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ABSTRACT2

Affective studies provide essential insights to address emotion recognition and tracking. In3
traditional open-loop structures, a lack of knowledge about the internal emotional state makes4
the system incapable of adjusting stimuli parameters and automatically responding to changes5
in the brain. To address this issue, we propose to use facial electromyogram measurements6
as biomarkers to infer the internal hidden brain state as feedback to close the loop. In this7
research, we develop a systematic way to track and control emotional valence, which codes8
emotions as being pleasant or obstructive. Hence, we conduct a simulation study by modeling9
and tracking the subject’s emotional valence dynamics using state-space approaches. We10
employ Bayesian filtering to estimate the person-specific model parameters along with the hidden11
valence state, using continuous and binary features extracted from experimental electromyogram12
measurements. Moreover, we utilize a mixed-filter estimator to infer the secluded brain state in a13
real-time simulation environment. We close the loop with a fuzzy logic controller in two categories14
of regulation: inhibition and excitation. By designing a control action, we aim to automatically15
reflect any required adjustments within the simulation and reach the desired emotional state16
levels. Final results demonstrate that, by making use of physiological data, the proposed controller17
could effectively regulate the estimated valence state. Ultimately, we envision future outcomes of18
this research to support alternative forms of self-therapy by using wearable machine interface19
architectures capable of mitigating periods of pervasive emotions and maintaining daily well-being20
and welfare.21

Keywords: closed-loop, control, brain, emotion, valence, electromyogram (EMG), wearable, state-space22

1 INTRODUCTION
Emotions directly influence the way we think and interact with others in different situations, especially23
when it interferes with rationality in our decision-making or perception Dolan (2002). Thus, having a24
solid grasp of the dynamics of emotions is critical to provide any therapeutic solutions to maintain welfare25
Couette et al. (2020). Moreover, deciphering emotions has been an ongoing task among researchers,26
dictating joint efforts from behavioral, physiological, and computational angles Scherer (2005). According27
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to the James A. Russell’s circumplex model of affect, emotion can be divided into two perpendicular axes,28
viz. valence — reflecting the spectrum of negative to positive emotions — and arousal, accounting for the29
intensity characteristics Russell (1980). In this study, we focus on improving comprehension of emotional30
valence regulation by proposing an architecture to track and regulate the internal hidden valence state using31
physiological signals collected via wearable devices. The use of wearable devices to gain insight to the32
internal brain state provides a good alternative to study the brain dynamics, as usually the procedures either33
rely on invasive techniques, e.g. extracting bloodstream samples, performing surgery, or require large and34
expensive equipment for imaging purposes Wickramasuriya et al. (2019); Villanueva-Meyer et al. (2017).35

Affective computing is defined by an interdisciplinary field of research that incorporates both sentiment36
analysis and emotion recognition Poria et al. (2017). Scholars have posited the importance of affective37
computing to endow machines with the means to recognize, interpret or convey emotions and sentiments38
Poria et al. (2017); Burzagli and Naldini (2020). These capabilities allow the development and enhancement39
of personal care systems that interact better with humans, potentially improving a person’s health and daily40
well-being Burzagli and Naldini (2020). Previous attempts in the development of affective computing have41
focused on emotion feature extraction and classification through human-robot interactions Rudovic et al.42
(2019); Val-Calvo et al. (2020); Rosula Reyes et al. (2020); Yu and Tapus (2019); Filippini et al. (2020);43
Azuar et al. (2019), facial expressions Zeng et al. (2018); Chronaki et al. (2015); Yang et al. (2018a); rong44
Mao et al. (2015), and vocal responses Noroozi et al. (2017); Wang et al. (2015); A. and S. (2020); Fayek45
et al. (2017). The objective of this research is to take this one step further and introduce a tracking and46
closed-loop control framework to regulate specific emotions.47

Within a closed-loop approach, biomarkers are collected in real-time as feedback, which grants the48
possibility of automatically adjusting brain stimulation levels according to the current emotional state49
Thenaisie et al. (2021); Wickramasuriya et al. (2019). Previous studies have shown that this strategy can50
increase treatment efficacy and decrease the extent of stimulation side-effects, compared to just employing51
an open-loop stimulation Price et al. (2020). The benefits of closed-loop neurostimulation have been well52
reported in addressing conventional-therapy-resistant patients with Parkinson’s disease Little et al. (2016);53
Weiss and Massano (2018). However, fewer studies have explored closed-loop therapies for non-motor54
neuropathologies such as post-traumatic stress disorder or depression Tegeler et al. (2017); Mertens et al.55
(2018), even though there is already relevant evidence of improvements with open-loop therapies Starnes56
et al. (2019); Conway et al. (2018); Freire et al. (2020). Conversely with the conventional open-loop57
approach, brain stimulation is manually tuned during in-clinic visits, delivering pre-determined quantities58
and incurring over or under stimulation of the brain Wickramasuriya et al. (2019); Price et al. (2020).59

