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Abstract—Goal: We propose novel supervised control architec-
tures to regulate the cognitive stress state and close the loop. Meth-
ods: We take information present in underlying neural impulses
of skin conductance signals and employ model-based control
techniques to close the loop in a state-space framework. For
performance enhancement, we establish a supervised knowledge-
based layer to update control system in real time. In the super-
vised architecture, the controller parameters are being updated in
real-time. Results: Statistical analyses demonstrate the efficiency
of supervised control architectures in improving the closed-loop
results while maintaining stress levels within a desired range
with more optimized control efforts. The model-based approaches
would guarantee the control system-perspective criteria such as
stability and optimality, and the proposed supervised knowledge-
based layer would further enhance their efficiency. Conclusion:
Outcomes in this in silico study verify the proficiency of the
proposed supervised architectures to be implemented in the real
world.

Index Terms—Closed-Loop, Cognitive Stress, Skin Conduc-
tance, State-Space, Supervised Control.

Impact Statement- We propose supervised control
architectures that are well-aligned to the human
physiology basis. By employing these approaches,

closed-loop performance enhancement has been achieved
in cognitive stress regulation.

I. INTRODUCTION

N the modern world, any challenge might be a source of

cognitive stress [1]. The fast-paced life has the potential
to induce emotional and cognitive stress [2]. Feeling over-
whelmed, anxiety, and agitation are among the symptoms asso-
ciated with the high levels of cognitive stress [3]. Conversely,
loss of cognitive engagement might also prevent individuals
from following their goals [4]. A low level of positive stress,
which is also called eustress, might cause memory problems,
lack of motivation, and poor concentration [5]. It can also
negatively affect persons’ productivity in work places. While
it is important to track internal stress levels [6], it is also
critical to establish a mechanism for keeping internal cognitive
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stress state within a favorable range [7]. In this research, we
aim to track the internal cognitive stress and propose novel
control architectures to maintain it within the pleasant range.
Advances in the fields of control and automation have opened
avenues of applications in various area such as autonomous
vehicles, robotics, and financial systems [8]. Recently, there
has been much interest in investigating the use of modern
control techniques in physiological systems [9]. Researchers
are actively working on automating multiple clinical processes
such as: artificial pancreas for regulating blood glucose levels
[10], [11], feedback control mechanism in neuroprosthesis
[12], internal energy regulation in patients with cortisol-related
disorders [13]-[15], anesthesia delivery system for medically
induced coma [16]-[18], and deep brain stimulation for treat-
ing neurodegenerative disorders [19]. Hence, we propose to
employ control methods in internal cognitive stress regulation.

As internal cognitive stress state is a hidden state and can
not be measured, we approach this problem indirectly [20]. In
human body, the autonomic nervous system (ANS) is respon-
sible for a vast number of functions in response to the mental
stress [21]. Changes in the arousal of the sympathetic nervous
system (SNS) and parasympathetic nervous systems (PSNS),
as branches of ANS, are presented in different physiological
signals [22], [23]. In fact, the human brain employs SNS and
PSNS to react to environmental stimuli. As a result of SNS and
PSNS activation, we observe changes in physiological signals
such as heart rate, respiration, and skin conductivity [24].
In response to internal/external stress stimuli, brain changes
the sweat gland activation via SNS [25]-[27]. Consequently
variations in sweat glands activation could be reflected in skin
conductance signal monitored by sensors located in wrist-worn
devices [28]. Skin conductance signal or electrodermal activity
has been shown to be an indicator of mental arousal and cogni-
tive stress [6], [29]-[31]. Therefore, we follow the approaches
presented in [32] for further analysis. In the simulation system
presented in [32], the hidden cognitive stress state is connected
to the changes in skin conductance response (SCR) events via a
state-space approach. Employing experimentally collected data,
a real-time simulation system is developed to investigate the
control design algorithm for closing the loop [32].

In the system presented in [7], [32], we took SCR events as
the binary observation and estimated the hidden stress state in
real time. While SCR time events carry important information
about internal arousal state [6], [31], focusing on only the
events’ time as the binary observations and ignoring their
amplitudes may cause loss of valuable details. As reported in
several articles [21], [30], SCR amplitudes includes informa-
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tion about internal arousal state. In [20], a modified version of
the filtering approach, which incorporates continuous-valued
information from the SCR amplitudes (i.e., phasic amplitude
and tonic levels) is presented. In their proposed approach, they
have reported overfitting to the continuous values [20]. To solve
this issue, authors in [33] proposed the marked point process
(MPP) filtering approach. The MPP filter is applied to estimate
internal arousal state from SCR events and their corresponding
amplitudes to address the overfitting problem [33]. Compared
to our previous approach [32], which we only included SCR
time events as binary observations, here we enhance the state
estimation process by incorporating the event amplitudes and
estimate the internal state with MPP approach.

