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Abstract

The polarizability operator plays a central role in density functional perturbation theory
and other perturbative treatment of first principle electronic structure theories. The cost
of computing the polarizability operator generally scales asO(N4

e ) where Ne is the
number of electrons in the system. The recently developed adaptively compressed
polarizability operator (ACP) formulation [L. Lin, Z. Xu and L. Ying, Multiscale Model.
Simul. 2017] reduces such complexity toO(N3

e ) in the context of phonon calculations
with a large basis set for the first time, and demonstrates its effectiveness for model
problems. In this paper, we improve the performance of the ACP formulation by
splitting the polarizability into a near singular component that is statically compressed,
and a smooth component that is adaptively compressed. The new split representation
maintains theO(N3

e ) complexity, and accelerates nearly all components of the ACP
formulation, including Chebyshev interpolation of energy levels, iterative solution of
Sternheimer equations, and convergence of the Dyson equations. For simulation of real
materials, we discuss how to incorporate nonlocal pseudopotentials and finite
temperature effects. We demonstrate the effectiveness of our method using
one-dimensional model problem in insulating and metallic regimes, as well as its
accuracy for real molecules and solids.
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1 Introduction
Density functional perturbation theory (DFPT) [3,4,9,17] studies the response of a quan-
tum system under small perturbation, where the quantum system is described at the
level of first principle electronic structure theories such as Kohn-Sham density functional
theory (KSDFT) [19,23]. One important application of DFPT is the calculation of vibra-
tion properties such as phonons, which can be further used to calculate many physical
properties such as infrared spectroscopy, elastic neutron scattering, specific heat, heat
conduction, and electron-phonon interaction related behaviors such as superconductiv-
ity (see [4] for a review). DFPT describes vibration properties through a polarizability
operator, which characterizes the linear response of the electron density with respect
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to the perturbation of the external potential. More specifically, in vibration calculations,
the polarizability operator needs to be applied to d × NA ∼ O(Ne) perturbation vectors,
where d is the spatial dimension (usually d = 3), NA is the number of atoms, and Ne is
the number of electrons. In general the complexity for solving KSDFT isO(N 3

e ), while the
complexity for solving DFPT is O(N 4

e ). It is possible to reduce the computational com-
plexity of DFPT calculations by “linear scaling methods” [6,16,35]. Such methods can be
successful in reducing the computational cost for systems of large sizes with substantial
band gaps, but this can be challenging for medium-sized systems with relatively small
band gaps.
The term “phonon calculation” usually describes the calculation of vibration properties

of condensed matter systems. In this paper, we slightly abuse this term to refer to calcu-
lations of vibration properties of general systems, including condensed matter systems as
well as isolated molecule clusters, since such calculations share the same mathematical
structure. In order to apply the polarizability operator toO(Ne) vectors, we need to solve
O(N 2

e ) coupled Sternheimer equations. On the other hand, when a constant number of
degrees of freedom per electron is used, the size of the Hamiltonian matrix is onlyO(Ne).
Hence asymptotically there is room to obtain a set of only O(Ne) “compressed pertur-
bation vectors”, which encodes essentially all the information of the O(N 2

e ) Sternheimer
equations. The recently developed adaptively compressed polarizability operator (ACP)
formulation [27] follows this route, and successfully reduces the computational complex-
ity of phonon calculations toO(N 3

e ) for the first time. The ACP formulation does not rely
on exponential decay properties of the density matrix as in linear scaling methods, and its
accuracy depends weakly on the size of the band gap. Hence the method can be used for
phonon calculations of both insulators and semiconductors with small gaps.
There are three key ingredients of the ACP formulation. 1) The Sternheimer equations

are equations for shifted Hamiltonians, where each shift corresponds to an energy level
of an occupied band. Hence for a general right hand side vector, there are Ne possible
energies (shifts). We use a Chebyshev interpolation procedure to disentangle such energy
dependence so that there are only constant number of shifts that is independent of Ne.
2) We disentangle the O(N 2

e ) right hand side vectors in the Sternheimer equations using
the recently developed interpolative separable density fitting procedure, to compress the
right-hand-side vectors. 3)We construct the polarizability operator by adaptive compres-
sion so that the operator remains low rank as well as accurate when applying to a certain
set of vectors. This make it possible for fast computation of the matrix inversion using
methods like Sherman-Morrison-Woodbury. In particular, the ACP method does not
employ the “nearsightedness” property of electrons for insulating systems with substan-
tial band gaps as in linear scaling methods [22]. Hence the ACP method can be applied to
insulators as well as semiconductors with small band gaps.
In this paper, we introduce a generalization the ACP formulation for efficient phonon

calculations of realmaterials called split representation ofACP. In the split representation,
thenonlocal pseudopotential is taken into account, aswell as temperature effects especially
for metallic systems. The new split representation maintains the O(N 3

e ) complexity, and
improves all key steps in the ACP formulation, including Chebyshev interpolation of
energy levels, iterative solution of Sternheimer equations, and convergence of the Dyson
equations.
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The rest of the paper is organized as follows. Section 2 introduces the basic formulation
of KSDFT and DFPT, and reviews the formulation of ACP. Section 3 describes the split
representation of the ACP formulation. Numerical results are presented in section 4,
followed by conclusion and discussion in section 5.

2 Preliminaries
2.1 Kohn-Sham density functional theory

For simplicity we consider a system of finite size with periodic boundary conditions. This
can be used to model isolated molecular systems as well as solid state systems with the
Gamma point sampling strategy of the Brillouin zone [30]. However, we do not explicitly
take advantage of that {ψi(r)} are real, so that the formulation is applicable to real space
and Fourier space implementation, as commonly done in electronic structure software
packages. The spatial dimension d = 3 is assumed in the treatment of e.g. Coulomb
interaction unless otherwise specified. Since our numerical results involve real materials
and systems of both insulating and metallic characters, we include relevant technical
details such as nonlocal pseudopotential and temperature dependence in the discussion.
Consider a system consisting of NA nuclei and Ne electrons at temperature T = 1/(kBβ),
where kB is the Boltzmann constant. In the Born-Oppenheimer approximation, for each
set of nuclear positions {RI }NA

I=1, the electrons are relaxed to their ground state. The ground
state total energy is denoted by Etot({RI }NA

I=1), and can be computed in Kohn-Sham density
functional theory [19,23,31] according to the minimization of the following Kohn-Sham-
Mermin energy functional

EKS({ψi}; {RI })

= 1
2

∞∑

i=1
fi
∫

|∇ψi(r)|2 dr +
∞∑

i=1
fi
∫

ψ∗
i (r)Vion(r, r′; {RI })ψi(r′) dr dr′

+ 1
2

∫∫
vc(r, r′)ρ(r)ρ(r′) dr dr′ + Exc[ρ] + EII({RI })

+ 1
β

∞∑

i=1

[
fi log fi + (1 − fi) log(1 − fi)

]
.

(1)

Here the minimization is with respect to the Kohn-Sham orbitals {ψi}∞i=1 satisfying the
orthonormality condition

∫
ψ∗
i (r)ψj(r) dr = δij , as well as the occupation numbers {fi}∞i=1

satisfying 0 ≤ fi ≤ 1. In Eq. (1), ρ(r) = ∑∞
i=1 fi

∣∣ψi(r)
∣∣2 defines the electron density

with normalization condition
∫

ρ(r) dr = Ne. In the discussion below we will omit the
range of indices I, i unless otherwise specified. In Eq. (1), vc(r, r′) = 1

|r−r′| defines the
kernel for Coulomb interaction in R

3 and the corresponding term is called the Hartree
energy. Vion is a potential characterizing the electron-ion interaction, and is independent
of the electronic states {ψi}. More specifically, in a pseudopotential approximation [30],
if we view Vion as an integral operator, then the kernel of Vion can be expressed as the
summation of contribution from each atom I

Vion(r, r′; {RI }) =
∑

I
Vloc,I (r − RI )δ(r − r′) +

∑

I
Vnl,I (r − RI , r′ − RI ). (2)

Here Vloc,I is called the local pseudopotential, and Vnl,I the nonlocal pseudopotential.
In the Kleinman-Bylander form [20], each nonlocal pseudopotential is a low rank and
symmetric operator with kernel
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Vnl,I (r − RI , r′ − RI ) =
LI∑

l=1
γI,lbI,l(r − RI )b∗

I,l(r′ − RI ). (3)

Here γI,l is a weight factor, and each bI,l is a real valued function. The function bI,l is
also localized, in the sense that it is compactly supported around r = 0. The locality
originates from the physical meaning of nonlocal pseudopotentials, i.e. they characterize
the orthogonality of the valence electron orbitals with respect to the core electron orbitals,
and hence the support of bI,l is restricted by the span of the core orbitals. Exc is the
exchange-correlation energy, and here we assume semi-local functionals such as local
density approximation (LDA) [10,39] and generalized gradient approximation (GGA)
functionals [5,24,38] are used. EII is the ion-ion Coulomb interaction energy. For isolated

clusters in 3D, EII({RI }) = 1
2
∑

I �=J

ZIZJ
|RI − RJ | , while for periodic systems the contribution

from all the image charges should be properly taken into account via e.g. the Ewald
summation technique [14]. The last term of Eq. (1) is the entropy term related to the
temperature, and spin degeneracy is neglected for simplicity of the notation.
The Euler-Lagrange equation associated with the Kohn-Sham energy functional gives

rise to the Kohn-Sham equations as

H [ρ]ψi =
(

−1
2
Δ + V[ρ]

)
ψi = εiψi, (4)

∫
ψ∗
i (r)ψj(r) dr = δij , ρ(r) =

∞∑

i=1
fi
∣∣ψi(r)

∣∣2 , fi = 1
1 + eβ(εi−μ) . (5)

Here the eigenvalues {εi} are ordered non-decreasingly. Note that the occupation number
fi is given analytically by the Fermi-Dirac distribution with respect to the eigenvalue εi,
and μ is a Lagrange multiplier enforcing the normalization condition of the electron
density. The difference of the eigenvalues εg = εNe+1−εNe is called the energy gap. If εg is
positive, then the system is called an insulating system. Otherwise it is a metallic system.
For insulating systems, ψ1, . . . ,ψNe are called the occupied orbitals, while ψNe+1, . . . are
called the unoccupied orbitals. ψNe is sometimes called the highest occupied molecular
orbital (HOMO), and ψNe+1 the lowest unoccupied molecular orbital (LUMO).
The effective potential V[ρ] depends on the electron density ρ as

V[ρ](r, r′) = Vion(r, r′) +
[∫

vc(r, r′′)ρ(r′′) dr′′ + Vxc[ρ](r)
]

δ(r − r′). (6)

Here Vxc[ρ](r) = δExc
δρ(r) is the exchange-correlation potential, which is the functional

derivative of the exchange-correlation energy with respect to the electron density. The
Kohn-Sham Hamiltonian depends nonlinearly on the electron density ρ, and the elec-
tron density should be solved self-consistently. When the Kohn-Sham energy functional
EKS achieves its minimum, the self-consistency of the electron density is simultaneously
achieved. Note that both the Hartree potential and the exchange-correlation potential are
local potentials. This plays an important role in simplifying the treatment of the density
functional perturbation theory.
When theKohn-Shamenergy functionalEKS achieves itsminimum, the self-consistency

of the electron density is simultaneously achieved. Then the total energy can be equiva-
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lently computed as [30]

Etot =
∞∑

i=1
fiεi − 1

2

∫∫
vc(r, r′)ρ(r)ρ(r′) dr dr′

−
∫

Vxc[ρ](r)ρ(r) dr + Exc[ρ] + EII({RI }).
(7)

Here Eband =
∞∑

i=1
fiεi is referred to as the band energy.

