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Simul. 2017] reduces such complexity to O(NS) in the context of phonon calculations
with a large basis set for the first time, and demonstrates its effectiveness for model
problems. In this paper, we improve the performance of the ACP formulation by
splitting the polarizability into a near singular component that is statically compressed,
and a smooth component that is adaptively compressed. The new split representation
maintains the O(/\lg) complexity, and accelerates nearly all components of the ACP
formulation, including Chebyshev interpolation of energy levels, iterative solution of
Sternheimer equations, and convergence of the Dyson equations. For simulation of real
materials, we discuss how to incorporate nonlocal pseudopotentials and finite
temperature effects. We demonstrate the effectiveness of our method using
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1 Introduction

Density functional perturbation theory (DFPT) [3,4,9,17] studies the response of a quan-
tum system under small perturbation, where the quantum system is described at the
level of first principle electronic structure theories such as Kohn-Sham density functional
theory (KSDFT) [19,23]. One important application of DFPT is the calculation of vibra-
tion properties such as phonons, which can be further used to calculate many physical
properties such as infrared spectroscopy, elastic neutron scattering, specific heat, heat
conduction, and electron-phonon interaction related behaviors such as superconductiv-
ity (see [4] for a review). DFPT describes vibration properties through a polarizability
operator, which characterizes the linear response of the electron density with respect
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to the perturbation of the external potential. More specifically, in vibration calculations,
the polarizability operator needs to be applied to d x Ny ~ O(N,) perturbation vectors,
where d is the spatial dimension (usually d = 3), N4 is the number of atoms, and N, is
the number of electrons. In general the complexity for solving KSDFT is O(N?), while the
complexity for solving DFPT is O(N2). It is possible to reduce the computational com-
plexity of DFPT calculations by “linear scaling methods” [6,16,35]. Such methods can be
successful in reducing the computational cost for systems of large sizes with substantial
band gaps, but this can be challenging for medium-sized systems with relatively small
band gaps.

The term “phonon calculation” usually describes the calculation of vibration properties
of condensed matter systems. In this paper, we slightly abuse this term to refer to calcu-
lations of vibration properties of general systems, including condensed matter systems as
well as isolated molecule clusters, since such calculations share the same mathematical
structure. In order to apply the polarizability operator to O(N,) vectors, we need to solve
O(N?2) coupled Sternheimer equations. On the other hand, when a constant number of
degrees of freedom per electron is used, the size of the Hamiltonian matrix is only O(Np).
Hence asymptotically there is room to obtain a set of only O(N,) “compressed pertur-
bation vectors”, which encodes essentially all the information of the O(Nez) Sternheimer
equations. The recently developed adaptively compressed polarizability operator (ACP)
formulation [27] follows this route, and successfully reduces the computational complex-
ity of phonon calculations to O(N?) for the first time. The ACP formulation does not rely
on exponential decay properties of the density matrix as in linear scaling methods, and its
accuracy depends weakly on the size of the band gap. Hence the method can be used for
phonon calculations of both insulators and semiconductors with small gaps.

There are three key ingredients of the ACP formulation. 1) The Sternheimer equations
are equations for shifted Hamiltonians, where each shift corresponds to an energy level
of an occupied band. Hence for a general right hand side vector, there are N, possible
energies (shifts). We use a Chebyshev interpolation procedure to disentangle such energy
dependence so that there are only constant number of shifts that is independent of N,.
2) We disentangle the O(N?) right hand side vectors in the Sternheimer equations using
the recently developed interpolative separable density fitting procedure, to compress the
right-hand-side vectors. 3) We construct the polarizability operator by adaptive compres-
sion so that the operator remains low rank as well as accurate when applying to a certain
set of vectors. This make it possible for fast computation of the matrix inversion using
methods like Sherman-Morrison-Woodbury. In particular, the ACP method does not
employ the “nearsightedness” property of electrons for insulating systems with substan-
tial band gaps as in linear scaling methods [22]. Hence the ACP method can be applied to
insulators as well as semiconductors with small band gaps.

In this paper, we introduce a generalization the ACP formulation for efficient phonon
calculations of real materials called split representation of ACP. In the split representation,
the nonlocal pseudopotential is taken into account, as well as temperature effects especially
for metallic systems. The new split representation maintains the O(N?) complexity, and
improves all key steps in the ACP formulation, including Chebyshev interpolation of
energy levels, iterative solution of Sternheimer equations, and convergence of the Dyson
equations.
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The rest of the paper is organized as follows. Section 2 introduces the basic formulation
of KSDFT and DFPT, and reviews the formulation of ACP. Section 3 describes the split
representation of the ACP formulation. Numerical results are presented in section 4,
followed by conclusion and discussion in section 5.

2 Preliminaries

2.1 Kohn-Sham density functional theory

For simplicity we consider a system of finite size with periodic boundary conditions. This
can be used to model isolated molecular systems as well as solid state systems with the
Gamma point sampling strategy of the Brillouin zone [30]. However, we do not explicitly
take advantage of that {y;(r)} are real, so that the formulation is applicable to real space
and Fourier space implementation, as commonly done in electronic structure software
packages. The spatial dimension d = 3 is assumed in the treatment of e.g. Coulomb
interaction unless otherwise specified. Since our numerical results involve real materials
and systems of both insulating and metallic characters, we include relevant technical
details such as nonlocal pseudopotential and temperature dependence in the discussion.
Consider a system consisting of N4 nuclei and N, electrons at temperature T = 1/(kgf),
where kg is the Boltzmann constant. In the Born-Oppenheimer approximation, for each
set of nuclear positions {R1}§\[;‘1, the electrons are relaxed to their ground state. The ground
state total energy is denoted by E¢ot ({R; }?I;‘l), and can be computed in Kohn-Sham density
functional theory [19,23,31] according to the minimization of the following Kohn-Sham-

Mermin energy functional

Exs({vi}; {R})
1 = 2 = * / / /
= 58 [19U0R e+ 37 [ 020 Vionle ¢ (R e
i=1 i=1

(1)
+ %// ve(t, ¥)p(0)p(r') dr dr’ + Exc[p] + Eu({Rr})

+%Z[filogﬁ +(1—f)log(1 —f)].
i=1

Here the minimization is with respect to the Kohn-Sham orbitals {1;}{°, satisfying the
orthonormality condition [ ¥ (r)y;(r) dr = 3, as well as the occupation numbers {f;}7°,
satisfying 0 < f; < 1. In Eq. (1), p(x) = Y2, f; }t/fi(r)|2 defines the electron density
with normalization condition [ p(r)dr = N,. In the discussion below we will omit the
range of indices I i unless otherwise specified. In Eq. (1), vc(r,r') = ﬁ defines the
kernel for Coulomb interaction in R? and the corresponding term is called the Hartree
energy. Vion is a potential characterizing the electron-ion interaction, and is independent
of the electronic states {1/;}. More specifically, in a pseudopotential approximation [30],
if we view Vjo, as an integral operator, then the kernel of Vi, can be expressed as the

summation of contribution from each atom
Vion(5, 3 {R}) = Y~ Viees(t = R)8(r — ') + Y Vas(r — Ry, x’ — Ry). (2)
I I
Here Vios is called the local pseudopotential, and V) ; the nonlocal pseudopotential.

In the Kleinman-Bylander form [20], each nonlocal pseudopotential is a low rank and
symmetric operator with kernel
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Ly
Vapr(r = R ¥’ —Rp) = Yy by (r — R)bY (' = Ry). (3)

=1
Here y;; is a weight factor, and each by is a real valued function. The function by; is
also localized, in the sense that it is compactly supported around r = 0. The locality
originates from the physical meaning of nonlocal pseudopotentials, i.e. they characterize
the orthogonality of the valence electron orbitals with respect to the core electron orbitals,
and hence the support of by, is restricted by the span of the core orbitals. Ey is the
exchange-correlation energy, and here we assume semi-local functionals such as local
density approximation (LDA) [10,39] and generalized gradient approximation (GGA)
functionals [5,24,38] are used. Ef is the ion-ion Coulomb interaction energy. For isolated

1 YAV
clusters in 3D, En({R;}) = = Z 2

217 R~ Ryl
from all the image charges should be properly taken into account via e.g. the Ewald

, while for periodic systems the contribution

summation technique [14]. The last term of Eq. (1) is the entropy term related to the
temperature, and spin degeneracy is neglected for simplicity of the notation.