To properly regulate the emotional brain state in a closed-loop manner, a suitable biomarker that relates60
to the internal emotional valence needs to be identified. Prior research has based emotion classification on61
facial or voice expressions, which not only requires heavy data acquisition, but also runs into ambiguity62
issues Tan et al. (2012). Facial and vocal expressions can vary significantly between person to person,63
making it difficult to draw any accurate inference about the person’s emotional state. Moreover, facial64
and vocal expressions (e.g. smiling) can be seen as externalized emotions and can be altered at will,65
confounding the accuracy of such classification approaches, and thus hindering any tracking and control66
efforts as the true emotional state would not be clear Cai et al. (2018). In response, our proposed strategy67
aims to remove this ambiguity by using a more reliable metric: physiological signals Cacioppo et al.68
(2000). Physiological signals or biomarkers are involuntary responses initiated by the human’s central69
and autonomic nervous systems, whereas facial and vocal lineaments can voluntarily be hidden to reject70
certain emotional displays Wilson et al. (2020); Cacioppo et al. (2000); L et al. (2018); Cannon (1927);71
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Amin and Faghih (2020). Although overall facial expression can be made to mask certain emotions, several72
studies have linked electromyogram activity of specific facial muscles to states of affection in varying73
valence levels, such as happiness, stress and anger Tan et al. (2012); Amin et al. (2016); Cai et al. (2018);74
Gruebler and Suzuki (2010); Kulic and Croft (2007); Nakasone et al. (2005). Cacioppo et al. described that75
the somatic effectors of the face are tied to changes in connective tissue rather than skeletal complexes76
Cacioppo et al. (1986). Researchers in Cacioppo et al. (1986) posited facial electromyogram could provide77
insight into valence state recognition even when there is no apparent change in facial expressions. Moreso,78
the work of Ekman et al. Ekman et al. (1980) and Brown and Schwartz Brown and Schwartz (1980) are79
two of the few who showed that using facial electromyogram measurements of the zygomaticus muscle80
(zEMG) gave the most distinct indicator of valence compared to other facial muscles involved in the act of81
smiling. Multiple studies have suggested the relation between emotional states and facial electromyogram82
activity Koelstra et al. (2012); Künecke et al. (2014); Kordsachia et al. (2018); Tan et al. (2011); Van Boxtel83
(2010); Kayser et al. (2021); Shiva et al. (2021). Golland Golland et al. (2018) also showcased a consistent84
relationship between the emotional media viewed and the changes seen in the components of the facial85
electromyogram signal. We focus on zEMG to build our model and track the hidden valence state. Then,86
we design a control strategy to automatically regulate the internal emotional valence state in real-time.87

It should be noted that electromyogram is not the only physiological metric that has shown promise for88
valence recognition. Emotional valence can also be represented by many different physiological signals or89
a combination of them Egger et al. (2019), such as using electroencephalography Soroush et al. (2019); Wu90
et al. (2017); Bozhkov et al. (2017); Feradov et al. (2020), respiration Zhang et al. (2017); Wickramasuriya91
et al. (2019), electrocardiography (ECG) Goshvarpour et al. (2017); Harper and Southern (2020); Das et al.92
(2016), blood volume pulse Pan et al. (2016) or heart rate variability Ravindran et al. (2019). Egger et93
al. investigated the accuracy of different physiological signals in classifying emotive states such as stress94
periods, calmness, despair, discontent, erotica, interest, boredom, or elation Egger et al. (2019). Naji and95
collaborators displayed the disparity between multimodal and individual signal measurements regarding96
emotion classification via ECG and forehead biosignals Naji et al. (2014).97

Previous studies have also investigated different ways of estimating and tracking internal brain states98
Sakkalis (2011). Brain dynamics during resting states have been studied with measurements from functional99
magnetic resonance imaging (fMRI), using linear and non-linear models, and more recently, employing a100
tensor based approach Al-Sharoa et al. (2018); Honey et al. (2009); Abdelnour et al. (2014). The transition101
of brain states has been examined with machine learning methods and eigenvalue decomposition, by using102
data from fMRI, electroencephalogram (EEG) or magnetoencephalography Maheshwari et al. (2020);103
LaConte et al. (2007); Pfurtscheller et al. (1998); Guimaraes et al. (2007). Moreover, EEG measurements104
were also employed with machine learning techniques to estimate stress levels Al-Shargie et al. (2015),105
and affection Nie et al. (2011). The method introduced by Yadav et al. uses a state-space formulation106
to track and classify emotional valence based on two simultaneous assessments of brain activity Yadav107
et al. (2019). In the present work, we use a similar approach to estimate and track the hidden valence108
state, with the help of Bayesian filtering as a powerful statistical tool to improve state estimation under109
measurement uncertainties Prerau et al. (2009); Ahmadi et al. (2019); Wickramasuriya and Faghih (2020).110
Another contribution of the present work is the use of real measurements from wearable devices to develop111
a virtual subject environment as a simulation framework for concealed emotional levels. This is the first112
step to empower the implementation and testing of closed-loop controllers that could track and regulate113
the internal valence state. In a similar fashion to other control studies, providing a reliable closed-loop114
simulation framework can pave the way for safe experimentation of brain-related control algorithms here115

Frontiers 3



Branco et al. Closed-Loop Regulation of Valence

and in future studies Ionescu et al. (2021); Wei et al. (2020); Yang et al. (2018b); Dunn and Lowery (2013);116
Santaniello et al. (2010).117

To investigate the validity of regulating emotions through a closed-loop control architecture, we design118
a simulation system using experimental data. Specifically, in this in silico study, we employ features119
extracted from zEMG data and design a fuzzy logic controller to regulate the emotional valence state in a120
closed-loop manner. We propose to implement fuzzy logic as this knowledge-based controller works with a121
set of predetermined fuzzy rules and weights responsible to gauge the degree in which the input variables122
are classified into output membership functions Klir and Yuan (1995); Qi et al. (2019). This process is123
particularly useful for controlling complex biological systems, as it provides a simple yet effective way124
of interacting with the uncertainties and impreciseness of these challenging systems Lilly (2011). In the125
literature, previous research have explored the use of a fuzzy logic controller in a simulation environment126
to control cognitive stress or regulate energy levels of patients with clinical hypercortisolism Azgomi et al.127
(2019); Azgomi and Faghih (2019). A fuzzy controller was also combined with a classical Proportional128
Integral Derivative (PID) controller to aid the movement of a knee prosthesis leg Wiem et al. (2018), and to129
regulate movement of the elbow joint of an exoskeleton during post-stroke rehabilitation Tageldeen et al.130
(2016). Scholars have shown fuzzy logic controllers to outperform PID controllers in the regulation of131
mean arterial pressure Sharma et al. (2020), and to improve the anesthetic levels of patients undergoing132
general anesthesia Mendez et al. (2018). In light of what is presented, in this in silico study, we develop a133
virtual subject environment to evaluate the efficiency of our proposed architecture.134