Exploiting the state-space representation which will lead us
to track internal arousal state in a systematic way, we aim to
invest in control system techniques to regulate the estimated
arousal state and close the loop. In recent years, there exists
a growing interest in employing control methods to automate
various procedures [34], [35]. Researchers in [36] developed a
novel boundary control scheme to regulate a rigid-flexible wing
system and close the loop. He et al. considered distributed
disturbances and designed a robust control strategy to reject
them [37]. Similarly, in present research, we propose novel
control approaches to close the loop, regulate the estimated
stress state, and keep it within the desired range. The state-
space model and the real-time estimation enable us to han-
dle this physiological system as a control-theoretic problem.
Hence, we propose to employ well-established model-based
optimal control techniques, including linear quadratic regulator
(LQR) and model predictive control (MPC) to close the loop.
In both LQR and MPC, by optimizing corresponding objective
functions, the optimal control would be derived in a real-time
manner. The performance of both LQR and MPC depends
on the selection of the objective functions [38]. Additionally,
due to the nature of this physiological system, the inter- and
intra-subject variability make the objective function selection
process a challenging task. Among available approaches that
address the challenges associated with the objective function
selection, research in [39] proposed to use genetic algorithm
for optimal tuning of MPC weights. Ramasamy et al. have
established a mechanism to update the cost functions based
on the system performance as well as the operator input
in an offline manner [39]. In their proposed approach, they
use an interactive decision tree to get feedback from the
operator and infer the optimal gain weights. Researchers in
[40] proposed a multi-scenario approach for designing a robust
MPC system. They evaluated the operational system for each
scenario and considered them while tuning the MPC. Van et al.
also proposed to combine the genetic algorithm with a multi
objective fuzzy decision making system for MPC tuning [41].
In their proposed approach, they rank the predefined objective
functions based on the fuzzy systems [41]. Zhao et al. in [42]
implemented a real-time system for adjusting the MPC tuning
parameters in an adaptive cruise control system. The expert
system proposed in [42] adjusts the tune parameters based on
if-then rules. The corresponding cost functions are regulated
based on the changes in sign of error terms [42]. To address the

need for creating a system to dynamically update the control
tune parameters, we propose to establish a supervised layer
on top of the implemented model-based control systems. In
the proposed architectures, a knowledge-based fuzzy system
would supervise the LQR and MPC and adjusts the objective
functions in real-time.

The combination of fuzzy systems and model-based control
techniques have been explored in the literature [43]-[45]. The
researchers in [43] have used fuzzy logic methodology to
address the output constraints while designing the MPC. Re-
searchers in [44] use the fuzzy system to decouple the modeling
process and use LQR approach to control the power plant.
In a similar approach, researchers in [45] apply fuzzy system
to model building heating system and implemented the MPC
for the process control. However, the present work is the first
attempt to use a fuzzy system as the supervised layer to adjust
tuning parameters in model-based control structures. Moreover,
the proposed supervised control architectures provide a setting
to include the relevant medical expertise to enhance the closed-
loop system. These novel supervised control approaches could
be further expanded to deliver adaptive and robust closed-loop
characteristics. The key contributions of the present research
include (i) implementing real-time MPP Bayesian-type filter to
estimate the hidden arousal state from amplitude and timings
of skin conductance response events, (ii) taking advantage of
state-space representation of internal arousal state and utilizing
model-based LQR and MPC structures to regulate the hidden
state, and (iii) presenting novel supervised fuzzy-LQR and
fuzzy-MPC architectures to adjust control tuning parameters
in real-time.

II. MATERIALS AND METHODS

An overview of the proposed closed-loop supervised control
architectures is presented in Fig. 1. We utilize the simulation
system presented in [32]. The idea presented in [32] is associ-
ated with employing experimental data [46] and simulating the
environmental stimuli for two scenarios: cognitive stress and
relaxation. In a state-space representation, we take simulated
SCR events and estimate the hidden cognitive stress state
in real-time. To this end, we employ the MPP Bayesian-
type filtering ((A) in Fig. 1). To design the control signal
and close the open-loop system, we use the model-based
approaches LQR and MPC ((B) in Fig. 1). We establish a
supervised fuzzy system on top of the LQR and MPC structures
to automatically update the control tune parameters ((C) in
Fig. 1). The supervised layer executes this task based on
feedback from the estimated cognitive stress state, desired state
levels, and expertise knowledge.

A. Human Brain Stimulus-Response Model

We use the simulation model that is based on the experi-
mental data [46] and presented in [32]. Non-EEG Dataset for
Assessment of Neurological Status [46] is publicly available
through the PhysioNet database [46], [47]. This study contains
multiple experiments that induce different types of the stress to
the subjects. The simulation model is based on two sessions:
cognitive stress and relaxation, as the most representative
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Fig. 1. Closed-Loop Supervised Control Architectures Overview.
The orange dashed box displays the open-loop system (A). The solid
green box, shows the supervised control architectures (D). We take
the SCR events generated by human brain model and utilize the MPP
Bayesian filter to estimate the cognitive stress state. To close the loop,
we use the optimal control and model predictive control structures
(B). We establish a knowledge-based fuzzy system, as a supervised
layer (C), and apply expertise knowledge for updating the control tune
parameters in a real-time manner (D).

cases [32]. In the original study [46], multiple physiological
data were collected (i.e., skin conductance, body temperature,
3D accelerometer signals, heart rate, and blood oxygenation
levels). In this research, we aim to track and regulate internal
stress state by monitoring skin conductance measurements
which were collected using Affectiva Q Curve wearable device
to build the simulation environment. Similar to [6], [32], we
analyze profiles associated with six selected participants whose
data were clean and reliable. More information regarding this
experiments and simulation system could be found in [6], [32],
[46].

