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ITERATIVELY REWEIGHTED GROUP LASSO BASED ON
LOG-COMPOSITE REGULARIZATION\ast 

CHENGYU KE\dagger , MIJU AHN\dagger , SUNYOUNG SHIN\ddagger , AND YIFEI LOU\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The paper considers supervised learning problems of labeled data with grouped
input features. The groups are nonoverlapped such that the model coefficients corresponding to
the input features form disjoint groups. The coefficients have group sparsity structure in the sense
that coefficients corresponding to each group shall be simultaneously either zero or nonzero. To
make effective use of such group sparsity structure given a priori, we introduce a novel log-composite
regularizer, which can be minimized by an iterative algorithm. In particular, our algorithm iteratively
solves for a traditional group least absolute shrinkage and selection operator (LASSO) problem that
involves summing up the l2 norm of each group until convergent. By updating group weights, our
approach enforces a group of smaller coefficients from the previous iterate to be more likely to set
to zero compared to the group LASSO. Theoretical results include a minimizing property of the
proposed model as well as the convergence of the iterative algorithm to a stationary solution under
mild conditions. We conduct extensive experiments on synthetic and real datasets, indicating that
our method yields a performance that is superior to that of the state-of-the-art methods in linear
regression and binary classification.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . group sparsity, nonconvex regularization, iteratively reweighted algorithm, direc-
tional stationarity, variable selection
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1. Introduction. Supervised learning is an effective machine learning technique
to harness the power of big data, where input features are used to predict output (re-
sponse) values. A supervised learning model, such as regression and classification, is
formulated by minimizing a cost function that associates the response with the input
features via model coefficients. To facilitate feature (variable) selection in supervised
learning, prior information and/or reasonable assumptions can be taken into account
as a regularization. Since a large proportion of input features generated from big
data correspond to zero coefficients, one of the most popular assumptions is sparsity,
meaning a coefficient vector has only a few nonzero elements. To enforce sparsity, the
l1 norm of the coefficient vector has been extensively studied in compressed sensing,
statistics, and operations research [7, 15]. For example, the l1-regularized least squares
function, named least absolute shrinkage and selection operator (LASSO) [45], was
proposed to promote zero coefficients in statistic models. The regularization was later
extended to sparse signal recovery in the seminal works of [8, 11, 16, 9]. Many varia-
tions of LASSO have been studied in a statistical context, including [35, 43, 50, 59], to
name a few. Despite its popularity, it has been pointed out in [17] that LASSO per-
forms biased estimation towards coefficients with larger magnitude. To mitigate the
undesirable effect, regularizers such as smoothly clipped absolute deviation (SCAD)
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[17] and minimax concave penalty (MCP) [54] were introduced with rigorous theoreti-
cal analyses. Other regularization methods include [30, 31, 33, 38, 46, 52], empirically
showing great potential in promoting sparse solutions.

For effective recovery of group structured sparsity, existing methods capitalize on
group patterns in the coefficients formulating a penalty function [23, 36, 39, 47, 53].
There are two types of group sparsity studied in the literature: intra-group sparsity
and inter-group sparsity. Intra-group sparsity, which is also known as ``within-group
sparsity,"" means that coefficients belonging to the same group are sparse. Inter-group
sparsity, or ``across-group sparsity,"" refers to the case when only a few groups have
nonzero coefficients. The traditional group LASSO [3, 32, 53] enforces the inter-group
sparsity via minimization of a convex l2,1 function to measure the total magnitude
given by all groups, while one often uses the l1 norm to promote the intra-group
sparsity [57, 58].

Many algorithms have been introduced for group LASSO problems including
coordinate descent [26, 39], a second-order cone program [28], a semismooth New-
ton method [56], a subspace acceleration method [13], and the alternating direction
method of multipliers (ADMM) [4, 14] along with sophisticated ways of updating step
sizes [29, 37]. However, an equal amount of penalization to all coefficients imposed by
the group l2 norm may result in erroneous group selection. In addition, group LASSO
inherits the biased issue [17] from LASSO. More recently, nonconvex group regular-
izers such as group SCAD [47] and group MCP [23] have been introduced for group
selection problems based on individual selection methods [17, 54]. Computational
difficulties associated with nonconvexity of the latter regularizers were addressed by
several developed algorithms [5, 51] with convergence analysis conducted in [48].

In many scientific and engineering applications, the across-group sparsity assump-
tion is reasonable, and prior knowledge on grouping information contributes a better
estimation of the model coefficients. Such prior information decomposes input fea-
tures into nonoverlapping groups, enforcing model coefficients corresponding to each
group that are altogether zero or nonzero. Only a few groups are expected to be
nonzero, which means that the input features of only those groups are useful in the
outcome prediction. For example, patients' numerous medical conditions, which are
used for predicting their disease outcomes with a supervised learning model [44], are
grouped prior to the estimation by their known relationship. The medical conditions
for each given group are simultaneously used in the model or not used at all; thus the
multiple coefficients corresponding to each group are entirely nonzero or zero. Con-
sequently, one requires the sparsity of the coefficients corresponding to each group
to be enforced altogether [53]. Another commonly found example is when a small
proportion of inputs is associated with an output in a nonlinear manner. One uses
a basis expansion of each input to generate polynomial features forming an input
group. Simultaneous regularization on the polynomial coefficients of each given group
is desirable to identify a small number of nonzero groups that are useful to learn the
association between the inputs and the output.

We propose a log-composite regularizer and an iteratively reweighted algorithm
that aim to enforce the across-group sparsity in the model coefficients. For minimiz-
ing the nonconvex log-composite regularizer, we extend an iteratively reweighted l1
minimization algorithm [10] for individual variable selection into group selection. One
advantage of the proposed approach is its easy computation in that each iteration is
quickly made by existing methods for group LASSO. We further show that the iterates
of our algorithm converge to a stationary solution of the nonconvex formulation. Simi-
lar algorithms have been considered in [26, 39, 49]; however, many existing approaches
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are rather heuristic without explicitly having an objective function to minimize. Wipf
and Nagarajan [49] considered a regularizer function mainly for individual sparsity.
Zhao et al. [57, 58] discussed both within-group and across-group sparsity, but the
reweighted scheme was adopted only on the within-group sparsity.

In summary, the major contributions of our work are fourfold:
(1) We introduce a novel log-composite function that aims to promote group

structured sparsity of the model coefficients.
(2) To solve the nonconvex optimization problem, we present an efficient algo-

rithm that iteratively minimizes a convex group LASSO problem weighted
by the previous iterate.

(3) We provide convergence analysis of the proposed algorithm, showing that it
reaches a stationary solution of the nonconvex formulation.

(4) We conduct extensive experiments, showcasing the superior performance of
the proposed approach over the state-of-the-art methods in linear regression
and binary classification problems.

The rest of the paper is organized as follows. In section 2, we introduce a log-
composite regularized formulation to recover across-group sparse patterns and investi-
gate a minimizing property of a stationary solution. In section 3, we present an itera-
tively reweighted algorithm to solve the proposed model and analyze the convergence
of the algorithm. Section 4 presents in-depth numerical experiments for regression
and classification with group structures on synthetic datasets and real datasets from
genomics and public health studies. Finally, section 5 concludes the paper.

2. Log-composite regularization method. Given a group structure with
subsets of the model coefficients forming distinct groups, we aim to simultaneously
assign either zero or nonzero values to all members of a group. In this section, we first
introduce a new regularizer for group variable selection, followed by a comparison to
existing ones and an optimality condition of stationary solutions.

Notation. We define some notation used throughout this paper. A (training)
dataset consists of (i) an input data matrix A \in Rn\times d where each row of the matrix,
denoted by ai \in Rd, contains measurements of the ith observation; and (ii) a response
vector b \in Rn where each component bi \in R is a response obtained from the ith
observation, e.g., a continuous value or a discrete label. We denote x \in Rd as a vector
of coefficients or model coefficients to be trained.

To define a group structure, we assume that each variable xj , for j = 1, . . . , d,
belongs to a group among a set of m predefined groups. For k = 1, . . . ,m, we define
\scrG k \subseteq \{ 1, . . . , d\} as an index set of the coefficients that belong to the kth group. We
assume each coefficient xj only belongs to one group, i.e., \scrG k \cap \scrG l = \emptyset for any k \not = l,
and each \scrG k is a nonempty set such that \cup m

k=1\scrG k = \{ 1, . . . , d\} . The cardinality of
the set \scrG k is denoted by | \scrG k| . Without loss of generality, we reorder x such that
x = (xT

\scrG 1
, . . . ,xT

\scrG m
)T , where x\scrG k

is a subvector of x that consists of all the members
of \scrG k for k = 1, . . . ,m.

2.1. Formulation. Given the group membership of the variables, we consider
an optimization problem defined by

min
\bfx 

F\lambda (x) \triangleq L(x) + \lambda 
m\sum 

k=1

\sqrt{} 
| \scrG k| J\varepsilon (x\scrG k

),(2.1)

where L(\cdot ) is a loss function, J\varepsilon (\cdot ) is a group-specific regularization term with a hyper-
parameter \varepsilon , and \lambda is a hyperparameter to balance the two criteria. The model com-
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plexity is determined by the sum of the group-specific regularization terms J\varepsilon (x\scrG k
),

weighted by the cardinality of each group, denoted by | \scrG k| . Given the data points
observed, \{ (ai, bi)\} ni=1, or so-called training data, the loss function is defined by

(2.2) L(x) \triangleq 1

n

n\sum 

i=1

f(x; ai, bi),

which measures how well the model is fitted to the observed data. The form of the
loss function is typically determined by the response vector observed. If each bi takes
a real value, then the least squares loss, denoted by Lls, is often used. The following
problem is referred to as ordinary least squares (OLS):

(2.3) min
\bfx 

Lls(x) \triangleq 1

2n
| | Ax - b| | 22.