At this point, the atomic force can be given by the negative of the first order derivative
of Etot with respect to the atomic configuration using the Hellmann-Feynman theorem as

FI = −∂Etot({RI })
∂RI

= −
∫

∂Vion
∂RI

(r, r′; {RI })P(r′, r) dr dr′ − ∂EII({RI })
∂RI

. (8)

Here P is the density matrix defined as

P(r, r′) =
∞∑

i=1
fiψi(r)ψ∗

i (r′). (9)

In particular, the diagonal entries of the density matrix P(r, r) is the electron density ρ(r).
The derivative of the pseudopotential

∂Vion
∂RI

(r, r′; {RI }) does not depend on the electron
density, can be obtained semi-analytically.Hence the computation of the atomic force only
involves a number of quadratures. The atomic force allows the performance of structural
relaxation of the atomic configuration, by minimizing the total energy Etot with respect to
the atomic positions {RI }. When the atoms are at their equilibrium positions, all atomic
forces should be zero.

2.2 Density functional perturbation theory

In density functional perturbation theory (DFPT), we assume that the self-consistent
ground state electron density ρ has been computed, denoted by ρ∗. In this paper, we focus
on phonon calculations using DFPT. Assume the system deviates from its equilibrium
position {RI } by some small magnitude, then the changes of the total energy is dominated
by the Hessian matrix with respect to the atomic positions. The dynamical matrix D
consists of d × d blocks in the form

DI,J = 1√
MIMJ

∂2Etot({RI })
∂RI∂RJ

,

whereMI is the mass of the I-th nuclei. The dimension of the dynamical matrix is d×NA.
The equilibrium atomic configuration is at a local minimum of the total energy, and all
the eigenvalues of D are real and non-negative. Hence the eigen-decomposition of D is

Duk = ω2
kuk ,

where uk is called the k-th phonon mode, and ωk is called the k-th phonon frequency.
The phonon spectrum is defined as the distribution of the eigenvalues {ωk} i.e.

�D(ω) = 1
dNA

∑

k
δ(ω − ωk ). (10)

Here δ is theDirac-δ distribution. �D is also referred to as the density of states ofD [26,30].
In order to compute the Hessian matrix, we obtain from Eq. (8) that

∂2Etot({RI })
∂RI∂RJ

=
∫

∂Vion
∂RI

(r, r′; {RI })∂P(r
′, r)

∂RJ
dr dr′

+
∫

∂2Vion
∂RI∂RJ

(r, r′; {RI })P(r′, r) dr dr′ + ∂2EII({RI })
∂RI∂RJ

.
(11)
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Similar to the force calculation, the second term of Eq. (11) can be readily computed
with numerical integration, and the third term involves only ion-ion interaction that is
independent of the electronic states. Hence the first term is the most challenging one
due to the response of the electron density with respect to the perturbation of atomic
positions. Applying the chain rule, we have

∫
∂Vion
∂RI

(r, r′; {RI })∂P(r
′, r)

∂RJ
dr dr′

=
∫

∂Vion(r, r′; {RI })
∂RI

δP(r′, r)
δVion(r′′, r′′′)

∂Vion(r′′, r′′′); {RI })
∂RJ

dr dr′ dr′′ dr′′′.
(12)

Here the Fréchet derivative X(r, r′; r′′, r′′′) = δP(r, r′)
δVion(r′′, r′′′)

is referred to as the reducible

polarizability operator [36], which characterizes the self-consistent linear response of
the density matrix at (r, r′) with respect to an external nonlocal perturbation of Vion
at (r′′, r′′′). However, the computation of X must be obtained through a simpler quantity

X0(r, r′; r′′, r′′′) = δP(r, r′)
δV(r′′, r′′′) , which is called the irreducible polarizability operator (a.k.a.

independent particle polarizability operator) [36].
The discussion using the notation r, r′, r′′ etc will quickly become complicated. For

simplicity in the discussion below, we will not distinguish the continuous and discretized
representations of various quantities. In the case when a discretized representation is
needed, we assume that the computational domain is uniformly discretized into a number
of grid points {rα}Ng

α=1. After discretization all quantities can be called tensors. For example,
we will call u(r) an order 1 tensor (or a vector),A(r, r′) an order 2 tensor (or a matrix), and
X(r, r′; r′′, r′′′) an order 4 tensor. The tensor slicing and tensor contraction can be denoted
using either the continuous or the discrete notation. For example, X(r, r; r′′, r′′′) denotes
a sliced tensor which is an order 3 tensor. The tensor contraction between two order 1
tensors u and v should be interpreted as u∗v = ∫

u∗(r)v(r) dr. The tensor contraction
between an order 2 tensor A and an order 1 tensor v (i.e. a matrix-vector product) should
be interpreted as (Av)(r) = ∫

A(r, r′)v(r′) dr′. Similarly the contraction between an order
2 tensor A and an order 2 tensor g (i.e. matrix-matrix product) should be interpreted as
(Ag)(r, r′) = ∫

A(r, r′′)g(r′′, r′) dr′′, and the contraction between an order 4 tensor X and
an order 2 tensor g should be interpreted as

(Xg)(r, r′) =
∫

X(r, r′; r′′, r′′′)g(r′′, r′′′) dr′′ dr′′′.
We also define two operations for order 1 tensors. The Hadamard product of two order
1 tensors u	 v should be interpreted as (u	 v)(r) := u(r)v(r). For an order 1 tensor v(r),
we define an associated order 2 tensor as (diag[v])(r, r′) := v(r)δ(r− r′). It is easy to verify
that the Hadamard product can be written as u 	 v = diag[u]v.
Using the linear algebra type of notation as above, the key difficulty of phonon calcula-

tions is the computation of the tensor contraction u = Xg, where g traverses d×NA order

2 tensors of the form
∂Vion(r′′, r′′′; {RI })

∂RJ,a
, where RJ,a is the a-th direction of the atomic

position RJ (a = 1, . . . , d). According to Eq. (2), g can split into a local component and a
nonlocal component as

g(r, r′) = gloc(r)δ(r − r′) + gnl(r, r′), (13)

or equivalently g = diag[gloc] + gnl. For each g, only one atom J contributes to the order
1 tensor gloc and the order 2 tensor gnl. From the definition of nonlocal pseodopotential
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Eq. (3), we have

gnl,I (r, r′) =
LI∑

l=1
γI,l

[
bI,l(r − RI )db∗

I,l(r′ − RI ) + dbI,l(r − RI )b∗
I,l(r′ − RI )

]
,

where dbI,l(r − RI ) := ∂bI,l(r − RI )
∂RI

.

(14)

We note that gnl is a symmetric operator of rank 2LI , where the factor 2 comes from
the Leibniz formula. In the rest of the paper, we shall use bl(r), dbl(r) to hide the explicit
dependence on the atom indices I or the atomic positions {RI }.
From the definition of V in Eq. (6), we apply the chain rule and have

u = Xg = δP
δV

δV
δVion

g = X0g + X0fhxcXg = X0g + X0fhxcu. (15)

In Eq. (15),

fhxc(r, r′; r′′, r′′′) =
(
vc(r, r′′) + δVxc[ρ∗](r)

δρ(r′′)

)
δ(r − r′)δ(r′′ − r′′′)

:= fhxc(r, r′′)δ(r − r′)δ(r′′ − r′′′)
(16)

is an order 4 tensor, which is the kernel characterizing the dependence of the V with
respect to the density matrix P in the linear regime. Here δVxc[ρ∗](r)

δρ(r′) is called the exchange-
correlation kernel, which is a local operator in the LDA and GGA formulations of the
exchange-correlation functionals. Therefore in Eq. (16), δ(r − r′) comes from that the
Hartree and exchange-correlation potentials are local, while δ(r′′ − r′′′) comes from that
the nonlinear term only depends on the electron density, i.e. the diagonal elements of the
density matrix. Eq. (15) is called the Dyson equation, and the solution u should be solved
self-consistently.
In order to solve the Dyson equation (15), we need to apply X0 to order 2 tensors of the

form g or fhxcu. By means of the eigenfunctionsψi, the eigenvalues εi, and the occupation
numbers fi, X0g can be expressed using the Adler-Wiser formula [1,46]

(X0g)(r, r′) =
∞∑

i,a=1

fa − fi
εa − εi

ψa(r)
(∫

ψ∗
a (r′′)g(r′′, r′′′)ψi(r′′′) dr′′ dr′′′

)
ψ∗
i (r′), (17)

where the term when i = a should be interpreted as the limit when εa → εi. Using the
linear algebra notation, Eq. (17) can be written as

X0g =
∞∑

i,a=1

fa − fi
εa − εi

ψa(ψ∗
agψi)ψ∗

i . (18)