In the simulation system presented in [32], to model indi-
vidual’s brain responses, we relate the internal cognitive stress-
related state to the changes in skin conductance signal by
employing a first-order state-space model [6], [31]:

Xpr1 = Xg =+ S+ Vi + uy (D

where x; stands for the hidden stress-related state, s; reflects
the environmental stimuli, and v; ~ A((0, 62) represents the
process noise [20], [31]. u; denotes the control input signal
designed and applied in real-time to regulate the simulated
stress-related state. It is worth mentioning that we include
the s in (1) for the simulation purpose. In a real-world
scenario, the human’s internal cognitive stress state is affected
by real environmental stimuli. The details of modeling the
environmental stimuli is presented in [32]. We also assume the
occurrence of SCR events, n;, follows a Bernoulli distribution
with the following probability function:

P(nglxi) = g (1—qi)' ™™ )

where the probability g is connected to the stress state xi, via
the following Sigmoid function [48]:

1

- 1+ e (rx) )

9k

where 7 is the person-specific baseline parameter that should be
determined. Similar to [32], we first assume xy approximately
equals to zero. We then calculate the y based on the average
probability of an SCR occurring in the whole data. According
to (3), with increase in the levels of the cognitive stress state,
the probability of receiving the SCR events is also increased.

To incorporate all the information included in SCR events,
we extend our previous research [32], which only employs the
SCR events’ time, to comprise the amplitudes associated with
the SCR events. To this end, we assume there exists a linear
relationship between the internal cognitive stress state x; and
the SCR amplitudes:

T = Po+P1xg + €]

where r; is assumed to be the log transformation of the
continuous-valued associated with each SCR event’s amplitude.
po and p; are constant values derived by the offline expectation
maximization algorithm [32], [33]. @y ~ A((0,62) is measure-
ment noise with variance Gi. Accordingly, the joint density
function on the probability of receiving the SCR event n; with
the corresponding amplitude ry is:

)2

1 —<’k—90;P1~“k
e 20 if np =1
plunrln) = % pm® " BHEL )
1— qk if ny = 0.

As presented in (5), the amplitude information will not be
included when there is no impulse (r; = 0) [33].

It is worth mentioning that the log transformation, discussed
in r; modeling (4), is only considered in this in silico study
[20]. In real-world implementation of the proposed algorithm,
we take amplitude and timing of SCR events to model and
estimate cognitive arousal state [33].

B. Cognitive Stress State Estimation via MPP Filtering

Taking the SCR events time and their corresponding ampli-
tudes (ng,rx), as the binary and continuous observations, we
follow the MPP-based Bayesian filtering approach to estimate
the hidden cognitive stress state x; [33]. While the estimation
process includes the forward filter and a backward smoother,
we only implement the forward part of the filter for further
real-time analysis. At each time step, a Gaussian approximation
is applied to the posterior density. Combining the prediction
and the update steps in the forward filter [33], we estimate
the stress state and its variance using the following recursive
equations:

Xk =%X—1 + mCy +

ey +os><nk-qk>(

(1-n)pi(6;_, +03)+05\ (6)
Pi(6;_, +03)+0}
—1
N}
6 :(A7+ 1- +nD) 7
k & 1ol qr(1 — qi) +mDy )
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where,

P1(67_ | +03)(rc—po— P1fi—1)
p1(6;_ +03)+ 03

2
e
o

Gk = s Die ®)
when there exists a SCR event (n; # 0). Otherwise (i.e.,
ni = 0), Cy and Dy equal zero (Cy = Dy, = 0). In fact, the terms
Cy and Dy, presented in (6) and (7) incorporate the continuous-
valued information (r; in (4)) associated with the observed
SCR event n; at time step k. So, these terms are applied
only when there exists a SCR event (n; # 0). The probability
qr presented in (6) and (7) is being related to the state xi
via (3). So, it will results in a nonlinear problem that should
be solved by employing numerical methods such as Newton-
Raphson [33]. Consequently, we estimate the cognitive stress-
related state £ and its corresponding variance parameter Gy in
a real-time manner.

C. Control Design

In this part, we follow the goal of establishing a knowledge-
based fuzzy system ((C) in Figure 1) as a supervised layer
in model-based control approaches ((B) in Figure 1) to close
the loop and regulate the estimated cognitive stress state.
Particularly, we implement the fuzzy control structure as a
supervised layer in LQR and MPC structures. In the supervised
architectures, the fuzzy system will automatically adjust the
control tune parameters in real-time. In what follows, we
discuss both model-based control approaches.

