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Abstract— Growth hormone (GH) is secreted by cells in the anterior pituitary on two time scales: discrete pulses over minutes 

that occur within a 24-hr pattern. Secretion reflects the balance of stimulatory and inhibitory inputs from the hypothalamus and 

is influenced by gonadal steroids, stress, nutrition, and sleep/wake states. We propose a novel approach for the analysis of GH 

data and use this approach to quantify (i) the timing, amplitude and the number of GH pulses and (ii) GH infusion, clearance 

and basal secretion (i.e., time invariant) rates, using serum GH sampled every 10 minutes during an 8-hour sleep study in 18 

adolescents. In our method, we approximate hormonal secretory events by deconvolving GH data via a two-step coordinate 

descent approach. The first step utilizes a sparse-recovery approach to estimate the timing and amplitude of GH secretory events. 

The second step estimates physiological parameters. Our method identifies the timing and amplitude of GH pulses and system 

parameters from experimental and simulated data, with a median 𝑅2 of 0.93, among experimental data. Recovering GH pulses 

and model parameters using this approach may improve the quantification of GH parameters under different physiological and 

pathological conditions and the design and monitoring of interventions. 

Index Terms— Biomedical signal processing, deconvolution, constrained optimization, state-space methods, growth hormone, 

pulsatile hormones 

——————————   ◆   —————————— 

1 INTRODUCTION

rowth hormone (GH) plays a vital role in mammalian 
growth and metabolism across the lifespan. GH in-

duces linear growth in children primarily by stimulating 
the hepatic secretion of insulin-like growth factor 1 (IGF1), 
which then acts at the growth plate [1, 2]. GH also pro-
motes protein synthesis, lipolysis and maintains glucose 
homeostasis [3] by acting on the liver, adipose tissue, mus-
cles and kidney [4]. Circulating GH in humans has a half-
life of roughly 20 to 30 minutes [5] and is cleared by the 
liver and kidneys.  
 GH secretion is primarily controlled by two hypotha-
lamic neuropeptides, growth hormone-releasing hormone 
(GHRH) and somatostatin (SST). GHRH stimulates GH 
gene transcription and hormone release from the somato-
trophs in the anterior pituitary, while SST maintains a tonic 
inhibitory tone [6, 7]. GH levels are also influenced by age, 

sex, diet, exercise, time of day, stress, and sleep/wake states 
[8, 9, 10, 11, 6]. These factors modulate GH concentration 
through effects on both GH pulse amplitude and fre-
quency [6, 12].  
 In men, sleep-associated pulses contribute to roughly 
70% of daily GH output; the GH pulse at sleep-onset is gen-
erally the largest amplitude pulse observed over a 24-hour 
(“diurnal”) period [13, 14]. While sleep-associated pulses 
also occur in women, they typically account for only a 
small proportion of total daily GH production [13, 14]. A 
number of observational and interventional studies in hu-
man participants have shown that GH secretion is tempo-
rally associated with, and may be stimulated by, “deep” or 
slow-wave sleep (SWS, stage N3 of non-REM sleep) [13, 
15].  
 Previous studies of GH data usually used one of two 
classes of methods to report metrics: GH concentration 
peak detection (to identify a pulse) via cluster analysis as 
in [10, 11] or a parameter sweep based on initial predictions 
and subsequent refitting as in [6]. While methods of peak 
detection can roughly estimate the number of GH pulses, 
these methods struggle to identify statistically significant 
peaks in cases where degradation after one pulse is incom-
plete before the subsequent pulse occurs. Additionally, 
peak detection methods suffer in situations where GH am-
plitudes are so low that the observed data are susceptible 
to Gaussian noise. Peak detection methods also cannot re-
cover underlying model parameters related to the infusion, 
clearance and basal secretion rates of GH. The parameter 
sweep approach to model fitting for GH requires initial 
guessing of secretory event locations from a plot of the 
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observed data. This method, of guessing and checking un-
til a suitable fit is reached, is time-consuming and lacks a 
systematic approach. We develop an algorithm that accu-
rately estimates the timing and amplitude of GH pulses in 
order to investigate the relationship between GH pulses 
and sleep. To test this new method, we use GH data col-
lected during overnight frequent blood sampling studies 
from 18 adolescent participants. 
 We adopt a model of GH secretion similar to that pro-
posed by Klerman et al. [6]. We apply a deconvolution al-
gorithm, similar to those proposed by Faghih et al. [16, 17, 
18, 19] for cortisol data and later extended by Amin et al. 
[20] for skin conductance signals, to analyze serum GH lev-
els. This deconvolution method recovers the timing and 
amplitude of hormonal secretory events using a sparse re-
covery method and estimates model parameters with an 
interior point method. A coordinate descent approach 
combines the previously described methods to iteratively 
estimate sparse secretory events and model parameters. 
We also implement generalized cross-validation, as in [18], 
to recover the accurate number of hormone pulses while 
maintaining a balance between the sparsity and residual 
error of the estimate. 