The remainder of this research is organized as follows. In section 2 we describe the methods used in this135
research. Specifically, in 2.1 we describe the virtual subject environment and the steps taken towards its136
development (i.e., the models used, the features extracted, the valence state estimation and the modeling137
of the environmental stimuli). Next, in 2.2 we explain the controller design and the steps taken during138
implementation. Then, we present our results in section 3, followed by a discussion of those in section 4.139

2 METHODS
2.1 Virtual Subject environment140

An overview of the proposed system is presented in Fig. 1. As depicted in Fig. 1, to construct the virtual141
subject environment we first take the zEMG measurements and preprocess the collected data for our further142
analysis. From the zEMG data we extract binary and continuous features that will be used both to build143
the state-space model and to estimate hidden emotional levels. This is possible after the establishment of144
the continuous and binary observation models associated with the state-space representation of emotional145
valence. Since the emotional valence progression of the subject is not measurable directly, we use the146
two simultaneous features and an expectation maximization (EM) algorithm, to model and drive the147
environmental stimuli within the virtual subject environment. The environmental stimuli are used to148
recreate, in real-time, different subject-specific emotional valence state-related responses into the simulated149
brain model. Similarly to the non-real-time case, output from the brain model will then have binary and150
continuous features extracted before reaching the mixed-filter. The mixed-filter estimates the hidden valence151
state to supply it to the control method selected of either excitatory or inhibitory control. With these two152
classes of closed-loop regulation we can analyze the performance of the proposed approach. Finally, the153
control algorithm determines the control effort necessary and provides it to the brain model, closing the154
loop. All the simulations of this research were performed using SIMULINK from MATLAB (The Math155
Works, Inc., Natick, MA) version 2020b.156
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2.1.1 Dataset157

In this research, we develop human brain models using the publicly available Database for Emotion158
Analysis using Physiological Signals (DEAP) Koelstra et al. (2012), in which the authors investigated159
the connection between physiological signals and an associated emotional tag, based on a valence scale.160
In the DEAP dataset, 32 subjects (16-females and 16-males, mean age 26.9) were asked to watch one161
minute segments of 40 different music videos. These videos were selected so that they would capture every162
aspect of both arousal and valence levels. At the end of each video trial, the researchers gathered each163
subject’s self-assessment regarding emotional valence, on a 1-9 scale. During the experiment, various164
physiological signals were collected, such as the facial zEMG response at 512 Hz. For our study, the165
self-assessed emotional valence information is taken as ground truth.166

2.1.2 State-Space Model167

We model the valence state progression by forming stochastic state-space models.168

2.1.2.1 State Equation169

Similar to Prerau et al. (2009), we use a first order autoregressive state-space model,170

xk+1 = xk + εk + sk + uk , (1)

where xk is the hidden valence state at time step k for k = 1, ..., K and K is the entire experiment duration.171
The model also includes the process noise as a Gaussian zero-mean random variable εk ∼ N (0, σ2ε ), sk as172
a surrogate for any environmental stimuli that influenced the brain at the time of data collection, and uk as173
the input from the controller.174

2.1.2.2 Observation Models175

We include two observation models that capture the evolution of the zEMG signal’s binary and continuous176
features so that we can observe the valence state progression in (1). By using two features simultaneously177
in the model, we achieve a more accurate (i.e. narrower confidence intervals) and more precise emotional178
state estimation Prerau et al. (2008). The binary observations nk = {0, 1}, are modeled as a Bernoulli179
distribution Wickramasuriya et al. (2019); McCullagh and Nelder (1989),180

P (nk|xk) = pnkk (1− pk)1−nk , (2)
181

pk =
eγ+xk

1 + eγ+xk
, (3)

where pk is the probability of observing a spike given the current valence state amplitude via sigmoidal182
link function (3), which has shown to depict frequency or counting datasets well Wickramasuriya et al.183
(2019). The continuous observations zk ∈ R are modeled as,184

zk = α + βxk + ωk , (4)

where α is a coefficient representing the baseline power of the continuous feature, β is the rate of change185
in the continuous feature’s power, and ωk is a normally distributed zero mean Gaussian random variable186
ωk ∼ N (0, σ2ω). Both the continuous and binary observations are stated as functions of the valence state187
xk.188

2.1.3 zEMG Feature Extraction189

To perform the estimation process and obtain the hidden valence state, we utilize the zEMG data and190
extract the binary and continuous features presented in the observation models.191
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2.1.3.1 Data Preprocessing192

We use a third order butterworth bandpass filter between 10-250 Hz to remove motion artifacts and other193
unwanted high frequency noise. Additionally, we use notch filters at 50 Hz and next four harmonics to194
remove any electrical line interference. Finally, the filtered zEMG signal, yk, is segmented into 0.5 second195
bins with no overlapping.196

2.1.3.2 Binary Feature Extraction of Filtered zEMG197

As suggested by previous scholars the binary features extracted from the zEMG signal may be associated198
with the underlying neural spiking activity Prerau et al. (2008); Amin and Faghih (2020); Azgomi et al.199
(2021a). Thus, we estimate the neural spiking pertinent to emotional valence by extracting binary features200
from the zEMG data. Firstly, the bins of the filtered zEMG signal yk are rectified by taking their absolute201
values and then smoothed with a Gaussian kernel. Similarly to Yadav et al. (2019) and Azgomi et al. (2019),202
the binary features nk are obtained with the Bernoulli distribution,203

P (nk|yk) = qnkk (1− qk)1−nk , (5)
204

qk = a yk , (6)

where a is a scaling coefficient, chosen heuristically to be 0.5, and qk is a zEMG amplitude dependent205
probability function of observing a spike in bin k, given yk.206