Since g is an Hermitian order 2 tensor, X0g is also an Hermitian order 2 tensor. If we
truncate the infinite sum in Eq. (18) to a finite sum of states, Eq. (18) and Eq. (15) can be
solved together to obtain u, and therefore the Hessian matrix (11) can be evaluated.
In order to observe the computational complexity of DFPT for phonon calculations, let

us first neglect the nonlocal pseudopotential Vnl,I , which simplifies the discussion. Since
each g only involves the local contribution, Eq. (11) only requires ∂ρ(r)

∂RJ
. Therefore one is

only interested in computing

u(r) = u(r, r) =
∫

X(r, r; r′, r′)g(r′, r′) dr′ :=
∫

χ (r, r′)gloc(r′) dr′. (19)
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Here we have introduced the notation χ (r, r′) = X(r, r; r′, r′), and used that the nonlocal
component of g vanishes. Similarly we can define χ0(r, r′) = X0(r, r; r′, r′). We also con-
sider insulating systems with a finite band gap. This allows us to reduce the temperature
dependence of the occupation number, so that fi = 1 if i ≤ Ne and 0 if i ≥ Ne + 1. As a
result, Eq. (18) can be simplified as

χ0gloc =
Ne∑

i=1

∞∑

a=Ne+1

1
εi − εa

diag[ψ∗
i ]ψa

(
ψ∗
adiag[gloc]ψi

)+ h.c. (20)

Here h.c.means the Hermitian conjugate of the first term.
In order to overcome the difficulty of explicitly computing all the unoccupied orbitals

{ψa}∞a=Ne+1, we first define the projection operator to the unoccupied space Q = I −
∑Ne

i=1 ψiψ∗
i . Then we can compute χ0gloc as

χ0gloc =
Ne∑

i=1
diag[ψ∗

i ]Q(εi − H )−1Q(diag[gloc]ψi) + h.c. (21)

In principle, since Q commutes with H , the right hand side of Eq. (21) only requires one
Q operator to be present. However, we choose the form Q(εi −H )−1Q to emphasize that
this operator is Hermitian. Let ζi := Q(εi − H )−1Q(diag[gloc]ψi), the matrix inverse in
Eq. (21) can be avoided by solving the Sternheimer equations

Q(εi − H )Qζi = Q(diag[gloc]ψi). (22)

This strategy has been used in a number of contexts involving the polarizability operator
[15,17,34,36,44]. The Sternheimer equations can be solved using standard direct or iter-
ative linear solvers. The choice of the solver can depend on practical matters such as the
discretization scheme, and the availability of preconditioners. In practice for planewave
discretization, we find that the use of the minimal residual method (MINRES) [37] gives
the best numerical performance.
The complexity of phonon calculations can now be analyzed as below. Even with local

pseudopotential only, and assume the Dyson equations always converge within a constant
number of iterations that is independent of the system size Ne, we need to apply χ0 to
d × NA ∼ O(Ne) vectors of the form gloc. Each gloc requires solving Ne Sternheimer
equations (22), and the computational cost of applying the projection operator Q to a
vector is O(N 2

e ). Hence the overall complexity is O(N 4
e ) [4]. This is significantly more

expensive than solving the KSDFT, of which the computational complexity is typically
O(N 3

e ).

2.3 Adaptively compressed polarizability operator

In this section we briefly review the ACP formulation [27] in the context of phonon
calculations for insulating systems using local pseudopotentials. If we label the possible
gloc using a single index j, the Sternheimer equation (22) can be written as

Q(εi − H )Qζij = Q(ψi 	 gloc,j). (23)

Here we have used the relation diag[gloc]ψ = ψ 	 gloc to place gloc and ψ on a more
symmetric footing. Then reduction of the computational complexity is achieved bymeans
of reducing the O(N 2

e ) equations in Eq. (23) to O(Ne) equations with systematic control
of the accuracy.
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The compression of the right hand side vectors is performed via the interpolative sepa-
rable density fittingmethod by Lu and Ying [29]. Let us denote byM the collection of right
hand side vectors in Eq. (23) without theQ factor, i.e.Mij = ψi 	 gloc,j . Here we have used
ij as a stacked column index for the matrixM. The dimension ofM isNg ×O(N 2

e ). Due to
the large number of columns ofM, we seek for the following interpolative decomposition
(ID) type of compression [12] for the matrixM, i.e.

Mij(r) ≈
Nμ∑

μ=1
ξμ(r)Mij(rμ) ≡

Nμ∑

μ=1
ξμ(r)ψi(rμ)gloc,j(rμ). (24)

Here {rμ}Nμ

μ=1 denotes a collection of selected row indices (see Fig. 1 in [27] for an illustra-
tion). Mathematically, the meaning of the indices {rμ} is clear: Eq. (24) simply states that
for any grid point r, the corresponding row vectorM:(r) can be approximately expressed
as the linear combination of the selected rows {M:(rμ)}. Since Ng ∼ Ne, as Ne increases,
the column dimension ofM (which isO(N 2

e )) can be larger than its row dimension (which
isNg ), and we can expect that the vectors {ψi 	 gj} are approximately linearly dependent.
Such observation has been observed in the electronic structure community under the
name of density fitting or resolution of identity (RI) [13,40,41,43,45], and the numerical
rank of the matrix M after truncation can be only O(Ne) with a relatively small pre-
constant. This dimension reduction property has also been recently analyzed in [28]. In
the context of the interpolative decomposition, our numerical results also indicate that it
is sufficient to choose Nμ ∼ O(Ne), and the pre-constant is small.
One possible way of finding interpolative decomposition is to use a pivoted QR factor-

ization [11,18]. However, the computational complexity for compressing the densematrix
M using the interpolative decomposition is still O(N 4

e ). The interpolative separable den-
sity fitting method [29] employs a two-step procedure to reduce this cost. The first step is
to use a fast down-sampling procedure, such as a subsampled random Fourier transform
(SRFT) [47], to transform the matrixM into a matrix M̃ of smaller dimension Ng × rNe,
with r a relatively small constant so that rNe is slightly larger than Nμ. The second step is
to apply the pivoted QR decomposition to M̃

M̃∗Π̃ = Q̃R̃, (25)

where Π̃ is a permutation matrix and encodes the choice of the row indices {rμ} from M̃.
The interpolation vectors {ξμ} in Eq. (24) can be also be computed from this pivoted QR
decomposition. It should be noted that the pre-processing procedure does not affect the
quality of the interpolative decomposition, while the cost of the pivoted QR factorization
in Eq. (25) is now reduced to O(NgN 2

μ) ∼ O(N 3
e ). We refer readers to [27,29] for a more

detailed description of this procedure.
Once the compressed representation (24) is obtained, we solve the following set of

modified Sternheimer equations

Q(εi − H )Qζ̃cμ = Qξμ, i = 1, . . . , Ne, μ = 1, . . . , Nμ.

Note that there are still O(N 2
e ) equations to solve, but this time the number of equations

arises from the energy dependence on the left hand side of the equation. If the band gap
is positive, we can solve a set of equations of the form

Q(̃εc − H )Qζ̃cμ = Qξμ, c = 1, . . . , Nc, μ = 1, . . . , Nμ. (26)
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where the number of shiftsNc is independent of the system sizeNe. For example, this can
be achieved using the Chebyshev points on the occupied band [ε1, εNe ], and the number of
Chebyshev points needed to achieve a certain error tolerance scales weakly with respect
to the band gap as

√|I|/εg . Here εg is the band gap and |I| = εNe − ε1 is the width of the
occupied band [27].
Then define

Wμ =
Ne∑

i=1
diag[ψ∗

i ] 	
⎛

⎝
Nc∑

c=1
ζ̃cμ

∏

c′ �=c

εi − ε̃c′

ε̃c − ε̃c′

⎞

⎠ψi(rμ) + h.c., (27)

and we can combine Eq. (27) with Eq. (22) to compute χ0gloc,j as

χ0gloc,j ≈
Nμ∑

μ=1
Wμgloc,j(rμ). (28)

Formally, Eq. (28) can further be simplified by defining a matrix Π with Nμ columns,
which consists of selected columns of a permutation matrix, i.e. Π = Π̃:,1:Nμ as the first
Nμ columns of the permutation matrix obtained from pivoted QR decomposition. More
specifically, Πμ = erμ and erμ is a unit vector with only one nonzero entry at rμ such that
eTrμgj = gj(rμ). Then

χ0gloc,j ≈ WΠT gloc,j := χ̃0[{gloc,j}]gloc,j . (29)

Note that the notation χ̃0[{gloc,j}] emphasizes the dependence on the vectors that χ̃0
applies to. In other words, χ̃0[{gloc,j}] is designed to only agree with χ0 when applied
to vectors {gloc,j}, and the difference between χ̃0 and χ0 is not controlled in the space
orthogonal to that spanned by these vectors. The rank of χ̃0[{gloc,j}] is only Nμ, while the
singular values of χ0 have a much slower decay rate.
In the casewhen only local pseudopotential is used, theDyson equation (15) is simplified

as

uj = χgloc,j = u0,j + χ0fhxcuj. (30)

Here u0,j := χ0gloc,j is called the non-self-consistent response, and has been computed
using the algorithm described above.
In order to solve Eq. (30), we do not only need to evaluateχ0gloc,j , but also the application

ofχ0 to the self-consistent response fhxcuj which is not known a priori. If we build a library
of right hand side vectors so that the application of χ0 remains accurate throughout the
iteration process of solving Eq. (30), the computational complexity can quickly increase.
Instead it is much more efficient to adaptively compress the polarizability operator χ0.
Note that for any given set of functions {uj}, we can construct an operator χ̃0[{fhxcuj}]

so that χ̃0 agrees well with χ0 when applied to the vectors {fhxcuj}. The Dyson equation
can be rewritten as

uj = (I − χ̃0[{fhxcuj}])−1u0,j . (31)

Note that χ̃0[{fhxcuj}] is a low rank operator, and the matrix inverse in Eq. (31) can be
efficiently evaluated using the Sherman-Morrison-Woodbury formula.
Eq. (31) yields an iterative scheme

uk+1 = (I − χ̃0[{fhxcuk}])−1u0. (32)
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In the equation we omitted the j subindex of u. The convergence of the modified fixed
point iteration (32) can be understood as follows. At the iteration step k , the scheme and
the true solution respectively satisfy

uk+1 = u0 + χ̃0[{fhxcuk}]fhxcuk+1,

u∗ = u0 + χ0fhxcu∗.
(33)

Let ek = uk − u∗ be the error at the iteration step k . We have

ek+1 = χ̃0[{fhxcuk}]fhxcuk+1 − χ0fhxcu∗

= χ̃0[{fhxcuk}]fhxcuk+1 − χ0fhxcuk+1 + χ0fhxcuk+1 − χ0fhxcu∗

= ηk + χ0fhxcek+1.