1) LOR: Taking advantage of the state-space model and
estimates of cognitive stress state, in LQR framework, we
find the optimal solution of a predefined cost function. Hence,
the obtained control signal u; will minimize the following
objective function:

J =

M=

(R — x4)3 Q (X — Xa) + uyRu )

k=1

where K is the ultimate time of the process. Q and R are
positive definite weight matrices to penalize the state devia-
tions and the input efforts, respectively. x; in (9) also stands
for the desired levels of estimated stress state. Solving this
optimization problem, the optimal control signal uy is derived
as a linear state feedback controller:

Uup = _Gk)ek (10)
where, the feedback gain Gy is derived recursively:
Gi = (R+Pes1) ' Py (1n

where Py is the discrete solution of the following algebraic
Riccati equation:

P=0+ (Pk+1_Pk+1(R+Pk+1)7lPk+1) (12)

with the Py = Q initial condition.

2) MPC: To advance the optimal control LQR, we propose
to use MPC structure as the second model-based control
technique. In MPC framework, we first project the state values
for whole time-window horizon [49]. Then, we derive the
control input for all future prediction window and apply the

first control action. To this end, we introduce the following
quadratic function that needs to be minimized:

Np

Ju, = Zﬁcﬂ\kQﬁkﬂVf + A RAU 13)

I=1
where N), is the prediction horizon, £, denotes to the
state estimate prediction, and Auwg i = Upyip1x — Uik 1S
the predicted variation of control input at each time step.
Similar to LQR, Q and R are positive definite weight ma-
trices to penalize the predicted state deviations and control
efforts. To find the control signal, we aim to derive u; =
(e i1k Upyn,—1) Which is the control input for
whole time horizon window prediction. To this end, we first
define A%y = % — £x—; and Awup = wuy — up—;. Using these
terminologies, general state-space model (1) would be simply
transferred to Ay = AXx + Aug. By considering the estimated
state as the output equation, y; = X, and defining a new
augmented variable, we build:

xulk) = (A’C") (14)
Yk
So, the augmented system dynamics would be such as:
Xq(k+1) = Agxa(k) + B,Au(k) (15)
y(k) = Caxa(k) (16)
where the augmented system matrices of (1) are:
Ay = G (1)) , Ba= G) , Ca= (O 1) 17)

Employing the output equation in the augmented system
(16), we build the predicted future observation for whole
prediction horizon N, such that:

Y =Wx,(k)+ZAU (18)
where:
y(k+ 1‘]{) Aa
y(k+2[k) Az
Y= . 7W = Ca : y
y(k+Nplk) Aq”
(19)
B,
AaBa B(/l
Z=C, .
Av'B, ... AuB, B,
Now, the goal of finding control action u; is
converted to calculating the sequence of AU =
(Au(k) Au(k+1) ... Au(k+N,—1)). Consequently,

this sequence will provide the predicted state variables
(xa(k+1k)  xa(k+2lk) ... xa(k+Nylk)).

To find the sequence AU in (18), by knowing Y,W,Z and
Xq(k), minimizing the cost function presented in (13) would be

equal to minimizing the following objective function:
Jav =Y'QrY + AU'R; AU (20

where Ry = Ry, xN, and Q7 = QIpr N, are diagonal matrices
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for penalizing the control effort and deviations in the estimated
state, respectively. Assuming there is no constraint, by setting

aaA—JU =0, we derive the optimal solution:

AU* = (Rr + 27 0r2) ' 2T QrWx, 1)

It is also worth mentioning that positive definite matrices
Rr and Q7 (e, R >0, Q = 0) will guarantee the second
order necessary condition in the computed AU*. Finally, the
first element in AU*, which is Au(k), includes required control
action signal for each time step (i.e., ux = ux—1 + Au(k)).

It should be also noted that by any selections of positive
definite weight matrices Q and R, finding the optimal control
would be equal to solving a quadratic program optimization
problem (20). Solution AU* in (21) only relies on the current
state, past control input, and the desired level. Consequently, it
will result in a closed-loop well-posed system that always has
a unique solution [50].

In MPC design, while there exist methods for ensuring
stability in infinite time horizon cases, utilizing a straightfor-
ward method for delivering rigorous stable property with finite
time horizon remains challenging. In this research, to invest
the stability, we evaluate prediction tail and consider terminal
constraint [51]. Assuming terminal constraint £y, = xg in
(13) also provides with recursive feasibility. To this end, we
consider the general form of optimal control input as Lyapunov

function:
Ny

V (k) = min } " I(%, Aug)
i=1

L

(22)

where [(£, Aug) = £, 0% + AujRAuy. In (k+ 1) time instant,
the first component of V(k+ 1) has been occurred and is no
longer prediction. This unused part is called prediction tail (i.e.,
[Aupiy .. Auk+Np_1]) [51], [52]. For the sake of simplicity, we
assume zero terminal constraint at this stage (i.e., £k+Np =0).
Next, we follow the steps presented in [53] and derive V (k+1):

V(k+1) =V (k) — (&, Auo) +1(0,0) (23)

where initial cost (£, Aup) is subtracted and corresponding
cost for staying at terminal state is added (i.e, 1(0,0)) [51].
Hence,

V(k+1) =V (k) < —I(&, Augp) (24)

Since /(£y, Aug) > 0, we may conclude that V(k+1)—V (k) <0
and the Lyapunov function candidate is stable.