2.1.4 Continuous Feature Extraction of Filtered EMG207

Using the filtered zEMG signal yk, we also extract the continuous features employing the Welch power208
spectral density (PSD) of each 0.5 s bin, with a 75% window overlap. Afterwards, for each bin, we compute209
the bandpower of the PSD result from 10 Hz to 250 Hz, before taking the logarithm. Finally, we normalize210
the entire signal on a 0-1 scale, to provide insight of the relative band power of the zygomaticus major211
muscle activity, across all 40 one-minute trials.212

2.1.5 Hidden Valence State Estimation213

To estimate the emotional valence fluctuations within the experimental data, we employ the state-space214
representation shown in (1) without the control effort and environmental stimuli, since at this time, there is215
no control signal and the stimuli is inherent in the data. The hidden valence state process is defined by216

xk+1 = xk + εk . (7)

Given the complete values for both extracted binary N1:K = {n1, ..., nK} and continuous Z1:K =217
{z1, ..., zK} features, we use the EM algorithm to estimate the model parameters θ = [α, β, σε, σω] and the218
hidden valence state xk. The EM algorithm provides a way to jointly estimate the latent state and parameters219
of the state-space models. Composed of two steps, namely, Expectation step (E-step) and Maximization220
step (M-step), the EM algorithm: (1) finds the expected value of the complete data log-likelihood, and (2)221
maximizes the parameters corresponding to this data log-likelihood. The algorithm iterates between these222
two steps until convergence Wickramasuriya et al. (2019); Yadav et al. (2019). The following equations223
show how at iteration (i+ 1) values are recursively predicted with estimates and parameters from iteration224

i (e.g. x(i)0 , σ2(i)ε ).225

2.1.5.1 E-Step226

2.1.5.1.1 Kalman-based mixed-filter (forward-filter)227

xk|k−1 = xk−1|k−1 (8)
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228
σ2k|k−1 = σ2k−1|k−1 + σ

2(i)
ε (9)

229

Ck =
(
β(i)2σ2k|k−1 + σ

2(i)
ω

)−1
σ2k|k−1 (10)

230
x̂k = xk|k = xk|k−1 + Ck

[
β(i)
(
zk − α(i)

− β(i)xk|k−1
)
+ σ

2(i)
ω

(
nk − pk|k

)] (11)

231
σ̂2k = σ2k|k =

[
(σ2k|k−1)

−1 + pk|k(1− pk|k)

+ (σ
2(i)
ω )−1β(i)2

]−1 (12)

where k = 1, ..., K; x̂k is the estimated valence state; and σ̂2k constitute the corresponding standard232
deviation.233

2.1.5.1.2 Fixed-interval smoothing algorithm (backward-filter)234

Ak = σ2k|k
(
σ2k+1|k

)−1 (13)
235

xk|K = xk|k + Ak
(
xk+1|K − xk+1|k

)
(14)

236
σ2k|K = σ2k|k + A2

k

(
σ2k+1|k − σ

2
k+1|K

)
(15)

2.1.5.1.3 State-space covariance algorithm237

σk,u|k = Akσk+1,u|k (16)
238

Wk|K = σ2k|K + x2k|K (17)
239

Wk−1,k|K = σk−1|K + xk−1|Kxk|K (18)

for 1 ≤ k ≤ u ≤ K.240

2.1.5.2 M-Step241

x
(i+1)
0 = x1|k (19)

242

σ
2(i+1)
ω = K−1

K∑
k=1

z2k +Kα2(i+1)

+ β2(i+1)
K∑
k=1

Wk|K − 2α(i+1)
K∑
k=1

zk

− 2β(i+1)
K∑
k=1

xk|Kzk

+ 2α(i+1)β(i+1)
K∑
k=1

xk|K

(20)
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243 [
α(i+1)

β(i+1)

]
=

[
K

∑K
k=1 xk|K∑K

k=1 xk|K
∑K

k=1Wk|K

]−1

×

[ ∑K
k=1 zk∑K

k=1 xk|Kzk

] (21)

244

σ
2(i+1)
ε = K−1

K∑
k=1

[
Wk|K − 2Wk−1,k|K +Wk−1|K

]
(22)

2.1.6 Environmental Stimuli Model245

We model the environmental stimuli referred to in (1) as a way to capture and recreate the subject’s246
response to high or low valence trials. This allows for the simulation of subject-specific HV and LV247
conditions. The environmental stimuli are calculated by finding the difference between adjacent elements248
of the estimated valence state x̂k, as in249

s
k
= x̂k+1 − x̂k (23)

for k = 1, ..., K − 1. Then, we assume a sinusoidal harmonic formulation to model the environmental250
stimuli in either HV or LV trials,251

s
k
=

100∑
j=1

ρjsin(ζjk + φj) (24)

Through inspection across all subjects, we notice that HV trials tend to have a higher mean and standard252
deviation compared to LV ones. Thus, to avoid fitting outliers to the harmonic model depicted in (24), we253
select the six trials with highest mean and standard deviation of estimated valence levels for fitting sk to254
HV, and the six trials with the lowest mean and standard deviation to model LV periods. Additionally, we255
consider a transition period between each different valence state, as approximated by a linear relationship256
of 0.5 s in duration. This is done separately for each subject to ensure personalized models. Data from an257
exemplary subject is depicted in Fig. 2, in which every step of the process is illustrated separately, i.e. raw258
zEMG to extracted features and valence state and finally obtaining a corresponding environmental stimuli.259
In addition, in Fig. 3, the estimated emotional valence state for the same exemplary subject is presented260
with 95% confidence intervals. Of the 23 subjects available in the dataset, we excluded five participants261
due to a lack of emotional response found when comparing between LV and HV periods, that is, both262
emotional periods have shown equivalent outcomes regarding both features and estimated valence state.263