The Euler-Lagrange equation associated with the Kohn-Sham energy functional gives
rise to the Kohn-Sham equations as

HUph = (~54+ V1ol ) i = e @
> 1
[ vrwwwd =5 o= Sl = e ©

Here the eigenvalues {¢;} are ordered non-decreasingly. Note that the occupation number
fi is given analytically by the Fermi-Dirac distribution with respect to the eigenvalue ¢;,
and p is a Lagrange multiplier enforcing the normalization condition of the electron
density. The difference of the eigenvalues g, = en,+1 — €, is called the energy gap. If ¢ is
positive, then the system is called an insulating system. Otherwise it is a metallic system.
For insulating systems, V1, ..., ¥, are called the occupied orbitals, while y¥n;, 11, . .. are
called the unoccupied orbitals. ¥, is sometimes called the highest occupied molecular
orbital (HOMO), and v¥n,+1 the lowest unoccupied molecular orbital (LUMO).
The effective potential V[p] depends on the electron density p as

VIpl(r, ') = Vien(r, ') + [ / ve(r, ") p(r”) dr” + Vic [p](r)] 8(r —r'). (6)
Exc . . . L )
Here Vic[pl(r) = 5p) is the exchange-correlation potential, which is the functional
o(r

derivative of the exchange-correlation energy with respect to the electron density. The
Kohn-Sham Hamiltonian depends nonlinearly on the electron density p, and the elec-
tron density should be solved self-consistently. When the Kohn-Sham energy functional
Exs achieves its minimum, the self-consistency of the electron density is simultaneously
achieved. Note that both the Hartree potential and the exchange-correlation potential are
local potentials. This plays an important role in simplifying the treatment of the density
functional perturbation theory.

When the Kohn-Sham energy functional Exs achieves its minimum, the self-consistency
of the electron density is simultaneously achieved. Then the total energy can be equiva-
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lently computed as [30]

> 1
Eot = Zfisi - = ve(r, t')p(r)p(r') dr dr’
=1 ? /f (7)

- f Vaelp](®)p(r) dr + Exclp] + En((Rp)).

o0
Here Epang = Z fiei is referred to as the band energy.
i=1
At this point, the atomic force can be given by the negative of the first order derivative

of Ero¢ with respect to the atomic configuration using the Hellmann-Feynman theorem as
dEu({Rr})

IEot ({R1}) / Vion , / /
F = —— = — " 5 P y _—
T 3R, 3R, (r, ' {R})P(r, r) dr dr OR, (8)
Here P is the density matrix defined as
o
Pr,r) =) fivim)y; (x), )

i=1
In particular, the diagonal entries of the density matrix P(r, r) is the electron density p(r).
ion

aV;
The derivative of the pseudopotential °R (r, r'; {R}) does not depend on the electron

density, can be obtained semi-analytically. Hence the computation of the atomic force only
involves a number of quadratures. The atomic force allows the performance of structural
relaxation of the atomic configuration, by minimizing the total energy Eiot with respect to
the atomic positions {R;}. When the atoms are at their equilibrium positions, all atomic
forces should be zero.

2.2 Density functional perturbation theory

In density functional perturbation theory (DFPT), we assume that the self-consistent
ground state electron density p has been computed, denoted by p*. In this paper, we focus
on phonon calculations using DFPT. Assume the system deviates from its equilibrium
position {R;} by some small magnitude, then the changes of the total energy is dominated
by the Hessian matrix with respect to the atomic positions. The dynamical matrix D

consists of d x d blocks in the form
1 32Erot({Rf}))

Dir =
YT MM, 0RjoR;

where M is the mass of the /-th nuclei. The dimension of the dynamical matrix is d x Ny.

The equilibrium atomic configuration is at a local minimum of the total energy, and all

the eigenvalues of D are real and non-negative. Hence the eigen-decomposition of D is
Dy = w,%uk,

where u; is called the k-th phonon mode, and wy is called the k-th phonon frequency.

The phonon spectrum is defined as the distribution of the eigenvalues {wy} i.e.

1
ep(@) = 7o ;a(w — ). (10)

Here § is the Dirac-§ distribution. gp is also referred to as the density of states of D [26,30].
In order to compute the Hessian matrix, we obtain from Eq. (8) that
32Erot({R Vi aP(r/,
tot ({Rr}) _ / ion (r, r/; R;) (r,r)

dr dr’
OR[0Ry IRy Ry

(11)

32Vion , 2En({Rs})
1 {R(DP(, r)dr dr’ + ———
+/8R18R](rr (R )P, r)drdr’ + IR,OR,
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Similar to the force calculation, the second term of Eq. (11) can be readily computed
with numerical integration, and the third term involves only ion-ion interaction that is
independent of the electronic states. Hence the first term is the most challenging one
due to the response of the electron density with respect to the perturbation of atomic
positions. Applying the chain rule, we have

Vi aP(r,
/ 2 (r, 1; {Rz})M drdr’
IR, OR; 12)
_ / 8‘/ion(r) I‘/; {RI}) (SP(I',, l') a‘/ion(l’”, r///); {RI}) dl’ dr/ dr// dr///
a aR; 8 Vion (", t'") aR; ‘

SP(r, 1t/
Here the Fréchet derivative X(r,r’;x”, r"’) = (x, r) is referred to as the reducible

- SVion(r//; r///)
polarizability operator [36], which characterizes the self-consistent linear response of

the density matrix at (r,r’) with respect to an external nonlocal perturbation of Vion

at (r”, r"”’). However, the computation of X must be obtained through a simpler quantity

SP(r, 1)
x X /; //, " —
O(r r;r,r (SV(I.//, r///)

independent particle polarizability operator) [36].

, which is called the irreducible polarizability operator (a.k.a.

The discussion using the notation r, t/,r” etc will quickly become complicated. For
simplicity in the discussion below, we will not distinguish the continuous and discretized
representations of various quantities. In the case when a discretized representation is
needed, we assume that the computational domain is uniformly discretized into a number
of grid points {ry }2% ,- After discretization all quantities can be called tensors. For example,
we will call %(r) an order 1 tensor (or a vector), A(r, r’) an order 2 tensor (or a matrix), and
X(r, r';”, r"") an order 4 tensor. The tensor slicing and tensor contraction can be denoted
using either the continuous or the discrete notation. For example, X(r, r;r”, r’”’) denotes
a sliced tensor which is an order 3 tensor. The tensor contraction between two order 1
tensors # and v should be interpreted as u*v = [ u*(r)v(r)dr. The tensor contraction
between an order 2 tensor A and an order 1 tensor v (i.e. a matrix-vector product) should
be interpreted as (Av)(r) = [ A(r, r')v(r’) dr’. Similarly the contraction between an order
2 tensor A and an order 2 tensor g (i.e. matrix-matrix product) should be interpreted as
(Ag)(r,r') = [A(r,r")g(r", r') dr”, and the contraction between an order 4 tensor X and
an order 2 tensor g should be interpreted as

(xg)(r, r/) — /%(r, r/; r//, r///)g(r//, r///) dr// dr///,

We also define two operations for order 1 tensors. The Hadamard product of two order
1 tensors u © v should be interpreted as (z © v)(r) := u(r)v(r). For an order 1 tensor v(r),
we define an associated order 2 tensor as (diag[v])(r, r') := v(r)8(r —r’). It is easy to verify
that the Hadamard product can be written as u © v = diag[u]v.

Using the linear algebra type of notation as above, the key difficulty of phonon calcula-

tions is the computation of the tensor contraction u = Xg, where g traverses d x N4 order

Vion(”, t”; {R
2 tensors of the form lon(aR { 1}), where Ry, is the a-th direction of the atomic
J,a

position Ry (@ = 1, ..., d). According to Eq. (2), g can split into a local component and a

nonlocal component as
9(r, 1) = Zoc(0)8(r — 1) + gui(r, 1), (13)

or equivalently g = diag(gioc] + gn1- For each g, only one atom J contributes to the order
1 tensor gj,c and the order 2 tensor g,;. From the definition of nonlocal pseodopotential
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Eq. (3), we have

Ly
Onr(r, 1) = Z v [bri(x — Rp)db} (r' — Ry) + dbyy(r — Rp)bj, (' — R,
I=1 -
ob;;(r — R
where dby(r — Ry) = 24T~ R,
’ IR,

We note that gy is a symmetric operator of rank 2L;, where the factor 2 comes from
the Leibniz formula. In the rest of the paper, we shall use b;(r), db;(r) to hide the explicit
dependence on the atom indices I or the atomic positions {R;}.

From the definition of V in Eq. (6), we apply the chain rule and have

_ sP 8§V
"~ 8V 8Vien

9 = X089 + XofnxeXg = Xog + Xofhxctt (15)

In Eq. (15),

8 Vielp*]1(r) , , "
W)‘““fwr —r")
= fhxe (T, r)s(r—r)s@’ —r")

is an order 4 tensor, which is the kernel characterizing the dependence of the V with

respect to the density matrix P in the linear regime. Here % is called the exchange-

fhxc (r, r/; I‘//, r///) — (Vc (r, r//) +
(16)

correlation kernel, which is a local operator in the LDA and GGA formulations of the
exchange-correlation functionals. Therefore in Eq. (16), 8(r — r’) comes from that the
Hartree and exchange-correlation potentials are local, while §(r” — ") comes from that
the nonlinear term only depends on the electron density, i.e. the diagonal elements of the
density matrix. Eq. (15) is called the Dyson equation, and the solution u should be solved
self-consistently.