D. Supervised Control Architectures

As illustrated, in both LQR and MPC approaches, the
selection of weight matrices Q and R plays an important role in
the control design process. In fact, derived control gain in these
model-based approaches highly depends on the weight matrices
presented in (9) and (13). To update the weight matrices
in real-time, we consider a knowledge-based system as a
supervised layer in the design process. Therefore, we establish
a fuzzy system on top of the pure LQR and MPC structures
to (i) take the intrinsic advantages of the modeled dynamics
employed in LQR and MPC, (ii) enhance the performance of
the conventional architectures by adjusting the tune-parameters
in real-time, and (iii) overcome the heuristic nature of the

pure fuzzy control design (i.e., presented in [32]). To this end,
we define the corresponding rule-base and fuzzy structure to
change the tune-parameters (i.e., O and R matrices) in real-
time. On the basis of LQR and MPC, the larger Q and R values
are, the more we penalize state deviations and control effort,
respectively. Therefore, we set to use higher values for Q while
the error between the estimated state and target state levels is
large and decrease it once the estimated stress state is within
a predefined range. Following a similar logic, while the error
term between the estimated state and the desired value is large,
we set not to penalize the control input and let it minimize the
error. Once the estimated state tends to a predefined range of
the target level, we set to increase the R and penalize the control
effort to minimize it. Hence, we build the fuzzy rule base as
presented in Table L.

TABLE 1. Supervised Fuzzy Rule Base.

IF Then
Rule number
e error Q parameter R parameter
Rule! Large Strong Weak
Rule? Moderate Moderate Moderate
Rule? Small Weak Strong

To quantify the linguistic variables presented in Table I,
we employ the membership functions depicted in Fig. 2.
According to the rule base (Table I), three sets of membership
function for each input and output variables (i.e., error between
the estimated state and the target level, Q parameter, and R
parameter) are considered.

For each sets of input and outputs in Fig. 2, the middle
functions belong to m-shaped membership functions with pa-
rameters a,b,c and d. The left one and the right ones are z-
shape function with the parameter a and b and s-shape function
with parameters ¢ and d, respectively. To illustrate the shape
of the membership function presented in Fig. 2, we present the

Small / Weak Moderate / Moderate Large / Strong

Degree of Membership

o

a b c d
Input / Output Ranges

Fig. 2. Input and Output Membership Functions. For each error
input e and the tune parameters Q and R, three membership func-
tions are employed to quantify the linguistic variables presented in
Table 1. Blue notations are for the error input and the green notations
associated with the output tune parameters.
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middle m-functions as:

0 if x <a,

2p)°  ifasx<e,

1-2(3=)" if 432 <x<b,
u(x;a,b,e,d) =11 if b<x<c, (25)

14(%)2 if ¢ <x< e

2(570) if ¢ <x<d,

0 if x>d.

The s-shaped and z-shaped functions are spacial cases of the
n-shaped function. The values associated with variables a,b,c
and d for each input and output are presented in Table II.
We also use the Mamdani inference engine and centroid
defuzzification to execute the fuzzy system in the proposed
supervised control architectures.

TABLE II. Membership Function Values in Supervised Layer (25).

Membership Function‘ Variable ‘ a b c d

Input Error ‘ e value ‘ 0.1 0.3 0.5 0.7

100 300 500 800
5 20 30 45

QO parameter

Output Fuzzy-LQR R parameter

1000 1500 2000 2500
3 6 9 12

Q parameter

Output Fuzzy-MPC R parameter

III. RESULTS

Implementing the model-based LQR and MPC methods in
addition to the proposed supervised fuzzy-LQR and fuzzy-
MPC approaches, we present the results. To show the per-
formance of MPP filter in tracking cognitive stress state
and demonstrate the efficiency of implementing the proposed
supervised architectures, we present open-loop and closed-loop
results. We follow the developed simulation environment in the
order of first inducing cognitive stress and then causing the
relaxation [32]. To analyze the accuracy of proposed control
architectures, we present two closed-loop scenarios: inhibition
for reducing the cognitive stress levels in the first half, and
excitation to increase the levels of cognitive stress estimates
in the second half of the simulation. In open-loop case, there
is no control applied (i.e., ur = 0 in (1)). Fig. 3 depicts The
results associated with the Participant 1. The results correspond
to the rest of simulated profiles are presented in supplementary
materials.

In each panel of Fig. 3, the top two sub-panels shows the
simulated SCR events. The third sub-panel shows the estimated
stress state. Orange and blue colors stand for open-loop and
closed-loop results, respectively. The bottom sub-panels depict
the resulted control signal (inhibitory control in green and
excitatory control in red color).

