. To bypass the NP-hard Lo norm, the convex
relaxation approach in CS is to replace Ly by L1, and L; on the gradient is the TV. The
restricted isometry property (RIP) condition [3] theoretically guarantees the exact recovery
of sparse solutions by L;. The RIP regime is where the sensing matrix is incoherent, such as
a random Gaussian matrix. Several nonconvex penalties have been proposed and studied as
alternatives to L [23]. A few notable examples are L for p € (0,1) [10, 25, 46], Ly /L (scale
invariant L1), and L1 — Lo [16, 26, 27, 47, 48]. In particular, the L1 — L penalty is found to
be the best among existing methods for recovering sparse solutions when the sensing matrix
is highly coherent or significantly violating the RIP condition [27, 48].

TV regularization has been a very active research topic in the past two decades. Though a
gradient descent approach in the original paper can be slow to converge, a projection algorithm
was later proposed by Chambolle [5] to speed up convergence based on duality. More recently,
the Bregman and split Bregman methodology [11, 19, 33] offered another line of fast algorithms
equivalent to the role of the alternating direction method of multipliers (ADMM) and the
Douglas—Rachford splitting algorithm in the optimization literature dating back to the 1970s.
The connection among these optimization algorithms has been observed in different contexts,
among which [38, 40, 44] are the first few papers that explicitly address the connection between
ROF and Bregman splitting. There are also some approaches to solving the Ly minimization
directly. In [45], a special alternating minimization strategy with half-quadratic splitting is
adopted for image smoothing. Image restoration via Ly is considered in [34], which uses hard
shrinkage for L, as opposed to soft shrinkage for L;. In addition, the Ly on the gradient
can be interpreted as the length of the partition boundaries, which leads to the classical
Potts model [35] or piecewise constant Mumford—-Shah model [32] for image segmentation or
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partition. Recently, Storath, Weinmann, and Demaret [39] proposed a hybrid ADMM and
dynamic programming method to solve the Potts model.

Motivated by L1 — L2 minimization of coherent CS [27, 48], we propose the following
weighted difference of convex regularization:

(L4)  J(w) = Jans — @fiso = | Daulls + | Dyulls — all\/|Deui? + [ Dyul |1,

where a € [0,1] is a parameter for a more general model. When a = 1, J(u) is to apply
L, — Ly on the gradient. Two advantages of Iy — Ly over other nonconvex measures are its
Lipschitz regularity and guaranteed convergence via the difference of convex algorithm (DCA)
[41, 42], which is analogous to a convex splitting technique [17] for gradient systems. We find
that the DCA requires solving the L; type of minimization as a subproblem, which can be
handled efficiently by utilizing the split Bregman technique. We prove that the DCA approach
converges to stationary points, a typical situation for nonconvex problems. In practice, the
DCA iterations, when properly stopped, are often close to global minima and produce excellent
results. The stopping issue is discussed later based on the oscillatory pattern of the iteration
errors.

The rest of the paper is organized as follows. Section 2 describes our model in detail
including numerical algorithms and convergence analysis. Section 3 is devoted to numerical
experiments, where three image processing applications (denoising, deblurring, and MRI re-
construction) are examined. Finally, discussions and conclusions are given in sections 4 and
5, respectively.

2. Our model. To better understand the novel L; — alL+ metric, we plot the level curves
corresponding to Lj — Lg and L1 —0.5L5 in comparison with Ly and L in Figure 1. The level
lines of the L norm are 0 at origin, 1 at axes, and 2 elsewhere. The level lines corresponding
to @ < 1in (1.4) are closer to Ly than that of @ = 1 in the sense that the latter yields 0
at both axes. L; is the best convex approximation of Ly, which has certain limitations. For
example, vast literature shows that the L; norm on the gradient, which is the anisotropic TV,
will produce “blocky” artifacts, as it prefers a piecewise constant image, where the gradient
at every pixel is 1-sparse. For blocky images, it could be true that the gradients are 1-sparse
due to the fact that most of the gradient vectors inside the “blocks” are 1-sparse. However,
for these images, the gradient vectors at the edges are more important, and they may not
be 1-sparse. For this reason, we propose a weighted difference model (1.4) with a constant «
taking into account the occurrence of nonsparse gradient vectors.

Let (ujg,ujy) be gradient vector at pixel j. Then (1.4) can be rewritten as

(2.1) Ju)=>" (Eujml + |ujy| — ﬂ\/m -

J

This pointwise formulation suggests that sparsity is enforced on every gradient vector. More
specifically, we encourage the gradient to be 1-sparse at every pixel, which implies that hori-
zontal or vertical edges are more preferable in this model. In order to understand the image
gradient and 1l-sparsity, we plot the histogram of gradient angles over the range of [0,90]
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Figure 1. Level curves of different metrics. The level lines corresponding to o < 1 in (1.4) are closer to
Lq than those of & = 1 in the sense that the latter yield O at both azes.

degrees in Figure 2 for a large number of natural images. The angle distribution in other
quadrants is similar. As shown in Figure 2, the two largest peaks are at 0 and 90 degrees,
which implies that gradient vectors are 1-sparse at a fairly good chance, with nonsparse oc-
currences also at positive probability. Hence we insert a constant « in (1.4) to reflect such
behavior in the histogram.