2 METHODS 

2.1 Experiment 

 In both experiments, serum GH levels were measured in 
blood samples collected every 10 minutes for 8 hours 
through a peripheral intravenous catheter (PIVC) during 
scheduled overnight sleep sessions. Each participant there-
fore contributed 49 data points. Information on participant 
sex, age, body mass index (BMI) and Apnea-Hypopnea In-
dex (AHI) is included in the Supplemental Information. 
Sleep was recorded by polysomnography using estab-
lished techniques [21]. GH was assayed from participant 
blood samples using the Roche Elecsys E170 immunoassay 
platform, with an interassay and total imprecision coeffi-
cient of variance (CV) of 0.6-1.7% and 1.7-4.1%, respec-
tively [22]. 
1) Dataset 1: 14 adolescents, ages 11.3 to 14.1 years, 50% 
male, with no chronic medical conditions. 
2) Dataset 2: 4 adolescents, ages 11.8 to 14.4 years, 75% 
male, with very mild obstructive sleep apnea (OSA). OSA 
is a condition characterized by the repetitive obstruction of 
the upper airway during sleep, causing episodic hypox-
emia followed by awakening/arousal, and is often associ-
ated with daytime sleepiness [23]. Mild pediatric OSA is 
defined as an apnea-hypopnea index (AHI) greater than 1 
and less than or equal to 5 [24]. During scheduled sleep, 
the participants used a continuous positive airway pres-
sure (CPAP) machine to treat their OSA, facilitating an un-
disturbed sleep session similar to the participants from Da-
taset 1. 
2.2 Model Formulation 

 We build a model based on the two-dimensional linear 
differential equations proposed by Klerman et al. [6], de-
scribing diurnal GH secretion. Originally, this model in-
cluded feedback, due to the inhibitory effect of GH on GH 
release [25]; this effect occurs at the hypothalamic level 

through a short loop mechanism, inhibiting GHRH and 
stimulating the release of SST into peripheral circulation 
[6]. However, the model we propose does not include GH 
negative feedback, because of (i) feedback’s insignificant 
and/or erroneous effect on model fits [6], (ii) feedback de-
creases the parsimony of the system, and (iii) Klerman et 
al. [6] noted that GH secretion model fits were graphically 
indistinguishable with or without negative feedback. We 
model the dynamics of GH secretion with the following 
two-dimensional linear differential equations: 

𝑑ℎ1(𝑡)

𝑑𝑡
= −𝛽𝐼ℎ1(𝑡) + 𝑢(𝑡) (1) 

𝑑ℎ2(𝑡)

𝑑𝑡
= 𝛽𝐼ℎ1(𝑡) − 𝛽𝐶ℎ2(𝑡) (2) 

where ℎ1(𝑡) represents the releasable GH in the anterior 
pituitary and ℎ2(𝑡) represents the GH concentration in the 
peripheral serum. 𝛽𝐼 and 𝛽𝐶 represent the GH infusion rate 
from the pituitary and GH clearance rate by the kidneys 
and liver, respectively. 𝑢(𝑡) corresponds to the hypotha-
lamic pulses that stimulate GH secretion where 𝑢(𝑡) =
∑ 𝑞𝑖𝛿(𝑡 − 𝜏𝑖)
𝑁
𝑖=1  [18]. Finally, we assume that pulses occur 

at integer minute values. In this abstraction of hormone 
pulses, 𝑞𝑖 represents the amplitude of the hormone pulse, 
𝜏𝑖 represents the pulse timing and 𝑁 represents the length 
of the input (𝑁 = 481). If 𝑞𝑖 is zero, then a pulse did not 
occur at time 𝜏𝑖.  