If bi is binary, then the logistic loss, denoted by Llogit, can be selected for binary
classification. The logistic regression can be expressed as

(2.4) min
\bfx 

Llogit(x) \triangleq 1

n

n\sum 

i=1

log
\bigl( 
1 + exp( - bi a

T
i x)

\bigr) 
,

where bi \in \{  - 1,+1\} for i = 1, . . . , n.
Motivated by the logarithmic function applied on every component for individ-

ual variable selection [10], we propose a log-composite function for group variable
selection, named group LOG:

(2.5) J\varepsilon (x\scrG k
) \triangleq log

\Bigl( \sqrt{} 
\| x\scrG k

\| 22 + \varepsilon + \| x\scrG k
\| 2
\Bigr) 
,

where \varepsilon is a positive value. We choose such regularization (2.5) by further taking
into account an algorithmic aspect, which will be elaborated in section 3. Note that
we use the same form for each group and omit the group membership \scrG k in x when
the context is clear. The roles of \varepsilon can be interpreted from several perspectives. On
one hand, it gives a lower bound of log(\varepsilon 

1
2 ) on J\varepsilon , preventing its output reaching to

negative infinity. On the other hand, it provides numerical stability of our algorithm
for the case when a group only consists of zero components. The log-composite
function has several properties that promote sparsity in the obtained solution, which
were first introduced in [17]. Specifically, the function is continuous and differentiable
everywhere except at the origin, and the curvature of the function flattens as the
input value increases. Such properties are known to be essential to achieve sparsity
and unbiasedness of the solution. Moreover, the function is neither convex nor concave
on Rp for p \geq 2. We provide a 2-dimensional example.

Example. We choose \varepsilon = 1. Suppose J\varepsilon (x) is convex in x \in R2; then we must have
0.5J\varepsilon (x) + 0.5J\varepsilon (y) \geq J\varepsilon (z) for any triplet \{ x,y, z\} satisfying 0.5x + 0.5y = z. The
inequality is violated if we select x = (0, 0),y = (0, 2), and z = (0, 1). Alternatively,
we must have 0.5J\varepsilon (x) + 0.5J\varepsilon (y) \leq J\varepsilon (z) if J\varepsilon (x) is concave. The inequality does
not hold if we choose x = (2, 4),y = (2, 0), and z = (2, 2).

Note that the function J\varepsilon is concave in | x| for x \in R, yet the above example
involving points in the nonnegative orthant illustrates that the function does not
have such monotonic behavior in the higher dimension. The property described is also
found in some existing functions for individual variable selection, e.g., transformed
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Table 1
A list of regularization functions to enhance group sparsity.

Regularizer Definition

Group LASSO [53]
m\sum 

k=1

\sqrt{} 
| \scrG k| \| \bfx \scrG k

\| 2

Group SCAD [47]
(\gamma > 2, \eta > 0)

m\sum 
k=1

\sqrt{} 
| \scrG k| 

\left\{               

\eta \| \bfx \scrG k
\| 2, \| \bfx \scrG k

\| 2 \leq \eta ,

2\gamma \eta \| \bfx \scrG k
\| 2  - \| \bfx \scrG k

\| 22  - \eta 2

2(\gamma  - 1)
, \eta < \| \bfx \scrG k

\| 2 \leq \gamma \eta ,

(\gamma + 1)\eta 2

2
, \gamma \eta < \| \bfx \scrG k

\| 2

Group MCP [5]
(\gamma > 2, \eta > 0)

m\sum 
k=1

\sqrt{} 
| \scrG k| 

\left\{       
\eta \| \bfx \scrG k

\| 2  - 
\| \bfx \scrG k

\| 22
2\gamma 

, \| \bfx \scrG k
\| 2 \leq \gamma \eta ,

1

2
\gamma \eta 2, \| \bfx \scrG k

\| 2 > \gamma \eta 

Group LOG
(\varepsilon > 0)

m\sum 
k=1

\sqrt{} 
| \scrG k| log

\Bigl( \sqrt{} 
\| \bfx \scrG k

\| 22 + \varepsilon + \| \bfx \scrG k
\| 2

\Bigr) 

l1 penalty [33, 55]; when a scalar input is replaced with the l2 norm of coefficients
belonging to the same group, the penalty function has a landscape of mixed curvatures.
To the best of our knowledge, such a property has not been discussed in the literature
for group sparsity.

We list some regularizers for group variable selection in Table 1. Group LASSO
[3, 53] uses the l2 norm of coefficients of a given group, i.e., \| x\scrG k

\| 2, to promote
group-wise sparse structure. Although group LASSO is computationally favorable
due to its convexity, it imposes undesirable biased penalization towards groups having
larger magnitude, which can be mitigated by nonconvex penalty functions. Figure 1
depicts the landscapes of the log-composite function J\varepsilon in a 2-dimensional space with
different values of \varepsilon . The function steeply increases near the origin and then flattens
its curvature as the input increases. We also provide graphs of group LASSO and
group MCP to compare their curvatures to those of the group LOG.

Assumptions on the loss function. We introduce a set of assumptions to be im-
posed on the loss function, denoted by L : Rd \rightarrow R in (2.2):

A1. There exists a scalar \sigma \geq 0 such that

L(y) - L(x) - \langle \nabla L(x),y  - x\rangle \geq \sigma 

2
\| x - y\| 22 \forall x, y.

A2. L is coercive, i.e., lim\| \bfx \| 2\rightarrow \infty L(x) = +\infty .
A3. L has a lower bound, denoted by v \in R, such that inf\bfx L(x) \geq v.
The assumption A1 implies that L is differentiable and convex (strongly convex for

\sigma > 0). Although the assumption of strong convexity might be restrictive, we impose
the condition to show the case when a global solution can be reached. One may
impose a weaker assumption by localizing around the stationary solutions, referred to
as restricted strong convexity in the literature [22]. However, this type of condition
is hardly verifiable in practice, especially when comparing empirical solutions to the
ground-truth coefficients that are not accessible; also see [1]. The assumptions A2
and A3 are used to show convergence of the algorithm in section 3.2.
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Fig. 1. Plots of group sparsity regularizers where x1 and x2 form a group: (top-left) group
LASSO; (top-right) group MCP defined by γ = 2 and η = 1.5. On the bottom, two plots of group
LOG Jε(x) defined by different choices of ε > 0: (bottom-left) ε = 0.01, and (bottom-right) ε = 1.

2.2. Property of stationary solutions. It is important to characterize an201

optimality property that a stationary solution of a nonconvex program can obtain.202

Here, we analyze the nonconvex and nondifferentiable problem (2.1) through direc-203

tional stationary solutions [34], a specific kind of stationary solutions defined by the204

directional derivative. The directional derivative of Fλ at the point x̂ ∈ Rd in the205

direction d ∈ Rd is defined by206

(2.6) F ′λ(x̂; d) , lim
τ→0+

Fλ(x̂ + τd)− Fλ(x̂)

τ
.207

We point out that if there is a zero-group, e.g., xGk = 0, then the log-composite208

function is not differentiable in the ordinary sense, yet is directionally differentiable.209

Hence, the directional derivative of Fλ(·) is well-defined under the assumption A1.210

Formally, we define x̂ as a directional stationary solution of the problem (2.1) if211

(2.7) F ′λ(x̂; x− x̂) ≥ 0, ∀x ∈ Rd.212

Hereafter, a stationary solution refers to any point that satisfies (2.7).213

We investigate a minimizing property that a stationary solution of (2.1) may have214

under some conditions. We present Lemma 2.1, which serves as a building block to215

show the property in Theorem 2.2. For simpler presentation, the following discussion216

uses the notation of x that holds for each xGk , as k = 1, · · · ,m.217

Lemma 2.1. Given β ≥ 2

3
√

3 ε
, the function Gβ(x) , β

2
‖x‖22 + Jε(x) is convex218

and hence we have219

(2.8) Jε(y)− Jε(x) ≥ J ′ε (x; y − x)− β

2
‖x− y‖22, ∀x, y.220

6

This manuscript is for review purposes only.

Fig. 1. Plots of group sparsity regularizers where x1 and x2 form a group: (top-left) group
LASSO; (top-right) group MCP defined by \gamma = 2 and \eta = 1.5. On the bottom, two plots of group
LOG J\varepsilon (\bfx ) defined by different choices of \varepsilon > 0: (bottom-left) \varepsilon = 0.01; (bottom-right) \varepsilon = 1.

2.2. Property of stationary solutions. It is important to characterize an
optimality property that a stationary solution of a nonconvex program can obtain.
Here, we analyze the nonconvex and nondifferentiable problem (2.1) through direc-
tional stationary solutions [34], a specific kind of stationary solution defined by the
directional derivative. The directional derivative of F\lambda at the point \widehat x \in Rd in the
direction d \in Rd is defined by

(2.6) F \prime 
\lambda (\widehat x; d) \triangleq lim

\tau \rightarrow 0+

F\lambda (\widehat x+ \tau d) - F\lambda (\widehat x)
\tau 

.

We point out that if there is a zero-group, e.g., x\scrG k
= 0, then the log-composite

function is not differentiable in the ordinary sense yet is directionally differentiable.
Hence, the directional derivative of F\lambda (\cdot ) is well defined under the assumption A1.
Formally, we define \widehat x as a directional stationary solution of the problem (2.1) if

(2.7) F \prime 
\lambda (\widehat x; x - \widehat x) \geq 0 \forall x \in Rd.

Hereafter, a stationary solution refers to any point that satisfies (2.7).
We investigate a minimizing property that a stationary solution of (2.1) may have

under some conditions. We present Lemma 2.1, which serves as a building block to
show the property in Theorem 2.2. For simpler presentation, the following discussion
uses the notation of x that holds for each x\scrG k

, as k = 1, . . . ,m.

