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Abstract— The study of psychological stress in real-world
scenarios presents several challenges. Consequently, datasets
available to researchers are also scarce. The aim of our study
is to acquire such a dataset containing skin conductance
measurements and use it to predict human performance. We
collected skin conductance and skin temperature data from 10
subjects during three exams using wearable devices. We filter
the skin conductance signals to obtain coarse-grained trendlines
and then train classifiers to predict high and low grades based
on the trendline features. We obtained maximum classification
accuracies in the 70–80% range. We also obtained the mean
trendlines indicating the general variation of stress levels during
the exams. The findings indicate the preliminary viability of us-
ing wearable devices to predict performance during real-world
stressors. Wearable monitoring presents unique challenges and
it is our hope that this publicly-available dataset will aid in
addressing some of them.

I. INTRODUCTION

The World Health Organization dubbed stress the “Health
Epidemic of the 21st Century” [1]. Stress takes its toll
on physical health, affects work productivity, and incurs
substantial annual expenses in terms of healthcare costs
and costs to industries [1]. Not surprisingly, there has been
significant research interest in developing automated tech-
nologies that can detect physiological signs of stress for
helping people better manage their mental and emotional
well-being. While stress is known to be associated with
increased cardiovascular disease risk [2] and negative mental
health outcomes [3], it is of interest to note that stress does
not affect work productivity and performance purely in a
negative manner. According to the Yerkes-Dodson law (also
known as the inverted U law) [4], an individual’s ability
to perform a task at hand is negatively affected primarily
when stress levels are either too high or too low. A moderate
amount of stress positively impacts how well an individual
performs. Thus, from a human performance perspective, it
is of importance to know how much stress an individual
is experiencing and if he/she is at an optimal level of
productivity.

Much research has been done in recognizing biomarkers
for predicting the mental/emotional state of an individual and
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a number of experimental studies have been published in this
regard. Human emotions can be visualized on a 2D plane
with orthogonal axes known as valence and arousal—valence
denotes the pleasant/unpleasant nature of an emotion, while
arousal captures its corresponding intensity or activation [5].
Experimental studies in the literature, which come under the
general umbrella of automated emotion recognition or affec-
tive computing, can be broadly categorized into three groups.
The first group of studies consists of those where signals are
acquired from subjects while they are shown images, movie
clips, music videos, etc. corresponding to different valence-
arousal ratings or emotional categories (e.g., [6], [7]). Here,
the objective is to develop machine learning algorithms that
can predict valence, arousal, or specific emotions based on
physiological features. A second group of experiments, such
as those described in [8], [9], seek to emulate a real-world
stress experience (e.g., office work-like tasks, driving) and
in so doing attempt to decode an individual’s mental state.
A third miscellaneous group of studies involving different
types of stimuli or tasks is being presented to the subjects.
The stimuli may include mathematical tasks, movie clips,
fragrances, standard psychological stress tests such as the
Trier Social Stress Test, the Cold Pressor Test, etc. (e.g. [10]–
[12]). Again, the objective is to identify patterns in biosignals
with eventual application to decoding mental states and
emotions.

While these studies have certainly helped advance our un-
derstanding of emotion and the associated psychophysiology,
they have a notable drawback regarding stress. To illustrate,
we pose the question as to what stressors out a person in
the real world? Real-world stressors include job interviews,
performance reviews, exams, office meetings, medical pro-
cedures, etc. Unfortunately, unless datasets are collected in
these real-world scenarios, attempts to emulate their effect
in the laboratory or elsewhere will fall short. Consequently,
fewer real-world stress datasets are also available for re-
searchers to use. Such datasets, conducted over a period of
time on the same individuals for longitudinal studies are even
more rare. Moreover, real-world scenarios are unconstrained
environments. Often, research-grade equipment cannot be
used and motion artifact contamination is widespread. These
remain some of the primary obstacles for automated emotion
decoding outside the research laboratory in everyday life.

Our contribution here is twofold. We first conducted an
experiment where physiological data were collected from a
group of students during three exams. For the convenience of
the students enrolled in the study, we used a wearable watch-



like device (Empatica E4) to collect skin conductance (SC),
skin temperature (SKT) and wrist movement data.We next
analyze the SC data for developing a preliminary decoding
tool for predicting grade type (performance) based on SC
features. Secondly, we make the data publicly available in
the hope that other researchers would be able to use it for
further analysis and algorithm development (e.g., using other
physiological signals). The dataset also highlights the need
for robust emotion recognition methods that work well in
the presence of highly prevalent motion contamination in
unconstrained environments.