 Therefore, beginning at 𝑦𝑡0, we have GH samples at 10-

minute intervals for 𝑀 samples (𝑀 = 49) for each partici-

pant. Let 𝑦𝑡10, 𝑦𝑡20 , … , 𝑦𝑡10𝑀   
𝑦𝑡𝑘 = ℎ2(𝑡𝑘) + 𝜌 + 𝑣𝑡𝑘 (3) 

where 𝑦𝑡𝑘 represents the serum GH level, 𝜌 represents the 
time-invariant basal secretion rate of GH and 𝑣𝑡𝑘 

TABLE 1 
ESTIMATED INFUSION, CLEARANCE AND BASAL SECRETION 

RATES, NUMBER OF SECRETORY EVENTS AND THE SQUARES 
OF THE MULTIPLE CORRELATION COEFICIENTS (𝑅2) FOR THE 

FITS OF THE OBSERVED GH DATA FROM DATASET 1. 

Participant 𝛽𝐼(min.
−1 ) 𝛽𝐶(min.

−1 ) 𝜌 (
𝑛𝑔

𝑚𝑙
) 𝑁 𝑅2 

1-1 0.17 0.03 0.06 7 0.95 

1-2 0.12 0.09 0.19 8 0.93 

1-3 0.12 0.05 0.04 4 0.96 

1-4 0.16 0.11 0.10 11 0.87 

1-5 0.19 0.10 0.10 7 0.93 

1-6 0.04 0.03 0.00 8 0.99 

1-7 0.16 0.11 0.48 10 0.88 

1-8 0.05 0.04 0.00 6 0.96 

1-9 0.14 0.27 0.48 8 0.96 

1-10 0.15 0.14 0.39 5 0.88 

1-11 0.06 0.04 0.23 5 0.91 

1-12 0.06 0.04 0.00 6 0.93 

1-13 0.14 0.03 1.96 7 0.96 

1-14 0.05 0.03 0.00 11 0.92 

Median 0.13 0.05 0.10 7 0.93 
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represents the measurement error; missing data points are 
removed listwise, with a maximum of two samples miss-
ing from a participant. A description and discussion of list-
wise deletion rationale and method is provided in the Sup-
plemental Information. We apply a least squares approach 
in our estimation algorithm, modelling 𝑣𝑡𝑘 as a Gaussian 
random variable. Using the serum GH level (ℎ2) with a 
sampling interval of 10 minutes, we estimate 𝛽𝐼, 𝛽𝐶, 𝜌, the 
number of secretory pulses and their corresponding timing 
and amplitude, with a 1 minute resolution. 

2.3 Multi-Rate State-Space Formulation 

 In order to estimate the model parameters and deter-

mine the timing and amplitude of secretory pulses, we per-

form our deconvolution in the discrete time domain, as de-

scribed by Amin et al. [20]. We reformulate (1, 2) by letting 

ℎ(𝑡) = [ℎ1 ℎ2]
𝑇,ΑC = [

−𝛽𝐼 0
𝛽𝐼 −𝛽𝐶

],  

𝐵𝐶 = [
1
0
], and 𝐶𝑐 = [0 1]. Hence the state-space model can 

be written as: 