2.1. Numerical algorithms. We define an objective function in (1.1) with J(u) defined in

(L.4):

(2.2) F(u) := ||Deully + [[Dyully —

£llAu - fI3.

\/|D13u|2 + |Dyul?|| +
1
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Figure 2. The histogram of gradient angles over 300 images from the Berkeley segmentation dataset [31].
Two largest peaks are at 0 and 90 degrees, indicating that gradient vectors are mostly 1-sparse.

We then decompose F'(u) into difference of convex components, i.e., F(u) = G(u) — H(u),
where

(2.3) { G(u) = || Dzul1 + || Dyulls + cllulz + 5[|Au — |3,

H(u) = ol|\/|Dyul?® + [Dyul?||1 + cl|ull3,

and c is a positive constant to ensure strong convexity of G and H. After linearizing the H
term, we obtain an iterative scheme

(24) o= argm&n”Dmu”l + || Dyull1 + c||u[|g — a(Du,q") — 2c(u,u™) + %||Au — f“g,

where ¢" = (qF,q}) = (Dyu®, Dyu™)/\/|Dyun|? + [Dyum|? at step u”. Note that ¢" is a
pointwise calculation, and we adopt the convention that if the denominator is zero at some
point, the corresponding g™ value is set to be zero. It means that we select the center of
the Ls norm subgradient (unit ball on the plane) to define g in the algorithm. Each DCA
subproblem, (2.4), amounts to solving a TV type of minimization. We employ the split
Bregman technique [19] to do the job. Specifically, we introduce two auxiliary variables d, d,
as well as two Lagrange multipliers b, by, while splitting the anisotropic term as

u"=arg min |ldgfls + [ldylls +cllull} — aldz - &} +dy - )
usdz7dys Isby
A

A
5“‘19: — Dyu — b:ﬂ”% e 5“% — Dyu — by”g-

(2.5) ~2cfu,u®) + £l Au — fIF +
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Note that d,, d, can be updated via soft shrinkage, defined as
(2.6) shrink(s, v) = sgn(s) max{|s| — v, 0}.

The pseudocode is summarized in Algorithm 1. The algorithm is efficient for many applications
where the matrix to be inverted is diagonal or can be diagonalized by Fourier transform, which
is true for image denoising, deconvolution, and MRI reconstruction.

Algorithm 1. For solving the unconstrained problem (2.4).
Define u = gz = ¢y = 0 and MaxDCA, MaxBregman
for 1 to MaxDCA do
by =by =0
for 1 to MaxBregman do
u=(uATA—ADTD 4 2c- I5)" (wAf + ADZ(dy — by) + ADT (dy — by) + 2cu),
dy = shrink(D,u + by + agz /A, 1/A),
dy = shrink(Dyu + by + agy/A, 1/X),
by = by + Dypu — dy,
by = by + Dyu — d,
end for
(4z,9y) = (Dzu, Dyu)/+/|Dyul? + | Dyuf?
end for

For the corresponding constrained problem,
(2.7) min || Dgully + || Dyully — e Dullzy  s.t. Au= f,
the DCA is expressed as

(2.8) "' = argmin {lIDzull1 + || Dyully + c|lul2 — a(Du,q") — 2c(u,u™) s.t. Au= 1.
U
Each DCA subproblem could be reduced to a sequence of unconstrained problems of the form

(29) w™ = argmin | Dyully + || Dyully + el — o(Du, q") — 2c(u, u™) + %l\Au —="[l3,
(210) "l =2"4F—Au®tL

The variable z is introduced as a Lagrange multiplier to enforce the constraint Au = f and
is updated every step. Again, the first equation can be solved by the split Bregman method.
Algorithm 2, for solving the constrained problem (2.8), is almost the same as Algorithm 1,
except for an additional update on z.

2.2. Convergence analysis. We want to show that the sequence of {u"} obtained from
the DCA iterations, or DCA sequence in short, converges.

We first introduce Lemma 2.1 [41, Theorem 3.7], whose proof is provided to make the
paper self-contained.

Lemma 2.1. If the sequence {u"™} is generated by the DCA algorithm (2.4), then F'(u™) —
Funt) > 2cfum — umH 3.
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Algorithm 2. For solving the constrained problem (2.8).

Define u = ¢, = ¢, = 0,z = f and MaxDCA, MaxBregmanInner, MaxBregmanOuter
for 1 to MaxDCA do
by =by =0
for 1 to MaxBregmanQuter do
for 1 to MaxBregmanInner do
u=(uATA—ADTD + 2c- I3)""(uAz + ADI(dy — b;) + ADY (dy — by) + 2cu),
d, = shrink(D,u + b, + ag, /A, 1/X),
dy = shrink(Dyu + by + agy /A, 1/A),
by = by + Dyu — dy,
by = by + Dyu — dy

end for
z=z+f— Au
end for
(Gz, qy) = (Dru;Dyu)/\/[DIUIQ + [DUU’P
end for

n+1l 711+1 c

Proof. Tt follows from the first-order optimality condition at u that there exist p

d||Du™t1||; such that
(2.11) " — aDTq" + 2c(u™! — u™) + pAT (A — f) =0.
A simple calculation shows that

F@u") — Fu™) = %IIA(UR — w3 + p(A” — ™), Au" T — f)
(2.12) +[|Du" ||y — [| Du" )y — o[ Du™||21 — | Du™2,0).