(34)

Here

ηk := (χ̃0[{fhxcuk}] − χ0)fhxcuk+1, (35)

which characterizes the discrepancy between χ̃0 and χ0 when applied to the unknown
vector fhxcuk+1. Therefore the error at the (k + 1)-th step satisfies

ek+1 = (I − χ0fhxc)−1ηk . (36)

Since χ0 is negative semi-definite, the norm of (I − χ0fhxc)−1 is bounded from above by
one. Hence the error goes to zero if the error of compression ηk converges to 0.
To summarize, theACP formulation has three key ingredients: Compress the right hand

side; Disentangle the energy dependence; Adaptively compress the polarizability operator.

3 Split representation of the adaptively compressed polarizability operator
In this section, we demonstrate how to generalize the ACP formulation in section 2.3 for
efficient phonon calculations of real materials. To this end we need to treat the nonlocal
pseudopotential, as well as temperature effects especially formetallic systems.Wedemon-
strate that the new split representation maintains the O(N 3

e ) complexity, and improves
all key steps in the ACP formulation, including Chebyshev interpolation of energy levels,
iterative solution of Sternheimer equations, and convergence of the Dyson equations.
The split representation of the polarizability operator first chooses two cutoff energies

εÑcut
> εNcut ≥ μ, and splits the right hand side of Eq. (18) into two terms

X0g ≈
⎡

⎣

⎛

⎝
Ncut∑

i=1

Ñcut∑

a=Ncut+1

fa − fi
εa − εi

ψa(ψ∗
agψi)ψ∗

i + h.c.

⎞

⎠

+
Ncut∑

i=1

Ncut∑

a=1

fa − fi
εa − εi

ψa(ψ∗
agψi)ψ∗

i

]

+
⎡

⎣
Ncut∑

i=1

∞∑

a=Ñcut+1

fi
εi − εa

ψa(ψ∗
agψi)ψ∗

i + h.c.

⎤

⎦

=: X(s)
0 g + X

(r)
0 g.

(37)

Here the first and second brackets splitX0g into a singular componentX(s)
0 g and a regular

component X(r)
0 g, respectively. The Hermitian conjugate appears for the same reason as

in Eq. (20) when treating insulating systems.X(s)
0 is called the singular component because

for systems with small gaps, the ratio (fa − fi)/(εa − εi) can be as large as 1/εg . When
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Fig. 1 Schematic illustration of the cutoff energies with respect to the Fermi-Dirac distribution

the physical band gap εg is small, this term becomes numerically singular to treat in the
iterative solution of Sternheimer equations as well as the Chebyshev interpolation. On the
other hand, the term fi/(εi−εa) is bounded from above by 1/̃εg , where ε̃g = εÑcut+1−εNcut

is called the effective gap. As the effective gap ε̃g increases, the magnitude of X(r)
0 also

decreases. In order to efficiently treat the singular part, we assume that the eigenfunctions
{ψk}Ñcut

k=1 have been computed using an iterative eigensolver. The cost for obtaining the
additional eigenvectors is modest, given that the ground state DFT calculation already
prepares the eigenvectors {ψk}Ncut

k=1.
The approximation in Eq. (37) only comes from that as ε increases above the chemical

potential μ, the occupation number fi = 1
1+eβ(εi−μ) decays exponentially. Then we can

choose εNcut large enough so that f
(
εNcut+1

)
is sufficiently small and can be approximated

by 0. For insulating systems we can simply choose Ncut = Ne. The second energy cutoff
εÑcut

defines an effective gap ε̃g , of which the role will be discussed later. The split repre-
sentation requires the solution of eigenpairs (εi,ψi) ofH for i ≤ Ñcut. Fig. 1 illustrates the
position of the cutoff energies along the energy spectrum, with respect to the occupation
number given by the Fermi-Dirac distribution.

3.1 Compression of the regular component of the polarizability operator

One advantage of the split representation is that in the regular component, the contribu-
tion from fa vanishes, and hence X(r)

0 g can be evaluated using Sternheimer equations to
eliminate the need of computing all the unoccupied orbitals as follows

X
(r)
0 g =

Ncut∑

i=1
fiQc(εi − H )−1Qc(gψi)ψ∗

i + h.c. (38)

Here the projection operatorQc = I −∑Ñcut
i=1 ψiψ∗

i projects a vector to the space which is
orthogonal to the space spanned by {ψi}Ñcut

i=1 . When all order 2 tensors {gj} are considered
together, Eq. (38) requires the solution of

Qc(εi − H )Qcζij = Qc(gjψi), i = 1, . . . , Ncut , j = 1, . . . , d × NA. (39)
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Here each solution ζij is still a vector. The adaptive compression ofX0gj then parallels the
adaptive compression of χ0gloc,j as in section 2.3, as detailed below.
The first step is to construct the collection of the right hand side vectors Mij = gjψi.

Since the kernel of the nonlocal pseudopotential from each atom is compactly supported
in the real space, the computational cost for generating M is in fact dominated by the
cost associated with the local component gloc,j . Hence the overall cost is still O(N 3

e ).
The interpolative separable density fitting procedure can then proceed as before, and
generate a set of compressed vectors {ξμ}Nμ

μ=1 as well as the selected columns {rμ}Nμ

μ=1. The
interpolation decomposition then reads

Mij(r) = (gjψi)(r) ≈
∑

μ

ξμ(r)(gjψi)(rμ). (40)

The second step is the disentanglement of the energy dependence. We choose the
Chebyshev interpolation points on the intervalI = [ε1, εNcut ]. Since the number ofCheby-
shev interpolation points is now controlled by the effective gap as Nc ∼ O(

√I /̃εg ). Note
that the gap εg (which can be small or zero) is now replaced by the effective gap ε̃g . In
practice we observe that it is often sufficient to choose Nc to be 5 ∼ 10.
With the Chebyshev interpolation procedure, the Sternheimer equation still takes the

form (26), with Q replaced by Qc. The operator Qc(εc − H )Qc is a negative definite
operator, with eigenvalue bounded from above by −ε̃g . As the effective gap increases, the
linear system associated with the Sternheimer equation also becomes better conditioned
and the number of MINRES iterations can decrease. Typically we observe that MINRES
can converge with around 10 steps.
After the solution of the Sternheimer equations, Eq. (38) becomes

X
(r)
0 gj ≈

Ncut∑

i=1

Nμ∑

μ=1
fi(gjψi)(rμ)

⎛

⎝
Nc∑

c=1
ζ̃cμ

∏

c′ �=c

εi − ε̃c′

ε̃c − ε̃c′

⎞

⎠ψ∗
i + h.c. (41)

Since that gj can be split into a local and a nonlocal component, we have

(gjψi)(rμ) = gloc,j(rμ)ψi(rμ) + (gnl,jψi)(rμ). (42)

Define

W(r)
μ =

Ncut∑

i=1

⎛

⎝
Nc∑

c=1
ζ̃cμ

∏

c′ �=c

εi − ε̃c′

ε̃c − ε̃c′

⎞

⎠ψi(rμ)fiψ∗
i + h.c., (43)

and introduce the permutation matrix Π as in Eq. (29), then Eq. (41) becomes

X
(r)
0 gj ≈

Nμ∑

μ=1
W(r)

μ (ΠT
μ gloc,j)

+
⎡

⎣
Ncut∑

i=1

Nμ∑

μ=1
fi(gnl,jψi)(rμ)

⎛

⎝
Nc∑

c=1
ζ̃cμ

∏

c′ �=c

εi − ε̃c′

ε̃c − ε̃c′

⎞

⎠ψ∗
i + h.c.

⎤

⎦

(44)

At first glance, Eq. (44) does not lead to any simplification compared to Eq. (41). However,
since the nonlocal component of gj is compactly supported, for each gnl,j there are only
O(1) number of points {rμ} that contributes to (gnl,jψi)(rμ). Hence the last term in Eq. (44)
is much easier to evaluate than the direct evaluation of Eq. (41).
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3.2 Compression of the singular component of the polarizability operator

In practical calculations, numerical results indicate that it can be sufficient to choose
Ñcut ≤ 2Ne, and hence the computation ofX(s)

0 g can even be directly evaluated according
to Eq. (37). Compared to Eq. (18), the computation of X(s)

0 g still scales as O(N 4
e ), but the

preconstant is much smaller. In this section we demonstrate that with a contour integral
reformulation, we can compress the singular component as well withO(N 3

e ) complexity.
According to the derivation in Appendix A, X(s)

0 g can be evaluated using the contour
integral formulation as

X
(s)
0 g =

[
1
2π ı

∮

C
f (z)(z − Hc,2)−1g(z − Hc,1)−1 dz + h.c.

]

+ 1
2π ı

∮

C
f (z)(z − Hc,1)−1g(z − Hc,1)−1 dz

(45)

Here Hc,1 = ∑Ncut
i=1 ψiεiψ∗

i , Hc,2 = ∑Ñcut
i=Ncut+1 ψiεiψ∗

i are the Hamiltonian operators pro-
jected to the subspace spanned by the first Ncut states, and to the subspace spanned by
the following (Ñcut − Ncut) states, respectively. Before moving on to further discussion,
we note that the numerically exact spectral decomposition of Hc,1 and Hc,2 is the key to
reducing the complexity.
The contour integral in Eq. (45) can be discretized to obtain a numerical scheme. Let

the integration nodes and weights be denoted by {zp,ωp}Np
p=1, i.e.

1
2π ı

∮

C
h(z) dz ≈

Np∑

p=1
ωph(zp), (46)

for suitable h(z), and the discretization scheme can be obtained using rational approxi-
mation methods [25,32,33]. Then we have

X
(s)
0 gj ≈

⎡

⎣
Np∑

p=1
ωp(zp − Hc,2)−1gj(zp − Hc,1)−1 + h.c.