ℎ̇(𝑡) = 𝐴𝐶ℎ(𝑡) + 𝐵𝐶𝑢(𝑡) (4) 
𝑦(𝑡) = 𝐶𝐶ℎ(𝑡) + 𝜌 + 𝑣(𝑡) (5) 

where 𝑦(𝑡) is the observed serum GH level and 𝑣(𝑡) is the 

measurement noise at time 𝑡. Assuming that the inputs and 

the states are continuous over 𝑇𝑢, we let 𝛬 = 𝑒𝑎𝑇𝑢, and                   

Г = ∫ 𝑒𝑎(𝑇𝑢−𝑠)
𝑇𝑢

0
𝑑𝑠, we can write the discrete state-space 

form as: 

h[𝑘 + 1] = Λ ℎ[𝑘] + Г 𝑢[𝑘] (6) 
𝑦[𝑘] = 𝐶𝐶ℎ[𝑘] + 𝜌 + 𝑣[𝑘]. (7) 

 We let the blood sampling frequency 𝑇𝑦 = 𝐿𝑇𝑢, where 𝐿 
is an integer (𝐿 = 10 in this study) . If we let 𝐴𝑑 = Λ

𝐿, 
𝐵𝑑 = [𝛬𝐿−1Г 𝛬𝐿−2Г ⋯ 𝛤],  
𝑢𝑑[𝑘] = [𝑢[𝐿𝑘] 𝑢[𝐿𝑘 + 1] ⋯ 𝑢[𝐿𝑘 + 𝐿 − 1]𝑇, 
𝑣𝑑[𝑘] = 𝑣[𝐿𝑘] and ℎ𝑑[𝑘] = ℎ[𝐿𝑘], then we can represent the 
multi-rate system as: 

ℎ𝑑[𝑘 + 1] = 𝐴𝑑ℎ𝑑[𝑘] + 𝐵𝑑𝑢𝑑[𝑘] (8) 
𝑦[𝑘] = 𝐶𝐶ℎ𝑑[𝑘]+𝜌 + 𝑣𝑑[𝑘] (9) 

where 𝐴𝑑 and 𝐵𝑑 are functions of 𝛽𝐼 and 𝛽𝐶. Using the state 
transition matrix and considering the causality of the sys-
tem, we can write the system equation as: 

𝑦[𝑘] = 𝐹[𝑘]ℎ𝑑[0] + 𝐷[𝑘]𝐮 + 𝛒 + 𝑣𝑑[𝑘] (10) 

where 𝐹[𝑘] = 𝐶𝐶𝐴𝑑
𝑘  ,                                                                         𝐷[𝑘] =

𝐶𝐶 [
𝐴𝑑
𝑘−1𝐵𝑑 𝐴𝑑

𝑘−2𝐵𝑑 ⋯ 𝐵𝑑 0 ⋯ 0⏟      
𝑁−𝑘𝐿

],             

𝛒 = [𝜌 𝜌 ⋯ 𝜌]𝑀×1
𝑇 , and                                                             𝐮 =

[𝑢𝑑[0] 𝑢𝑑[1] ⋯ 𝑢𝑑[𝑘 − 1] ⋯ 𝑢𝑑[𝑀 − 1]]𝑇. 𝐮 and 𝛒 
represent the entire input over the duration of the study 
and the basal secretion rate of GH, respectively. Consider-
ing the initial condition ℎ1(0) = 0 and 𝑦(0) = ℎ2(0) = 𝑦𝑡0, 
we can let 𝐻𝑑[0] = [0 𝑦𝑡0]

𝑇. Then, let                                            
 𝐲 = [𝑦[1] 𝑦[2] ⋯ 𝑦[𝑀]]𝑀×1

𝑇 , where 𝐲 represents all of 
the observed data points. Furthermore, we let           
𝐅𝛃 = [𝐹[0] 𝐹[1] ⋯ 𝐹[𝑀 − 1]]𝑀×2

𝑇 ,     
𝐃𝛃 = [𝐷[0] 𝐷[1] ⋯ 𝐷[𝑀 − 1]]𝑀×𝑁

𝑇 ,                              and 
𝐯 = [𝑣[1] 𝑣[2] ⋯ 𝑣[𝑀]]𝑀×1

𝑇 . Therefore, we can repre-
sent this system as: 