Left-multiplying (2.11) by (u™ — w™t1)T and plugging the result into (2.12), we get

F(uﬁ.} _ F(un+1) = %”A(u'n _ un—l—l)”g _ <p‘n+1 _ OiDT ﬂ}un . u‘n-l—1> i 2c:||un _ u‘n-i—l”g

(2.13) HIDu"1 — [Du™ [l — (| D21 — |1Du™ |l2,1).

Due to the convexity of ||Du||; and ||Du||2,1, we have the following two inequalities:

(2.14) [[Du™|y = ||Du“+1i|1 + (p""'l,u“ — u“’"’l)
and
(2.15) [ Du™ |51 > ||Du"||2,1 + (DT g™, u™t — u™),

which conclude the proof. [ |

‘We then prove the coercivity of the objective function.

Lemma 2.2. Suppose p > 0,0 < @ < 1, and ker(A) [ ker(D) = {0}. Then the objective
function, defined in (2.2), is coercive.
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Proof. Since || Dulls = || Dzull1 + | Dyulls > [|v/|Dsul® + [Dyul?|1, we get
F(u) > (1 - a)||Dul); + %(IIAUII%;/? = [I£113)-

The functional on the right-hand side is coercive, which is a classical theorem for the original
ROF model [6, 7]. Here we provide a simple proof to make the paper self-contained. Suppose
there exists a sequence {u"} such that [|u"||s — oo, and F'(u") is bounded. Let v = u™/||u?||2
and v™ — v* up to a subsequence with ||[v*||2 = 1. As F(u") is bounded, there exists a constant
C > 0 such that ||[Du"||; < C and ||Au"||2 < C. As aresult, we have | Dv"||; < C/|[u"|]2 = 0
as n — oo, which implies that ||[Dv*||; = 0. Similarly, we have ||[Av*||2 = 0. By the assumption
ker(A) () ker(D) = {0}, we get v* = 0, which contradicts [|v*|| = 1. [ |

The following theorem gives a weak convergence result of the DCA sequence. The weak
convergence refers to the fact that

(2.16) 8(|Du*|ly — o[ Du*

|2,1) € 9||Du*||; — ad||Du*||o,1.

Please refer to the appendix for the proof of this inclusion.
Theorem 2.3. Under the assumptions in Lemma 2.2, any limit point v~ of {u™} satisfies a
weak first-order optimality condition,

(2.17) 0 € 8| Du*||y — ad||Du*||a.1 + pAT (Au* — §).

Proof. 1t is easy to check that both difference of convex components defined in (2.3) have
modulus of strong convexity of 2c. Tt follows from Lemma 2.1 that F(u") — F(u") >
2c||u™ — u™t1||2. Consequently, the objective function F' is monotonically decreasing. As F' is
bounded from below, F'(u™) converges, which implies that ||u™ —u"*!||2 — 0. In addition, the
sequence {u"} is bounded due to Lemma 2.2. Then it follows from the Bolzano—Weierstrass
theorem that there exists a subsequence of {u"}, denoted as {u"¥}, converging to a limit point
u*

We look at the optimality condition at the (n; + 1) step of the DCA, i.e.,
(2.18) 0 € 8||Du™ 11|y — aDT g™ + 2c(u™ ! — u™) 4 uAT (Au™t1 — §).

As v™ — u* and u™ — vt — 0, we have Du™ — Du* and Du™ 1! — Du*.

Let v* = Du* and v 1! = Du™11, Since v™ 1! — v*, we have for sufficiently large ny
that supp(v*) C supp(v™*1), and if v; # 0 at some j, then sign(v?’“—'—l) = sign(v}). Therefore,
A||v™*L||; C d||v*||1, which means that 8| Du™t1||; C 8| Du*||;.

Define (w4, u;,) == Du; as gradient at pixel j, and then 0| Du|s; = Hj d||Du;||2. Note
that the subgradient of the Ly norm of the gradient vector (ug,uy) has the form

2 v 2 2
(2.19) 8| (thzy ) |2 = (um,uy)/\/m if m% 0,
ug +uy <1 if (ug, uy) = (0,0).
At pixels j where (i, 13,) # (0,0), we have that q}* converes to (u,uj,)/y/[uf, [ + [uj,

J
(a unit vector). According to the definition of q?’“ , we know it is either zero if (u;?'g, u?;“' y =00
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or defined on the unit circle otherwise, both of which lie in the unit ball, corresponding to the
subgradient of the Ly norm at discontinuity zero. Therefore, at pixels j where (uj,,uj,) =

(0,0), we have q}l’“ € 0||(ujz, ujy)||2 (2 unit ball). Using the chain rule of subgradient (Corollary
16 in [20]), we have 9| Duj|2 = DTBH(u;wu;y)”g. To sum up, if (uj,,u;,) # (0,0), then
DTQ?‘“ converges to 6||Du§||2; otherwise, DTQ?"“ belongs to 6||Du;||g.