II. METHODS

A. Study Procedure and Data Acquisition

The study protocol was reviewed and approved by the
University of Houston Institutional Review Board (IRB). The
study involved 11 students (nine males and two females)
enrolled in an undergraduate course on circuit analysis at
the University of Houston. Participants were asked to read
and sign an informed consent form prior to enrolling in
the study. We collected data during three exams held in the
semester: mid-term 1, mid-term 2, and the final exam. Both
mid-term exams were 1.5 h in duration while the final was
3 h long. Each participant was given an Empatica E4 device
approximately 5 min before the start of each exam to be
worn on their nondominant hand. The Empatica E4 records
several different physiological signals including SC. One of
the students was provided additional time per the University
of Houston’s disability accommodation guidelines. This in-
volved a relocation of the students to a different room after
the regular time had ended. Since this involves an additional
factor not uniform to the other participants, we discarded the
data from this particular subject and only consider the data
from the remaining ten. During mid-term 1, we collect SC
data and accelerometer data for motion information. We also
collected SKT in the subsequent exams. The de-identified
data can be accessed from the repository which will be
made publicly available soon. The immediate access to the
de-identified dataset will be provided by the corresponding
author upon request.

B. Skin Conductance

Changes in SC occur due to tiny variations in sweat
secretions. Since the sweat glands are innervated by nerve
fibers belonging to the sympathetic branch of the nervous
system [13], an SC signal provides an index of sympathetic
arousal [14]. Now different markers of sympathetic arousal
are present in SC signals. Additionally, since the the body’s
stress response is closely linked to the activation of the
sympathetic nervous system, these markers of arousal also
capture information regarding an individual’s stress levels.
An SC signal consists of a slow-varying tonic component
on top of which a faster-varying phasic component is su-
perimposed [15] (Fig. 1). This faster-varying phasic com-
ponent consists of bi-exponentially-shaped skin conductance
responses (SCRs). Each of these SCRs can be modeled
as being generated by a burst of neural activity to the

sweat glands [16], [17]. The rates at which SCRs occur and
their amplitudes are markers of sympathetic arousal (higher
SCR rates and amplitudes typically indicate higher levels of
arousal) [18], [19]. Meanwhile, the tonic component ys(t),
despite being related to thermoregulation and being depen-
dent on ambient temperature and humidity, also captures
some general variations in arousal [20].
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Fig. 1: Components of an SC Signal. The first sub-panel
depicts an SC signal and the sub-panels below it depict the
separated-out phasic and tonic components, respectively [16].

Typically, one of the first steps in SC signal analysis
is determining the sequence of neural impulses that are
responsible for phasic SCRs. This step is either preceded
by or simultaneously performed along with tonic-phasic
separation. In a recent work [21], we developed a sparse
deconvolution algorithm for tonic-phasic separation and the
extraction of the neural impulse train underlying SCRs
that outperformed several others in the literature including
[22]–[24]. However, none of these methods (including ours)
incorporate the ability to handle motion artifacts well and
therefore suffer badly in the presence of such contamination.
This happens largely because model-based deconvolution
approaches only consider Gaussian noise. The presence of
non-Gaussian noise thus leads to erroneous tonic-phasic
separation and neural impulse detection. Consequently, we
were also unable to use our prior state estimation methods
(e.g., [18], [25]) that utilize the deconvolved neural impulses
for continuously decoding sympathetic arousal. This reflects
one of the challenges previously highlighted with motion
artifacts in unconstrained wearable device environments.

C. SC Trendline Extraction and Filtering

As noted earlier, the slow-varying tonic component ys(t)
does capture certain changes in sympathetic arousal [20].
Since ys(t) varies slowly, a heuristic approach for extracting
it from an SC signal involves straightforward filtering. For
instance, high-pass filtering with a low cut-off frequency is
used in [26], [27] for separating out the tonic component
(the high-pass filtered component is subtracted from the SC



TABLE I: Lowpass Filter Cut-off Frequencies used to Extract
SC Trendlines.