𝐲 = 𝐅𝛃𝐻𝑑[0] + 𝐃𝛃𝐮 + 𝛒 + 𝐯. (11) 
2.4 Estimation 

 We cast the system from (11) as the following least-
squares optimization problem: 

minimize 
1

2
‖𝐲 − 𝐅𝛃𝐻𝑑[0] − 𝐃𝛃𝐮 − 𝛒‖2

2
(12) 

 However, a least-squares solution for an underdeter-
mined system could yield an incorrect estimation, as any 
given hormone assay can be erroneous. Moreover, the op-
timization problem is non-convex with respect to the pa-
rameters 𝛃𝐈, 𝛃𝐂, and 𝛒 [18]. Some of these potential solu-
tions may be outside of physiologically bounds, 

TABLE 2 
ESTIMATED INFUSION, CLEARANCE AND BASAL SECRETION 

RATES, NUMBER OF SECRETORY EVENTS AND THE SQUARES 
OF THE MULTIPLE CORRELATION COEFICIENTS (𝑅2) FOR THE 

FITS OF THE OBSERVED GH DATA FROM DATASET 2. 

Participant 𝛽𝐼(min.
−1 )  𝛽𝐶(min.

−1 ) 𝜌 (
𝑛𝑔

𝑚𝑙
) 𝑁 

 
𝑅2 

2-1 0.09 0.05 0.07 5 0.91 

2-2 0.05 0.04 0.00 5 0.92 

2-3 0.06 0.04 0.07 6 0.96 

2-4 0.17 0.06 0.62 11 0.93 

Median 0.08 0.04 0.07 5.5 0.93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Estimated deconvolution of experimental 8-hour GH levels from 2 of the 14 participants from Dataset 1. Each panel 

shows the observed 8-hour GH time series (red crosses), the model-estimated GH levels (black curve), and the model-estimated 

pulse timing and amplitude (blue vertical lines) for a single participant. The estimated model parameters are provided in Table 1. 
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necessitating the implementation of GH specific con-
straints. We apply problem constraints based on the ob-
served minimal and maximal values of model parameters 
and the timing and amplitude of GH secretory events from 
similar GH studies. 
 In modeling GH secretion over a 24-hour period, Berg et 
al. [11] reported an average of 11 secretory events for men 
and 13 secretory events for women. Previous studies have 
also demonstrated that the frequency of secretory events 
increases at night [14, 11]. However, Klerman et al. [6] re-
ported a maximum of 3 secretory events per sleep episode 
in 12 female participants. These discrepant findings for GH 
parameters may be due to differences in GH immunoassay 
platforms [26], different study populations [27], or other 
unknown factors. We use these experimental values from 
previous studies to guide the application of constraints, en-
suring that the estimated number of secretory pulses is 
within physiologically plausible bounds. We select a con-
straint of 11 possible secretory events during a sleep epi-
sode, significantly more than the maximum of 3 secretory 
events observed by Klerman et al. [6]. Applying such a gen-
erous constraint allows our algorithm to estimate the num-
ber of secretory events within a broad range of values. As 

a result, we mitigate the underestimation of secretory 
events that could arise due to known or unknown differ-
ences between this study and previous GH studies. We as-
sume that u contains at most 11 positive elements out of 
490 possibilities (0 ≤ ‖u‖0 ≤ 11, u ≥ 0). We impose a spar-
sity constraint on 𝐮, to limit the number of predicted 
pulses. Additionally, we extend the bounds on 𝛽𝐼 and 𝛽𝐶, 
provided by [6], from 8.333 × 10−4 and 0.1333 min−1 to 
8.333 × 10−4 and 1 min−1, because preliminary analyses, 
bounding 𝛽𝐼 and 𝛽𝐶 between 8.333 × 10−4 and 1 min−1, 
yielded estimates of 𝛽𝐼 and 𝛽𝐶 always within bounds, 
which are appropriate. 
 We solve this optimization problem by reformulating 
(12), with model constraints, as follows: 