Putting all of the above together and letting np — oo in (2.18), we derive that u* satisfies
the weak first-order optimality condition, (2.17). [ |

Remark 2.1. The subgradient used in this paper is called a “regular” subgradient (r-sub),
while a general subgradient (g-sub) involves a limiting process. Please refer to the book [36]
for these two types of subgradients. The relation between the two is r-sub C g-sub. It seems

that r-sub is too restrictive, but (2.16) may not always hold if g-sub is considered.

3. Experiments. We apply the proposed method' to three applications: image denoising,
deconvolution, and the MRI construction. The matrix A in these examples can be diagonalized
by Fourier transform, and hence Algorithm 1 or Algorithm 2 can be efficiently implemented.
We compare L; and Ly —aL, for @ = 0.5 or 1 (the rationale for @ = 0.5 is given in section 4.3)
with some existing methods, such as Lg for image smoothing in [45], Lo in [34], Ly, for p = 2/3
in [25], and L1 + L2 in [2] for image deblurring. We use the structural similarity index
(SSIM) [43] as a quantitative measure for image quality. Let us first define local similarity
index computed on windows z and v,

. 2 + 1) (204 +
(3.1) ssim(z,y) := g #riy ])(2 =l = 2) ,
(lu'.r + Hy =k Cl)(gﬂ! + Ty + CQ)
where iz, iy, are the average of z,y; a,_%,og are the variance; oy is covariance of z,y; and
c1, ¢ are two variables to stabilize the division with weak denominator. The overall SSIM is
the mean of local similarity indices, i.e.,

N
(3.2) SSIM(X, V) := - 3 ssim(z, ),

=1

where X is a reference image, Y is a distorted one, z;,y; are corresponding windows indexed
by 4, and N is the number of windows. Here we consider windows of size 8 x 8.

Image denoising. We examine the problem of image denoising using three piecewise con-
stant images: Shapes, Peppers, and House, in Figures 3-5, as well as a Lena image in Figure 6.
We assume zero-mean additive Gaussian noise with standard deviations being 0.2, 0.03, 0.03,
and 0.05 for Figures 36, respectively. Not only does our method work particularly well on
horizontal or vertical edges by design; it can also deal with natural images as well. To verify
convergence analysis, the difference of 4™ and u™ ! versus (outer/DCA) iterations is plotted in
logarithm scale for denoising Shape and Lena images in Figure 7, which shows that L, —0.5L>
converges faster than Ly — L. Furthermore, we observe numerically that the algorithm still
converges without a strong convexity requirement, i.e., ¢ = 0 in (2.8). As the ground truth
is available, we plot the relative errors versus CPU runtime for L;,L; — Lo, L1 — 0.5L2 in

'Source codes can be downloaded from https:/ /sites.google.com/site /louyifei/Software.
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noisy, SSIM = 0.140 Lo, SSIM = 0.148 Ly + L2, SSIM = 0.943

Ly, SSIM = 0.881 Ly — Ly, SSIM = 0.962 Ly — 0.5Ly, SSIM = 0.928

Figure 3. Denoising results with comparison to Lo in [45] and L1 + L% wn [2].

Table 1
Comparisons of different denoising methods in terms of SSIM and computational time (sec).
Denoising House Peppers
SSIM  Time SSIM [Tme

Lq [45] 0.9046  0.07 0.8702  0.08
Ly + L% [2] 09214 0.33 0.9452  0.41
Ly 0.9195  0.67 0.9387  0.77
L;—-05Ly 0.9347 1.80 0.9564 1.82

Figure 8. This figure implies that our solutions oscillate around the ground truth due to the
nonconvex nature of our model. Additionally we observe that the larger « is (say, approaching
1), the less well-behaved DCA becomes due to more weight on the nonconvex term. On the
other hand, L1 — L yields better results than L; — 0.5Ls for the first few DCA iterates. The
denoising results presented in Figures 3 and 6 are from stopping the DCA after two iterations.
The computational time” of denoising two images (House and Peppers) is recorded in Table 1,
which shows that Ly — 0.5Ls gives the best results with extra computational time.

Image deblurring. In Figure 9, a binary image is vertically blurred by motion blur of

2All experiments are performed using MATLAB 2014a on a desktop (Windows 7, 3.6GHz CPU, 24GB
RAM).
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noisy, SSIM = 0.8756 Lo, SSIM = 0.8702 Ly + L2, SSIM = 0.9452

T

, SSIM = 0.9387

o, T

Figure 4. Denoising results with comparison to Lo in [45] and L1 + L% wn [2].