Participant ID Cut-off Frequency (Hz)
Mid-term 1 Mid-term 2 Final

1 0.002 0.002 0.002
2 0.002 0.001 0.002
3 0.0002 0.0002 0.001
4 0.002 0.002 0.002
5 0.001 0.001 0.001
6 0.002 0.002 0.002
7 0.001 0.0002 0.0002
8 0.0002 0.002 0.002
9 0.002 0.002 0.002
10 0.002 0.002 0.002

signal to finally extract the tonic component). Here we use
a lowpass FIR filter to obtain a coarse-grained SC trendline
that approximates ys(t). Since the noise levels are different
for each SC signal, we selected different cut-off frequencies
(Table I) to extract these trendlines after manual inspection.
The cut-off frequencies were selected based on a trade-
off of capturing the general tonic variation vs. not letting
in high-frequency noise and was verified by two different
viewers by visual inspection. Later in the discussion section,
we show how using a low-pass filter for extracting ys(t) is
almost immune to noise compared to one of the more popular
model-based decomposition methods.

D. Feature Extraction and Classification

We denote by y a vector of all the samples in the SC
trendline for each subject for a particular exam. For feature
extraction, we first begin by extracting three data segment
windows from the beginning, middle, and end of each
trendline. We use Tw to denote the duration of a data segment
window and T to denote the total signal duration. We choose
segments from the beginning, middle, and end of the exam
based on an assumption of how stress dynamics may vary
during the test. For instance, we assume that participants
may be more stressed during the initial and final stages of
the exam. Stress experienced early on may be related to
a participant’s personal sense of being adequately prepared
and the type of exam questions seen at first glance [28].
Stress may gradually diminish as the exam progresses and
participants begin answering. Concerns regarding the amount
of time left, fatigue, and the need to complete answering the
required number of questions may govern feelings of stress
felt towards the end [29].

Fig. 2 illustrates how data segment windows are extracted.
Consider Tw = 5 min as an example. For this value of Tw,
we extract the first 5 min of the SC trendline, 5 min from the
middle, and the final 5 min of the trendline. Similarly, for
Tw = 15 min, we extract the first 15 min, 15 min from the
middle and the final 15 min of the trendline. As features, we
first compute the trendline mean and variance within each
window. This provides 3 × 2 = 6 features. Mathematically,
this can be expressed as follows. Defining the three trendline
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Fig. 2: Window-based Feature Extraction. The figure
depicts the extraction of different windows of data based
on Tw. Here the unit for Tw is minutes.

segments for a given Tw as:

ystart = y1:Tw
,

ymid = y(T
2 −Tw

2 +1):(T
2 +Tw

2 ),

and yend = y(T−Tw+1):T ,

where yi:j denotes the vector comprising of the samples from
index i to j, we calculate:

µq = mean(yq), and σ2
q = var(yq)

for q ∈ {start,mid, end} (here we have shown the feature
calculations in terms of Tw and T represented in an equiv-
alent number of sample points rather than as a duration
in minutes). Moreover, since the raw SC trend lines differ
between participants, and a high mean or variance value for a
particular participant may not necessarily be high for another
participant who ordinarily has a higher SC, we calculate the
ratio feature

ρ = (µmid)/(µstart + µend), (1)

To capture how stress levels may have reduced (or increased)
during the middle of the exam compared to what they were
at the beginning and what they are at the end. Finally,
there is information in how rapidly (or slowly) sympathetic
arousal increases or decreases in an exam. For instance, if
a student is well-prepared, he/she may experience rapidly
declining sympathetic activation upon looking through the
exam questions for the first time. To capture this rate change
in trendlines, we calculate a difference signal

ydiff = y2:Tw
− y1:(Tw−1), (2)

and then obtain its mean and variance:

µdiff = mean(ydiff), and σ2
diff = var(ydiff). (3)

Our final nine-element feature vector is x =
[µstart, µmid, µend, σ

2
start, σ

2
mid, σ

2
end, ρ, µdiff, σ

2
diff].

We extract these nine features for Tw = 5, 15 and 30 min,
and then train separate classifiers for each Tw for each
exam. We assign a high or low grade label to each feature
vector based on whether or not the participant scored greater
than or equal to 80%. Based on the criteria, we have four



Fig. 3: Mean SC Trendlines for All Participants. Each sub-panel depicts the mean SC trendline of the participants in an
exam along with its 95% confidence limits.

Fig. 4: Mean SC Trendlines for Two Classes. Each sub-panel depicts the mean SC trendline of the participants in an exam
along with its 95% confidence limits. Blue and red lines correspond to the high and low grade means, respectively.