A. Closed-Loop Inhibition

The main goal in inhibitory closed-loop case is to design the
control action to reduce the levels of the estimated cognitive
stress state in the first half of the simulation. To investigate the
effects of supervised layer, we present each model-based LQR

and MPC methods along with their fuzzy supervised pairs (top
four panels of Fig. 3). As presented in Fig. 3, control system
detects high arousal levels and, by deriving the appropriate
action, reduces the high levels of cognitive stress state in the
first half of the simulation. As the second half is related to the
low arousal period (or relaxation), there is no need to apply any
control (i.e., u = 0). The left panels in Fig. 3 present the results
of applying LQR and supervised fuzzy-LQR controllers. The
right panels in Fig. 3 present the results of applying MPC and
supervised fuzzy-MPC controllers.

B. Closed-Loop Excitation

The main objective in excitatory closed-loop case is to de-
sign the control action for increasing the levels of the estimated
cognitive stress state in the second half of the simulation (with
low arousal environmental stimuli). The results of applying
each model-based LQR and MPC method along with their
fuzzy supervised pairs are presented in bottom four panels of
Fig. 3. The excitatory control aims to detect the low levels
of estimated cognitive stress state in the second half of the
simulation and derive the appropriate control action to enhance
it. As the first half is related to the high arousal (or cognitive
stress stimuli), there is no need to apply any control action in
this period (i.e., u = 0). The left panels in Fig. 3 present the
results of applying LQR and supervised fuzzy-LQR controllers.
The right panels in Fig. 3 present the results of applying MPC
and supervised fuzzy-MPC controllers.

IV. DISCUSSION

In this research, as one of the very first in the context of
closed-loop cognitive stress regulation, we proposed to use
MPP filtering along with novel supervised control approaches
to enhance the closed-loop control performance. In this regard,
we utilized a simulation environment [32] based on the exper-
imental data [46] to investigate the proposed methodologies in
tracking and regulating internal cognitive stress state. To this
end, we investigated skin conductance signal measurements
and related them to the hidden stress state. To estimate the
hidden state in real-time, we employed the MPP Bayesian-
type filter and incorporated the information regarding the time
and the amplitudes of SCR events.

The open-loop results, presented in Fig. 3, illustrate the
sufficiency of internal stress state tracking in response to
the changes in simulated environmental stimuli. The higher
numbers/values of SCR events (i.e., orange spikes in the first
sub-panel) and levels of estimated stress state (i.e. orange graph
in the third sub-panel) in the first half of the simulation is
because of the applied high arousal environmental stimuli.
Moving toward the low arousal session (white background
in Fig. 3), both the numbers/values of SCR events and the
estimated stress levels drop significantly, which is due to the
induced relaxing environmental stimuli in the second half of the
simulation. These changes in the estimated stress state are in
good agreement with the changes in SCR events: higher levels
of the estimated stress state in the first half of the simulation
(i.e., cognitive stress), and lower levels for the second half
of the simulation (i.e., relaxation). These results verify the
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Fig. 3. Closed-Loop Results (Participant 1). The top four panels show the closed-loop inhibition results. The bottom four panels show the
closed-loop excitatory results. In each panel, the top two sub-panels show the SCR events along with their amplitudes in open-loop (orange
color) and closed-loop (blue color) cases. The third sub-panel shows the estimated cognitive stress-related state. The bottom sub-panel shows
the designed control implemented in real-time to close the loop and either inhibit or excite the estimated stress levels. The grey and white
backgrounds correspond to the high and low arousal environmental stimuli, respectively (i.e., cognitive stress condition vs relaxing condition).
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efficiency of the state-space approach along with the MPP filter
in tracking the cognitive stress state in real-time.

To regulate the estimated stress levels in a closed-loop
manner, we proposed novel supervised control approaches.
Taking advantage of the state-space model as well as the
real-time state estimation, we first presented the results of
applying model-based system-theoretic control approaches:
LQR and MPC. As the performance in these controllers highly
depends on adjusting tune-parameters (i.e., weight matrices),
we proposed a novel knowledge-based fuzzy supervised layer
to enhance the control systems and update the control tuning
parameters in real-time. The fuzzy system performs this task
based on the insights into the system and changes in the control
design criteria. The results of the proposed supervised control
approaches in both inhibition and excitation cases are presented
in Fig. 3.