2.2 Closed-Loop Control Design264

With the virtual subject environment in place, we explore the regulation of emotional valence. Similar265
to the feature extraction process, we simulate the binary and continuous responses simultaneously from266
the internal brain state. In other words, we use equations (2) to (4) to recreate within the virtual subject267
environment what would be inherent to the zEMG data in the real world. Then, these two features are fed to268
a Kalman-based mixed-filter to estimate the hidden valence state in an online fashion. The estimated state269
is averaged out in a ten-second window to smooth any abrupt changes before reaching the fuzzy controller,270
which then derives the control effort uk in real-time. A diagram of the closed-loop is depicted in Fig. 4. As271
the hidden valence state cannot be measured directly, we use the recursive, Kalman-based mixed-filter to272
estimate the latent valence state inherent to the brain model as detailed in equations (8) to (12). As shown273
in Fig. 4, this filter takes in both binary and continuous observations to compute the prior distribution using274
a Chapman-Kolmogrov equation, then finds the measurement likelihood via Bayes theorem, which can be275
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summarized with, respectively,276
p(xk|nk−1, zk−1) , (25)

and277
p(xk|nk, zk) . (26)

2.2.1 Fuzzy Control278

We use a Mamdani-type fuzzy logic controller with the fuzzy rules shown in Table 1 to regulate the279
subject’s emotional valence to a more desired level, i.e. during inhibitory mode of control action, the goal280
is to achieve and remain in the same valence level characterized by the LV period — and vice-versa for281
the excitatory controller. As it can be observed in Table 1 and in Figs. 1 and 4, the input signal for the282
controller is the estimated valence state and not a prediction error as it is more common in control studies.283
After analyzing the open-loop response of all subjects we designed a set of membership functions capable284
of directly regulating the emotional valence without subtracting it from a target reference. With this, we285
could employ more intuitive membership functions as depicted in Fig. 5. Similarly to previous authors286
Azgomi et al. (2021b), the fuzzy output can be obtained with,287

µmamdani(k) = µm(k) = max
j

(
min(µvalence(v))

)
(27)

where j designate the active rule at each time step k and µvalence is the fuzzified valence input v. The crisp288
output of the fuzzy controller, i.e. the control signal uk, is attained using the centroid method as follows,289

uk =

∫
µm(k).k dk∫
µm(k) dk

. (28)

With a fuzzy logic controller, crisp input values are transformed to degrees of membership of certain290
functions called membership functions in the fuzzification process. Then, using the pre-determined fuzzy291
rules the fuzzy inference process takes place, in which a connection between all fuzzified inputs is made.292
This results in degrees of membership of a set of output membership functions, which are then defuzzified293
to produce a final representative crisp value Qi et al. (2019). This fuzzy logic process is convenient when294
dealing with complex systems, such as those biological in nature, since it allows for the emergence of295
complex control behaviors using relatively simple constructions Lilly (2011).296

3 RESULTS
In this section, we present the results obtained for subject 7 in three different simulation scenaria: open-loop,297
inhibitory closed-loop, and excitatory closed-loop. The results associated with other subjects are also298
available in the supplemental material. We simulate with an environmental stimulus that is either half299
LV then half HV or vice versa. During the first minute, the controller is suspended to let the mixed-filter300
converge. The results are presented in Fig. 6. As depicted in sub-panel (a) of I and II in Fig. 6, all three301
scenarios for one particular subject have the same environmental stimuli in common, either starting with302
LV or with HV.303

Scenario 1 - Open-Loop: Since in the open-loop scenario there is no control effort (uk = 0), it can be304
omitted and the results are shown within the spike activity, depicted in sub-panel (b), and the corresponding305
estimated internal state depicted in sub-panel (c) and in dashed lines in both (f) and (i) sub-panels. It is306
observed, in sub-figure I of Fig. 6, that the estimated valence state increases from the period of LV in the307
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first half to HV in the second half, and so does the frequency of spikes. In contrast, sub-figure II of Fig. 6308
shows valence levels and number of spikes declining from the first half (HV) to the second half (LV).309

Scenario 2 - Inhibitory Closed-Loop: The inhibitory results are observed in sub-panels (d, e, f) of both310
I and II in Fig. 6. The control signal is zero during the LV periods of the simulations (i.e., during the first311
half in I and for the second half in II). It is not until the controller detects a HV period that the control312
effort takes a negative value (uk < 0) to inhibit the emotional valence, effectively lowering the number of313
spikes shown in sub-panel (e) and the estimated valence state depicted in sub-panel (f), as compared to the314
open-loop case.315

Scenario 3 - Excitatory Closed-Loop: The last 3 sub-panels (g, h, i) from both I and II of Fig. 6 depict316
the results of the excitatory controller. From sub-panel (g), we can see there is no control effort in periods317
of HV; both in the second half of I and first half of II. Once the controller detects a low valence state, it318
outputs a positive control effort (uk > 0), which increases the number of spikes and estimated valence319
level in sub-panels (h) and (i), as compared to the open-loop.320

4 DISCUSSION AND CONCLUSIONS
In this study, we use experimental data to build a virtual subject environment, allowing us to simulate and321
regulate emotional valence levels using a state-space brain model and a fuzzy logic feedback controller.322
To the best of our knowledge, in this in silico feasibility study, we present the first closed-loop control323
framework for emotional valence state using biofeedback from facial muscles. We use two simultaneous324
observation models, one binary and one continuous, to relate zEMG measurements to the hidden emotional325
valence state. The valence state is assumed to be governed by a state-space formulation and is converted326
from a 1 to 9 valence scale obtained from the self-assessment of subjects from the dataset, to the high327
(above 5) or low valence level used in this study. These valence labels were previously used by scholars328
as ground truth and were also employed here to determine subject-specific simulation parameters Yadav329
et al. (2019). This was done by selecting specific LV and HV trials for modeling based on a trend in the330
mean and standard deviation of the estimated valence state between the two categories. To capture the331
surrounding stimuli influencing the affective levels of the subject and incorporate them into simulation, we332
use the estimated emotional valence progression and a high-order harmonic formulation. This modeling333
and simulation of the environmental stimuli is currently necessary to evoke representative subject-specific334
emotional valence responses within the simulated brain model. Thus, modern control techniques can be335
systematically investigated in silico, allowing for the development of this research field without risking336
harm to any patients.337