⎤

⎦

+
Np∑

p=1
ωp(zp − Hc,1)−1gj(zp − Hc,1)−1

=
⎡

⎣
Np∑

p=1
ωp

Ncut∑

i=1
(zp − Hc,2)−1(gjψi)(zp − εi)−1ψ∗

i + h.c.

⎤

⎦

+
Np∑

p=1
ωp

Ncut∑

i=1
(zp − Hc,1)−1(gjψi)(zp − εi)−1ψ∗

i ,

(47)

where the equality is derived from the spectral decompositions ofHc,1, Hc,2. When all {gj}
are considered together, we use again the interpolative separable density fitting (40) and
obtain
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X
(s)
0 gj ≈

⎡

⎣
Np∑

p=1
ωp

Ncut∑

i=1
(zp − Hc,2)−1

Nμ∑

μ=1
ξμ(gjψi)(rμ)(zp − εi)−1ψ∗

i + h.c.

⎤

⎦

+
Np∑

p=1
ωp

Ncut∑

i=1
(zp − Hc,1)−1

Nμ∑

μ=1
ξμ(gjψi)(rμ)(zp − εi)−1ψ∗

i

=
⎡

⎣
Ncut∑

i=1

Nμ∑

μ=1
(gjψi)(rμ)

⎛

⎝
Np∑

p=1
ζ̃
(s)
2,pμωp(zp − εi)−1

⎞

⎠ψ∗
i + h.c.

⎤

⎦

+
Ncut∑

i=1

Nμ∑

μ=1
(gjψi)(rμ)

⎛

⎝
Np∑

p=1
ζ̃
(s)
1,pμωp(zp − εi)−1

⎞

⎠ψ∗
i .

(48)

In the last equation of (48), we have defined the solution ζ̃
(s)
θ ,pμ := (zp−Hc,θ )−1ξμ, θ = 1, 2,

which can be numerically exactly computed from the spectral decompositions ofHc,1, Hc,2
respectively. We use the same strategy as in Eq. (44) to handle the contribution from
(gjψi)(rμ). Define

W(s)
μ =

⎡

⎣
Ncut∑

i=1
ψi(rμ)

⎛

⎝
Np∑

p=1
ζ̃
(s)
2,pμωp(zp − εi)−1

⎞

⎠ψ∗
i + h.c.

⎤

⎦

+
Ncut∑

i=1
ψi(rμ)

⎛

⎝
Np∑

p=1
ζ̃
(s)
1,pμωp(zp − εi)−1

⎞

⎠ψ∗
i ,

(49)

and use the same permutation matrix Π as in Eq. (29), then Eq. (48) becomes

X
(s)
0 gj ≈

Nμ∑

μ=1
W(s)

μ (ΠT
μ gloc,j)

+
⎡

⎣
Ncut∑

i=1

Nμ∑

μ=1
(gnl,jψi)(rμ)

⎛

⎝
Np∑

p=1
ζ̃
(s)
2,pμωp(zp − εi)−1

⎞

⎠ψ∗
i + h.c.

⎤

⎦

+
Ncut∑

i=1

Nμ∑

μ=1
(gnl,jψi)(rμ)

⎛

⎝
Np∑

p=1
ζ̃
(s)
1,pμωp(zp − εi)−1

⎞

⎠ψ∗
i .

(50)

3.3 Adaptive compression for solving the Dyson equation

Recall the Dyson equation (15), and so far we have computed the non-self-consistent
response u0,j := X0gj using the split representation. In order to solve the Dyson equation,
we still need to evaluate X0fhxcu self-consistently. Use the locality structure of fhxc as in
Eq. (16), we have

(X0fhxcu)(r, r′) =
∫

X0(r, r′; r′′, r′′)fhxc(r′′, r′′′)u(r′′′, r′′′) dr′′ dr′′′. (51)

It is important to observe that Eq. (51) only requires the diagonal elements of u. Hence
the self-consistent solution of the Dyson equation (15) only requires a set of equations for
these diagonal elements:

uj(r, r) = u0,j(r, r) +
∫

X0(r, r; r′′, r′′)fhxc(r′′, r′′′)u(r′′′, r′′′) dr′′ dr′′′. (52)

Define uj(r) = uj(r, r) and u0,j(r) = u0,j(r, r) and use the linear algebra notation, then
Eq. (52) becomes a reduced Dyson equation

uj = u0,j + χ0fhxcuj. (53)
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Note that Eq. (53) becomes precisely the same as Eq. (30), which does not involve nonlocal
pseudopotentials. However, the important difference is that in Eq. (53), u0,j is taken from
the diagonal elements of u0,j , which properly takes into account the nonlocal pseudopo-
tential both in the Hamiltonian and in the non-self-consistent response.
Before moving on to the discussion of solving the reduced Dyson equation, we write out

the explicit format of the diagonal part u0,j = u0,j . DefineW (r)
μ (r) = W

(r)
μ (r, r),W (s)

μ (r) =
W

(s)
μ (r, r), the diagonal part of Eq. (44) reads
(
X
(r)
0 gj

)
(r, r) ≈

Nμ∑

μ=1
W (r)

μ (r)(ΠT
μ gloc,j)

+
⎡

⎣
Ncut∑

i=1

Nμ∑

μ=1
fi(gnl,jψi)(rμ)

⎛

⎝
Nc∑

c=1
ζ̃cμ(r)

∏

c′ �=c

εi − ε̃c′

ε̃c − ε̃c′

⎞

⎠ψ∗
i (r) + h.c.

⎤

⎦ .

(54)

The diagonal part of Eq. (50) reads

(
X
(s)
0 gj

)
(r, r) ≈

Nμ∑

μ=1
W (s)

μ (r)(ΠT
μ gloc,j)

+
⎡

⎣
Ncut∑

i=1

Nμ∑

μ=1
(gnl,jψi)(rμ)

⎛

⎝
Np∑

p=1
ζ̃
(s)
2,pμ(r)ωp(zp − εi)−1

⎞

⎠ψ∗
i (r) + h.c.

⎤

⎦

+
Ncut∑

i=1

Nμ∑

μ=1
(gnl,jψi)(rμ)

⎛

⎝
Np∑

p=1
ζ̃
(s)
1,pμ(r)ωp(zp − εi)−1

⎞

⎠ψ∗
i (r).

(55)

The reduced Dyson equation (53) can be readily solved using the same adaptive com-
pression strategy in section 2.3. More specifically, we can replace gj by the local potential
diag[fhxcuj], and only take the diagonal elements in Eq. (44) and (50) to obtain χ0fhxcuj .
Moreover, since both the regular part χ

(r)
0 and the singular part χ

(s)
0 preserve a low-rank

nature, Sherman-Morrison-Woodbury formula can still be used in the fixed point itera-
tion. The separated treatment of the singular and regular parts reduces the error of the
compressed χ0 as in Eq. (35). Therefore it also accelerates the convergence of the Dyson
equation. The complete iteration process to solve the Dyson equations is defined in Alg. 1.
Once the self-consistent uj(r, r) are obtained, one can formally reconstruct u(r, r′) by

using the split representation again in Eq. (44) and (50). Finally uj will be integrated with
gj′ as in Eq. (11) to compute the Hessian matrix for phonon calculations, which will be
further discussed in detail in the next section.

3.4 Phonon Calculation

For the purpose of phonon calculation, uj (representing a component of ∂P
∂RI

) will be
integrated with gj′ (representing a component of ∂Vion

∂RJ
) as in Eq. (11) to compute the Hes-

sianmatrix for phonon calculations. The integrationwith local components can be readily
computed once the self-consistent responseuj(r) is obtained by solving the reducedDyson
equation. The integration with nonlocal components gnl,j would require the construction
of u(r, r′). However since gnl,j is compactly supported, one could avoid the full construc-
tion of u(r, r′) by embedding the integration process into the construction of u(r, r′). This
is important for maintaining the reduced scaling of the algorithm.
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Algorithm 1: Computing U := [uj] with the split representation of adaptively com-
pressed polarizability operator.
Input:
{gj}. Stopping criterion δ.
Eigenpairs corresponding to occupied orbitals {ψi, εi}, i = 1, . . . , Ñcut
Output: U ≈ χG

1. Compute U0 := [u0,j] using Eq. (44) and (50) (only the diagonal elements).

2. Do

(a) Replace {gj} with diag[fhxcukj ] to obtainW (r)k andW (s)k and Πk in Eq. (43)
and (49) . DefineWk = W (s)k + W (r)k .

(b) Update Uk+1 using Sherman-Morrison-Woodbury formula

Uk+1 =
(
I − Wk (Πk )T fhxc

)−1
U0

= U0 + Wk
(
I − (Πk )T fhxcWk

)−1
(Πk )T fhxcU0

.
(c) k ← k + 1

until ‖Uk−Uk−1‖
‖Uk−1‖ < δ or maximum number of iterations is reached.