In the closed-loop inhibition task (top four panels of Fig. 3),
the goal is to reduce the levels of the estimated stress state in
the stress session (i.e., first half of the simulation). During
this period, we assume that the environmental stimuli cause
the subject to feel stressed. As a result, SNS would activate
the sweat glands and skin conductivity would be increased.
Consequently, more activation on SCRs would be observed
(top sub-panels of Fig. 3). By tracking the estimated stress
state, the designed control system derives the required action
for inhibition task. The control signal, presented in third sub-
panel, is mainly active in the first half and results in lowering
the stress state. The results of implementing supervised fuzzy-
LQR approach is presented in the bottom left panel of Fig. 3.
Establishing a supervised layer on top of the LQR approach
results in achieving the control goal more precisely (second
sup-panel) with more optimized control efforts. The results
of applying MPC and supervised fuzzy-MPC approaches to
inhibit the cognitive stress state are depicted in the right
panels of Fig. 3. The control signal, presented in third sub-
panel, is active in the first half of the simulation and tries to
lower the estimated stress state. The results of implementing
the supervised fuzzy system on top of the MPC system are
presented in the bottom right panel of Fig. 3. This supervised
architecture has improved the state tracking accuracy. Besides,
the supervised layer has resulted in achieving the control goal
with a more optimal control effort.

Compared to the inhibition task, the goal of implementing
excitation class of controllers is to excite the low levels of
arousal state. It is also important to keep the positive stress
(i.e., eustress) in a desired range. The second half of the
simulation in the presented environment is assumed to induce
low cognitive stress condition on the person. We assume
that the similar condition might happen while the subject
is supposed to concentrate on the task, but due to multiple
possible reasons, the cognitive engagement would be lost. The
goal of elevating the estimated stress-related state has been
followed by both designing the LQR and MPC approaches.
The results of closed-loop excitation task are presented in the
bottom four panels of Fig. 3.

First, by implementing the pure LQR method, the control
action is active in the second half of the simulation, which

is associated with the low arousal environmental stimuli. The
LQR control action results in more activation in the simulated
SCRs (first sub-panel), and leads to a higher level of estimated
cognitive stress state (middle sub-panel). Enhancing the LQR
closed-loop system by considering the supervised layer and
updating the control tune-parameters in real-time, improves
the results on both state tracking and control effort criteria.
As presented in the bottom left panel of Fig. 3, the supervised
fuzzy-LQR has led to a more precise state tracking with more
optimal control efforts. As the second model-based approach,
we implemented MPC method. First, by applying the pure
MPC, the control action (third sub-panel) has elevated the lev-
els of estimated stress state (second sub-panel). By enhancing
the pure MPC structure with supervised fuzzy layer, we derive
the results presented in the bottom right panel of Fig. 3. Similar
to fuzzy-LQR, the supervised fuzzy-MPC architecture has
improved the performance of the closed-loop excitation in both
tracking accuracy and control effort minimization. To better
evaluate the results of establishing supervised fuzzy system on
top of model-based LQR and MPC approaches, we analyze
the closed-loop results. Hence, we consider two criteria: (1)
the effectiveness in reducing error term and improving the state
tracking, and (2) achieving the closed-loop goal with optimized
control efforts (see Table III).

In Table III, e; and u; represent the tracking error and the
control input, respectively. K7 is the total time that the control
is active in the loop. As presented in Table III, the supervised
layer in LQR structure has decreased the tracking error e; in
inhibition task (0.1260 compared to 0.1642). Supervised fuzzy-
LQR approach has improved state tracking accuracy by 23%
with a 14% increase in the control efforts. In the excitation
class, establishing supervised layer on top of the LQR system
has resulted in a small improvement in state tracking accuracy
(0.0640 compared to 0.0664) with a 27% decrease in total
control efforts (0.0054 compared to 0.0074). Implementing the
supervised fuzzy-MPC approach has resulted in more promis-
ing results. In comparison to the pure MPC, the supervised
fuzzy-MPC system has reduced the tracking error by 10%
and 15% in inhibition and excitation tasks, respectively. The
supervised fuzzy-MPC architecture has also lead to applying
less control efforts. It has reduced the total control effort by
10% and 45% in inhibition and excitation closed-loop tasks,
respectively. The similar results for the rest of the simulated
profiles are presented in the supplementary materials. We also

TABLE III. Closed-Loop Performance Analysis (Participant 1).

Closed-Loop Class Controller % fil e %ZZI |uage|
LQR 0.1642 0.0045
Supervised LQR 0.1260 0.0052
Inhibition
MPC 0.0658 0.0662
Supervised MPC 0.0592 0.0590
LQR 0.0664 0.0074
Supervised LQR 0.0640 0.0054
Excitation
MPC 0.0181 0.0621
Supervised MPC 0.0154 0.0338
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analyzed the results of implementing supervised approaches
on all six simulated profiles [6], [32]. A summary of overall
closed-loop performance analysis for all simulated profiles are
presented in Table IV.

As presented in Table IV, establishing supervised fuzzy sys-
tem has significantly improved the MPC performance in both
inhibition and excitation closed-loop systems. The proposed
supervised fuzzy-MPC architecture has resulted in an enhanced
tracking accuracy with more optimized control efforts. These
analyses verify how the proposed supervised control architec-
tures result in a more accurate state tracking with more optimal
control efforts in MPC design. While the supervised fuzzy layer
has also improved the tracking accuracy in LQR design, it has
not been effective in accomplishing this task by reducing the
control efforts. Supervised fuzzy-LQR system has decreased
the tracking error on all six simulated profiles by average
of 22.6% and 5.4% in inhibition and excitatory closed-loop
classes, respectively. However, these improvements are not
achieved by reducing the control efforts. Instead, in inhibition
task, supervised LQR resulted in an average of 35% increase
in control efforts. These analysis show that the proposed
supervised architecture has great potential in improving state
tracking accuracy in LQR design.