Lemma 2.1. Given \beta \geq 2
3
\surd 
3 \varepsilon 

, the function G\beta (x) \triangleq \beta 
2 \| x\| 22+J\varepsilon (x) is convex and

hence we have

(2.8) J\varepsilon (y) - J\varepsilon (x) \geq J \prime 
\varepsilon (x;y  - x) - \beta 

2
\| x - y\| 22 \forall x, y.
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Proof. Observe that G\beta (x) = G1 \circ G2(x), where G2(x) \triangleq \| x\| 2 and G1(u) \triangleq 
\beta 
2u

2 + log
\bigl( \surd 

u2 + \varepsilon + u
\bigr) 
is a univariate function defined in the domain u \geq 0. Since

G2 is convex, it suffices to show that G1 is nondecreasing and convex for all u \geq 0.
For this purpose, we compute the first and second derivatives of G1, given by

G\prime 
1(u) = \beta u+

1\surd 
u2 + \varepsilon 

and G\prime \prime 
1(u) = \beta  - u

(u2 + \varepsilon )3/2
.

For any u \geq 0, G\prime 
1(u) \geq 0. If \beta \geq supu\geq 0

u
(u2+\varepsilon )3/2

= 2
3
\surd 
3 \varepsilon 

, we have G\prime \prime 
1(u) \geq 0,

which validates its convexity. Therefore the composite function G\beta is convex, and by
definition, we have G\beta (y) \geq G\beta (x) +G \prime 

\beta (x;y  - x), which implies that

\beta 

2
\| y\| 22 + J\epsilon (y) \geq 

\beta 

2
\| x\| 22 + J\epsilon (x) + \langle \beta x,y  - x\rangle + J \prime 

\varepsilon (x;y  - x).

Some simple manipulations lead to the desired inequality (2.8).

Theorem 2.2. Let assumption A1 hold with \sigma > 0. If \lambda \geq 0 and satisfies
3
\surd 
3 (\sigma \varepsilon ) \geq 2\lambda max1\leq k\leq m

\sqrt{} 
| \scrG k| , then any stationary solution of (2.1) is a global

minimizer.

Proof. Denote \widehat x as a stationary point of (2.1), and let \beta be a constant such that
\beta \geq 2

3
\surd 
3 \varepsilon 

. By applying the assumption A1 and Lemma 2.1, we have for all x \in Rd

F\lambda (x) - F\lambda (\widehat x) = L(x) + \lambda 
m\sum 

k=1

\sqrt{} 
| \scrG k| J\varepsilon (x\scrG k

) - L(\widehat x) - \lambda 
m\sum 

k=1

\sqrt{} 
| \scrG k| J\varepsilon (\widehat x\scrG k

)

\geq \sigma 

2
\| x - \widehat x\| 22 + \langle \nabla L(\widehat x),x - \widehat x\rangle + \lambda 

m\sum 

k=1

\sqrt{} 
| \scrG k| 

\Bigl[ 
J\varepsilon (x\scrG k

) - J\varepsilon (\widehat x\scrG k
)
\Bigr] 

(2.9)

\geq \sigma 

2
\| x - \widehat x\| 22 + \langle \nabla L(\widehat x),x - \widehat x\rangle 

+ \lambda 
m\sum 

k=1

\sqrt{} 
| \scrG k| 

\Bigl[ 
J \prime 
\varepsilon (\widehat x\scrG k

;x\scrG k
 - \widehat x\scrG k

) - \beta 

2
\| x\scrG k

 - \widehat x\scrG k
\| 22
\Bigr] 
.

Due to the stationarity, \widehat x satisfies

\langle \nabla L(\widehat x),x - \widehat x\rangle + \lambda 
m\sum 

k=1

\sqrt{} 
| \scrG k| J \prime 

\varepsilon (\widehat x\scrG k
;x\scrG k

 - \widehat x\scrG k
) \geq 0.

The inequality (2.9) can thus be simplified as

F\lambda (x) - F\lambda (\widehat x) \geq 
\sigma 

2
\| x - \widehat x\| 22  - 

\lambda \beta 

2

m\sum 

k=1

\sqrt{} 
| \scrG k| \| x\scrG k

 - \widehat x\scrG k
\| 22

\geq \sigma 

2
\| x - \widehat x\| 22  - 

\lambda \beta 

2
max

1\leq k\leq m

\sqrt{} 
| \scrG k| \| x - \widehat x\| 22 =

\xi 

2
\| x - \widehat x\| 22,

where we define \xi \triangleq \sigma  - \lambda \beta \=\scrG with \=\scrG \triangleq max1\leq k\leq m

\sqrt{} 
| \scrG k| . Observe that if \sigma  - \lambda \beta \=\scrG \geq 0,

i.e., \lambda \=\scrG \leq \sigma 
\beta \leq 3

\surd 
3\varepsilon \sigma 
2 , then \xi \geq 0, and hence F\lambda (x) \geq F\lambda (\widehat x) for all x, which implies

that any stationary solution \widehat x is a global minimizer.
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Lemma 2.1 shows that by adding a strongly convex function, e.g., \| \cdot \| 22, we can
convexify J\varepsilon and obtain G\beta . Theorem 2.2 further shows that if the loss function is
strongly convex with the modulus \sigma , the overall objective function is dominated by
the convexity. As a result, any stationary point is in fact a global minimizer. Similar
results are shown for a class of difference of convex programs in [2]. Besides, the
theorem provides some insight about choosing hyperparameters \varepsilon and \lambda . Given the
group structure, we can choose the ratio of the two hyperparameters according to
the inequality stated in Theorem 2.2. Such a choice of hyperparameters guarantees a
global optimality for any stationary solution, even before the solution is computed.

3. Algorithm. Inspired by the iterative algorithm for reweighted l1 minimiza-
tion [10] and the majorize-minimization (MM) framework [24, 27], we propose to
iteratively minimize a surrogate function by assigning a new weight for each group
based on the magnitude of the previous iterate. The overall framework is described
in section 3.1, with convergence analysis in section 3.2. In section 3.3, we present the
algorithms to minimize the surrogate function at each iteration, specifically designed
for least squares loss (2.3) and logistic loss (2.4).

3.1. Majorize-minimization framework. Instead of a direct minimization of
F\lambda in (2.1), we employ the MM framework [24, 27] to minimize a surrogate func-

tion iteratively. The surrogate function, denoted by \widehat G\lambda , shall satisfy the following
conditions:

(3.1) F\lambda (x
t) = \widehat G\lambda (x

t; xt) and F\lambda (x) \leq \widehat G\lambda (x; x
t) \forall x.

We construct a surrogate function that satisfies (3.1),

\widehat G\lambda (x; x
t) \triangleq L(x) +

c

2
\| x - xt\| 22

+ \lambda 

m\sum 

k=1

\sqrt{} 
| \scrG k| 

\Biggl\{ 
log

\Bigl( \sqrt{} 
\| xt

\scrG k
\| 22 + \varepsilon + \| xt

\scrG k
\| 2
\Bigr) 
+

1\sqrt{} 
wt

k

\| x\scrG k
\| 2  - 

1\sqrt{} 
wt

k

\| xt
\scrG k
\| 2
\Biggr\} 
,

(3.2)

where wt
k \triangleq \| xt

\scrG k
\| 22 + \varepsilon can be regarded as a weight for the kth group at the tth iter-

ation and c > 0 yields the strong convexity of \widehat G\lambda necessary for convergence analysis.
Note that a straightforward extension of [10] to group sparsity is using the regulariza-
tion of log(\| xt

\scrG k
\| 2+\varepsilon ). Then, the MM framework yields the reciprocal of \| xt

\scrG k
\| 2+\varepsilon as

the weight, which does not align with the square root of the group size
\sqrt{} 

| \scrG k| used in
this work as well as the existing group sparsity problems (see Table 1). Matching the
group norm is one of our motivations for choosing the function in (2.5). Lemma 3.1

guarantees the mentioned relationship between F\lambda (x) and \widehat G\lambda (x;x
t). Lemma 3.2

shows the relationship between the directional derivatives of the two functions.

Lemma 3.1. Given F\lambda (x), \widehat G\lambda (x; x
t), defined in (2.1) and (3.2), the conditions

in (3.1) hold.

Proof. Clearly, the equality in (3.1) holds. To establish the inequality relation-
ship, we consider a univariate function G(u) \triangleq log

\bigl( \surd 
u2 + \varepsilon + u

\bigr) 
in the domain of

nonnegative real numbers. It is straightforward to verify that G(u) is a concave func-
tion on [0,\infty ), and hence we have G(u) \leq G(v) + G\prime (v)(u  - v) for all u, v \geq 0. By
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letting u = \| x\scrG k
\| 2 and v = \| xt

\scrG k
\| 2, we have

F\lambda (x) = L(x) + \lambda 
m\sum 

k=1

\sqrt{} 
| \scrG k| log

\Bigl( \sqrt{} 
\| x\scrG k

\| 22 + \varepsilon + \| x\scrG k
\| 2
\Bigr) 

\leq L(x) + \lambda 
m\sum 

k=1

\sqrt{} 
| \scrG k| 

\Biggl[ 
J\varepsilon (x

t
\scrG k
) +

1\sqrt{} 
wt

k

\Bigl( 
\| x\scrG k

\| 2  - \| xt
\scrG k
\| 2

\Bigr) \Biggr] 

= \widehat G\lambda (x; x
t) - c

2
\| x - xt\| 22 \leq \widehat G\lambda (x; x

t).(3.3)

Lemma 3.2. Let assumption A1 hold. The directional derivatives of F\lambda (x) and
\widehat G\lambda (x;x

t) with respect to x in any given direction d \in Rd are equal at the point x = xt,
i.e.,

(3.4) F \prime 
\lambda (x

t;d) = \widehat G\lambda (\cdot ;xt) \prime (xt;d).