In order to solve the Dyson equation (15), we need to apply Xy to order 2 tensors of the
form g or fhxcut. By means of the eigenfunctions ;, the eigenvalues ¢;, and the occupation
numbers f;, Xog can be expressed using the Adler-Wiser formula [1,46]

(xog rr Z f_

ha=1 -

Val®) ( / ara r”’)w(r”’)dr”dr”’)w ©),  (17)

&j

where the term when i = a should be interpreted as the limit when ¢, — ¢;. Using the
linear algebra notation, Eq. (17) can be written as

xg= 30 ot Loy v (19

ha=1

Since g is an Hermitian order 2 tensor, Xog is also an Hermitian order 2 tensor. If we
truncate the infinite sum in Eq. (18) to a finite sum of states, Eq. (18) and Eq. (15) can be
solved together to obtain u, and therefore the Hessian matrix (11) can be evaluated.

In order to observe the computational complexity of DFPT for phonon calculations, let

us first neglect the nonlocal pseudopotential V; 7, which simplifies the discussion. Since
E)p r)

each g only involves the local contribution, Eq. (11) only requires <& ~. Therefore one is

only interested in computing

u(r) =u(r,r) = / X, )gl, r)dr .= /)((r, r/)gloc(r/) dr’. (19)
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Here we have introduced the notation x(r, ') = X(r, r; 1/, '), and used that the nonlocal
component of g vanishes. Similarly we can define xo(r, r') = Xo(r, r; 1/, r'). We also con-
sider insulating systems with a finite band gap. This allows us to reduce the temperature
dependence of the occupation number, so that f; = 1ifi < N, and 0ifi > N, + 1. As a
result, Eq. (18) can be simplified as

N, 00
X08loc = Z Z

&
i=1 a=N,+1

e diag[‘/fi*]l/fa (‘b;diag[gloc]l/fi) +h.c (20)
I Ca
Here h.c. means the Hermitian conjugate of the first term.

In order to overcome the difficulty of explicitly computing all the unoccupied orbitals
{Va)gZn, 11, we first define the projection operator to the unoccupied space Q = I —

Zﬁi‘?l Y. Then we can compute xogioc as

Ne
Xogloc = Y _ diag[71Qe; — H) ™' Q(diaglgioc]¥) + h.c. (21)
i=1
In principle, since Q commutes with H, the right hand side of Eq. (21) only requires one
Q operator to be present. However, we choose the form Q(s; — H)~!Q to emphasize that
this operator is Hermitian. Let ¢; := Q(s; — H)~'Q(diag[gioc]¥:), the matrix inverse in
Eq. (21) can be avoided by solving the Sternheimer equations

Q(e; — H)Q¢; = Q(diag(gioc]¥:). (22)

This strategy has been used in a number of contexts involving the polarizability operator
[15,17,34,36,44]. The Sternheimer equations can be solved using standard direct or iter-
ative linear solvers. The choice of the solver can depend on practical matters such as the
discretization scheme, and the availability of preconditioners. In practice for planewave
discretization, we find that the use of the minimal residual method (MINRES) [37] gives
the best numerical performance.

The complexity of phonon calculations can now be analyzed as below. Even with local
pseudopotential only, and assume the Dyson equations always converge within a constant
number of iterations that is independent of the system size N,, we need to apply xo to
d x Ng ~ O(N,) vectors of the form gj,c. Each g, requires solving N, Sternheimer
equations (22), and the computational cost of applying the projection operator Q to a
vector is O(Nez). Hence the overall complexity is O(Nf) [4]. This is significantly more
expensive than solving the KSDFT, of which the computational complexity is typically
O(N3).

2.3 Adaptively compressed polarizability operator

In this section we briefly review the ACP formulation [27] in the context of phonon
calculations for insulating systems using local pseudopotentials. If we label the possible
Zloc Using a single index j, the Sternheimer equation (22) can be written as

Q(e; — H)Q;l] = Q(W; @gloc,j)- (23)

Here we have used the relation diag[gioc]y = ¥ O gloc to place gioc and ¥ on a more
symmetric footing. Then reduction of the computational complexity is achieved by means
of reducing the O(NZ) equations in Eq. (23) to O(N,) equations with systematic control
of the accuracy.
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The compression of the right hand side vectors is performed via the interpolative sepa-
rable density fitting method by Lu and Ying [29]. Let us denote by M the collection of right
hand side vectors in Eq. (23) without the Q factor, i.e. Mj; = ¥; © go ;- Here we have used
ij as a stacked column index for the matrix M. The dimension of M is N; x O(N, 82). Due to
the large number of columns of M, we seek for the following interpolative decomposition
(ID) type of compression [12] for the matrix M, i.e.

N, Ny
Mij(e) ~ > & OM(r) = Y Eu0)Yi() 8100 (). (24)

n=1 pn=1

Here {rﬂ}fji , denotes a collection of selected row indices (see Fig. 1 in [27] for an illustra-
tion). Mathematically, the meaning of the indices {r, } is clear: Eq. (24) simply states that
for any grid point r, the corresponding row vector M.(r) can be approximately expressed
as the linear combination of the selected rows {M.(r,)}. Since N; ~ N, as N increases,
the column dimension of M (which is O(Ng)) can be larger than its row dimension (which
is Ng), and we can expect that the vectors {y/; © g} are approximately linearly dependent.
Such observation has been observed in the electronic structure community under the
name of density fitting or resolution of identity (RI) [13,40,41,43,45], and the numerical
rank of the matrix M after truncation can be only O(N,) with a relatively small pre-
constant. This dimension reduction property has also been recently analyzed in [28]. In
the context of the interpolative decomposition, our numerical results also indicate that it
is sufficient to choose N;, ~ O(N,), and the pre-constant is small.

One possible way of finding interpolative decomposition is to use a pivoted QR factor-
ization [11,18]. However, the computational complexity for compressing the dense matrix
M using the interpolative decomposition is still O(N}). The interpolative separable den-
sity fitting method [29] employs a two-step procedure to reduce this cost. The first step is
to use a fast down-sampling procedure, such as a subsampled random Fourier transform
(SRFT) [47], to transform the matrix M into a matrix M of smaller dimension Ny x N,
with r a relatively small constant so that N, is slightly larger than N,,. The second step is
to apply the pivoted QR decomposition to M

M*IT = QR (25)

where [T is a permutation matrix and encodes the choice of the row indices {r, } from M.
The interpolation vectors {£,} in Eq. (24) can be also be computed from this pivoted QR
decomposition. It should be noted that the pre-processing procedure does not affect the
quality of the interpolative decomposition, while the cost of the pivoted QR factorization
in Eq. (25) is now reduced to O(NgNﬁ) ~ O(Neg). We refer readers to [27,29] for a more
detailed description of this procedure.

Once the compressed representation (24) is obtained, we solve the following set of
modified Sternheimer equations

Qlei —H)QCoy = Q€ i=1,...,N, p=1,...,N,

Note that there are still O(N?2) equations to solve, but this time the number of equations
arises from the energy dependence on the left hand side of the equation. If the band gap
is positive, we can solve a set of equations of the form

Q(EC_H)QECM:Q§M7 c=L...,N, wpu=1L...,Ny (26)
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where the number of shifts N, is independent of the system size N,. For example, this can
be achieved using the Chebyshev points on the occupied band [¢1, &x,], and the number of
Chebyshev points needed to achieve a certain error tolerance scales weakly with respect
to the band gap as /|Z|/&g. Here & is the band gap and |Z| = ex, — &1 is the width of the
occupied band [27].

Then define
N, N, P
W, =) diag[y;] © e | | 3= | ¥ilty) + hec, (27)
i=1 c=1 c'F#c e — &

and we can combine Eq. (27) with Eq. (22) to compute xogloc, as

NH
X08loc,j ~ Z W/Lgloc,j(ru)‘ (28)

n=1
Formally, Eq. (28) can further be simplified by defining a matrix /7 with N}, columns,
which consists of selected columns of a permutation matrix, i.e. [T = INY LN, as the first
N, columns of the permutation matrix obtained from pivoted QR decomposition. More
specifically, IT,, = ey, and ey, is a unit vector with only one nonzero entry at r;, such that

erT/ng = gj(r,). Then

X08loc,j ~ WnTgloc,j = XO[{gloc,j}]gloc,j' (29)

Note that the notation Xo[{gloc,}] emphasizes the dependence on the vectors that X
applies to. In other words, Xo[{gioc,}] is designed to only agree with xo when applied
to vectors {gioc,}, and the difference between o and xo is not controlled in the space
orthogonal to that spanned by these vectors. The rank of Xo[{gioc,}] is only N,, while the
singular values of xo have a much slower decay rate.