Fig. 5: Mean SKT Trendlines. Each sub-panel depicts the mean SKT of the participants in an exam along with its 95%
confidence limits. Black, blue, and red lines correspond to the overall, high grade, and low grade means, respectively.

subjects with high grades for mid-terms 1 and 2, and five
subjects with a high grade for the final exam. We use all
classifiers from MATLAB 2017b classification application
with default settings. We evaluate the performance of
the classifiers using 10-fold cross-validation. Here, cross-
validation protects against overfitting by partitioning the
dataset into different folds and then estimating the accuracy
within each fold. We avoid classifying a combination of
data from all three exams since each exam is a separate
stimulus with different levels of difficulty and preparedness.

III. RESULTS

The mean SC trendlines for the three exams are shown
in Fig. 3. For mid-term 1, there is a general pattern where
the trendline gradually decreases as the exam progresses.
A similar pattern is seen for the final exam, although the
subsequent decrease after the start is not as prominent. The
mean trendline is unusual for mid-term 2 since there are
peaks at the beginning, middle, and end with lower valleys
in between. Figs. 4 shows the mean SC trendlines for the
high and low grade categories, separately.

TABLE II: Grade Classification Accuracies with Tw = 5 min
(kNN – k-Nearest Neighbors)

Exam Fine kNN
Midterm 1 60%
Midterm 2 60%
Final 80%

TABLE III: Grade Classification Accuracies Tw = 15 min
(kNN – k-Nearest Neighbors)

Exam Fine kNN Ensemble
Bagged Trees

Ensemble
Subspace kNN

Midterm 1 70% 60% 50%
Midterm 2 70% 80% 60%
Final 50% 50% 60%

Ambient temperature affects the body’s effort to cool itself
through sweating. Since we are primarily analyzing a feature
related to sweating, we have shown the mean SKT values
for mid-term 2 and the final exam in Fig. 5. Motion artifact



TABLE IV: Grade Classification Accuracies Tw = 30 min
(SVM – Support Vector Machine)

Exam Cubic SVM
Midterm 1 70%
Midterm 2 70%
Final 50%

contamination of the SKT signals is lower and hence low-
pass filtering is not required. Mean SKT values appear to
gradually rise during the exams. This is rather counterintu-
itive in light of the pattern observed on the SC trendlines. It
may be the case, however, that while core body temperature
primarily affects the cooling effect through sweating, skin
temperature may have a more complex relationship with the
sweat-based cooling effect. Additionally, the rapid drop in
mean SC and SKT at the very end of the final exam is due
to some of the participants completing their tests slightly
ahead of time and taking off their Empatica E4 devices.

The 10-fold validation accuracies for classification using
different machine learning algorithms for different values of
Tw are shown in Tables II-IV where cells with ‘–’ symbol
denote that the corresponding classification accuracy was
less than 50%. The maximum accuracies for each of the
three exams are 70%, 80%, and 80%, respectively and are
highlighted in blue in each table. The results indicate the
feasibility of predicting exam performance from SC signal
trendlines which capture sympathetic arousal information.
We also used principal component analysis (PCA) to project
the features onto a 2D plane for visualization. Fig. 6 shows
the PCA plots for Tw = 30, 15 and 5 minutes for the three
exams corresponding to the window sizes that yielded the
highest classification accuracies.

IV. DISCUSSION

Emotional stress studies encounter a number of challenges
in real-world unconstrained environments. Research-grade
equipment is often unavailable for signal acquisition and
motion artifact contamination is a major challenge. While our
group has developed multiple SC decolvolution algorithms
[16], [17], [21], [30] and point process sympathetic arousal
estimation methods [18], [19], [25], [31]–[33], we were un-
able to use them on this dataset due to the reasons highlighted
earlier. However, with a coarse-grained analysis of wearable
data, we were able to demonstrate the preliminary viability
of predicting exam performance from SC signals.

As an additional point, we demonstrate the robustness
of using a low-pass filter to extract the tonic component
compared to a model-based decomposition approach (we
use cvxEDA [24] for comparison). We begin by extracting
the tonic component from a clean SC signal using both
a lowpass filter and cvxEDA. We then introduce Gaussian
noise into the signal so that the SNR is 15 dB and reextract
the tonic component using low-pass filtering and cvxEDA.
The following four scatter plots help us (Fig. 7) evaluate the
robustness of both methods in the presence of noise:

• Clean tonic component from cvxEDA vs. clean tonic
component from low-pass filter (Fig. 7-(a))

• Clean tonic component from cvxEDA vs. noisy tonic
component from cvxEDA (Fig. 7-(b))

• Clean tonic component from cvxEDA vs. noisy tonic
component from lowpass filter (Fig. 7-(c))

• Clean tonic component from lowpass filter vs. noisy
tonic component from lowpass filter (Fig. 7-(d))

We use a relatively noise-free SC signal from the Driver
Stress Data in [34], [35] to perform this comparison. We
applied a low-pass filter with a cut-off frequency of 0.001
Hz.