Proof. For the case xt
\scrG k

\not = 0 for all k = 1, . . . ,m, it is straightforward to have

\nabla F\lambda (x
t) = \nabla \bfx 

\widehat G\lambda (x
t;xt). If there exists xt

\scrG k
= 0 for some k, the equivalence in (3.4)

can be directly shown by using the definition of directional derivative given in (2.6).

Since \widehat G\lambda (x;x
t) serves an upper bound of F\lambda , we can minimize this upper bound

to get a new solution, i.e.,

xt+1 \in argmin
\bfx 

\widehat G\lambda (x; x
t),(3.5)

which can be obtained by solving

xt+1 \in argmin
\bfx 

L(x) +
c

2
\| x - xt\| 22 + \lambda 

m\sum 

k=1

\sqrt{} 
| \scrG k| \sqrt{} 
wt

k

\| x\scrG k
\| 2,(3.6)

where wt
k = \| xt

\scrG k
\| 22 + \varepsilon . The convergence analysis is based on the MM framework

of using (3.5). We rewrite it as (3.6) in order to see the connection to group LASSO;
i.e., (3.6) is equivalent to weighted group LASSO for c = 0. We can interpret (3.6) as
our algorithm assigning a different weight on each group determined by the previous
iterate. Since the magnitude of wt

k is smaller if x\scrG k
is closer to the zero vector, the

algorithm imposes a larger weight for zero-groups than for nonzero-groups.

3.2. Convergence analysis. We characterize the convergence of the iterative
scheme (3.5) in Theorem 3.3. We note that (3.5) is a special case of the succes-
sive upper-bound minimization (SUM) algorithm [40]. We borrow some techniques
from the convergence analysis of the SUM algorithm for a generalized directionally
differentiable function given in [40, Theorem 1] to prove Theorem 3.3.

Theorem 3.3. Suppose assumptions A1--A3 hold and c > 0. The sequence of
\{ xt\} \infty t=1 produced by (3.5) achieves the following properties:

(a) We have

(3.7) F\lambda (x
t) - F\lambda (x

t+1) \geq c

2
\| xt+1  - xt\| 22,

and the sequence \{ F\lambda (x
t)\} \infty t=1 converges.

(b) \| xt  - xt+1\| 2 \rightarrow 0 as t \rightarrow \infty .
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(c) The sequence \{ xt\} \infty t=1 is bounded, and every limit point of \{ xt\} \infty t=1 is a sta-
tionary solution of the problem (2.1).

Proof. (a) By Lemma 3.1 and the iterative scheme of (3.5), we have

(3.8) \widehat G\lambda (x
t+1; xt) \leq \widehat G\lambda (x

t; xt) = F\lambda (x
t).

The inequalities (3.3) and (3.8) yield (3.7), which implies that F\lambda (x
t) is a decreasing

sequence with respect to t. By assumption A3, L is bounded below, and so is F\lambda . By
the monotone convergence theorem, the sequence \{ F\lambda (x

t)\} \infty t=1 converges.
(b) By summing (3.7) from t = 0 to \infty , we have

(3.9) F\lambda (x
0) - lim

t\rightarrow \infty 
F\lambda (x

t) \geq c

2

\infty \sum 

t=0

\| xt+1  - xt\| 22.

Since c > 0, (3.9) implies that \| xt+1  - xt\| 22 \rightarrow 0.
(c) By assumption A2, L(x) is coercive, and so is F\lambda (x), and hence \{ xt\} \infty t=1 is

bounded from (3.9). Therefore, \{ xt\} \infty t=1 has a convergent subsequence, denoted by
xtj \rightarrow x\ast as tj \rightarrow \infty . From (b), we have xtj+1 \rightarrow x\ast as well. Using (3.3) and (3.8),
we obtain

\widehat G\lambda (x
tj+1 ;xtj+1) = F\lambda (x

tj+1) \leq \widehat G\lambda (x
tj+1 ;xtj ) \leq \widehat G\lambda (x;x

tj ) \forall x.

By taking the limit on tj \rightarrow \infty , we have \widehat G\lambda (x
\ast ;x\ast ) \leq \widehat G\lambda (x;x

\ast ) \forall x, which implies

that \widehat G\lambda (\cdot ;x\ast ) \prime (x\ast ;x - x\ast ) \geq 0 \forall x \in Rd. By Lemma 3.2, we obtain F \prime 
\lambda (x

\ast ;x - x\ast ) \geq 0,
which shows that every limit point of \{ xt\} \infty t=1 is a stationary solution of (2.1).

3.3. Subproblem solution. We solve for (3.6) at each iteration, which is equiv-
alent to weighted group LASSO for c = 0. There are many efficient algorithms for
group LASSO that can be adapted here, among which we describe a vanilla ADMM
framework [4]. In particular, we introduce an auxiliary variable z and rewrite (3.6)
into an equivalent form:

min
\bfx ,\bfz 

L(z) +
c

2
\| z - xt\| 22 + \lambda 

m\sum 

k=1

\sqrt{} 
| \scrG k| \sqrt{} 
wt

k

\| x\scrG k
\| 2 s.t. x = z.(3.10)

The corresponding augmented Lagrangian is expressed as

\scrL (x, z;v) \triangleq L(z) +
c

2
\| z - xt\| 22 + \lambda 

m\sum 

k=1

\sqrt{} 
| \scrG k| \sqrt{} 
wt

k

\| x\scrG k
\| 2 + \langle \rho v,x - z\rangle + \rho 

2
\| x - z\| 22,

where v is a Lagrangian multiplier (or dual variable) and \rho is a positive parameter.
We consider a scaled form by multiplying \rho by \langle v,x - z\rangle , and hence ADMM iterations
proceed as follows:

(3.11)

\left\{ 
 
 

x\tau +1 \in argmin\bfx \scrL (x, z\tau ;v\tau ),
z\tau +1 \in argmin\bfz \scrL (x\tau +1, z;v\tau ),
v\tau +1 = v\tau + x\tau +1  - z\tau +1,

where we use the index of \tau to indicate its inner iteration, as opposed to t for the
outer iteration of the MM framework (3.6). We then elaborate on how to solve the
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Algorithm 1 Iteratively reweighted algorithm for least squares loss

Set c, \varepsilon , \rho , and \lambda 
Set tolerance parameters \delta 1, \delta 2, \delta 3, \delta 4 and maximum iteration numbers \Delta 1,\Delta 2

Initialize x0, z0,v0, t = 0
repeat

for k = 1, 2, . . . ,m do
wt

k = \| xt
\scrG k
\| 22 + \varepsilon 

\lambda k = \lambda 
\sqrt{} 
| \scrG k| /wt

k

end
repeat

for k = 1, 2, . . . ,m do
x\tau +1
\scrG k

= S(z\tau \scrG k
 - v\tau 

\scrG k
, \lambda k/\rho )

end

z\tau +1 =
\Bigl( 

1
nA

TA+ (c+ \rho )Id

\Bigr)  - 1\Bigl( 
1
nA

Tb+ cxt + \rho (x\tau +1 + v\tau )
\Bigr) 

v\tau +1 = v\tau + x\tau +1  - z\tau +1

\tau = \tau + 1

until \| Ax\tau  - b\| 2 < \delta 1 or
\| x\tau  - z\tau \| 2

max\{ \| x\tau \| 2, \| z\tau \| 2, \delta 2\} 
< \delta 3 or \tau = \Delta 1;

xt+1
\scrG k

= x\tau 
\scrG k

\forall k
t = t+ 1
\tau = 0

until \| xt  - xt - 1\| 2 < \delta 4 or t = \Delta 2;
Output \^x = xt.

two minimization problems in (3.11). Specifically for the x-subproblem, it can be
decomposed into each group

(3.12) x\tau +1
\scrG k

\in argmin
\bfx 

\lambda k\| x\| 2 +
\rho 

2
\| x - z\tau \scrG k

+ v\tau 
\scrG k
\| 22,

where \lambda k \triangleq \lambda 

\surd 
| \scrG k| \surd 
wt

k

. The closed-form solution for (3.12) is given by

x\tau +1
\scrG k

= S(z\tau \scrG k
 - v\tau 

\scrG k
, \lambda k/\rho ),

where S is referred to as a soft-shrinkage operator defined as

S(z, \lambda ) =

\left\{ 
 
 

\biggl( 
1 - \lambda 

\| z\| 2

\biggr) 
z if \| z\| 2 > \lambda ,

0 if \| z\| 2 \leq \lambda .

Note that the shrinkage operator makes solving l1-related problems very efficient.
For the z-subproblem, we take the derivative of \scrL with respect to z, and the

optimal solution of z\tau +1 should satisfy the following equation:

(3.13) \nabla L(z) + c(z - xt) + \rho (z - x\tau +1  - v\tau ) = 0.

The solution of (3.13) can be obtained in different ways depending on the loss function.
In this paper, we consider two types of loss functions: least squares loss and logistic
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loss, which are defined in section 2. Specifically, for least squares loss (2.3), the
optimality condition (3.13) gives the closed-form solution for z,

(3.14) z\tau +1 =
\Bigl( 1

n
ATA+ (c+ \rho )Id

\Bigr)  - 1\Bigl( 1

n
ATb+ cxt + \rho (x\tau +1 + v\tau )

\Bigr) 
,

where Id denotes the identity matrix of size d\times d. The overall algorithm for the least
squares loss is described in Algorithm 1.