The results in this in silico study confirm that the proposed
supervised architectures have great potentials to be imple-
mented in real-world. The idea of applying a supervised layer
on top of the model-based control approaches would result in
performance improvement in closed-loop systems. It can also
provide an excellent structure to incorporate medical expertise
while designing the control. As we are dealing with a human-
in-the-loop system, it is highly crucial to supervise the control
systems. In the proposed supervised architectures, with respect
to the nature of model-based LQR and MPC approaches, we
ensure that the essential control system design criteria, such
as stability and optimality, would be guaranteed. In fact, the
supervised knowledge-based network would further enhance
their efficiency by adjusting the control tune parameters in real-
time. The proposed supervised methodologies are well-aligned
to the human physiology basis and could be further investigated
in similar closed-loop disorder treatments. These architectures
could also be further expanded to result in adaptive and person-
specific closed-loop tools.

TABLE IV. Overall Closed-Loop Performance Analysis.

Closed-Loop Class Criteria Controller Improvement
. Supervised LQR +22.6%
Average Error Supervised MPC +23.0%
Inhibition
Supervised LQR -35.4%
Control Effort ¢ ised MPC  +7.6%
Supervised LQR +5.4%
Average Error Supervised MPC +20.4%
Excitation
Supervised LQR -0.0%
Control Effort Supervised MPC +32.9%

V. CONCLUSION

Influenced by the recent advances in wearable technolo-
gies and inspired by the fact that skin conductance carries
important information regarding internal arousal state, we
developed novel closed-loop architectures for regulating the
hidden arousal state. To this end, we implemented marked
point process filtering approach and included the amplitude and
timing of skin conductance responses. To close the loop, we
proposed supervised control techniques to take advantage of the
state-space representation and model-based control methods.
Hence, we established supervised LQR and supervised MPC
structures for regulating the cognitive stress state. We investi-
gated the efficiency of the proposed architecture in two class
of closed-loop scenarios: inhibition and excitation. The results
verify the effectiveness of proposed architectures in keeping the
estimated stress state within a target range with more optimal
control efforts.

VI. FUTURE DIRECTIONS

As the next step of this research, we intend to investigate
effects of possible safe actuation effective in regulating cogni-
tive arousal state. By designing and performing human-subject
experiments and modeling the actuation dynamics, we aim
to include practical actuation while closing the loop. To this
end, we can suggest to design different sets of experiments
for inhibition and excitation purposes. For inhibition, one may
consider designing the tasks that could increase individuals’
cognitive stress state. An example of these tasks is fear
conditioning (e.g., watching the clips that may induce fear of
heights in humans with acrophobia [54], [55]). While watching
the clips, subjects should wear wearable devices that may
collect their physiological data [56]. The goal of closing the
loop would be incorporating the actuation to help them feel
more relaxed. An example of real actuation in this example
could be listening to relaxing music [57], [58] or performing
diaphragmatic breathing [59]. For excitation purposes, one may
design and perform experiments to help the subjects with
enhancing their arousal state. In this regard, we can suggest
to perform memory-related tasks [60] and analyze the effects
of safe actuation helpful in elevating their arousal levels. In
these experiments, subjects should fully engage with the tasks.
The goal of closing the loop would be enhancing arousal
state and improving cognitive performance. Therefore, one
may measure performance state and further examine impacts
of exciting actuation in both increasing arousal state and
improving cognitive performance. Examples of safe exciting
actuation could be drinking beverages like coffee or energy
drinks [61], [62]. Employing experimental data in these closed-
loop experiments, one may perform system identification to
model these safe actuation’s dynamics. Once we learn how
a specific actuation would affect one’s arousal state, we may
incorporate their dynamics while closing the loop.

In the aforementioned experiments, we expect to observe
variable responses among different subjects. Moreover, as
uncertainty in model parameters presented in the state-space
representation is unavoidable, it is also beneficial to research
on adaptive and robust control design to further enhance the
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control systems [63]. Another future direction of this research
could be extending the proposed architectures and considering
adaptive and robust properties in both the state estimation
and control design stages. The perspective closed-loop systems
would be adaptive to the uncertainty in the modeled dynamics
and robust to unexpected disturbances. Consequently, the idea
of closed-loop cognitive stress regulation would be applicable
in real-world situations. In an actual environment, a wrist-worn
device would collect the skin conductance signal. Utilizing the
proposed methods, the internal arousal state would be estimated
in real-time. Taking advantage of the proposed experiments,
one may incorporate actuation dynamics while implementing
supervised control architectures for closing the loop regulating
the arousal state.

SUPPLEMENTARY MATERIALS

The closed-loop results along with the closed-loop
performance analysis associated with all selected participants
are presented in supplementary materials.
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