In the current stage of this research on closed-loop emotional valence regulation, we focus our338
contributions on developing the closed-loop simulated framework and opted for using a fuzzy logic339
controller to regulate the estimated valence state in simulated profiles. While the accuracy of the340
classification method is paramount for the success of our method, we employed the same methodology341
for classifying between low valence and high valence states which reported a 89% accuracy in previous342
works Yadav et al. (2019). This value is on par with other state-of-the-art methods however, relying343
on physiological measurements and estimation of the brain state, instead of externalized facial or vocal344
expressions.345

Using the proposed knowledge-based controller we successfully verify the in silico feasibility of the346
presented methods. By employing a set of simple logic rules the fuzzy system is capable of producing347
complex regulating behaviors Lilly (2011). This is extremely valuable since insight about the system can348
come in many ways, such as from doctors, other researchers, or the individual itself. Moreover, the fuzzy349
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structure allows for an uncomplicated expandability feature which means other physiological signals could350
be simply incorporated while designing the control systems Azgomi et al. (2021a,b). This could further351
enhance the approach for valence regulation.352

In previous research for closed-loop regulation of human-related dynamics, scholars have developed353
simulators to explore controller designs for Parkinson’s disease, cognitive stress, depression and other354
neurological and neuropsychiatric disorders, as well as for anesthetic delivery, hemodynamic stability, and355
mechanical ventilation Fleming et al. (2020); Yang et al. (2018b); Ionescu et al. (2021); Azgomi et al.356
(2019); Boayue et al. (2018); Parvinian et al. (2019). Here, the proposed architectures set initial steps for a357
future wearable machine interface (WMI) implementation, as we achieved simulation of emotional valence358
controllers for both inhibitory and excitatory goals, demonstrating great potential in helping individuals359
maintain daily mental well-being Azgomi and Faghih (2019). While no commercial wearable solution for360
facial EMG measurement is available yet, the potential for this non-invasive procedure to regulate mental361
states encourages future efforts.362

During excitatory action, we observe an increase in number of spikes and overall emotional valence state363
when needed and, for inhibition, our approach obtained less spikes and a lower valence level as the need364
arose. However, the amount of response varied with each subject due to a few reasons. One factor can be365
attributed to the use of a single mono-objective fuzzy controller design, in which the controller can act366
locally in the first half of the experiment, correctly adjusting the mental state, without considering that367
the environmental stimuli are going to further push the subject’s valence level in the second half. This368
architecture also does not account for each individual peculiarities, i.e., lack or abundance of emotional369
engagement throughout the experiment. Further research needs to explore the optimization of fuzzy370
membership functions, to adapt for different persons and variations in time. Because the performance of371
fuzzy logic controllers are highly dependent on their parameters and structure, optimization algorithms372
could also improve the overall results as the parameters would not rely on pre-determined knowledge of373
the system Qi et al. (2019).374

In the exemplary subject depicted in Fig. 6 we can observe an inhibitory action taking place in the HV375
periods of inhibition simulation and lowering of the number of spikes and estimated valence level as376
compared to the open-loop. Similarly, we can observe the excitatory controller acting in LV periods and377
increasing the spike frequency and valence levels, accordingly. Overall, subjects 3-5, 8, 11 and 17 (Figs.378
S4-S6, S9, S12, S18) showed similar results to the exemplary subject depicted in Fig. 6, accomplishing379
reasonable regulation across all scenarios. Of the remaining 10 subjects, 7 had good performance in all380
inhibitory scenarios (Figs. S2, S3, S10, S11, S13, S16, S17) while 4 out of 10 had good performance in at381
least one excitatory scenario (Figs. S10, S14, S15, S16). This could suggest that HV regulation is more382
challenging possibly due to the high variability nature of this mental state.383

In addition to the subject exemplified in Fig. 6, t-test analysis between the open- and closed-loop384
simulations with 17 out of 23 subjects was performed, as detailed in Table 2. Additionally, Fig. 7 displays385
the distribution of data used during the t-test for the case of LV then HV order of environmental stimuli. The386
HV then LV order is also included in the supplemental material and presents a similar analysis. As seen both387
in Table 2 and in Fig. 7, the results show LV periods to be significantly different during excitatory action388
and HV trials to be significantly different throughout inhibition, regarding both the average valence level389
and number of spikes. This can be an indicative that the proposed controller was able to perform as desired390
and alter the emotional state of various subjects when required. In a similar manner, LV periods were not391
significantly different during inhibitory regulation if the LV was at the beginning of simulation (both in392
spike count, and mean valence levels). Comparing HV periods throughout excitation, the number of spikes393
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was not significantly different when the HV period happen before LV. These results are indicative that the394
controller is able to detect when changes to the brain state are not required. The reason the affective state is395
significantly different in the second half of the experiment in cases it was not necessary (LV inhibition and396
HV excitation) is due to the fact that the proposed controller is not multi-objective and a regulation goal is397
selected beforehand — either to excite or to inhibit. Thus, after properly adjusting the brain state in the398
first half of the simulation, the second half will be different in comparison to the open-loop baseline and399
the mono-objective nature of this approach is incapable of addressing the matter. Further research is still400
required.401