In this section, we show the construction of integral in Eq. (12). For simplicity, the
indexes I, J are ignored. Starting from the Dyson equation,

u(r, r′) = (X0g)(r, r′) + (X0fhxcu)(r, r′), (56)

an element of the Hessian matrix requires calculation of
∫

g(r, r′)u(r, r′) dr dr′ =
∫ [

g(r, r′)(X0g)(r, r′) + g(r, r′)(X0fhxcu)(r, r′)
]
dr dr′. (57)

Recall that g(r, r′) = gloc(r)δ(r′ − r) + gnl(r, r′), the integral for the local part of can be
easily calculated (letting u(r) = u(r, r))

∫
gloc(r, r′)u(r, r′) dr dr′ =

∫
gloc(r)u(r) dr. (58)

For the non-local potential, using Eq. (44) and Eq. (50), we have
∫

gnl(r, r′)u(r, r′) dr dr′ =
∫

gnl(r, r′)
[
(X0g)(r, r′) + (X0fhxcu)(r, r′)

]
dr dr′. (59)

Recall that (fhxcu)(r, r′) = δ(r − r′) ∫ fhxc(r, r′′)u(r′′) dr′′. So (fhxcu)(r, r′) behaves as a
local potential gloc when applying X0 to it. So the integral in Eq. (59) breaks down to four
parts:

∫
gnl(r, r′)(X(r)

0 g)(r, r′) dr dr′

=
∫

−
L∑

l=1
γl(bl (r) db∗

l (r′) + dbl (r)b∗
l (r′))(X

(r)
0 g)(r, r′) dr dr′

= −
∫

dr dr′
L∑

l=1
γl (bl(r) db∗

l (r′) + dbl (r)b∗
l (r′))

Nμ∑

μ=1
W(r)

μ [g](r, r′)(Πμ[g]T gloc)

+
⎡

⎣−
L∑

l=1
γl

Ncut∑

i=1

Nμ∑

μ=1
fi(gnlψi)(rμ)

⎛

⎝
Nc∑

c=1

∫
dr̃ζcμ(r)bl(r)

∏

c′ �=c

εi − ε̃c′

ε̃c − ε̃c′

⎞

⎠
∫

drψ∗
i (r′) db∗

l (r′)
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−
L∑

l=1
γl

Ncut∑

i=1

Nμ∑

μ=1
fi(gnlψi)(rμ)

⎛

⎝
Nc∑

c=1

∫
dr̃ζcμ(r) dbl(r)

∏

c′ �=c

εi − ε̃c′

ε̃c − ε̃c′

⎞

⎠
∫

drψ∗
i (r′)b∗

l (r′)
⎤

⎦

+h.c. of previous bracket (60)
∫

gnl(r, r′)(X(s)
0 g)(r, r′) dr dr′

=
∫

−
L∑

l=1
γl(bl (r) db∗

l (r′) + dbl (r)b∗
l (r′))(X

(s)
0 g)(r, r′) dr dr′

= −
∫

dr dr′
L∑

l=1
γl (bl(r) db∗

l (r′) + dbl (r)b∗
l (r′))

Nμ∑

μ=1
W(s)

μ [g](r, r′)(Πμ[g]T gloc)

+
⎡

⎣−
L∑

l=1
γl

Ncut∑

i=1

Nμ∑

μ=1
(gnl,jψi)(rμ)

⎛

⎝
Np∑

p=1

∫
dr̃ζ (s)

2,pμ(r)bl(r)ωp(zp − εi)−1

⎞

⎠
∫

dr′ψ∗
i (r′) db∗

l (r′)

−
L∑

l=1
γl

Ncut∑

i=1

Nμ∑

μ=1
(gnl,jψi)(rμ)

⎛

⎝
Np∑

p=1

∫
dr̃ζ (s)

2,pμ(r) dbl (r)ωp(zp − εi)−1

⎞

⎠
∫

dr′ψ∗
i (r′)b∗

l (r′)
⎤

⎦

+h.c. of previous bracket

−
L∑

l=1
γl

Ncut∑

i=1

Nμ∑

μ=1
(gnl,jψi)(rμ)

⎛

⎝
Np∑

p=1

∫
dr̃ζ (s)

1,pμ(r)bl(r)ωp(zp − εi)−1

⎞

⎠
∫

dr′ψ∗
i (r′) db∗

l (r′)

−
L∑

l=1
γl

Ncut∑

i=1

Nμ∑

μ=1
(gnl,jψi)(rμ)

⎛

⎝
Np∑

p=1

∫
dr̃ζ (s)

1,pμ(r) dbl(r)ωp(zp − εi)−1

⎞

⎠
∫

dr′ψ∗
i (r′)b∗

l (r′) (61)
∫

gnl(r, r′)(X(r)
0 fhxcu)(r, r′) dr dr′

=
∫

−
L∑

l=1
γl(bl (r) db∗

l (r′) + dbl (r)b∗
l (r′))(X

(r)
0 fhxcu)(r, r′) dr dr′

= −
∫

dr dr′
L∑

l=1
γl (bl(r) db∗

l (r′) + dbl (r)b∗
l (r′))

Nμ∑

μ=1
W(r)

μ [fhxcu](r, r′)(Πμ[fhxcu]T fhxcu) (62)
∫

gnl(r, r′)(X(s)
0 fhxcu)(r, r′) dr dr′

=
∫

−
L∑

l=1
γl(bl (r) db∗

l (r′) + dbl (r)b∗
l (r′))(X

(s)
0 fhxcu)(r, r′) dr dr′

= −
∫

dr dr′
L∑

l=1
γl (bl(r) db∗

l (r′) + dbl (r)b∗
l (r′))

Nμ∑

μ=1
W(s)

μ [fhxcu](r, r′)(Πμ[fhxcu]T fhxcu) (63)

We remark that the W quantity depends on the tensors to which X0 is applied. Note
that in Eqs. (60), (61), (62), (63), terms like

∫
dr′ψ∗

i (r′)b∗
l (r′) appear many times, hence

computing and storing them is necessary. Also one important fact is that gnl,jψi(rμ) is
only non-zero for several rμ. This would result in a “fake” summation of Nμ, which is
essential in reducing the complexity. Computation of Eq. (60) and Eq. (61) is onlyO(Ne).
The complexity is discussed in detail in the following section.

3.5 Complexity

In this section we analyze the complexity of phonon calculation using the split represen-
tation of ACP formulation, especially those related to nonlocal pseudopotential.
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The first part of the algorithm is to compute the diagonal elements u0,j in Eq. (54)
and (55). For the local pseudopotential, the cost of constructing W (r) and W (s)

is O(NμNcutNcNg ) ∼ O(N 3
e ) and O(NμNcutNpNg ) ∼ O(N 3

e ) respectively, since
Nμ, Ncut , Ng ∼ O(Ne), and Nc, Np ∼ O(1). Note that the construction of W (r),W (s)

does not depend on the index j, hence there is no factor of dNA involved. For the nonlocal
pseudopotential, as is discussed in Section 3.1, each nonlocal component of gj is compactly
supported in the real space. DenoteNb as the grid points for the support of gnl,j . Hence for
each gnl,j there are only Nb ∼ O(1) number of points rμ that contributes to (gnl,jψi)(rμ).
So the cost associated with the nonlocal contribution isO(dNANcutNbNcNg ) ∼ O(N 3

e ) in
Eq. (44) and O(dNANcutNbNpNg ) ∼ O(N 3

e ) in Eq. (50). Note that the dNA factor comes
from the fact that gnl,jψi(rμ) depends on index j = 1, 2, . . . , dNA.
In every iteration step when solving the reduced Dyson equation, the complexity of the

construction ofWk still costO(N 3
e ), as we just replaced gj by diag[fhxcukj ]. Using Sherman-

Morrison-Woodbury formula, the update of Uk+1 costO(NgNμdNA + N 3
μ + N 2

μdNA) ∼
O(N 3

e ). In practice, we observe that the number of iterations does not increasewith respect
to the system size. To summarize, we know that the computation of uj(r) cost O(N 3

e ) in
total.
In order to assemble the information stored in uj to obtain the dynamical matrix for

phonon calculations, uj will be integrated with gj′ as in Eq. (11). Before we move on to
further discussion, we note that uj(r, r′),Wμ(r, r′) are never constructed or stored. They
are only stored in its factorized format. The integration with local components can be
readily computedonce the self-consistent responseuj(r) is obtainedby solving the reduced
Dyson equation. The corresponding cost is O(d2N 2

ANg ). The integration with nonlocal
components gnl,j would require certain off-diagonal entries u(r, r′). However since gnl,j
is compactly supported, one could avoid the full construction of u(r, r′) by embedding
the integration process into the construction of u(r, r′). As shown in Eqs. (60) and (61),
the complexity for this integration is O(d2N 2

aNbNcutNc + 2d2N 2
aNcutNbNc) ∼ O(N 3

e )
and O(d2N 2

aN 2
bNcutNp + 2d2N 2

aNcutNbNp) ∼ O(N 3
e ), respectively. As for Eqs. (62) and

(63), the complexity is O(d2N 2
aNbNcutNc) ∼ O(N 3

e ) and O(d2N 2
aNbNcutNp) ∼ O(N 3

e ),
respectively. Diagonalizing the Hessian matrix costsO(N 3

a ). In summary, the complexity
of phonon calculation scales as O(N 3

e ). This is further confirmed by numerical examples
in 1D in the following section. Table 1 summarizes the complexity of all computation
steps of split ACP.

4 Numerical examples
In this section, we demonstrate the performance of split ACP and compare it with DFPT
and finite difference (FD) through two examples. The first example consists of a 1D
reduced Hartree-Fock model problem that can be tuned to resemble a metallic system.
The second one is a 3D aluminum cluster calculation performed using KSSOLV [48],
which is a MATLAB toolbox for solving Kohn-Sham equations for small molecules and
solids in three-dimensions. KSSOLV uses plane wave expansion to discretize the Kohn-
Sham equations. All calculations are carried out using the Berkeley Research Computing
(BRC) High Performance Computing service. Each node consists of two Intel Xeon 10-
core Ivy Bridge processors (20 cores per node) and 64 GB of memory.
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Table 1 Summary of the complexity of each component of
the split ACP algorithm

Step Equation Complexity

Interpolation decomposition Eq. (40) O(NgdNANcut)

+O(NgNcutNμ)

Diagonal element construction regular part Eq. (54) O(NμNcutNcNg)

+O(dNANcutNbNcNg)

Diagonal element construction Singular part Eq. (55) O(NμNcutNpNg)

+O(dNANcutNbNpNg)

The Dyson equation update Step 2.(b) in Alg. 1 O(NgNμdNA)

+O(N3
μ + N2

μdNA)

Reconstruction local potential Eq. (58) O(d2N2
ANg)

Reconstruction nonlocal pseudopotential Eq. (60) Eq. (61)

Eq. (62) Eq. (63)

O(d2N2
aNbNcutNc +

2d2N2
aNcutNbNc )

O(d2N2
aNbNcutNp +

2d2N2
aNcutNbNp)

O(d2N2
aNbNcutNc )

O(d2N2
aNbNcutNp)

4.1 1D reduced Hartree-Fock model with nonlocal pseudopotential

The 1D reduced Hartree-Fock model was introduced by Solovej [42], and has been used
for analyzing defects in solids in e.g. [7,8]. The simplified 1Dmodel neglects the contribu-
tion of the exchange-correlation term. As discussed in previous sections, the presence of
exchange-correlation functionals at LDA/GGA level does not lead to essential difficulties
in phonon calculations. Furthermore, the nonlocal pseudopotential in the Kleinman-
Bylander form [20] is added to this reduced model to test the availability for the split ACP
to handle the case in presence of nonlocal potential.
The Hamiltonian in our 1D reduced Hartree-Fock model is given by