In the case when only local pseudopotential is used, the Dyson equation (15) is simplified
as

Uj = X&oc,j = Uo; + Xthxc”j' (30)

Here ug; := Xogloc,; is called the non-self-consistent response, and has been computed
using the algorithm described above.

In order to solve Eq. (30), we do not only need to evaluate xogloc,, but also the application
of xo to the self-consistent response fix.#; which is not known a priori. If we build a library
of right hand side vectors so that the application of xo remains accurate throughout the
iteration process of solving Eq. (30), the computational complexity can quickly increase.
Instead it is much more efficient to adaptively compress the polarizability operator xo.

Note that for any given set of functions {u;}, we can construct an operator Xo|{fhxc#;}]
so that Xo agrees well with xo when applied to the vectors {fixc#;}. The Dyson equation
can be rewritten as

wj = (I — Yol{fixci})) " o). (31)

Note that Xo[{fixc#;}] is a low rank operator, and the matrix inverse in Eq. (31) can be
efficiently evaluated using the Sherman-Morrison-Woodbury formula.
Eq. (31) yields an iterative scheme

uFH = (I = Folfieetd" 1) 0. (32)
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In the equation we omitted the j subindex of u. The convergence of the modified fixed
point iteration (32) can be understood as follows. At the iteration step &, the scheme and
the true solution respectively satisfy

k+1 ~ k k+1
u = uo + Xo[{fhxctt” Hfixet *

(33)
u' = ug + Xthxcu*-

k

Let ek = u* — u* be the error at the iteration step k. We have

k+1 ~ 1
et = XO[{fhxv:l'tkHfhxcukJr _Xthch/ﬁ<

= XO[thcuk}]fhxcukJrl - XthxcukJrl + )(thxc"‘kJrl - XthxcM)‘< (34)
= 1" + Xofixce’ !

Here

= (Xo[ et} — x0 )it (35)

which characterizes the discrepancy between %o and xo when applied to the unknown
vector fixcu* 1. Therefore the error at the (k 4 1)-th step satisfies

e = (I — xofiwe) . (36)

Since o is negative semi-definite, the norm of (I — xqfixc) "' is bounded from above by
one. Hence the error goes to zero if the error of compression 7% converges to 0.

To summarize, the ACP formulation has three key ingredients: Compress the right hand
side; Disentangle the energy dependence; Adaptively compress the polarizability operator.

3 Split representation of the adaptively compressed polarizability operator
In this section, we demonstrate how to generalize the ACP formulation in section 2.3 for
efficient phonon calculations of real materials. To this end we need to treat the nonlocal
pseudopotential, as well as temperature effects especially for metallic systems. We demon-
strate that the new split representation maintains the O(N2) complexity, and improves
all key steps in the ACP formulation, including Chebyshev interpolation of energy levels,
iterative solution of Sternheimer equations, and convergence of the Dyson equations.
The split representation of the polarizability operator first chooses two cutoff energies
N > ENew = M- and splits the right hand side of Eq. (18) into two terms

N, cut N cut

xo~ | (XY L pwion e

i=1 a=N+1 ¢
Ncut Ncut

DI

Llal

%(I/Ia avv; }
(37)

Neut 00

PR

i=1 ﬂ—NcuH'l
= xVa+x)s

(‘/fang)lﬁ + h C.

Here the first and second brackets split Xog into a singular component %g ) g and aregular
component %g) g, respectively. The Hermitian conjugate appears for the same reason as
in Eq. (20) when treating insulating systems. %(S) is called the singular component because
for systems with small gaps, the ratio (f; — f;)/(e4 — €;) can be as large as 1/g,. When
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Fig. 1 Schematic illustration of the cutoff energies with respect to the Fermi-Dirac distribution

the physical band gap &, is small, this term becomes numerically singular to treat in the
iterative solution of Sternheimer equations as well as the Chebyshev interpolation. On the
other hand, the termf; /(¢; — &,) is bounded from above by 1/¢,, where g, = ¢ Nowt1 — ENeut
is called the effective gap. As the effective gap &, increases, the magnitude of %(()r) also
decreases. In order to efficiently treat the singular part, we assume that the eigenfunctions
{wk}f;“{ have been computed using an iterative eigensolver. The cost for obtaining the
additional eigenvectors is modest, given that the ground state DFT calculation already
prepares the eigenvectors {1/ }2[:{.

The approximation in Eq. (37) only comes from that as ¢ increases above the chemical
potential u, the occupation number f; = m decays exponentially. Then we can
choose e, large enough so that f (en,,+1) is sufficiently small and can be approximated
by 0. For insulating systems we can simply choose Nyt = N,. The second energy cutoff
eg,,, defines an effective gap &,, of which the role will be discussed later. The split repre-
sentation requires the solution of eigenpairs (&;, ¥;) of H for i < N¢y. Fig. 1 illustrates the
position of the cutoff energies along the energy spectrum, with respect to the occupation

number given by the Fermi-Dirac distribution.

3.1 Compression of the regular component of the polarizability operator

One advantage of the split representation is that in the regular component, the contribu-
tion from f; vanishes, and hence %g) g can be evaluated using Sternheimer equations to
eliminate the need of computing all the unoccupied orbitals as follows

Neut

xVa=Y fiQele: — H) ' Qulavi)y} + hec. (38)
i=1
Here the projection operator Q, = I — Zi\gt Yy} projects a vector to the space which is
orthogonal to the space spanned by {wi}?gt. When all order 2 tensors {g;} are considered
together, Eq. (38) requires the solution of

Qclei —H)QcLij = Qelgjvi), i=1,...,Newo j=1,...,d x Ny (39)



D. An et al. Res Math Sci (2021) 8:51 Page 130f30 51

Here each solution ¢;; is still a vector. The adaptive compression of Xg; then parallels the
adaptive compression of xogioc, as in section 2.3, as detailed below.

The first step is to construct the collection of the right hand side vectors M;; = gj;.
Since the kernel of the nonlocal pseudopotential from each atom is compactly supported
in the real space, the computational cost for generating M is in fact dominated by the
cost associated with the local component gj,;. Hence the overall cost is still O(Ne?’).
The interpolative separable density fitting procedure can then proceed as before, and
generate a set of compressed vectors {Eu}fi , as well as the selected columns {l’u},]:[i 1- The
interpolation decomposition then reads

M; ( ) = (gﬂpl Zsu f)(gﬂﬂz)(l’u) (40)

The second step is the disentanglement of the energy dependence. We choose the
Chebyshev interpolation points on the interval Z = [e1, en, ]. Since the number of Cheby-
shev interpolation points is now controlled by the effective gap as No ~ O(,/Z/%4). Note
that the gap €, (which can be small or zero) is now replaced by the effective gap &,. In
practice we observe that it is often sufficient to choose N; to be 5 ~ 10.

With the Chebyshev interpolation procedure, the Sternheimer equation still takes the
form (26), with Q replaced by Q.. The operator Q.(e. — H)Q. is a negative definite
operator, with eigenvalue bounded from above by —,. As the effective gap increases, the
linear system associated with the Sternheimer equation also becomes better conditioned
and the number of MINRES iterations can decrease. Typically we observe that MINRES
can converge with around 10 steps.

After the solution of the Sternheimer equations, Eq. (38) becomes

Ncut ~
E,r

:{0 g~ 2 : E f(E!;Wz ru E gcu _:; Iﬁl'* + h.c. (41)
i=1 p=1 c=1 ¢ 7éc 4

Since that g; can be split into a local and a nonlocal component, we have

(g (xn) = Glocj () Vi) + (gn1 i) (xy). (42)
Define
Ncut C 8 _ 8
o =3 (L% [T 5= | v +he @

i=1 \c=1 c'F#c

and introduce the permutation matrix 7 as in Eq. (29), then Eq. (41) becomes

0 9} Z Qﬁ r) ;{gloc,j)

(44)
Ncut & — 8
i
E E f(gnIIWt ) E Ccu rg/ 1,0? + h.c.
i=1 pu=1 c=1 c'#c ¢ ¢

At first glance, Eq. (44) does not lead to any simplification compared to Eq. (41). However,
since the nonlocal component of g; is compactly supported, for each gy); there are only
O(1) number of points {r, } that contributes to (gn;;¥;)(r,). Hence the last term in Eq. (44)
is much easier to evaluate than the direct evaluation of Eq. (41).
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3.2 Compression of the singular component of the polarizability operator
In practical calculations, numerical results indicate that it can be sufficient to choose
ﬁcut < 2N, and hence the computation of .’{g ) g can even be directly evaluated according
to Eq. (37). Compared to Eq. (18), the computation of %f)s ) g still scales as O(N}), but the
preconstant is much smaller. In this section we demonstrate that with a contour integral
reformulation, we can compress the singular component as well with O(N2) complexity.
According to the derivation in Appendix A, X(()S ) g can be evaluated using the contour
integral formulation as

1
xPg = [z—m ﬁ f(2)z = Hyp) oz — Hop)~ldz + h.c.]