15 pixels plus Gaussian additive noise with zero mean and standard deviation 0.1. Our
method outperforms Lg in [34], L, for p = 2/3 in [25], L1 4+ Ly in [2], and the state-of-
the-art deblurring method BM3D [13]. In Figures 10-11, we compare all the methods on
two piecewise constant images, House and Peppers, where the original images are blurred by
9 x 9 Gaussian blur whose standard deviation is 1.5 plus Gaussian additive noise with zero
mean and standard deviation 0.05. In Figure 13, we present deblurring results for a natural
image: Cameraman. The original image is blurred by 15 x 15 Gaussian blur whose standard
deviation is 1.5 plus Gaussian additive noise with zero mean and standard deviation 0.05.
In all deblurring examples, our method is better than the classical L, approach. We find
that our method looks sharper and produces fewer ringing artifacts, compared to Lo, La/3,
and BM3D, though these three methods have better SSIM values. The relative errors versus
computational time is plotted in Figure 12 for deblurring binary and Cameraman images.
It shows behavior similar to that of the denoising problem in that L; — L, tends to worsen
beyond certain iterations while L; — 0.5L5 is more stable. The deblurring results presented
in Figures 9 and 13 are from stopping the DCA after 2 and 10 iterations for L, — 0.5Ls and
Ly — Lo, respectively. The computational time is listed in Table 2, which suggests that one
future direction is accelerating our algorithm.

MRI reconstruction. In Figure 14, we investigate the MRI reconstruction problem using
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noisy, SSIM = 0.8332 Lo, SSIM = 0.9046 Ly + L2, SSIM = 0.9214

L1, SSIM = 0.9195

L; —0.5Ly, SSIM = 0.9347

Figure 5. Denoising results with comparison to Lo in [45] and L1 + L% wn [2].

Table 2
Comparisons of different deblurring methods in terms of SSIM and computational time (sec). We find
that our methoed looks sharper and produces fewer ringing artifacts, compared to Lo, Lojs, and BM3D, though
these three methods have better SSIM values.

Deblurring Binary Peppers
SSIM  Time SSIM  Time
BM3D [13] 0917 1.19 0.873 1.05
Lo [34] 0.879 T.11 0.875  5.26
Lyss [25] 0.887  0.09 0.884 0.45
Ly + L% [2] 0934 033 0.859 0.54
1 0.945 5.88 0.841  6.06
L1 —05Ls 0.967 8.69 0.848  8.82

a Shepp—Logan phantom from seven and eight radial projections. There is no noise when we
synthesize the data. Consequently we adopt the constrained formulation, i.e., Algorithm 2
for solving (2.8). Due to the presence of complex values in the MRI reconstruction problem,
SSIM is no longer applicable; instead we use root-mean-square (RMS) error to measure the
performance quantitatively. The RMS between reference and distorted images XY is defined
as RMS(X,Y) = \/%HX — Y|z, where M is the number of pixels in images X,Y . Figure 14

shows that our method can get a perfect reconstruction using only eight projections, while a
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Lg, SSIM = 0.875

noisy, SSIM = 0.7317 L, + L2, SSIM = 0.913

Ly — Ly, SSIM = 0926 L; — 0.5Ly, SSIM = 0.939

Figure 6. Denoising results with comparison to Lo in [45] and L1 + L% wn [2].
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Figure 7. The difference of u™ and u™ ' versus (outer/DCA) iterations is plotted in logarithm scale for
denoising examples i Figure 3 (left) and Figure 6 (right). L1 —0.5L2 converges faster than L1 — La.

similar work [10] reports that 10 projections are required. When the number of projections
is down to seven, L — 0.5L5 is much better than L, and L, — L, visually as well as in terms
of RMS. The relative errors versus CPU time is plotted in Figure 15. The relative errors of
L, — Ly iterations in the constrained formulation appear as stable oscillations in contrast to
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Figure 8. The relative errors versus runtime for methods L1,L1 — L2, L1 — 0.5Ly for denoising examples
in Figure 3 (left) and Figure 6 (right). Our model solutions are seen to oscillate around the ground truth due
to monconvezity.

the unstable oscillations in the unconstrained problems.

4. Discussions. Let us draw some connections of this work to two existing methods,
the Lysaker—Osher—Tai (LOT) model [28] and Bregman iterations [33]. Additionally, we will
comment on the stopping criterion and discuss the parameter setting. As we claim to promote
1-sparse gradient vectors via L1 —als, we evaluate the sparsity of the results Du and compare
them with those obtained with other sparsity promoting metrics.

4.1. Relation to existing methods. At first, the iterative scheme (2.5) for & = 1 resembles
the work of denoising the normals, proposed by Lysaker, Osher, and Tai [28],

(4.1) w** = argmin, || Dull2a — " - Du+ £l Au — £3,

where ¢" = (q3,qy) = (D2u™, Dyu™)/+/|Dzu™|? + | Dyu™|? is the surface normal. Notice that
the TV norm in (4.1) is isotropic, while the first term in our model is the anisotropic TV;
and hence Ly — Lo applied to the gradient with linearized Lo term is different from the LOT
model.