H [ρ] = −1
2
d2

dx2
+
[∫

K (x, y) (ρ(y) + m(y)) dy
]

δ(x, x′)

+γ
∑

I
b(x − RI )b∗(x′ − RI ). (64)

Here m(x) = ∑
I mI (x − RI ) is the summation of pseudocharges. Each function mI (x)

takes the form of a one-dimensional Gaussian

mI (x) = − ZI√
2πσ 2

I

exp
(

− x2

2σ 2
I

)
, (65)

where ZI is an integer representing the charge of the I-th nucleus. In our numerical
simulation, we choose all σI to be the same.
Instead of using a bare Coulomb interaction which diverges in 1D when x is large, we

use a Yukawa kernel as the regularized Coulomb kernel

K (x, y) = 2πe−κ|x−y|

κε0
, (66)

which satisfies the equation

− d2

dx2
K (x, y) + κ2K (x, y) = 4π

ε0
δ(x − y). (67)
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Fig. 2 Eigenvalues of the 1D system with NA = 80

As κ → 0, the Yukawa kernel approaches the bare Coulomb interaction given by the
Poisson equation. The parameter ε0 is used so that the magnitude of the electron static
contribution is comparable to that of the kinetic energy. The ion-ion repulsion energy EII
is also computed using the Yukawa interaction K in the model systems.
The last term in H [ρ] represents the kernel of the nonlocal pseudopotential, which is

the summation of rank-1 real symmetric operator with real valued function

b(x) = 1√
2πσ 2

b

exp
(

− x2

2σ 2
b

)
. (68)

γ is a scaling factor used to control the magnitude of the nonlocal pseudopotential, which
is, in practice, much smaller than the local pseudopotential.
The parameters used in thismodel are chosen as follows. Atomic units are used through-

out the discussion unless otherwise mentioned. For all systems tested in this subsection,
the distance between each atom and its nearest neighbor is set to 2.4 a.u. The Yukawa
parameter κ = 0.1. The nuclear charge ZI is set to 1 for all atoms, and σI is set to 0.3.
The parameter ε0 is chosen to be 80 so that the reduced Hartree-Fock model can be
tuned to resemble a metallic system. In the nonlocal pseudopotential, the scaling factor
γ = −0.01, as well as σb set to be 0.1 (this will cause the total energy to change by 1.47%).
The temperature T is set to be 5000 K to emphasize the influence of partial occupation.
The Hamiltonian operator is represented in a plane wave basis set.
For the system of sizeNA = 80, the 110 smallest eigenvalues are shown in Fig. 2, and the

corresponding occupational status near the chemical potential is shown in Fig. 1. There is
no evident energy gap within the spectrum of the Hamiltonian. Orbitals can be partially
occupied due to the finite temperature. Specifically, we identify an orbital to be (fully)
occupied if the occupation number fi > 1 − 10−6, unoccupied if fi < 10−6, otherwise
partially occupied. In this case, there are 20 partially occupied orbitals, whose eigenvalues
are around the chemical potential. The total number of (fully) occupied and partially
occupied orbitalsNocc is 89, andwe chooseNcut = Nocc for all the split ACPcomputations.
Also we fix the number of pole expansion nodesNp to be 40 unless otherwise mentioned.
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In the ground state calculation, we use Anderson mixing [2] for accelerating the self-
consistent field (SCF) iterations, and the linearized eigenvalue problems are solved by
using the locally optimal block preconditioned conjugate gradient (LOBPCG) solver [21].
In DFPT, we use MINRES [37] to solve the Sternheimer equations iteratively. The initial
guess vectors for the solutions are obtained fromprevious iterations in theDyson equation
to reduce the number of matrix-vector multiplications. The same strategy for choosing
the initial guess is implemented for the split ACP formulation as well. Anderson mixing
is used to accelerate the convergence of Dyson equations in DFPT, and in split ACP we
use the fixed point iteration with Sherman-Morrison-Woodbury formula.
All numerical results of the split ACPmethod and FD approach below are benchmarked

with results obtained from DFPT. We test the accuracy of the split ACP method in three
different level: the diagonal elements diag(X0g), the diagonal elements of solution to
Dyson equations diag(Xg), and the phonon frequencies {ωk}. For the diagonal elements
diag(X0g) and diag(Xg), we directly measure the relative L2 error, defined as ‖diag(X0g)−
diag(X̃0g)‖2/‖diag(X0g)‖2. For the phonon frequencies, due to the presence of acoustic
phonon modes for which ωk is close to 0, instead of the relative error, we measure the
absolute L∞ error defined as maxk |ωk − ω̃k |, where ω̃k is obtained from FD or split
ACP. We also demonstrate the efficiency of the split ACP method by comparing the
computational time and scaling of split ACP with that of DFPT and FD.
In Table 2 and 3, we calibrate the accuracy of the split compression with different

choices of the numbers of Chebyshev nodes Nc and the numbers of columns Nμ, for
two different choices of Ñcut, respectively. We measure the accuracy by relative L2 error
‖diag(X0g) − diag(X̃0g)‖2/‖diag(X0g)‖2, and choose Nμ = lNocc where l = 3, 4, · · · , 8.
Table 2 and 3 both show that, with a fixed number of Chebyshev nodes Nc, the error
decreasesmonotonicallywith respect toNμ, until limitedby the accuracy of theChebyshev
interpolationprocedure. Similarly, with a fixednumber of selected columns, the numerical
accuracy improves as more Chebyshev nodes are used in interpolation until limited by
the choice of Nμ. Comparing Table 3 with Table 2, we also find that numerical accuracy
can be better with a larger Ñcut. This is due to the increase of the effective energy gap ε̃g ,
which leads to a smaller numerical error in the Chebyshev interpolation procedure. For
Ñcut/Ncut ≈ 1.28, the relative L2 error of χ0G can be less than 10−6 for large enough Nc
and Nμ.
We further study how different choices of Nc and Ñcut affect the computational accu-

racy on diag(X0g). Here for all Nc and Ñcut, Nμ is fixed to be 480 ≈ 5.4Nocc or
560 ≈ 6.3Nocc. This is determined the same way as that in the regular ACP formula-
tion so that |̃RNμ+1,Nμ+1| < ε |̃R1,1| ≤ |̃RNμ ,Nμ | in Algorithm 2 in [27], with ε = 10−4 and
10−5, respectively.
Figure 3 compares the relative L2 errors ‖diag(X0g)− diag(X̃0g)‖2/‖diag(X0g)‖2 under

different Ñcut and Nc. We find that it can be sufficient to choose Ñcut ≤ 2Ncut to achieve
the best accuracy possible where further improvement is hindered by the the choice of
Nμ (around 3 × 10−5 for Nμ ≈ 5.4Nocc and 1 × 10−6 for Nμ ≈ 6.3Nocc). Under the split
ACP formulation, the number of Chebyshev nodes is significantly reduced. Specifically,
4-8 nodes can already perform fairly accurate calculation while no less than 20 nodes
are needed in the regular ACP formulation. Furthermore, the more Chebyshev nodes are
used, the smaller Ñcut we can choose to achieve the same accuracy. For example, if 5 nodes
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Table 2 The relative L2 error ‖diag(X0g) − diag(˜X0g)‖2/‖diag(X0g)‖2 for ˜Ncut/Ncut ≈ 1.06 with
the effective gap ε̃g/|I| ≈ 0.1408

Nμ

Nc 3Nocc 4Nocc 5Nocc 6Nocc 7Nocc 8Nocc

3 2.38E-02 2.17E-02 2.13E-02 2.12E-02 2.12E-02 2.12E-02

4 2.06E-02 9.43E-03 6.25E-03 6.21E-03 6.21E-03 6.21E-03

5 2.01E-02 7.88E-03 2.86E-03 2.85E-03 2.84E-03 2.84E-03

6 1.64E-02 6.76E-03 1.73E-03 1.65E-03 1.65E-03 1.65E-03

7 1.65E-02 9.30E-03 8.10E-04 6.85E-04 6.87E-04 6.87E-04

8 1.62E-02 9.07E-03 5.86E-04 2.53E-04 2.50E-04 2.50E-04

9 1.81E-02 7.24E-03 7.86E-04 1.51E-04 1.47E-04 1.47E-04

10 1.49E-02 6.53E-03 5.83E-04 7.99E-05 7.24E-05 7.24E-05

Table 3 The relative L2 error ‖diag(X0g) − diag(˜X0g)‖2/‖diag(X0g)‖2 for ˜Ncut/Ncut ≈ 1.28 with
the effective gap ε̃g/|I| ≈ 0.6777

Nμ

Nc 3Nocc 4Nocc 5Nocc 6Nocc 7Nocc 8Nocc

3 1.56E-02 8.52E-03 9.45E-04 7.42E-04 7.39E-04 7.39E-04

4 1.72E-02 7.79E-03 6.82E-04 1.02E-04 9.67E-05 9.67E-05

5 1.74E-02 9.49E-03 8.90E-04 6.00E-05 2.50E-05 2.50E-05

6 1.56E-02 7.80E-03 5.89E-04 7.06E-05 5.40E-06 5.38E-06

7 1.62E-02 9.07E-03 6.11E-04 5.51E-05 8.45E-07 8.42E-07

8 1.61E-02 9.04E-03 5.97E-04 4.73E-05 5.55E-07 3.21E-07

9 1.85E-02 9.08E-03 6.45E-04 4.52E-05 4.88E-07 3.20E-07

10 1.55E-02 9.52E-03 8.12E-04 5.72E-05 4.97E-07 3.20E-07

(a) (b)

Fig. 3 The relative L2 errors ‖diag(X0g) − diag(X̃0g)‖2/‖diag(X0g)‖2 under different Ñcut and Nc

are adopted in Chebyshev interpolation, we need to choose Ñcut as large as 1.55Ncut to
achieve the best accuracy, while Ñcut ≈ 1.2Ncut is sufficient if Nc increases to 8.
In order to demonstrate the effectiveness of the split representation, the relative L2 error