There is no closed-form solution of z for the logistic loss, and we use Newton's
method to find the solution. In particular, we get the first and second derivatives of
Llogit defined in (2.4) with respect to each component of z as follows:

(3.15)

\partial Llogit

\partial zj
=  - 1

n

n\sum 

i=1

\biggl[ 
biaij  - 

biaij

1 + e - bi\bfa T
i \bfz 

\biggr] 
,

\partial 2Llogit

\partial zj\partial zk
=

1

n

n\sum 

i=1

b2i aijaik

2 + ebi\bfa 
T
i \bfz + e - bi\bfa T

i \bfz 

for j, k = 1, . . . , d. Here A \in Rn\times d with aij as the jth component of ai. Newton's
method at the sth inner iteration is given by

zs+1 = zs - \delta s

\Bigl( 
\nabla 2

\bfz L
logit(zs) + (c+ \rho )Id

\Bigr)  - 1

\Bigl( 
\nabla \bfz L

logit(zs) + c(zs  - xt) + \rho (zs  - x\tau +1  - v\tau )
\Bigr) 
,(3.16)

where \delta s > 0 is a step size. We summarize the algorithm corresponding to the logistic
loss in Algorithm 2.

4. Numerical experiments. We carry out extensive experiments on the prob-
lems of linear regression and binary classification. Sections 4.2--4.3 investigate syn-
thetic datasets with group sparse patterns simulated from least squares and logistic
regression models, respectively. In section 4.4, we examine real data on gene ex-
pression profiling for Bardet--Biedl syndrome in mammals with a generalized additive
model, where smoothing spline functions of features can be expressed as a matrix
expanded in the order of the splines [20]. The learned solution is used to detect which
genes are responsible for the syndrome in order to better understand the complex dis-
ease. In section 4.5, we study clinical features of pediatric acute respiratory infections
(ARI) with real data collected by the World Health Organization ARI Multicentre
Study [25]. Making use of the clinically supported clustering of the features, any
advances in group selection can identify significant clinical signs of ARI and guide the
development of diagnostic measures.

4.1. Experimental settings. We implement Algorithm 1 in MATLAB to solve
group LOG with least squares loss (2.3), while using the R package grpreg [5] to solve
the group LASSO subproblem with logistic loss (2.4) for convenience. To improve
computational efficiency of our method, we use relaxed termination criteria when
solving the subproblem for all the linear regression experiments. Every group LASSO
iteration (3.6) can be solved quickly at a price of producing a ``relaxed"" solution. For
more details, refer to Table 4 and related discussion on the computational cost of
group LOG.

The performance of our method is compared to LASSO, group LASSO, group
SCAD, group MCP, OLS (for regression only) (2.3), and the ordinary logistic re-
gression (for classification only) (2.4). We use CVX to find the solutions to OLS and
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Algorithm 2 Iteratively reweighted algorithm for logistic loss

Set c, \varepsilon , \rho , and \lambda 
Initialize x0, z0,v0, t = 0, s = 0
repeat

for k = 1, 2, . . . ,m do
wt

k = \| xt
\scrG k
\| 22 + \varepsilon 

\lambda k = \lambda 
\sqrt{} 
| \scrG k| /wt

k

end
repeat

for k = 1, 2, . . . ,m do
x\tau +1
\scrG k

= S(z\tau \scrG k
 - v\tau 

\scrG k
, \lambda k/\rho )

end
repeat

update zs+1 by using (3.16)
s = s+ 1

until zs converges ;
z\tau +1 = zs
v\tau +1 = v\tau + x\tau +1  - z\tau +1

\tau = \tau + 1
s = 0

until x\tau 
\scrG k

converges for all k;

xt+1
\scrG k

= x\tau 
\scrG k

\forall k
t = t+ 1
\tau = 0

until xt converges ;
Output \^x = xt.

LASSO, while group SCAD and group MCP are implemented by grpreg. One it-
eration of Algorithm 1, without updating the weight, yields the solution for group
LASSO. In the case of binary classification, we use glmnet [35] to solve for the ordi-
nary logistic regression as well as LASSO with the logistic loss. All the other logistic
regression models promoting group sparsity are solved by grpreg.

As for the hyperparameters involved in each method, we mainly tune \lambda for
LASSO, group LASSO, and group LOG, while tuning \eta for group SCAD and group
MCP. For group LOG, we fix c = 01 and choose specific values of \varepsilon for different ex-
periments. For group SCAD and group MCP, we fix \lambda = 1 and use the default values
of \gamma suggested by grpreg, which are \gamma MCP = 3 and \gamma SCAD = 4. In linear regression
(sections 4.2 and 4.4), we use a hyperparameter set, denoted by U = \{ \lambda 1, . . . , \lambda 50\} ,
for LASSO, group LASSO, and group LOG. Following a conventional choice of the
set, we have for synthetic data in section 4.2 that

\lambda i =

\left\{ 
    
    

10 - 5, i = 1,

5\lambda i - 1, 2 \leq i \leq 6,

1.1\lambda i - 1, 7 \leq i \leq 44,

2\lambda i - 1, 45 \leq i \leq 50.

For real data in section 4.4, we define \lambda 1 = 10 - 5 and \lambda i = 1.3\lambda i - 1 for 2 \leq i \leq 50.

1We need c to be strictly positive to show convergence in Theorem 3.3, while experimentally we
observe that c = 0 often gives satisfactory results. We use c = 0 throughout the experiments.
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For methods implemented by grpreg, we have a hyperparameter set of 50 values,
and subsequently, the package automatically returns 50 equally spaced values on the
log scale over the relevant range [5]. Group LOG regularized logistic regression uses
the hyperparameter set from the first iteration with grpreg. The hyperparameter
sets for all the methods are confirmed to cover the relevant ranges; i.e., the optimal
hyperparameters are not at the edges of the ranges.

We split real data into three sets of data: training set, validation set, and test set.
For synthetic data, we only generate a training set and a validation set, while evalu-
ating the performance by comparing to the ground-truth. For linear regression, the
optimal hyperparameter is chosen based on the least squared error on the validation
set. In binary classification (sections 4.3 and 4.5), the hyperparameter sets for \lambda and
\eta are obtained by glmnet and grpreg, respectively. We select the best \lambda and \eta that
produce the largest area under the curve (AUC) on the validation set for synthetic
data in section 4.3 and the smallest classification error for real data in section 4.5.
The AUC and classification error are defined in the respective sections.

4.2. Synthetic data experiments for linear regression. To test the perfor-
mance on the linear regression problem, we generate a feature matrix A \in R100\times 200

from the standard Gaussian distribution such that aij
iid\sim N(0, 1), j = 1, . . . , 200, for

i = 1, . . . , 100. A ground-truth vector is x\ast = (x\ast 
1, . . . , x

\ast 
200)

T \in R200. We introduce
\=A \triangleq [1, A] \in R100\times 201, where 1 \triangleq (1, . . . , 1)T \in R100 for the intercept term x\ast 

0 to
capture the center of data. A response vector b \in R100 is generated such that

(4.1) b = \=A\=x\ast + e,

where \=x\ast \triangleq (x\ast 
0, x\ast T )T \in R201 and e denotes the Gaussian noise such that ei \sim 

N(0, \alpha 2\sigma 2
A) with \sigma A being the standard deviation of \=A\=x\ast and \alpha being the noise level.

We vary the noise level as \alpha = 0.1, 0.2, 0.3 for three experimental scenarios from less
noisy to more noisy cases.

We let x\ast 
0 = 0 and make x\ast have 20 groups each having 10 coefficients. Among the

20 groups of homogeneous size of ten, 13 have nonzero coefficients that are uniformly

distributed such that x\ast 
j

iid\sim U [ - 5, 5], and the other 7 have zero coefficients, i.e., x\ast 
j = 0.

We randomly generate 50 ground-truth vectors with corresponding training/validation
sets. For each ground-truth x\ast , we generate a set of training instances (Atr,btr) \in 
R100\times 200 \times R100 and a validation set (Av,bv) \in R100\times 200 \times R100. We fix \varepsilon = 0.001 in
this experiment and choose the best value of \lambda in the hyperparameter set U that gives
the smallest squared error | | bv  - \^x01 - Av\^x| | 22 on the validation set, where \^x \in R100

denotes the reconstructed solution with the optimal hyperparameter, and \^x0 is the
estimated intercept. Note that, for numerical experiments, any learned model does
not regularize the intercept, and we do not measure the errors between x\ast 

0 and \^x0

either.
We consider five metrics to quantitatively evaluate the performance of a recon-

structed solution \^x of each method. Without loss of generality, we assume that the
grouped members of x\ast are ordered by \scrG 1, . . . ,\scrG m\prime (m\prime < m) that have nonzero co-
efficients, whereas \scrG m\prime +1, . . . ,\scrG m have zero coefficients. The support of x\ast and the
support recovered by \^x are denoted as \scrS and \^\scrS , respectively. We present a confusion
matrix in Table 2 that is used to compute the following metrics for assessment:

1. Relative error of \^x \triangleq \| \^\bfx  - \bfx \ast \| 2

\| \bfx \ast \| 2
.

2. Precision of \^x \triangleq | \^\scrS \cap \scrS | 
| \^\scrS | .

3. Recall of \^x \triangleq | \^\scrS \cap \scrS | 
| \scrS | .
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Table 2
A confusion matrix for comparing group sparse patterns in a reconstructed solution \^\bfx to those

in the ground-truth \bfx \ast .

\scrS \triangleq \{ j : x\ast 
j \not = 0\} \scrS c \triangleq \{ j : x\ast 

j = 0\} 

Positive set True positives False positives
\^\scrS \triangleq \{ j : \^xj \not = 0\} \^\scrS \cap \scrS \^\scrS \cap \scrS c

Negative set False negatives True negatives
\^\scrS c \triangleq \{ j : \^xj = 0\} \^\scrS c \cap \scrS \^\scrS c \cap \scrS c

Table 3
Results for synthetic regression datasets with homogeneous group sizes. The averages are pre-

sented along with their standard deviations in parentheses.