+ Zim 7% F@)(e — Hyr) ale — Hy) ' dz

Here H,; = ZNC“‘ Vieiy], Heo = Zﬁ“}‘\}cut 41 Vigiy] are the Hamiltonian operators pro-
jected to the subspace spanned by the first N states, and to the subspace spanned by
the following (Kfcut — Ncut) states, respectively. Before moving on to further discussion,
we note that the numerically exact spectral decomposition of H;; and H; is the key to
reducing the complexity.

The contour integral in Eq. (45) can be discretized to obtain a numerical scheme. Let
the integration nodes and weights be denoted by {z, a)p} —pie

Y yg h(z) dz ~ prh(zp) (46)

for suitable /(z), and the discretization scheme can be obtained using rational approxi-
mation methods [25,32,33]. Then we have

() g} Z wp(zp c,2)719j(zp - ]_[c,1)71 +h.c

Np
+ 3 opzp — Hot) g(zp — Hor) ™!
p=1
(47)
Np Neut
= Z Wp Z(Zp Hyp) M gj¥i)(zp — &) 'y + hee

p=1 i=1

p Neut

+pr2 He)™Hajvi)(zp — &) 7,

where the equality is derived from the spectral decompositions of H,,1, H2. When all {g;}
are considered together, we use again the interpolative separable density fitting (40) and
obtain



D. An et al. Res Math Sci (2021) 8:51 Page 150f30 51

NP Nyt N#
xy'9) ~ pr Z(zp Hep) ™ > (g ()(zy — ) 197 + hee.
n=1
17 Neut Ny.
+pr2 Zgu(gﬂm (ru)(zp 51’)_1"#;
e N (48)
=D () Z;Wwp(zp—eirl ¥F +he
i=1 p=1
Neut Nu
+Y 0 (g ) nguwp(zp eV | v
i=1 p=1

In the last equation of (48), we have defined the solution g“@,p 0= (2zp —Hp) ' wb =12,
which can be numerically exactly computed from the spectral decompositions of H; 1, H;2
respectively. We use the same strategy as in Eq. (44) to handle the contribution from
(8/¥)(x). Define

cut

ﬂnff) = ZWL r,) ZCZpu“’P(Zp — Ej)_l l[fl* + h.c.

(49)
Neu
+ Z I//z(r,u Z Clpﬂwp(zp &)~ ! w,‘*;
i=1
and use the same permutatlon matrix [T as in Eq. (29), then Eq. (48) becomes
Ny
x99 ~ ) W, gioc,)
n=1
Neut NM
D0 (o v, Z & oplzy — )™t | W +he (50)
i=1 pu=1
Neut N
Y0 (@n, Vi) (x,) Z T oplzy — e | v
i=1 pu=1

3.3 Adaptive compression for solving the Dyson equation

Recall the Dyson equation (15), and so far we have computed the non-self-consistent
response 1o := Xog; using the split representation. In order to solve the Dyson equation,
we still need to evaluate Xofpxcu self-consistently. Use the locality structure of fpyc as in
Eq. (16), we have

(xofhxcu) (I', r/) — f xo (1', 1,/; I'//, r//)f'hxc (r//’ I'W)u(l'///, 1,///) dr// dl'///. (51)

It is important to observe that Eq. (51) only requires the diagonal elements of u. Hence
the self-consistent solution of the Dyson equation (15) only requires a set of equations for
these diagonal elements:

ui(r, r) = ug(r, r) + / Xo(w, ;0" v Yfie (07, (e, ¥ dr” dr””. (52)

Define u;(r) = w;(r,r) and ug;(r) = ug;(r,r) and use the linear algebra notation, then
Eq. (52) becomes a reduced Dyson equation

uj = ug; + Xthxcu,'. (53)
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Note that Eq. (53) becomes precisely the same as Eq. (30), which does not involve nonlocal
pseudopotentials. However, the important difference is that in Eq. (53), o, is taken from
the diagonal elements of 1, which properly takes into account the nonlocal pseudopo-
tential both in the Hamiltonian and in the non-self-consistent response.

Before moving on to the discussion of solving the reduced Dyson equation, we write out
the explicit format of the diagonal part ug; = ug;. Define \/V,([)(r) = QB;I) (r, 1), W,Ss)(r) =
Qﬂﬁf)(r, r), the diagonal part of Eq. (44) reads

Ny
(x() g}) Z W(r) 5gloc,j)
54
Nyt N/L fg , ( )
ZZf gnl}‘ﬁt ru) Zé—cu z _:;/ W(r)Jrh-C
i=1 p=1 c'#c ¢ ¢
The diagonal part of Eq. (50) reads
Nu
(x89) @0 ~ - WP goe))
n=1
Neut Nl/«
+ [ 30 v Zg(j?,u — &) | ¥7 () + he
i=1 p=1
Neat Ny
+ )0 (@n, v (xy) Zgw(r)wp(zp —e) 7| i),
i=1 p=1 p=1
(55)

The reduced Dyson equation (53) can be readily solved using the same adaptive com-
pression strategy in section 2.3. More specifically, we can replace g; by the local potential
diag(fixc4;], and only take the diagonal elements in Eq. (44) and (50) to obtain xqfixc¥;.

) and the singular part X(gs) preserve a low-rank

Moreover, since both the regular part x,
nature, Sherman-Morrison-Woodbury formula can still be used in the fixed point itera-
tion. The separated treatment of the singular and regular parts reduces the error of the
compressed xo as in Eq. (35). Therefore it also accelerates the convergence of the Dyson
equation. The complete iteration process to solve the Dyson equations is defined in Alg. 1.

Once the self-consistent u;(r, r) are obtained, one can formally reconstruct u(r, r’) by
using the split representation again in Eq. (44) and (50). Finally u; will be integrated with
g as in Eq. (11) to compute the Hessian matrix for phonon calculations, which will be

further discussed in detail in the next section.

3.4 Phonon Calculation
For the purpose of phonon calculation, u; (representing a component of i) will be

integrated with g; (representing a component of “’“ ) asin Eq. (11) to compute the Hes-
sian matrix for phonon calculations. The 1ntegrat10r1 w1th local components can be readily
computed once the self-consistent response u;(r) is obtained by solving the reduced Dyson
equation. The integration with nonlocal components g, ; would require the construction
of u(r, r'). However since gp; is compactly supported, one could avoid the full construc-
tion of u(r, ') by embedding the integration process into the construction of u(r, r’). This
is important for maintaining the reduced scaling of the algorithm.
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Algorithm 1: Computing U := [i;] with the split representation of adaptively com-

pressed polarizability operator.

Input:
{g;}. Stopping criterion §.
Eigenpairs corresponding to occupied orbitals {y;, &;},i = 1, ..., Newt

Output: U ~ xG
1. Compute Uy := [ug] using Eq. (44) and (50) (only the diagonal elements).

2. Do
(a) Replace {g;} with diag[fhxcullf ] to obtain W% and W&k and 7% in Eq. (43)

and (49) . Define Wk = wW&k 4 ywk,
(b) Update L/*+! using Sherman-Morrison-Woodbury formula
-1
U = (1= WA fiae) - Uo
-1
= Uo+ W (1= (MY e W*) (T frncllo

() k<k+1
k7 k=1 . . . .
until % < & or maximum number of iterations is reached.