A few subjects (4, 11, 12, 20, 21, 23) had poor emotional valence state estimation and were discarded from402
the statistical analysis which also show directions for improving the proposed approach. These participants403
showed similar number of spikes and valence levels, during both LV and HV periods, within the open-loop404
scenario. Thus, when taken to a closed-loop solution, the fuzzy controller is impaired from distinguishing405
high and low valence levels and leads to unsatisfactory results. However, this poor valence estimation could406
be due to many factors such as the person not being emotionally engaged during the original data collection407
or distracted during the experiment Chaouachi and Frasson (2010). Similarly to previous scholars Yadav408
et al. (2019), we investigate the performance of the emotional valence estimation with a 95% confidence409
intervals metric, as depicted in Fig. 3. As it can be observed in Fig. 3, the confidence intervals reside410
close to the actual recovered state and further validate the proposed state-space estimation procedure.411
Moreover, it is possible that these discarded subjects required additional physiological measurements (e.g.,412
electrocardiogram, skin conductance, pupil size) to improve the estimation of the internal brain state. As413
mentioned above, the flexibility of the proposed state-space and fuzzy logic controller framework could414
easily incorporate additional physiological signals.415

The present study has a few limitations. The dataset used had conflicting metadata on 9 of the 32416
subjects, resulting in an impossibility of recovering the position of all 40 trials and thus, these subjects417
had to be discarded. Additionally, in real-world scenarios as in the dataset used, emotional valence has a418
spectrum of levels, but we assume only two possible states of high and low valence. This decision also419
reflects in the controller design in which we experiment with only two classes of closed-loop regulation,420
i.e. excitation and inhibition. Even with this limitation, it should be noted that both the mixed-filter and421
designed control provide continuous estimation and control objectives allowing for a finer regulation within422
this spectrum of emotions. This can be addressed in future research. Moreover, this simulation study does423
not incorporate the controller dynamics and real-world actuators. To implement the proposed architectures424
in real-world scenarios, it is paramount to consider how valence needs to be modulated, not only in terms425
of which actuators to use but also how frequent should interventions take place. These are challenging426
to address, especially when dealing with such a complex organ as the human brain, and require further427
investigation. In that sense, future human subject experiments shall be designed to explore the dynamics of428
possible actuation methods to regulate valence states. Previous scholars have observed emotional brain429
responses from changes in lighting or music Vandewalle et al. (2010); Droit-Volet et al. (2013); Schubert430
(2007). These would be interesting to investigate since they are also non-invasive procedures and could be431
incorporated in a practical system. Future research into using adaptive and predictive control strategies432
would also be beneficial to address some of the biological intrinsic variations of an individual. Similarly, the433
applicability of the proposed approach in the real world depends on the real-time estimation of mental states.434
At this time, we illustrate the feasibility of the approach by incorporating a simulation of brain responses435
on a per individual basis. Once implemented, this simulation is no longer required. However, a “training”436
session might be necessary to calibrate the system for each subject’s peculiarities. In addition, robust state437
estimation or robust control design can be of tremendous importance for a real-world application. Lastly,438
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we extracted features from LV and HV trials from EMG signal of the Zygomaticus major facial muscle,439
which has been depicted as a good indicator of valence Ekman et al. (1980); Brown and Schwartz (1980);440
Tan et al. (2012). As a future direction of this research, an investigation to quantify the performance in441
detecting fake emotional expressions via the zEMG signal would be beneficial to further enhance the442
proposed approach to be implemented in real life.443

Using the proposed architecture, we were able to regulate one’s emotional state, specifically emotional444
valence levels, by implementing a fuzzy controller that acted on a state-space model of the human brain.445
With a similar approach, a WMI could, in the future, be used to recommend a specific music track for a446
person feeling down, advise a change in lighting for someone in a bad mental state, or even offer a cup447
of green tea if the user wants to maintain a desired level of well-being Athavale and Krishnan (2017);448
Cannard et al. (2020). While we used experimental data to design a closed-loop system for regulating an449
internal valence state in a simulation study, a future direction of this research would be designing human450
subject experiments to close the loop in real-world settings. In our future work, we plan to validate the451
valence state estimator in real-time and close the loop accordingly. For example, we plan to incorporate safe452
actuators such as music or visual stimulation to close the loop. More research is needed but this suggests453
an important new step towards new clinical applications and the self-management of mental health.454
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Künecke, J., Hildebrandt, A., Recio, G., Sommer, W., and Wilhelm, O. (2014). Facial emg responses to580

emotional expressions are related to emotion perception ability. PloS one 9, e84053581
L, S., J, X., M, Y., Z, L., Z, L., D, L., et al. (2018). A review of emotion recognition using physiological582

signals. New Trends in Psychophysiology and Mental Health doi:doi.org/10.3390/s18072074583
LaConte, S. M., Peltier, S. J., and Hu, X. P. (2007). Real-time fmri using brain-state classification. Human584

brain mapping 28, 1033–1044585
Lilly, J. H. (2011). Fuzzy control and identification (John Wiley & Sons)586
Little, S., Beudel, M., Zrinzo, L., Foltynie, T., Limousin, P., Hariz, M., et al. (2016). Bilateral adaptive deep587

brain stimulation is effective in parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry588
87, 717–721589

Maheshwari, J., Joshi, S. D., and Gandhi, T. K. (2020). Tracking the transitions of brain states: An590
analytical approach using eeg. IEEE Transactions on Neural Systems and Rehabilitation Engineering591
28, 1742–1749592

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models (Chapman Hall / CRC)593
Mendez, J. A., Leon, A., Marrero, A., Gonzalez-Cava, J. M., Reboso, J. A., Estevez, J. I., et al. (2018).594

Improving the anesthetic process by a fuzzy rule based medical decision system. Artificial intelligence595
in medicine 84, 159–170596

Mertens, A., Raedt, R., Gadeyne, S., Carrette, E., Boon, P., and Vonck, K. (2018). Recent advances in597
devices for vagus nerve stimulation. Expert review of medical devices 15, 527–539598

Naji, M., Firoozabadi, M., and Azadfallah, P. (2014). Classification of music-induced emotions based on599
information fusion of forehead biosignals and electrocardiogram. Cognitive Computation600