Method Relative error Precision Recall Accuracy Group accuracy

\alpha = 0.1
OLS 0.7045 (0.0517) 0.3500 (0.0000) 1.0000 (0.0000) 0.3500 (0.0000) 0.3500 (0.0000)
LASSO 0.6641 (0.0960) 0.5311 (0.0621) 0.6689 (0.1069) 0.6660 (0.0761) 0.0300 (0.0440)
Group LASSO 0.3517 (0.0677) 0.3862 (0.0398) 1.0000 (0.0000) 0.4360 (0.0783) 0.4360 (0.0783)
Group SCAD 0.4041 (0.1939) 0.9763 (0.0714) 0.9886 (0.0391) 0.9850 (0.0368) 0.9850 (0.0368)
Group MCP 0.4444 (0.2401) 0.9905 (0.0382) 0.9000 (0.1163) 0.9620 (0.0458) 0.9620 (0.0458)
Group LOG 0.1613 (0.0288) 0.9751 (0.0671) 1.0000 (0.0000) 0.9890 (0.0308) 0.9890 (0.0308)

\alpha = 0.2
OLS 0.7508 (0.0369) 0.3500 (0.0000) 1.0000 (0.0000) 0.3500 (0.0000) 0.3500 (0.0000)
LASSO 0.7259 (0.0700) 0.5097 (0.0475) 0.6426 (0.0827) 0.6538 (0.0468) 0.0250 (0.0368)
Group LASSO 0.4862 (0.0814) 0.3871 (0.0316) 0.9971 (0.0202) 0.4410 (0.0698) 0.4410 (0.0698)
Group SCAD 0.5061 (0.1422) 0.9386 (0.1022) 0.9771 (0.0728) 0.9640 (0.0572) 0.9640 (0.0572)
Group MCP 0.5481 (0.1706) 0.9927 (0.0364) 0.8886 (0.1332) 0.9590 (0.0512) 0.9590 (0.0512)
Group LOG 0.3142 (0.0625) 0.9753 (0.0705) 0.9943 (0.0283) 0.9870 (0.0347) 0.9870 (0.0347)

\alpha = 0.3
OLS 0.7404 (0.0471) 0.3500 (0.0000) 1.0000 (0.0000) 0.3500 (0.0000) 0.3500 (0.0000)
LASSO 0.7345 (0.0798) 0.5258 (0.0634) 0.6386 (0.0999) 0.6631 (0.0555) 0.0430 (0.0639)
Group LASSO 0.4761 (0.0729) 0.3903 (0.0310) 1.0000 (0.0000) 0.4480 (0.0670) 0.4480 (0.0670)
Group SCAD 0.5180 (0.1558) 0.9152 (0.1108) 0.9743 (0.0625) 0.9540 (0.0579) 0.9540 (0.0579)
Group MCP 0.5817 (0.1957) 0.9852 (0.0533) 0.8771 (0.1291) 0.9520 (0.0525) 0.9520 (0.0525)
Group LOG 0.3010 (0.0500) 0.9875 (0.0379) 1.0000 (0.0000) 0.9950 (0.0152) 0.9950 (0.0152)

4. Element accuracy of \^x \triangleq | \^\scrS \cap \scrS | +| \^\scrS c\cap \scrS c| 
d , with \^x \in Rd.

5. Group accuracy of \^x \triangleq | \scrM tp| +| \scrM tn| 
m , where

true positive groups of \^x (\scrM tp) \triangleq \{ k \in \{ 1, . . . ,m\prime \} : \scrG k \subset \^\scrS \} ,
true negative groups of \^x (\scrM tn) \triangleq \{ k \in \{ m\prime + 1, . . . ,m\} : \scrG k \subset \^\scrS c\} .

The relative error computes the distance between the solution and the ground-truth
vector normalized by the l2 norm of the ground-truth vector. The precision is the
fraction of true positives among the nonzero indices in \^x, while the recall is the
fraction of true positives among the nonzero indices in x\ast . The element accuracy is
the fraction of the true positives and true negatives among all the member indices. A
group having all true positives or all true negatives is considered a group that achieves
success in sparsity recovery. Thus, the group accuracy is the fraction of the groups
successfully recovered among all groups.

We report the average values and the standard deviations of the above metrics
over 50 training/validation sets in Table 3. The proposed group LOG produces the
smallest relative errors, highest accuracy, and group accuracy. Specifically, it is worth
noting that the group accuracy of group LOG is always larger than 98\% under all three
noise levels, while LASSO suffers from low group accuracy. Each group regularizer
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Table 4
Comparison of accuracy, wall time, and number of iterations for synthetic regression datasets

with homogeneous group sizes and \alpha = 0.1. The averages are presented along with their standard
deviations in parentheses.

Method Relative error Accuracy Group accuracy Time Outer iter. Total iter.
Group LASSO 0.3517 (0.0677) 0.4360 (0.0783) 0.4360 (0.0783) 1.02 NA 948.82
Group LOG (exact) 0.1465 (0.0233) 0.9950 (0.0152) 0.9950 (0.0152) 10.97 10.36 10,088.62
Group LOG (relaxed) 0.1613 (0.0288) 0.9890 (0.0308) 0.9890 (0.0308) 0.50 9.24 462.00

such as group LOG and group LASSO produces the same accuracy and group accuracy
values in such a homogeneous group setting, where the number of correctly recovered
coefficients is a product of the group size and the number of correctly recovered
groups. This is also observed for binary classification with homogeneous group sizes
in Table 6. Our approach and group MCP in Table 3 show great performance in
terms of precision. The highest recall values are achieved by OLS, group LASSO,
and group LOG. Since OLS does not perform variable selection and produce nonzero
coefficients, their recall values are always 1 with poor precision values. Although
the trade-off between precision and recall tends to hinder simultaneous achievement
of high precision and high recall, our approach shows very satisfactory results of a
balanced performance across the five metrics in comparison to the other methods.

The group LOG results from Table 3 are obtained with relaxed termination crite-
ria in Algorithm 1: \delta 1 = \delta 3 = 1e-1, \delta 2 = 1e-16, \delta 4 = 1e-6 and \Delta 1 = 50, \Delta 2 = 15. A
more accurate solution can be obtained by setting \Delta 1 = 1000, with much higher com-
putation costs. By decreasing the number of iterations solved within the subproblem,
the relaxed scheme significantly reduces the computational time. Table 4 compares
the performance and computational efficiency of group LASSO, exact group LOG,
and relaxed group LOG on the simulated datasets with \alpha = 0.1. With the maximum
iteration number \Delta 1 = 1000 for group LASSO, the average iteration number is 948.82.
Compared to group LASSO, the exact group LOG using the same strict termination
criteria for the subproblem has a tenfold increase in the time spent. The relaxed
setting of small inner iterations \Delta 1 = 50 maintains performance accuracy, reducing
the computational time to nearly half of the time used by group LASSO.

We generate another set of synthetic data with heterogeneous group sizes, as
opposed to an equal number of members in each group. We still consider 20 groups,
but with group sizes of [2, 3, 10, 15, 20, 2, 3, 10, 15, 20, 2, 3, 10, 15, 20, 2, 3, 10, 15, 20] by
setting | \scrG 1+5\cdot k| = 2, | \scrG 2+5\cdot k| = 3, | \scrG 3+5\cdot k| = 10, | \scrG 4+5\cdot k| = 15, and | \scrG 5+5\cdot k| = 20
for k = 0, 1, 2, 3. We then randomly select 7 nonzero groups, whose corresponding
coefficients in x\ast are generated by a continuous uniform distribution between  - 5 and
5. All the coefficients in the rest of the 13 groups are set as zero. Table 5 presents the
results from the experiments with the heterogeneous group sizes. We can observe the
same behavior as in Table 3, which shows that our approach is the best in terms of a
balanced performance on all the metrics. Due to the imbalanced sparsity across the
groups, it is more difficult to maintain a high group accuracy than for the homogeneous
case. As a result, our approach gives slightly worse group accuracy in Table 5 than in
Table 3, but still with significant improvements over the alternative methods. Group
MCP and SCAD do not perform well at a higher noise level of \alpha = 0.3.

4.3. Synthetic data experiments for binary classification. In this experi-
ment, we generate a data matrix \=A and a coefficient sequence \=x\ast in the same manner
as in section 4.2 with both homogeneous and heterogeneous group sizes. A response
vector b is generated from a Bernoulli distribution such that the probability of the

D
ow

nl
oa

de
d 

04
/2

1/
22

 to
 1

31
.1

79
.6

0.
15

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ITERATIVE GROUP LASSO VIA LOG-COMPOSITE PENALTY S671

Table 5
Results for synthetic regression datasets with heterogeneous group sizes. The averages are

presented along with their standard deviations in parentheses.