In this section, we show the construction of integral in Eq. (12). For simplicity, the
indexes I, ] are ignored. Starting from the Dyson equation,
u(n 1) = (Xog)(r, ') + (XofxcW(r, 1), (56)
an element of the Hessian matrix requires calculation of

f ot ¢ )u(e, ) dr dr’ = / a6, ©)(Eog) (5, ) + g(5, 1) Xofiew)(e )] drdr’. (57)

Recall that g(r, r') = gioc(r)d(r’ — r) + gni(r, r’), the integral for the local part of can be

easily calculated (letting u(r) = u(r, r))
(58)

[ ettt ) dr e’ = [ gcohute)
For the non-local potential, using Eq. (44) and Eq. (50), we have

/ gnl(r, t)u(r, ') drdr’ = / (1, 1) [(Xog)(x, ') + (XofheeW)(r, r)] drdr’.  (59)

Recall that (frxc)(x, r') = 8(r — t') [ fixe (t, £”)u(r”) dr”. So (faxct)(r, ') behaves as a
local potential g, when applying X to it. So the integral in Eq. (59) breaks down to four

parts:
[ ot 0w drar

L
- / =3 i) db} @) + dby () @)E ), 1) dr di’
=1

Ny

L
=- / drdr’ Y y(bi(r) db; (') + dby(r)b; (1) > W [g)(x, ') (8] gioc)
I=1 n=1
L Ncut NIL Ns - & — 'g ,
=0 A (Z [ auwno [T 5= | [ aviwraw)
I=1 c=1 e € ¢

i=1 p=1

51
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L Neut Nu

~Ln Y Y e (Z | r)]‘[ — ) [ arvia >b7(r’)}

= i=1 p=1

~+h.c. of previous bracket (60)
/ onl(r, l'/)(xg)g)(r, r')drdr’

L
= f - Zn(bz(r) db; (') + dby(r)b} ()XY g)(x, ') dr dr’

Ny
= [ araw S b)) + b8 6 S gl )17, g )
=1 n=1
New Nu
+[Zy;22(gm,m (r.) (Z f drZy), (0)b(X)wp(z, anI) / dr'y; (') dbj (x')
= i=1 p=1
Newr Nu
—ZVIZZ 8o V) (5,) (Z [ 48,0 dbiwroyta, 20 ) [ aviwia )}
= i=1 p=1
+hc of previous bracket
Newt Ny
_ZWZZ inﬂ/’z r,) (Z/dr{llm (©)by(r)wp(zp — )~ 1)/dr’wl_*(r/)db7(r/)
= i=1 p=1
L Ncut NM
_ZVIZZ Gnl;‘ﬁz ru ( /drfuu r)dbl(r)wp — &) )/dl‘ )bl (61)
=1 i=1 p=1

/ gni(r, l'/)(xor Froe) (r, ¥) dr dr”

L
= f - Z yi(Bi(x) db} () + dby(e)b} ()XY fiew)(x, 1) dr

/ drdr’ Z)’l(bz B dbi() + dbib} ()

=1

NM
D WD Pt (6 1) [fiet] i) (62)

pn=1

/ (6 )X fe) (e, ) dr dF

f Zn (br(r) b} () + dby (OB} (D E frxcw)(x, 1) dr dr’
=1

/ drdr’ Zn(bz 0 dbi() + dbib} )

=1
NM
> W [fiet] (0 1) (T [ret] fie ) (63)
n=1

We remark that the 20 quantity depends on the tensors to which Xy is applied. Note
that in Egs. (60), (61), (62), (63), terms like [ dr'yf(x')b} (r') appear many times, hence
computing and storing them is necessary. Also one important fact is that g ;yi(r,) is
only non-zero for several r,. This would result in a “fake” summation of N, which is
essential in reducing the complexity. Computation of Eq. (60) and Eq. (61) is only O(Np).
The complexity is discussed in detail in the following section.

3.5 Complexity
In this section we analyze the complexity of phonon calculation using the split represen-
tation of ACP formulation, especially those related to nonlocal pseudopotential.
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The first part of the algorithm is to compute the diagonal elements uq; in Eq. (54)
and (55). For the local pseudopotential, the cost of constructing W) and W
is O(NuNcutNeNg) ~ (’)(NS) and O(N, N NpN;) ~ O(NeS) respectively, since
N, New, Ng ~ O(N,), and N, N, ~ O(1). Note that the construction of W W)
does not depend on the index j, hence there is no factor of dN4 involved. For the nonlocal
pseudopotential, as is discussed in Section 3.1, each nonlocal component of g; is compactly
supported in the real space. Denote N}, as the grid points for the support of g, ;. Hence for
each gy there are only Nj, ~ O(1) number of points r,, that contributes to (gn;;¥:)(r.).
So the cost associated with the nonlocal contribution is O(dNgNcutNpNcNg) ~ O(Ne?’) in
Eq. (44) and O(dNgNcyNpNyNg) ~ O(Nes) in Eq. (50). Note that the dNy4 factor comes
from the fact that gy j¥(r,) depends on indexj = 1,2, ..., dNy.

In every iteration step when solving the reduced Dyson equation, the complexity of the
construction of WX still cost O(N?), as we just replaced gj by diag [fhxcu]].‘]. Using Sherman-
Morrison-Woodbury formula, the update of U L cost O(NgN,dNa + Ng + NidNA) ~
O(N2).In practice, we observe that the number of iterations does not increase with respect
to the system size. To summarize, we know that the computation of u;(r) cost C’)(Neg) in
total.

In order to assemble the information stored in u; to obtain the dynamical matrix for
phonon calculations, u; will be integrated with g; as in Eq. (11). Before we move on to
further discussion, we note that 1;(r, r'), 20,,(r, r') are never constructed or stored. They
are only stored in its factorized format. The integration with local components can be
readily computed once the self-consistent response u;(r) is obtained by solving the reduced
Dyson equation. The corresponding cost is O(dzN%Ng). The integration with nonlocal
components gy,); would require certain off-diagonal entries u(r, r’'). However since Onl;j
is compactly supported, one could avoid the full construction of u(r, r') by embedding
the integration process into the construction of u(r, r’). As shown in Egs. (60) and (61),
the complexity for this integration is O(d2N2NyNcutN; + 2d2N2NewNpN) ~ O(N2)
and O(d2N3szNcuth + 2d2N3NcuthNp) ~ O(Neg), respectively. As for Eqgs. (62) and
(63), the complexity is O(d*N2NpNcuNe) ~ O(N2) and O(d>N2NyNcueNy) ~ O(N2),
respectively. Diagonalizing the Hessian matrix costs O(N2). In summary, the complexity
of phonon calculation scales as O(N2). This is further confirmed by numerical examples
in 1D in the following section. Table 1 summarizes the complexity of all computation
steps of split ACP.

4 Numerical examples

In this section, we demonstrate the performance of split ACP and compare it with DFPT
and finite difference (FD) through two examples. The first example consists of a 1D
reduced Hartree-Fock model problem that can be tuned to resemble a metallic system.
The second one is a 3D aluminum cluster calculation performed using KSSOLV [48],
which is a MATLAB toolbox for solving Kohn-Sham equations for small molecules and
solids in three-dimensions. KSSOLV uses plane wave expansion to discretize the Kohn-
Sham equations. All calculations are carried out using the Berkeley Research Computing
(BRC) High Performance Computing service. Each node consists of two Intel Xeon 10-

core Ivy Bridge processors (20 cores per node) and 64 GB of memory.



51 Page 20 of 30 D. An et al. Res Math Sci (2021) 8:51

Table 1 Summary of the complexity of each component of
the split ACP algorithm

Step Equation Complexity
Interpolation decomposition Eq. (40) O(NgdNaNcyt)
+O(Ng/\/cut/\/u)
Diagonal element construction regular part Eq. (54) O(Ny NeytNeNg)
+O(dNANcuthNcNg)
Diagonal element construction Singular part Eq. (55) ON Ny NpNg)
+O(dNANcuthNpNg)
The Dyson equation update Step 2.(b) in Alg. 1 O(NgN,.dNy)
+OWN;, + N;dNa)
Reconstruction local potential Eq. (58) O(d*N3Ny)
Reconstruction nonlocal pseudopotential Eq. (60) Eq. (61) O(d2N§Nchuth +
Eq. (62) Eq. (63) 2d? N NewtNpNe)
O(d*N2NpNeutNp +
2d? N2 Ny NpNp)

O(d?N2NpNeuiNe)
O(d>N2NpNeuiNp)

4.1 1D reduced Hartree-Fock model with nonlocal pseudopotential

The 1D reduced Hartree-Fock model was introduced by Solovej [42], and has been used
for analyzing defects in solids in e.g. [7,8]. The simplified 1D model neglects the contribu-
tion of the exchange-correlation term. As discussed in previous sections, the presence of
exchange-correlation functionals at LDA/GGA level does not lead to essential difficulties
in phonon calculations. Furthermore, the nonlocal pseudopotential in the Kleinman-
Bylander form [20] is added to this reduced model to test the availability for the split ACP
to handle the case in presence of nonlocal potential.

The Hamiltonian in our 1D reduced Hartree-Fock model is given by

1 d?
H[p] = Er™hi [/ K(x ) (p(y) + m(y)) dy} 8(x «")
+y Y blx — R)B* (' — Ry). (64)
1

Here m(x) = > ; my(x — Ry) is the summation of pseudocharges. Each function #1;(x)
takes the form of a one-dimensional Gaussian

2
my(x) = — Zi exp (—x—z) , (65)

/27.[0.12 20'1

where Z; is an integer representing the charge of the I-th nucleus. In our numerical

simulation, we choose all o7 to be the same.
Instead of using a bare Coulomb interaction which diverges in 1D when x is large, we

use a Yukawa kernel as the regularized Coulomb kernel
2 e Kx=yI

which satisfies the equation

2

d 4
— L K(59) + KK (5 y) = —5(x — y). 67)
dx €0
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Fig.2 Eigenvalues of the 1D system with Ny = 80

As k — 0, the Yukawa kernel approaches the bare Coulomb interaction given by the
Poisson equation. The parameter ¢y is used so that the magnitude of the electron static
contribution is comparable to that of the kinetic energy. The ion-ion repulsion energy Ejy
is also computed using the Yukawa interaction K in the model systems.