Nakasone, A., Prendinger, H., and Ishizuka, M. (2005). Emotion recognition from electromyography and601
skin conductance. In Proc. of the 5th international workshop on biosignal interpretation (Citeseer),602
219–222603

Nie, D., Wang, X.-W., Shi, L.-C., and Lu, B.-L. (2011). Eeg-based emotion recognition during watching604
movies. In 2011 5th International IEEE/EMBS Conference on Neural Engineering (IEEE), 667–670605

This is a provisional file, not the final typeset article 16



Branco et al. Closed-Loop Regulation of Valence
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Table 1. Fuzzy controller rule base
Inhibitory Excitatory

Input (IF):
Valence levels

Output (THEN):
Control action

Output (THEN):
Control action

Low Valence Neutral Excitation
High Valence Inhibition Neutral

Table 2. Statistical analysis - p-values
LV then HV HV then LV

Number of
Spikes

Average
Valence

Number of
Spikes

Average
Valence

Inhib. LV 0.1689 0.1947 2× 10−6 6× 10−6

HV 2× 10−5 5× 10−7 3× 10−4 1× 10−5

Excit. LV 7× 10−6 8× 10−6 3× 10−5 3× 10−5

HV 4× 10−5 5× 10−6 0.0554 0.0398
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Figure 1. Overview of proposed closed-loop solution. Within data from a publicly available dataset,
the subject is wearing wearable electromyogram sensors that collect facial muscle activity. From the
electromyogram measurements, binary and continuous features are extracted and used to infer the hidden
emotional valence state of the subject, which cannot be measured directly. This is performed using state-
space modeling and via an expectation maximization algorithm. The estimated valence state is then used
to model an environmental stimuli, recreating the subject’s surrounding input inside the virtual subject
environment. Within this virtual environment, different emotional conditions are recreated into the brain
model. By extracting binary and continuous features and using a mixed filter, the subject’s hidden emotional
valence state is estimated and further regulated as desired (excitation or inhibition modes) by means of a
fuzzy logic controller.
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Figure 2. zEMG data, corresponding features, estimated valence state, and environmental stimuli
of subject 18. Trials characterized as high valence (HV) are shaded in grey, whilst unshaded ones as
representative of low valence (LV). The raw zEMG collected is presented in sub-panel (a) in orange,
while sub-panels (b) and (c) show the extracted features, binary (red) and continuous (pink), respectively.
Sub-panel (d) illustrates the hidden valence state (green) attained with the EM algorithm by employing
both features shown in (b) and (c). The last sub-panel (e) shows the environmental stimuli (black) obtained
from the valence state progression in (d).

Figure 3. Detail of estimated emotional valence state for subject 18 with 95% confidence intervals.
In panel (a) the white background depicts LV periods while the gray-shaded areas show HV results. The
solid green line shows the estimated valence state while the green region around it is a 95% confidence
interval.
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Figure 4. Overview of the closed-loop solution. The environmental stimuli sk is added to the control
signal uk to form an input of the state-space brain model. The internal emotional valence state xk is
governed by the state equation and by employing the observation equations, binary and continuous features
are extracted and taken in by the recursive mixed-filter. The filter estimates and tracks the hidden brain
state x̂k, supplying this signal for the controller. Finally, the controller takes the current estimated valence
state and generates a control signal uk back to the brain model, thus closing the loop. This control signal is
responsible for changing the valence state in the desired direction, i.e. increasing if excitatory or decreasing
if inhibitory action.

Figure 5. Excitatory and inhibitory fuzzy membership functions. The left side shows membership
functions of the controller’s input, whilst the right side display the ones for the output. The top and bottom
row depict, respectively, membership functions of the inhibitory and excitatory controllers. In all four
graphs the y axis depicts the degree of membership for every case, in which the lowest value is zero
association with that function and the highest value is total association.
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Figure 6. Simulation results of open-loop, inhibitory closed-loop and excitatory closed-loop
scenarios for subject 7. In sub-figure I the external stimulus is comprised of half LV, then half HV,
with sub-figure II being the opposite. In both I and II, LV and HV periods are represented with unshaded
and grey-shaded areas, respectively. Sub-panel (a) depicts environmental stimulus (black) used in all three
simulation scenarios. The sub-panels (b) and (c) show spike activity (red) and estimated valence state (green,
dashed) during the open-loop, respectively. Sub-panels (d, e, f) display inhibitory closed-loop results, with
(d) showing control effort (blue), (e) the corresponding binary signal (red) and (f) the comparison between
open-loop (green, dashed) and closed-loop (green, solid) valence state. In a similar fashion, sub-panels (g,
h, i) exhibit the excitatory closed-loop outcome.
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Figure 7. Statistical analysis with boxplot (N=17) visualization of LV then HV environmental
stimuli order. The left column of sub-panels shows the number of spikes in a given period, while the right
column of sub-panels depicts the average valence state. The top row of sub-panels show results from the
inhibitory controller and the bottom one for the excitatory one. Within each sub-plot, the white background
depicts LV periods while the gray-shaded areas show HV results. Each pair of data (i.e. baseline and
closed-loop) was used during the t-tests analysis. Comparing the open-loop baseline and closed-loop results
of number of spikes and average valence levels, HV periods are statistically significant both in inhibition
and excitation (all sub-panels, gray background). For LV periods, results are statistically significant only
for inhibition (bottom-row, white background).

Frontiers 25


	Introduction
	Methods
	Virtual Subject environment
	Dataset
	State-Space Model
	State Equation
	Observation Models

	zEMG Feature Extraction
	Data Preprocessing
	Binary Feature Extraction of Filtered zEMG

	Continuous Feature Extraction of Filtered EMG
	Hidden Valence State Estimation
	E-Step
	M-Step

	Environmental Stimuli Model

	Closed-Loop Control Design
	Fuzzy Control


	Results
	Discussion and Conclusions