Method Relative error Precision Recall Accuracy Group accuracy

\alpha = 0.1
OLS 0.7107 (0.0590) 0.3359 (0.0644) 1.0000 (0.0000) 0.3359 (0.0644) 0.3500 (0.0000)
LASSO 0.6514 (0.1311) 0.5050 (0.0747) 0.6911 (0.1216) 0.6598 (0.0637) 0.1660 (0.0738)
Group LASSO 0.3493 (0.1165) 0.3667 (0.0656) 0.9987 (0.0064) 0.4184 (0.0861) 0.4970 (0.0860)
Group SCAD 0.3609 (0.1159) 0.3520 (0.0720) 0.9993 (0.0046) 0.3774 (0.0881) 0.4230 (0.0893)
Group MCP 0.3625 (0.1146) 0.3481 (0.0696) 0.9993 (0.0046) 0.3674 (0.0859) 0.3950 (0.0764)
Group LOG 0.2278 (0.1046) 0.9760 (0.0693) 0.9753 (0.0238) 0.9796 (0.0353) 0.9540 (0.0359)

\alpha = 0.2
OLS 0.7343 (0.0508) 0.3478 (0.0754) 1.0000 (0.0000) 0.3478 (0.0754) 0.3500 (0.0000)
LASSO 0.7049 (0.1096) 0.5192 (0.0832) 0.6311 (0.1356) 0.6613 (0.0659) 0.1800 (0.1035)
Group LASSO 0.4495 (0.1012) 0.3890 (0.0880) 0.9971 (0.0089) 0.4442 (0.1159) 0.5030 (0.0883)
Group SCAD 0.7236 (0.3279) 0.8063 (0.1611) 0.5272 (0.3953) 0.7806 (0.1607) 0.7570 (0.1270)
Group MCP 0.7534 (0.3209) 0.7996 (0.1684) 0.4919 (0.4078) 0.7714 (0.1629) 0.7530 (0.1251)
Group LOG 0.3983 (0.0956) 0.9517 (0.0951) 0.9445 (0.0665) 0.9589 (0.0461) 0.9230 (0.0419)

\alpha = 0.3
OLS 0.7814 (0.0458) 0.3380 (0.0792) 1.0000 (0.0000) 0.3380 (0.0792) 0.3500 (0.0000)
LASSO 0.7414 (0.0880) 0.5103 (0.0805) 0.6181 (0.1215) 0.6638 (0.0632) 0.1720 (0.0743)
Group LASSO 0.5210 (0.0853) 0.3897 (0.0835) 0.9955 (0.0118) 0.4667 (0.1078) 0.5260 (0.0933)
Group SCAD 1.0000 (0.0281) 0.5083 (0.1935) 0.0852 (0.1516) 0.6648 (0.0912) 0.6480 (0.0589)
Group MCP 1.0026 (0.0281) 0.5162 (0.2403) 0.0746 (0.1544) 0.6658 (0.0889) 0.6520 (0.0553)
Group LOG 0.5098 (0.0873) 0.9118 (0.1647) 0.9243 (0.0560) 0.9328 (0.0900) 0.8870 (0.0653)

ith response being 1 is

P (bi = 1) =
1

1 + e - \=\bfa i\=\bfx \ast , i = 1, . . . , 100,(4.2)

where \=ai is the ith row of \=A. We generate 50 training/validation sets corresponding
to the same sequence \=x\ast . The noise level is represented by the empirical Bayes risk r
based on 100 observations:

r \triangleq 1

100

100\sum 

i=1

min

\biggl( 
1

1 + e - \=\bfa i\=\bfx \ast ,
1

1 + e\=\bfa i\=\bfx \ast 

\biggr) 
.

By scaling \=x\ast to 0.5\=x\ast and 0.25\=x\ast , we can evaluate the performance under scenarios
with different risk values of r = 0.0092, 0.0236, 0.0610, respectively [32]. A higher risk
value of r corresponds to more noisy data that makes a learning task more challenging.
We set \varepsilon = 0.001 for our method in the first scenario with \=x\ast , and we set \varepsilon = 0.1 in the
other two scenarios. We rely on the receiver operating characteristic (ROC) curve to
tune the hyperparameter. An ROC curve plots the true positive rate (TPR) versus the
false positive rate (FPR) at different thresholds of the estimated probability (4.2) for
an individual observation [21]. We find the optimal hyperparameter that produces the
largest area under the ROC curve (AUC) on the validation set, which corresponds to
the best combination of high TPR and low FPR regardless of the thresholding values.

Tables 6--7 present the results of binary classification for the homogeneous and
heterogeneous group sizes, respectively, using the measures introduced in section 4.2
to evaluate the performance. The proposed approach is significantly better than the
alternative methods in terms of relative errors, accuracy, and group accuracy. Our
solutions yield precision and recall values above 0.7 in all cases, whereas the other
approaches perform poorly in terms of either precision or recall. Furthermore, our
approach works in a reasonable manner, with a higher empirical Bayes risk corre-
sponding to a more difficult learning problem.
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Table 6
Results for synthetic logistic datasets with homogeneous group sizes. The averages are presented

along with their standard deviations in parentheses. The average empirical Bayes risk value, r, is
annotated for each scenario.

Method Relative error Precision Recall Accuracy Group accuracy
r = 0.0092
Logistic regression 0.9756 (0.0555) 0.3500 (0.0000) 1.0000 (0.0000) 0.3500 (0.0000) 0.3500 (0.0000)
LASSO 0.9515 (0.0264) 0.5217 (0.1232) 0.3600 (0.1219) 0.6432 (0.0312) 0.1110 (0.1756)
Group LASSO 0.9588 (0.0204) 0.4932 (0.0923) 0.9286 (0.1392) 0.6141 (0.1224) 0.6140 (0.1225)
Group SCAD 0.9436 (0.0548) 0.7105 (0.1543) 0.7571 (0.1876) 0.7840 (0.0798) 0.7840 (0.0798)
Group MCP 0.9250 (0.0619) 0.8518 (0.1728) 0.5943 (0.1740) 0.8190 (0.0856) 0.8190 (0.0856)
Group LOG 0.9036 (0.0293) 0.8407 (0.1518) 0.7314 (0.2172) 0.8450 (0.0865) 0.8450 (0.0865)
r = 0.0236
Logistic regression 1.3618 (0.1053) 0.3500 (0.0000) 1.0000 (0.0000) 0.3500 (0.0000) 0.3500 (0.0000)
LASSO 0.9274 (0.0381) 0.5285 (0.1154) 0.3534 (0.1150) 0.6489 (0.0339) 0.1280 (0.1582)
Group LASSO 0.9224 (0.0306) 0.5058 (0.1064) 0.9429 (0.0913) 0.6300 (0.1169) 0.6300 (0.1169)
Group SCAD 0.9298 (0.0575) 0.6839 (0.1526) 0.7943 (0.1504) 0.7830 (0.1008) 0.7830 (0.1008)
Group MCP 0.9107 (0.0811) 0.8218 (0.1647) 0.5914 (0.1384) 0.8080 (0.0791) 0.8080 (0.0791)
Group LOG 0.8542 (0.0589) 0.8391 (0.1799) 0.7400 (0.1993) 0.8360 (0.1005) 0.8360 (0.1005)
r = 0.0610
Logistic regression 2.5882 (0.1892) 0.3500 (0.0000) 1.0000 (0.0000) 0.3500 (0.0000) 0.3500 (0.0000)
LASSO 0.9431 (0.0421) 0.5281 (0.1233) 0.3291 (0.1287) 0.6457 (0.0339) 0.1450 (0.1745)
Group LASSO 0.8991 (0.0514) 0.5594 (0.1480) 0.8771 (0.1756) 0.6670 (0.1304) 0.6670 (0.1304)
Group SCAD 0.9632 (0.1023) 0.6791 (0.1730) 0.7771 (0.1532) 0.7670 (0.1008) 0.7670 (0.1008)
Group MCP 1.0273 (0.1936) 0.7991 (0.1955) 0.5543 (0.1545) 0.7880 (0.0901) 0.7880 (0.0901)
Group LOG 0.8401 (0.0768) 0.8231 (0.1955) 0.7029 (0.1495) 0.8220 (0.1041) 0.8220 (0.1041)

Table 7
Results for synthetic logistic datasets with heterogeneous group sizes. The averages are presented

along with their standard deviations in parentheses. The average empirical Bayes risk value, r, is
annotated for each scenario.

Method Relative error Precision Recall Accuracy Group accuracy
r = 0.0168
Logistic regression 0.9903 (0.0786) 0.3439 (0.0829) 1.0000 (0.0000) 0.3439 (0.0829) 0.3500 (0.0000)
LASSO 0.9478 (0.0292) 0.5213 (0.1356) 0.3728 (0.1205) 0.6526 (0.0528) 0.2020 (0.1340)
Group LASSO 0.9545 (0.0207) 0.5328 (0.1563) 0.9403 (0.1085) 0.6567 (0.1458) 0.6520 (0.1286)
Group SCAD 0.9279 (0.0848) 0.7541 (0.1774) 0.7958 (0.1692) 0.8135 (0.1083) 0.7740 (0.1065)
Group MCP 0.9157 (0.0844) 0.8977 (0.1293) 0.6284 (0.1973) 0.8376 (0.0909) 0.7990 (0.0836)
Group LOG 0.8806 (0.0554) 0.8823 (0.1280) 0.8333 (0.1719) 0.8910 (0.0899) 0.8320 (0.0885)
r = 0.0371
Logistic regression 1.4067 (0.2025) 0.3439 (0.0829) 1.0000 (0.0000) 0.3439 (0.0829) 0.3500 (0.0000)
LASSO 0.9250 (0.0416) 0.5139 (0.1016) 0.3693 (0.1004) 0.6567 (0.0559) 0.2150 (0.1041)
Group LASSO 0.9257 (0.0293) 0.5287 (0.1439) 0.9583 (0.0631) 0.6644 (0.1389) 0.6630 (0.1224)
Group SCAD 0.8977 (0.1177) 0.7504 (0.1652) 0.8987 (0.1046) 0.8360 (0.1021) 0.7830 (0.0896)
Group MCP 0.8683 (0.1301) 0.8590 (0.1755) 0.6528 (0.2016) 0.8359 (0.1137) 0.7900 (0.0904)
Group LOG 0.7981 (0.0907) 0.8732 (0.1369) 0.8405 (0.1810) 0.8853 (0.0919) 0.8310 (0.0820)
r = 0.0765
Logistic regression 2.6696 (0.5039) 0.3439 (0.0829) 1.0000 (0.0000) 0.3439 (0.0829) 0.3500 (0.0000)
LASSO 0.9186 (0.0455) 0.5181 (0.1181) 0.3597 (0.1155) 0.6556 (0.0575) 0.2030 (0.1263)
Group LASSO 0.8800 (0.0580) 0.5167 (0.1479) 0.9068 (0.1370) 0.6460 (0.1162) 0.6430 (0.0979)
Group SCAD 0.9409 (0.1138) 0.7020 (0.1772) 0.8241 (0.1481) 0.7914 (0.1062) 0.7390 (0.0791)
Group MCP 1.0063 (0.2089) 0.8436 (0.1586) 0.6501 (0.1998) 0.8275 (0.1157) 0.7770 (0.0828)
Group LOG 0.8013 (0.0960) 0.8541 (0.2007) 0.7697 (0.1868) 0.8535 (0.1298) 0.7990 (0.0889)

4.4. Genomic data experiments for Bardet--Biedl syndrome. We con-
sider a generalized additive model that associates the expression level of TRIM32, a
gene responsible for Bardet--Biedl syndrome [12], with univariate smooth functions
of 20 gene expression levels [20]. Each of the 20 smooth functions is represented by
five B-spline basis functions, forming a group. The feature matrix for the additive
model has 120 observations with the 100 features, each group of 5 consecutive fea-
tures belonging to one gene. The gene expression dataset [42] is from the microarray
experiments on eye tissues harvested from 120 male rats, which is publicly available
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Table 8
Results from gene expression data experiments for Bardet--Biedl syndrome. MSEP stands for

mean squared error of prediction. The averages based on 50 repetitions are presented along with
their standard deviations in parentheses.