The last term in H[p] represents the kernel of the nonlocal pseudopotential, which is
the summation of rank-1 real symmetric operator with real valued function

bx) = _ exp (_x_Zz) . (68)
J2mo} 20,

y is a scaling factor used to control the magnitude of the nonlocal pseudopotential, which
is, in practice, much smaller than the local pseudopotential.

The parameters used in this model are chosen as follows. Atomic units are used through-
out the discussion unless otherwise mentioned. For all systems tested in this subsection,
the distance between each atom and its nearest neighbor is set to 2.4 a.u. The Yukawa
parameter k = 0.1. The nuclear charge Z; is set to 1 for all atoms, and oy is set to 0.3.
The parameter ¢ is chosen to be 80 so that the reduced Hartree-Fock model can be
tuned to resemble a metallic system. In the nonlocal pseudopotential, the scaling factor
y = —0.01, as well as o, set to be 0.1 (this will cause the total energy to change by 1.47%).
The temperature T is set to be 5000 K to emphasize the influence of partial occupation.
The Hamiltonian operator is represented in a plane wave basis set.

For the system of size N4 = 80, the 110 smallest eigenvalues are shown in Fig. 2, and the
corresponding occupational status near the chemical potential is shown in Fig. 1. There is
no evident energy gap within the spectrum of the Hamiltonian. Orbitals can be partially
occupied due to the finite temperature. Specifically, we identify an orbital to be (fully)
occupied if the occupation number f; > 1 — 107°, unoccupied if f; < 107°, otherwise
partially occupied. In this case, there are 20 partially occupied orbitals, whose eigenvalues
are around the chemical potential. The total number of (fully) occupied and partially
occupied orbitals Ny is 89, and we choose Nyt = Ny for all the split ACP computations.
Also we fix the number of pole expansion nodes N, to be 40 unless otherwise mentioned.
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In the ground state calculation, we use Anderson mixing [2] for accelerating the self-
consistent field (SCF) iterations, and the linearized eigenvalue problems are solved by
using the locally optimal block preconditioned conjugate gradient (LOBPCG) solver [21].
In DFPT, we use MINRES [37] to solve the Sternheimer equations iteratively. The initial
guess vectors for the solutions are obtained from previous iterations in the Dyson equation
to reduce the number of matrix-vector multiplications. The same strategy for choosing
the initial guess is implemented for the split ACP formulation as well. Anderson mixing
is used to accelerate the convergence of Dyson equations in DFPT, and in split ACP we
use the fixed point iteration with Sherman-Morrison-Woodbury formula.

All numerical results of the split ACP method and FD approach below are benchmarked
with results obtained from DFPT. We test the accuracy of the split ACP method in three
different level: the diagonal elements diag(Xog), the diagonal elements of solution to
Dyson equations diag(Xg), and the phonon frequencies {wy}. For the diagonal elements
diag(Xog) and diag(Xg), we directly measure the relative L? error, defined as ||diag(Xog) —
diag(%og)ﬂg /lldiag(X0g)||2. For the phonon frequencies, due to the presence of acoustic
phonon modes for which wy is close to 0, instead of the relative error, we measure the
absolute L™ error defined as maxy |w; — @y|, where @y is obtained from FD or split
ACP. We also demonstrate the efficiency of the split ACP method by comparing the
computational time and scaling of split ACP with that of DFPT and FD.

In Table 2 and 3, we calibrate the accuracy of the split compression with different
choices of the numbers of Chebyshev nodes N, and the numbers of columns N,,, for
two different choices of Ney, respectively. We measure the accuracy by relative L2 error
|diag(¥0g) — diag(f%og)||2/||diag(.'£og)||2, and choose N, = [Nycc where [ = 3,4,---,8.
Table 2 and 3 both show that, with a fixed number of Chebyshev nodes N, the error
decreases monotonically with respect to N, until limited by the accuracy of the Chebyshev
interpolation procedure. Similarly, with a fixed number of selected columns, the numerical
accuracy improves as more Chebyshev nodes are used in interpolation until limited by
the choice of N,,. Comparing Table 3 with Table 2, we also find that numerical accuracy
can be better with a larger Neut. This is due to the increase of the effective energy gap &g,
which leads to a smaller numerical error in the Chebyshev interpolation procedure. For
i\?cut /Nyt & 1.28, the relative L? error of xoG can be less than 107 for large enough N,
and N,.

We further study how different choices of N, and Nfcut affect the computational accu-
racy on diag(Xog). Here for all N, and Kfcut, N, is fixed to be 480 ~ 5.4Nyc or
560 = 6.3Nocc. This is determined the same way as that in the regular ACP formula-
tion so that |IF§N}L+LNM+1| < 6|EL1| < |ﬁNwNu| in Algorithm 2 in [27], with e = 10~% and
1075, respectively.

Figure 3 compares the relative L2 errors ||diag(Xog) — diag(ﬁ%og)||2 /|| diag(¥og)|l2 under
different f\?’cut and N,. We find that it can be sufficient to choose Kfcut < 2Nyt to achieve
the best accuracy possible where further improvement is hindered by the the choice of
N, (around 3 x 1075 for N, =~ 54Nycc and 1 x 107° for N, = 6.3Nocc). Under the split
ACP formulation, the number of Chebyshev nodes is significantly reduced. Specifically,
4-8 nodes can already perform fairly accurate calculation while no less than 20 nodes
are needed in the regular ACP formulation. Furthermore, the more Chebyshev nodes are
used, the smaller ﬁcut we can choose to achieve the same accuracy. For example, if 5 nodes
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Table 2 The relative L? error ||diag(Xog) — diag(%og)||2/||diag(i‘og)||2 for ﬁcut/Ncut ~ 1.06 with
the effective gap g4/|Z| ~ 0.1408

Ny

NC SNOCC 4NOCC SNOCC 6NOCC 7NOCC 8NOCC

3 2.38E-02 2.17E-02 2.13E-02 2.12E-02 2.12E-02 2.12E-02
4 2.06E-02 9.43E-03 6.25E-03 6.21E-03 6.21E-03 6.21E-03
5 2.01E-02 7.88E-03 2.86E-03 2.85E-03 2.84E-03 2.84E-03
6 1.64E-02 6.76E-03 1.73E-03 1.65E-03 1.65E-03 1.65E-03
7 1.65E-02 9.30E-03 8.10E-04 6.85E-04 6.87E-04 6.87E-04
8 1.62E-02 9.07E-03 5.86E-04 2.53E-04 2.50E-04 2.50E-04
9 1.81E-02 7.24E-03 7.86E-04 1.51E-04 147E-04 147E-04
10 149E-02 6.53E-03 5.83E-04 7.99E-05 7.24E-05 7.24E-05

Table 3 The relative L2 error ||diag(Xog) — diag(i%og)||2/||diag(3€og)||2 for chut/Nwt ~ 1.28 with
the effective gap 2¢/|Z| ~ 0.6777

Ny
NC 3/\lOCC 4NOCC 5l\/OCC 6NOCC 7NOCC 8NOCC
3 1.56E-02 8.52E-03 9.45E-04 742E-04 7.39E-04 7.39E-04
4 1.72E-02 7.79E-03 6.82E-04 1.02E-04 9.67E-05 9.67E-05
5 1.74E-02 9.49E-03 8.90E-04 6.00E-05 2.50E-05 2.50E-05
6 1.56E-02 7.80E-03 5.89E-04 7.06E-05 5.40E-06 5.38E-06
7 1.62E-02 9.07E-03 6.11E-04 5.51E-05 8.45E-07 8.42E-07
8 1.61E-02 9.04E-03 5.97E-04 4.73E-05 5.55E-07 3.218-07
9 1.85E-02 9.08E-03 6.45E-04 4.52E-05 4.88E-07 3.20E-07
10 1.55E-02 9.52E-03 8.12E-04 5.72E-05 497E-07 3.20E-07
107! 10° ‘
N.=3 —N.=3
(g N, = (g N, =4
= N.=57 = Ne=5|
3 ——N,=6 3 L —N,.=6
§ N, = § T~ - N, =7
Gl N, =8/ & ) X — N, =8|/
9 IS S e T~
2 . S O L
[5} \ T [5}
ol ANl = SIS So- ST =
10° ' ' ' ' 108 ' : : -
1.2 ~1.4 1.6 1.8 2 1.2 ~1.4 1.6 1.8 2
Nr‘u[/le, N(‘u/,/Nr'ul
(a) Ny ~ 5.4Nocc (b) Ny &~ 6.3Noce
Fig.3 The relative L? errors || diag(Xog) — diag(3~€og)||2/||diag(3€og)Hz under different Ncut and N

are adopted in Chebyshev interpolation, we need to choose chut as large as 1.55Ny to
achieve the best accuracy, while Kfcut ~ 1.2N is sufficient if N, increases to 8.