If the method of tonic component extraction is robust
to noise, we would expect to see a scatter plot close to
the 45◦ diagonal between the clean and noisy versions. A
significant deviation between the clean and noisy versions
would indicate a lack of robustness in the presence of
noise contamination. Here we add noise to create a 10 dB
SNR signal. For each of the scatter plots, we also fit a
simple straight line (via regression) and calculate the Pearson
correlation coefficient between the variables plotted on either
axis.

Consider Fig. 7-(a) which depicts the clean tonic compo-
nent extracted via cvxEDA plotted against the clean tonic
component extracted using low-pass filtering. The Pearson
correlation coefficient between the two variables is 0.85 and
the correlation via the regression line is also statistically
significant (p < 0.01). Thus, the simple low-pass filtered
trendline contains some of the actual tonic component infor-
mation extracted using the more sophisticated model-based
cvxEDA decomposition method.

The Fig. 7-(b) shows how the tonic component extracted
via cvxEDA from the noise-contaminated SC signal loses
some of its resemblance to its corresponding clean version
(the correlation is also negative). The Fig. 7-(c) and 7-
(d), however, depict the robustness of the low-pass filtering
approach. The trendline extracted from the noisy SC signal
using low-pass filtering remains correlated with a correlation
coefficient of 0.85 (same as before) with the clean tonic
ground truth and the correlation via the regression line is
also statistically significant (p < 0.01). Furthermore, it lies
very close to the 45◦ diagonal when plotted against its
corresponding clean version showing the robustness to noise.

Different methods have been explored in the literature to
suppress the effect of noise and motion artifacts. Among
them are multichannel data acquisition (i.e., adding redun-
dancy to the data to eliminate dependency on a single
channel) and the use of adaptive filters. Adaptive filters
utilize accelerometer readings to derive a noise reference for
motion artifact suppression. We plan on developing adaptive
filtering methods to improve the quality of wearable SC data
in the future.

The small size of the dataset (ten participants) is a limita-
tion of our study. However, we do possess recordings from
each participant over three exams. This, therefore, provides
the opportunity to perform longitudinal analysis over time.
While we obtained reasonable classification accuracy on
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the current dataset, the inclusion of more data may help
improve the accuracy even further. These classification ac-
curacies show a potential link between the information in
SC signal and the exam performance, which needs to be
further investigated as the future study. The machine learning
models attempt to determine the decision surface mapping
from physiological signal features to the participants’ grades.
This is likely a complex mapping and the acquisition of
a larger dataset may enable more sophisticated models to
determine the mapping even better. We also only utilize
SC features for classification. Furthermore, the study has
limitations regarding manual filter adjustment via visual
inspection depending on individuals. As the future study,
researchers should consider an optimal filtering approach
based on the motion level (accelerometer data). Finally, the
uncertainty to identify the appropriate parts of the signal is
another limitation of the study. By making the data publicly
available, it is our hope that other researchers could explore
additional physiological features and artificial intelligence
(AI) techniques as well so that these limitations eradicated.

V. CONCLUSION

Decoding stress and emotion in the real world is a
challenge. Nevertheless, it has important clinical and human
performance-related applications for everyday life. In this
study, we collected data from a group of students over three
exams and attempted to predict their exam grade types based
on SC features. Wearable monitoring presents the challenge
of artifact contamination in unconstrained real-world set-

tings. We therefore had to rely on coarse-grained measures
extracted from the signals for analysis and classification. We
extracted SC features from a low-frequency trendline and
obtained maximum classification accuracies in the 70-80%
range for high vs. low grade prediction. Our results indicate
the preliminary viability of using wearable device data for
real-world stress-related applications.

Future work would consist of conducting further
experiments based on a larger group and/or on a similar-
sized group but over a longer duration. We also plan to
develop adaptive filters for the suppression of motion
artifacts and subsequently use our deconvolution and
state-space methods to estimate underlying stress levels in
participants. We further plan to develop closed-loop control
algorithms based on these state-space models to investigate
how stress levels may be adjusted to ensure optimal human
performance [36]–[38].
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