Method MSEP Coefficient selection rate Group selection rate
OLS 2.6024 (7.4440) 1.0000 (0.0000) 1.0000 (0.0000)
LASSO 0.0242 (0.0203) 0.1974 (0.1932) 0.5650 (0.3280)
Group LASSO 0.0231 (0.0197) 0.5208 (0.3288) 0.5210 (0.3289)
Group SCAD 0.0625 (0.1506) 0.2520 (0.1705) 0.2520 (0.1705)
Group MCP 0.1523 (0.4291) 0.1280 (0.0809) 0.1280 (0.0809)
Group LOG 0.0235 (0.0166) 0.2030 (0.1899) 0.2030 (0.1899)

in the R package gglasso [51]. An important task associated with the dataset is
to examine the regulation of the genes related to Bardet--Biedl syndrome, a genetic
disease that may cause progressive visual impairment, kidney abnormalities, learning
difficulties, etc. [18].

We randomly select 80 observations for training (Atr,btr) \in R80\times 100 \times R80, 10
observations for validation (Av,bv) \in R10\times 100\times R10, and the remaining 30 for testing
(Atest,btest) \in R30\times 100\times R30. Fixing \varepsilon = 0.001, we train the model, tune the optimal
hyperparameter, and report the averages together with standard deviations of the
following three measures based on 50 random separations of the data:

1. Mean squared error of prediction (MSEP) \triangleq \| btest  - \^x01 - Atest\^x\| 22.
2. Coefficient selection rate \triangleq 1

d

\sum d
j=1 I(\^xj \not = 0), where I is the indicator func-

tion.
3. Group selection rate \triangleq 1

m

\sum m
k=1 I(\^x\scrG k

\not = 0), where \^x\scrG k
is a coefficient sub-

vector corresponding to the kth group.
MSEP is computed based on the test set. The coefficient selection rate is the average
proportion of nonzero coefficients in \^x, and the group selection rate is the average
ratio of groups having at least one nonzero coefficient to the total groups. The results
are summarized in Table 8, showing that our approach has the highest MSEP. Based
on the coefficient and group selection rates, our method selects 20 (\approx 100 \cdot 0.2032)
nonzero coefficients and 4 (\approx 20 \cdot 0.2050) groups on average with at least one nonzero
element. On the other hand, group LASSO and group SCAD select a larger number
of nonzero coefficients and groups, whereas group MCP tends to produce a smaller
number. LASSO does not enhance a group of zero coefficients, as shown by its low
coefficient selection rate but high group selection rate. Although the correct number
of nonzero groups is unknown for the real data, the proposed method generally gives
a good compromise in comparison to the other methods considered, avoiding extreme
sparse patterns.

4.5. Clinical data experiments for pediatric pneumonia. This experiment
examines clustered clinical signs to predict pediatric pneumonia, an acute respiratory
infection (ARI) that affects the lungs of young infants. According to [41], ARI may be
the main cause of mortality in infants under 3 months of age in developing countries;
thus a successful classifier may be used to diagnose and treat ARI of young infants at
a low cost.

We adopt clinical data that has been collected in Ethiopia by the World Health
Organization ARI (WHO/ARI) Multicentre Study and provided in the R package
hdrm [6]. The data studies 816 infants, among whom we restrict our interest to 116
with positive nutrition scores, meaning those who received adequate nutrition. Based
on the agreement made by clinicians who participated in the WHO/ARI study [19],
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Table 9
Results from clinical data experiments for ARI in young infants. The averages and the standard

deviations are computed based on 50 repetitions.

Method Test error Coefficient selection rate Group selection rate
Logistic regression 0.2886 (0.0950) 0.9688 (0.0120) 1.0000 (0.0000)
LASSO 0.1800 (0.0973) 0.1790 (0.1288) 0.4013 (0.2835)
Group LASSO 0.1829 (0.0709) 0.3431 (0.2977) 0.3175 (0.2829)
Group SCAD 0.1733 (0.0744) 0.1119 (0.1145) 0.0975 (0.1019)
Group MCP 0.1733 (0.0780) 0.0888 (0.0984) 0.0800 (0.0911)
Group LOG 0.1714 (0.0860) 0.1634 (0.2323) 0.1475 (0.2153)

the dataset is processed to have 59 clinical signs, exclusively belonging to each of
16 groups with different sizes; we present the clinical signs in Appendix A. We then
use the data to predict whether an infant with certain clinical signs has pneumonia
or not. We randomly split the group of 116 infants into three sets: 75 for training
(Atr,btr) \in R75\times 59\times R75, 20 for validation (Av,bv) \in R20\times 59\times R20, and 21 for testing
(Atest,btest) \in R21\times 59 \times R21. For a dataset (A,b) \in Rq\times d \times Rq with ai being the ith
row of A, we define the classification error on (A,b) as

1

2 \cdot q

q\sum 

i=1

\bigm| \bigm| \bigm| 2 \cdot I
\biggl( 

1

1 + e - \^x0 - \bfa i\^\bfx 
\geq 0.5

\biggr) 
 - 1 - bi

\bigm| \bigm| \bigm| ,

where \^x is a reconstructed solution and \^x0 is the estimated intercept, based on which
we can define a classifier. With \varepsilon = 0.0001, we choose the optimal hyperparameter
that produces a classifier to achieve the smallest classification error on the validation
set (Av,bv).

In addition to the coefficient and group selection rates used in section 4.4, we
include the classification error on the test set (Atest,btest) to evaluate the prediction
performance. The results in Table 9 are based on 50 random separations of the data,
indicating that our approach achieves the smallest test errors on average. As for
coefficient and group selection rates to infer sparse patterns in the recovered signals,
our approach gives 9 (\approx 0.1634 \cdot 59) nonzero clinical signs and 2 (\approx 0.1475 \cdot 16) clusters
with at least one nonzero clinical sign on average. The clustering of the clinical signs
is ignored in both the logistic regression method and LASSO. Similar to section 4.4,
the recovered coefficients by group LOG have more zeros than the convex methods
(LASSO and group LASSO), while fewer zeros than the nonconvex ones (group MCP
and group SCAD). The proposed regularization can be considered as a good balance
between the existing convex and nonconvex approaches.

5. Conclusion. We introduced a novel log-composite regularizer to promote
group structured sparsity in supervised learning problems. Though the proposed reg-
ularizer is nonconvex and nondifferentiable, we adopted an efficient algorithm that
iteratively solves a convex program with larger weights to penalize zero-groups, com-
puting the weights by the previous iterate. We theoretically demonstrated that the
iterates of the algorithm converge to a stationary point. We further showed that the
stationary point is a global minimizer of the objective function that is composed of the
regularization and a loss function under some assumptions. We conducted compre-
hensive experiments on synthetic and real data for two specific applications of linear
regression and binary classification. We evaluated the performance based on five met-
rics for the synthetic data and three metrics for the real data. We demonstrated that
the proposed approach generally outperforms the state-of-the-art methods; specifi-
cally worth noting is that it often exhibits a well-balanced performance in comparison
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to the existing convex and nonconvex methods.

Appendix A. Clinical signs of ARI. We list clustered clinical signs of ARI
in Table 10.

Table 10
Clustering of clinical signs of ARI in young infants. The group regularization methods including

our approach utilize the clinically guided clustering for prediction of ARI.

Group name Sign abbreviation Clinical sign
bul.conv abb bulging fontanelle

convul hx convulsion
hydration abk sunken fontanelle

hdi hx diarrhea
deh dehydrated
stu skin turgor
dcp digital capillary refill

drowsy hcl less activity
qcr quality of crying
csd drowsy state
slpm sleeping more
wake wakes less easily
aro arousal
mvm amount of movement
att attentive

agitated hcm crying more
hcs crying less
slpl sleeping less
con consolability
csa agitated state

reffort nfl nasal flaring
lcw lower chest in-drawing
gru grunting
ccy central cyanosis

breath hap hx stop breathing
apn apnea
hrat heart rate

ausc whz wheezing
coh cough heard
crs crepitation
str stridor

hxprob hfb fast breathing
hdb difficulty breathing
rr adjusted respiratory rate
inc respiratory distress
sr1 respiratory state 1
sr2 respiratory state 2

feeding hfa hx abnormal feeding
absu sucking ability
afe drinking ability
hvo vomit more

labor chi previous child died
fde fever at delivery
ldy days in labor
twb water broke

abdominal abd abdominal distension
jau jaundice
omph omphalitis

fever.ill temp temperature (in Celsius)
hfe hx fever

pustular conj conjunctivitis
oto otoscopy impression
puskin pustular skin rash

birth biwt birth weight
bat birth preterm

growth hcir head circumference
wght weight (in grams)
lgth length (in centimeters)

age age age (in days)
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