In order to demonstrate the effectiveness of the split representation, the relative L* error
|diag(Xg) — diag(%g) l2/]diag(Xg)|l2 during the fixed point iteration when solving Dyson
equation is shown in Fig. 4. For each choice of N, numerical results show significant

improvement after only one iteration, and the self-consistent iteration converges within

two steps. After convergence, the error is around 1.4 x 1073 for e = 1073, 6.2 x 107 for
€ =10"%and 6.4 x 107° for € = 107°.
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Fig.4 Convergence for solving the Dyson equation using the split ACP formulation

Table 4 L error of the phonon frequencies. System size is N4 = 80. Chebyshev nodes N. = 5in

split ACP

FD, 8 = 0.01 7.79E-05
split ACP, Np = 20, N, & 54Nocc fore = 1074 5.90E-05
split ACP, Np = 40, N, & 6.3Ngcc fore = 1072 1.51E-05

Next we compare the split ACP with DFPT and FD in terms of the accuracy of phonon
frequencies. Table 4 presents L error of the phonon spectrum obtained by FD and split
ACP with different parameters benchmarked with that from DFPT. In the FD approach,
the convergence tolerance for LOBPCG is set to be 1078, and the SCF convergence toler-
ance is 10710, § denotes the perturbation of each atom position to the origin. We remark
that further smaller § can lead to slightly larger numerical error due to the numerical insta-
bility of FD approach, and the numerical error of FD approach is usually around 10~%. As
for the split ACP, the same parameters for LOBPCG and SCF are chosen to converge the
ground state calculation, and 5 nodes are used in the Chebyshev interpolation procedure.
We find that it is sufficient to choose Nj, = 20 and N, & 5.4N,. to achieve comparable
accuracy with FD approach. Furthermore, with more nodes in pole expansion and more
selected columns, the L*° error of split ACP can be as small as around 1072, in which case
split ACP can be more accurate than FD approach.

In the end we perform phonon calculations for systems of size from 30 to 140. We
choose § = 0.01 for FD approach. Fig. 5a shows that the accuracy of phonon spectrum
(L% error) from FD approach remains roughly the same as the system size increases,
which is empirically around 10~%. For the split ACP, we find that € = 1074 N, = 4,
N, = 20 and Kfcut ~ 1.7Ngy is sufficient to achieve error around 10~%. Fig. 5b reports
the phonon spectrum op for system of size Ny = 140. We remark that Fig 5b plots op by
smearing the Dirac-§ distribution in (10) using a regularized function

2

202’

1
8o () = ——e
’ 2o
where the smear parameter o is chosen to be 0.005.
To demonstrate the efficiency of the split ACP formulation, Fig. 6 compares the com-

putational time of different methods. We observe that the split ACP can be more advan-
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Table5 Computational scaling measured from Ng = 90toNa = 140
Method Computational scaling
DFPT 40036
FD 3.8057
split ACP 3.1587

tageous than DFPT for systems merely beyond 40 atoms, and become more advantageous
than FD for systems beyond 60 atoms. For the largest system with 140 atoms, split ACP
is 3.37 and 1.68 times faster than DFPT and FD, respectively.

Table 5 measures the slope of the computational cost with respect to system sizes
from Ny = 90 to N4 = 140. In theory, the asymptotic computational cost of DFPT and
FD should be O(N?}), and the cost of split ACP should be O(N2). For all the methods,
numerical scalings shown in Table 5 match closely with the theoretical ones.
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4.2 3D aluminum cluster

In this section, we present the result of phonon calculations of a 3D aluminum cluster.
Each unit cell is a 7.65 x 7.65 x 7.65 a.u. with 4 Al atoms. The computational supercell
consists of 2 x 2 x 1 unit cells and has 16 atoms and 48 electrons. We use the spin-
restricted formulation and the Perdew-Zunger pseudopotential [39], and the temperature
is set to 1000K. E¢y; is set to 10 Hartree. We set N¢yt = 33, ﬁcut = 47, and the number of
Chebyshev interpolation N, to be 6. For the system size tested, we found that using Eq.(37)
directly for computing the singular part of the polarizability matrix much more faster than
using the pole expansion. So the computation is done using Eq.(37) for the purpose of
testing the accuracy of the algorithm. This results in much shorter computational time
given the size of the system tested is small.

Figure 7 reports the relative error in the iteration of solving the Dyson equation. We
remark that for this system, N, = 1584. In comparison, the total grid points in the
discretization is N, = 42592. This means that the numerical rank of the operator x far
less than the number of grid points. The iteration is converged to 10~ relative error for
6 steps.

Figure 8 reports the phonon spectrum computed from both FD and split ACP. The
smearing parameter for plotting the spectrum is chosen as 0.008. The L*> error on the
density of states is 5.62E-05.

We remark that the purpose of the test above is to illustrate that the split ACP for-
mulation can indeed be used to accurately obtain the phonon spectrum for 3D metallic
systems, with fractionally occupied states and nonlocal pseudopotentials. However, due to
the small system size, the computational time of the split representation of ACP is in fact
much longer than that of FD. Also we remark that there is difficulty in the DFPT approach
in 3D. The Sternheimer equations are ill-conditioned and the MINRES iteration fail to
converge. This result also emphasizes the necessity of introducing the effective gap in the
split ACP.

Since KSSOLYV is only designed to solve Kohn-Sham equations for systems with rel-
atively small sizes, our implementation cannot reveal the efficiency of the split ACP
approach yet for 3D systems, and this will be our future work.

D. An et al. Res Math Sci (2021) 8:51
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5 Conclusion

We have introduced the split representation of a recently developed method called the
adaptively compressed polarizability operator. The split ACP formulation incorporates
nonlocal pseudopotentials and finite temperature effects successfully, hence generalizes
the ACP formulation to solve for phonons in metallic systems as well. Our numerical
results for model problems indicate that the computational advantage of the split ACP
fomulation can be clealy observed compared to DFPT and finite difference, even for
systems of relatively small sizes. The numerical example for 3D Aluminum cluster shows
that accuracy of the split ACP formulation in the application for computing the phonon
spectrum for real materials.

The new split representation of ACP provides a systematic and complete solution to
treating systems at finite temperature. We have used phonon calculation as an example to
demonstrate the effectiveness as well as accuracy of the split representation of adaptively
compressed polarizability operator. The same strategy can be applied to applications of
DFPT other than phonon calculations, when the polarizability operator x needs to be
applied to a large number of vectors. Moreover, all numerical tests are on single-threaded.
Parallelized implementation would help fully test whether split representation of ACP
formulation can achieve the goal of reducing complexity to asymptotically O(N2). We
will present the parallel implementation in the future.
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Appendix A
Using the Cauchy contour integral formulation, the density matrix at finite temperature

can be represented as

_1 _ )t
Py = 5 féf(z)(z H) 'dz (69)

When the Hamiltonian is perturbed to H, = Hy + €g, and when ¢ is small enough, the
perturbed density matrix P, can still be computed as

1

= — H,) 'dz 70

! zmygf(Z)(z ) de (70)
Then we have

1 _ _
P — Py = %ygf(z)[(z—Hg) ') de
1
e 7% F@ [ = H) ealz — H) ] dz 71)

1
= ff(z) [(z — H) teg(z — H)™'] dz + O(e?).
2mwi I
Hence by the definition of X, we have
1 _ _
xog = 5 @ [ — 1) tae— 1) 1] 72)
2mi Je
Using the spectral decomposition of H, and use the contour integral formulation

ViV eV vy }

J
oo = _7§ Zf( [(z—e,)(z—sm

27‘[1 Z f (z — gf(Z) P I:wlw gwkwk:l

f 5 ~ (73)
k
Z [w R ARNAL A
l#k j
Ji =S
% . o],
& —
Jik
where the 2 f fk is interpreted as the derivative when j = k.
For the purpose of computing singular part with contour representation, we have
Ncut cut ‘
=) Z Va(Wravi)¥; + he
i=1 a=Ncyt+1 ta
Neu Ncut
+y Z wa(wagw,)vf
i=1 a=1 €a
Ncut Ncut (Z)
+hec
e f ;a—NZtH & el ey LSV (74)
cut Ncut
d
+ 5= ZIZI = 8@)& o aviaviv]

Mff (¢ — Hop) ‘gz — Hy) ™ dz + hie.

mef (z — He1) gz — Hy1) 7t dz,
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where H,; = Zf\i"f Ve, Hey = Z?ﬁ“‘cut 41 Vieiyy] are the Hamiltonian operators

projected to the subspace spanned by the first N states, and to the subspace spanned by

~

the following (Ncut — Neut) States, respectively.
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