On the other hand, the LOT model leads to the discovery of Bregman iterations [33],
which relates to the DCA as well. Specifically, the Bregman distance [1] based on a convex
functional J(-) between two points u and v is defined as

(4.2) Di(u,v) := J(u) — J(v) — {p,u —v),

where p € 0J(v) is the subgradient of J at the point v. Osher et. al. [33] suggest an iterative
refinement procedure to update u as follows:

(4.3) u'*' = argmin DY (u,u") + G|Au — £}

(4.4) = argmin J(u) — (0" u) + & [l 4u — f[3,
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original blurry noisy, SSIM = 0.2596 BM3D, SSIM = 0.917

B,

Lo, SSIM = 0.879 Ly/s, SSIM = 0.8871 Ly + L2, SSIM = 0.934
L., SSTM = 0.945 Ly — Ly, SSTM = 0.974 Ly — 0.5y, SSTM = 0.967

O
r

Figure 9. Deblurring results with comparison to Lo in [34], Ly for p=2/3 in [25], L1+ L3} in [2], and the
state-of-the-art deblurring method BM3D [13].

which is referred to as the Bregman iterations. Let J(u) = ||Dul|2 be the isotropic TV as in

the LOT model, and its subgradient has the form —V - 13_34' Consequently, we rewrite the

second term in (4.4) as

Du™ D"
4.5 "uy=( —D- , = ,Du),
= 6" ={ =2 i) = (P

which coincides with the second term in the LOT model (4.1).
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original blurry noisy, SSIM = 0.5763 BM3D, SSIM = 0.8593

T

Ly, SSIM = 0.8668 Ly + L2, SSIM = 0.8649

-
-

Ly, SSIM = 0.8618 Li—Ls, SSIM = 0.8315  L; — 0.5Ly, SSIM = 0.8675

T b

Figure 10. Deblurring results with comparison to Lo in [34], Ly for p = 2/3 in [25], L1 + L3 in [2], and
the state-of-the-art deblurring method BM3D [13].

Bregman iterations can be viewed as an optimization technique. Computing the optimality
condition for each subproblem (4.4), we obtain

(4.6) Pt —p* + pAT (A — ) =0

Summing up to n+ 1, we have p"t' — pAT (vt — 2?) for p° = 0 and 2™t = 2" + (f — Au™).
It is the optimality condition for solving u™*! from argmin J(u) + EllAu— 2"||2. In short, the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/21/22 to 131.179.60.154 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1814 Y. LOU, T. ZENG, S. OSHER, AND J. XIN

original blurry noisy, SSIM =), 6455 BM3D, SSIM = 0.8731

Figure 11. Deblurring results with comparison to Lo in [34], Ly for p = 2/3 in [25], L1 + L3 in [2], and
the state-of-the-art deblurring method BM3D [13].

Bregman iterations can be rewritten as
(47) ™ = argmin J(w) + &)l du — 273,
(4.8) 2™ — 22 (F — Au™).

The DCA for solving L1 — L minimization can be derived from the Bregman iterations in a
similar way. Let p and g be the subgradient of anisotropic J,,,; and isotropic J;s,, respectively.
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Figure 12. The relative errors versus runtime for methods L1,L1 — Lo, L1 —0.5L2 for deblurring examples
in Figure 9 (left) and Figure 13 (Tight).

Lagging the isotropic term gives us
(4.9) P -t —a(g" — ¢* ) + pAT (AT — ) =0
We apply the same summation technique as in (4.6) and obtain

(4.10) Pt — ag™ 4 pAT (ATt — 27T — 0,
(4.11) 2" = 2" 4 (f — Ad™)

for p? = ¢° = 2% = 0. The subproblem (4.10) is equivalent to
(4.12) u™! — arg min Jy,,; (u) — a(g™, u) + %HAU, —i*2,

which looks very similar to applying the DCA for a constrained problem, (2.8), when ¢ =
0. The algorithm derived from the Bregman iterations is summarized in Algorithm 3. Its
difference from Algorithm 2 lies in the update of z and q. For Algorithm 2, z is updated
with MaxBregmanQuter iterations, and then g is updated, while Algorithm 3 updates z and
g simultaneously. The comparison between the Bregman and DCA iterations for solving such
constrained nonconvex problems is a subject of further study.

4.2. Stopping criterion. We discuss the stopping conditions of Algorithms 1 and 2 for
unconstrained and constrained problems, respectively. Both algorithms have an outer DCA
loop, which iteratively updates g, and inner iterations for updating u. We use u" and uj to
specify the outer and inner outputs of w and set the max inner/outer iterations to be 200 and
20, respectively, i.e., MaxBregman = 200 and MaxDCA = 20 in Algorithm 1.

The inner loop is easier to impose a proper stopping criterion for, because the inner loop
solves a convex subproblem. Some standard stopping criteria are the relative error being
small, the objective function being stagnant, or both, i.e.,

|[F'(ueq1) — Fup)|
| ()|

(4.13) Jug41 — wll < €, and/or

< €p
el
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original blurry noisy, SSIM = 0.5459

BM3D, SSIM = 0.849

Figure 13. Deblurring results with comparison to Lo in [34], Ly for p = 2/3 in [25], L1 + L3 in [2], and
the state-of-the-art deblurring method BM3D [13].

with predefined tolerance values ¢,, €. In this paper, we choose to stop the inner iteration
when the relative error is smaller than 1e76.