‖diag(Xg)−diag(X̃g)‖2/‖diag(Xg)‖2 during the fixed point iteration when solving Dyson
equation is shown in Fig. 4. For each choice of Nμ, numerical results show significant
improvement after only one iteration, and the self-consistent iteration converges within
two steps. After convergence, the error is around 1.4 × 10−3 for ε = 10−3, 6.2× 10−5 for
ε = 10−4, and 6.4 × 10−6 for ε = 10−5.
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Fig. 4 Convergence for solving the Dyson equation using the split ACP formulation

Table 4 L∞ error of the phonon frequencies. System size is NA = 80. Chebyshev nodes Nc = 5 in
split ACP

FD, δ = 0.01 7.79E-05

split ACP, Np = 20, Nμ ≈ 5.4Nocc for ε = 10−4 5.90E-05

split ACP, Np = 40, Nμ ≈ 6.3Nocc for ε = 10−5 1.51E-05

Next we compare the split ACP with DFPT and FD in terms of the accuracy of phonon
frequencies. Table 4 presents L∞ error of the phonon spectrum obtained by FD and split
ACP with different parameters benchmarked with that from DFPT. In the FD approach,
the convergence tolerance for LOBPCG is set to be 10−8, and the SCF convergence toler-
ance is 10−10. δ denotes the perturbation of each atom position to the origin. We remark
that further smaller δ can lead to slightly larger numerical error due to the numerical insta-
bility of FD approach, and the numerical error of FD approach is usually around 10−4. As
for the split ACP, the same parameters for LOBPCG and SCF are chosen to converge the
ground state calculation, and 5 nodes are used in the Chebyshev interpolation procedure.
We find that it is sufficient to choose Np = 20 and Nμ ≈ 5.4Nocc to achieve comparable
accuracy with FD approach. Furthermore, with more nodes in pole expansion and more
selected columns, the L∞ error of split ACP can be as small as around 10−5, in which case
split ACP can be more accurate than FD approach.
In the end we perform phonon calculations for systems of size from 30 to 140. We

choose δ = 0.01 for FD approach. Fig. 5a shows that the accuracy of phonon spectrum
(L∞ error) from FD approach remains roughly the same as the system size increases,
which is empirically around 10−4. For the split ACP, we find that ε = 10−4, Nc = 4,
Np = 20 and Ñcut ≈ 1.7Ncut is sufficient to achieve error around 10−4. Fig. 5b reports
the phonon spectrum �D for system of size NA = 140. We remark that Fig 5b plots �D by
smearing the Dirac-δ distribution in (10) using a regularized function

δσ (x) = 1√
2πσ 2

e−
x2
2σ2 ,

where the smear parameter σ is chosen to be 0.005.
To demonstrate the efficiency of the split ACP formulation, Fig. 6 compares the com-

putational time of different methods. We observe that the split ACP can be more advan-
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(a) (b)

Fig. 5 (a) L∞ error of the phonon frequencies {ωk}. (b) Phonon spectrum for the 1D system

Fig. 6 Computational time of 1D examples

Table5 Computational scaling measured from NA = 90toNA = 140

Method Computational scaling

DFPT 4.0036

FD 3.8057

split ACP 3.1587

tageous than DFPT for systemsmerely beyond 40 atoms, and becomemore advantageous
than FD for systems beyond 60 atoms. For the largest system with 140 atoms, split ACP
is 3.37 and 1.68 times faster than DFPT and FD, respectively.
Table 5 measures the slope of the computational cost with respect to system sizes

from NA = 90 to NA = 140. In theory, the asymptotic computational cost of DFPT and
FD should be O(N 4

e ), and the cost of split ACP should be O(N 3
e ). For all the methods,

numerical scalings shown in Table 5 match closely with the theoretical ones.
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Fig. 7 The Dyson Equations iteration error

4.2 3D aluminum cluster

In this section, we present the result of phonon calculations of a 3D aluminum cluster.
Each unit cell is a 7.65 × 7.65 × 7.65 a.u. with 4 Al atoms. The computational supercell
consists of 2 × 2 × 1 unit cells and has 16 atoms and 48 electrons. We use the spin-
restricted formulation and the Perdew-Zunger pseudopotential [39], and the temperature
is set to 1000K. Ecut is set to 10 Hartree. We set Ncut = 33, Ñcut = 47, and the number of
Chebyshev interpolationNc to be 6. For the system size tested, we found that using Eq.(37)
directly for computing the singular part of the polarizabilitymatrixmuchmore faster than
using the pole expansion. So the computation is done using Eq.(37) for the purpose of
testing the accuracy of the algorithm. This results in much shorter computational time
given the size of the system tested is small.
Figure 7 reports the relative error in the iteration of solving the Dyson equation. We

remark that for this system, Nμ = 1584. In comparison, the total grid points in the
discretization is Ng = 42592. This means that the numerical rank of the operator χ far
less than the number of grid points. The iteration is converged to 10−6 relative error for
6 steps.
Figure 8 reports the phonon spectrum computed from both FD and split ACP. The

smearing parameter for plotting the spectrum is chosen as 0.008. The L∞ error on the
density of states is 5.62E-05.
We remark that the purpose of the test above is to illustrate that the split ACP for-

mulation can indeed be used to accurately obtain the phonon spectrum for 3D metallic
systems, with fractionally occupied states and nonlocal pseudopotentials. However, due to
the small system size, the computational time of the split representation of ACP is in fact
much longer than that of FD. Also we remark that there is difficulty in the DFPT approach
in 3D. The Sternheimer equations are ill-conditioned and the MINRES iteration fail to
converge. This result also emphasizes the necessity of introducing the effective gap in the
split ACP.
Since KSSOLV is only designed to solve Kohn-Sham equations for systems with rel-

atively small sizes, our implementation cannot reveal the efficiency of the split ACP
approach yet for 3D systems, and this will be our future work.
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Fig. 8 Phonon spectrum of 3D Aluminum Cluster

5 Conclusion
We have introduced the split representation of a recently developed method called the
adaptively compressed polarizability operator. The split ACP formulation incorporates
nonlocal pseudopotentials and finite temperature effects successfully, hence generalizes
the ACP formulation to solve for phonons in metallic systems as well. Our numerical
results for model problems indicate that the computational advantage of the split ACP
fomulation can be clealy observed compared to DFPT and finite difference, even for
systems of relatively small sizes. The numerical example for 3D Aluminum cluster shows
that accuracy of the split ACP formulation in the application for computing the phonon
spectrum for real materials.
The new split representation of ACP provides a systematic and complete solution to

treating systems at finite temperature.We have used phonon calculation as an example to
demonstrate the effectiveness as well as accuracy of the split representation of adaptively
compressed polarizability operator. The same strategy can be applied to applications of
DFPT other than phonon calculations, when the polarizability operator χ needs to be
applied to a large number of vectors. Moreover, all numerical tests are on single-threaded.
Parallelized implementation would help fully test whether split representation of ACP
formulation can achieve the goal of reducing complexity to asymptotically O(N 3

e ). We
will present the parallel implementation in the future.
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Appendix A
Using the Cauchy contour integral formulation, the density matrix at finite temperature
can be represented as

P0 = 1
2π i

∮

C
f (z)(z − H )−1 dz. (69)

When the Hamiltonian is perturbed to Hε = H0 + εg, and when ε is small enough, the
perturbed density matrix Pε can still be computed as

Pε = 1
2π i

∮

C
f (z)(z − Hε)−1 dz. (70)

Then we have

Pε − P0 = 1
2π i

∮

C
f (z)

[
(z − Hε)−1 − (z − H )−1] dz

= 1
2π i

∮

C
f (z)

[
(z − Hε)−1εg(z − H )−1] dz

= 1
2π i

∮

C
f (z)

[
(z − H )−1εg(z − H )−1] dz + O(ε2).

(71)

Hence by the definition of X0, we have

X0g = 1
2π i

∮

C
f (z)

[
(z − H )−1g(z − H )−1] dz. (72)

Using the spectral decomposition of H , and use the contour integral formulation

X0g = 1
2π i

∮

C

∞∑

j,k=1
f (z)

[
ψjψ∗

j gψkψ
∗
k

(z − εj)(z − εk )

]
dz

= 1
2π i

∞∑

j,k=1

∮

C
dz

f (z)
(z − εj)(z − εk )

[
ψjψ

∗
j gψkψ

∗
k

]

=
∞∑

j �=k

fj − fk
εj − εk

[
ψjψ

∗
j gψkψ

∗
k

]
+

∞∑

j
f ′
j

[
ψjψ

∗
j gψjψ

∗
j

]

=
∞∑

j,k

fj − fk
εj − εk

[
ψjψ

∗
j gψkψ

∗
k

]
,

(73)

where the fj−fk
εj−εk

is interpreted as the derivative when j = k .
For the purpose of computing singular part with contour representation, we have

X
(s)
0 g =

Ncut∑

i=1

Ñcut∑

a=Ncut+1

fa − fi
εa − εi

ψa(ψ∗
agψi)ψ∗

i + h.c.

+
Ncut∑

i=1

Ncut∑

a=1

fa − fi
εa − εi

ψa(ψ∗
agψi)ψ∗

i

= 1
2π ı

∮

C
dz

Ncut∑

i=1

Ñcut∑

a=Ncut+1

f (z)
(z − εa)(z − εi)

[
ψaψ

∗
agψiψ

∗
i
]+ h.c.

+ 1
2π ı

∮

C
dz

Ncut∑

i=1

Ncut∑

a=1

f (z)
(z − εa)(z − εi)

[
ψaψ

∗
agψiψ

∗
i
]

= 1
2π ı

∮

C
f (z)(z − Hc,2)−1g(z − Hc,1)−1 dz + h.c.

+ 1
2π ı

∮

C
f (z)(z − Hc,1)−1g(z − Hc,1)−1 dz,

(74)
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where Hc,1 = ∑Ncut
i=1 ψiεiψ∗

i , Hc,2 = ∑Ñcut
i=Ncut+1 ψiεiψ∗

i are the Hamiltonian operators
projected to the subspace spanned by the firstNcut states, and to the subspace spanned by
the following (Ñcut − Ncut) states, respectively.
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