As for the outer iterations, Figures 8, 12, and 15 show that the relative error develops an
oscillatory pattern, and Figure 7 suggests that the DCA sequence usually converges in a few
outer iterations (10-20). One can estimate the onset time ¢; of the oscillation stage of the
error based on training images. In the denoising (deblurring) example, t;, = 2 (= 10). Hence,
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L,, RMS = 0.481

L; — Ly, RMS = 0.384 Ly — 0.5Ly, RMS=0.355

Li, RMS = 0.23 Ly — Ly, RMS = 4e-4 L1 — 0.5Ly, RMS=5e-4

Figure 14. MRI reconstruction using seven (top) and eight projections (bottom). The RMS is provided for
COmparison.

a good stopping time for the outer iteration is at the end of an inner loop when the CPU time
exceeds 1.

More generally, if the error does not follow a clear oscillatory pattern, one could inject
random perturbations with slowly reduced magnitudes to steer away from unstable stationary
points or directions to help convergence toward the ground truth [22]. This approach is closely
related to simulated annealing [18, 24].

4.3. Parameter estimation. Let us derive the value of « based on the gradient distribu-

P__ |z

tion. Suppose that the gradient value Dyu follows the distribution [25], (D)€ , where
D

['(t) = ;— * zt=1le=Z, Tt is Gaussian distribution for p = 2, Laplacian distribution for p = 1,
and hyper-Laplacian for 0 < p < 1. We have

)
)

(
(

=R~

+00 +00 _ B
(4.14) E; — E|Dgu| = —2 j eV |z d — 11/ oty - ¢
21“( ) —o0 F(;,) 0 I(

+o0 +00
(4.15) By = E|Dyul? = —2 ] &P |z2ds = — - / e—tild —
2r (%) —o0 F(;) 0
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Figure 15. The logarithm of relative errors versus runtime for methods L1,L1 — La, L1 — 0.5La in MRI
reconstruction problem using seven (left) and eight (right) projections. All are solved under constrained formu-
latzon.

Algorithm 3. For solving constrained problem (2.8) using the Bregman method.

Define u = ¢z = ¢y = 0,z = f and MaxDCA, MaxBregman
for 1 to MaxDCA do
by =b,=0
for 1 to MaxBregman do
u=(pATA — AA) Y (pAz 4+ ADT(d; — b)) + )\Dg(dy —by)),
d, = shrink(D,u + b, + ag, /A, 1/A),
dy = shrink(Dyu + by + agy/A,1/X),
by = by + Dyu — d.'.':‘}
by = by + Dyu — d,

end for

z=z+ f— Au,

(Qm Qy) = (DmurDyu)/\/iDIuP £5 lDy”P
end for

As a is a weighting parameter to balance the anisotropic and isotropic TV terms, it can be
estimated using the ratio of E; and +/E>, i.e.,

E, I'(2/p)

“VE:  JTG/pI(/p)

Table 3 lists the values of a based on gradient distributions for p = 0.5,1,2. We analyze the
gradient distribution in Figure 16, which shows that the distribution of image gradient data
matches the p = 1/2 distribution better than classical Gaussian (p = 2) or Laplacian (p = 1)
distribution. This observation is consistent with the choice of the hyper-Laplacian [4, 25] for
image processing (p € [0.5,0.8]). In the rest of the paper, we shall fix the weighting coefficient
a = 1/2 to approximate the desired value in Table 3.

As for the parameter ¢ in (2.8), theoretically we need ¢ to be positive so that strong
convexity leads to the proof of DCA convergence (Lemma 2.1). Without strong convexity at

(4.16) a
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Table 3
The value of c based on the gradient distribution.
_p | o

0.5 | 0.5477

1 | 0.7071

2 | 0.7979

17 T T T 19 T T
§ < data % sids
it i —ly 15 —
7 b e bz
)

- —--LU.S ‘ e LU.S

Figure 16. The plot of log probability versus gradient in comparison with different distributions, indicating
that the gradient distribution of a large nalural image dataset matches L1y or the p = 1/2 hyper-Laplacian
distribution better than classical Gaussian or Laplacian distribution.

¢ =0, we can only show that the objective function is monotonically nonincreasing, while we
are unable to get that ||u"’Jr1 —u"|| converges to zero. In practice, we observe numerically that
the algorithm still converges if ¢ = 0 (refer to Figure 7), and the algorithm converges slowly
if ¢ is large, so we choose ¢ = 0 in experiments. The convergence analysis without strong
convexity is left to future exploration.

4.4. Sparse gradients. We examine the sparsity of the gradient vectors Du of the re-
sults obtained in the denoising and deblurring experiments. Define a gradient vector to be
nonsparse if both Dyu and Dyu at that pixel are larger than 0.01. Then we can calculate
the percentage of nonsparse gradient vectors over the total number of pixels. The sparsity
percentage of all testing images is recorded in Tables 4 and 5 for denoising and deblurring
examples, respectively. In the denoising case, the Ly and L norms yield the least nonsparse
gradient vectors, though the reconstructed images look oversmoothed with lower SSTM values.
As for a more difficult deblurring problem, the methods of BM3D, Lg, L, /3, and Ly + L2 do
not promote sparsity, while L —0.5L+ produces more 1-sparse gradients, and L, is comparable
in this regard. The sparsity of Ly — Lo is always worse than that of L1 — 0.5L9, possibly due
to the unstable behavior of the algorithm, as illustrated in Figures 8 and 12.

5. Conclusion. We proposed a weighted difference of anisotropic and isotropic total vari-
ation (TV) as a regularization term for image processing applications. We presented a dif-
ference of convex algorithm (DCA) for both the constrained and unconstrained formulations.
We proved the convergence of the algorithm to ensure that each limiting point is a stationary
point and the values of the objective function monotonically decrease. The behavior of the
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Table 4
The percentages (%) of nonsparse gradient vectors Du of the denoising results obtained with Lo, L1+ L3,
L1, L1 — La, and L1 — 0.5L2 regularization terms in comparison to Du of the original tmage.

Figure 3 | Figure 4 | Figure 5 | Figure 6
Shapes | Peppers House Lena
Original 1.65 28.26 18.94 29.28
Lo 84.95 13.53 6.27 14.12
Ly +IL2 6.70 23.86 10.77 24.97
Ly 2.73 16.01 7.29 15.72
Li —La 2.10 19.71 9.63 25.62
L1 —0.5L 1.90 17.58 7.84 21.64

Table 5

The percentages (%) of nonsparse gradient vectors Du of the deblurring results obtained with BM3D, Lo,
Lys3, L1+ L2, Li, L1 — Lz, and L1 — 0.5L2 regularization terms in comparison to Du of the original image.

Figure 9 | Figure 10 | Figure 11 Figure 13

Binary House Peppers | Cameraman
Original 0.38 18.94 28.26 22.99
BM3D 6.68 13.44 27.23 17.88
Lo 8.50 14.21 28.93 18.23
Loya 41.09 10.67 21.24 12.71
Li+13 84T 10.73 23.28 11.65
Ly 1.36 3.35 7.72 3.84
Ly — L, 0.83 3.85 8.32 4.91
L1 —0.5L 0.80 3.10 7.09 3.97

iterations was observed numerically to be oscillatory around the ground truth. The deviation
occurs at the beginning of outer loops of the DCA. A stopping criterion was introduced based
on such an oscillatory pattern of the errors.

In the numerical experiments, we examined three particular applications: image denois-
ing, deblurring, and MRI reconstruction. By design, our method works particularly well for
piecewise constant images. For natural images, it improved the classical TV model and is
comparable to the state-of-the-art methods. In future work, we plan to carry out a detailed
comparison between the DCA and Bregman methods, analyze convergence without strong
convexity, accelerate the algorithm, and further study the error pattern and the resulting
stopping criterion for other imaging science problems.

Appendix. We want to prove that if f(ug,uy) = |ug| + |uyl, g(uz, uy) = y/u2 + 4 and
€ (0,1), then

(A.1) (f — ag) € 0f — adyg.

Proof. The discontinuity of both f and ¢ is at (0,0), which means that we only need to
demonstrate (A.1) at the origin. Let (hz, hy) be the subgradient of function (f — ag) at zero.
By the subgradient’s definition, we have

(A.2) |ue| + |uy| — oy /u2 4+ u > haue + hyuy  V(ug, uy).
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It suffices to discuss the case where one of u,, 1, is equal to zero. Without loss of generality,
uz = 0. Then (A.2) reduces

(A.3) (1 —a)luy| 2 hyuy Yy,
and hence hy € [-1+ a,1 — a]. Similarly, we have hy € [-1 + a,1 — a] if uy = 0. When
(4, uy) is along the z-axis or y-axis, the corresponding subgradient set is Sp = [-1 4+ a,1 —
a] x [-1+ «,1 — o], which shows that 8(f — ag) C Sp.

On the other hand, we know that 9f(0,0) = [-1,1] x [-1,1] and 8¢(0,0) is a unit ball

(see (2.19)), so the set of 0f — adg is

(A4) s= U {@vle-a?+06-9*<a?}.

a,be[—1,1]

In other words, the set S consists of all the circles of radius «, each centered inside [—1,1] x
[~1,1], and hence [-1,1] x [-1,1] is in S.

In summary, we get 9(f —ag) C So C [-1,1] x [-1,1] € § = 8f — adg. The equality
holds for nondegenerate points where (ug, uy) # (0,0). |

In fact, we can show that the subgradient of (f — aqg) is indeed the set [-1 4+ a,1 — a] X
[-1+ a,1 — o] with additional discussion on (uz,uy) located at different quadrants. The
details are omitted here.
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