minimize  𝐽𝜆(𝛃, 𝐮) =
1

2
‖𝐲 − 𝐅𝛃𝐻𝑑[0] − 𝐃𝛃𝐮 − 𝛒‖

2

2

+ 𝜆‖𝐮‖𝑝
𝑝(13) 

subject to     𝐶𝜷 ≤ 𝑏, 

                       𝐮 ≥ 0, 
                 0 ≤ ‖𝐮‖0 ≤ 11 

where 𝛃 = [𝛽𝐼 𝛽𝐶 𝜌], 𝑪 = [
1 0 −1 0 0
0 1 0 −1 0
0 0 0 0 −1

]

′

,  

𝒃 = [1 1 −8.333 × 10−4 −8.333 × 10−4 0]′. 𝜆 

TABLE 3 
ESTIMATED INFUSION, CLEARANCE AND BASAL SECRETION RATES, NUMBER OF SECRETORY EVENTS AND THE SQUARES OF THE 
MULTIPLE CORRELATION COEFICIENTS (𝐑𝟐) FOR THE FITS OF THE SIMULATED GH DATA FROM DATASET 1 AT A SNR OF 20 DB. 

Participant 𝛽𝐼(min.
−1 )  𝛽𝐶(min.

−1 ) 𝜌 (
ng

ml
) 𝑁 

 

𝑅2 |𝛽𝐼−𝛽𝐼̂|

𝛽𝐼
(%)  

|𝛽𝐶−𝛽𝐶̂|

𝛽𝐶
(%)  |𝜌 − 𝜌̂| (

ng

ml
)  

1-1 0.17 0.03 0.00 7 0.996 0.29 12.3 0.06 

1-2 0.22 0.06 0.12 8 0.995 74.8 35.6 0.06 

1-3 0.12 0.05 0.06 5 0.991 6.98 2.61 0.02 

1-4 0.16 0.09 0.07 10 0.896 2.72 15.8 0.03 

1-5 0.19 0.09 0.07 11 0.980 0.30 5.88 0.02 

1-6 0.04 0.03 0.08 8 0.999 2.81 0.06 0.08 

1-7 0.15 0.11 0.46 9 0.987 8.00 4.16 0.02 

1-8 0.05 0.03 0.00 6 0.998 1.56 9.15 0.00 

1-9 0.26 0.15 0.46 10 0.994 82.4 44.3 0.02 

1-10 0.20 0.11 0.28 9 0.999 32.0 24.8 0.11 

1-11 0.11 0.03 0.08 6 0.986 72.8 28.6 0.14 

1-12 0.05 0.04 0.00 6 0.993 5.71 8.36 0.00 

1-13 0.12 0.03 1.24 10 0.997 13.9 2.85 0.71 

1-14 0.05 0.03 0.00 11 0.999 1.97 2.21 0.00 

Median 0.11 0.04 0.05 7.5 0.997 6.59 10.8 0.02 

 TABLE 4 
ESTIMATED INFUSION, CLEARANCE AND BASAL SECRETION RATES, NUMBER OF SECRETORY EVENTS AND THE SQUARES OF THE 
MULTIPLE CORRELATION COEFICIENTS (𝐑𝟐) FOR THE FITS OF THE SIMULATED GH DATA FROM DATASET 2 AT A SNR OF 20 DB. 

Participant 𝛽𝐼(min.
−1 )  𝛽𝐶(min.

−1 ) 𝜌 (
ng

ml
) 𝑁 

 
𝑅2 |𝛽𝐼−𝛽𝐼̂|

𝛽𝐼
(%)  

|𝛽𝐶−𝛽𝐶̂|

𝛽𝐶
(%)  |𝜌 − 𝜌̂| (

ng

ml
)  

2-1 0.12 0.04 0.07 5 0.995 24.8 13.0 0.00 

2-2 0.23 0.03 0.02 8 0.987 379 36.9 0.02 

2-3 0.05 0.04 0.00 6 0.994 14.5 4.46 0.07 

2-4 0.15 0.05 0.47 9 0.992 10.0 21.9 0.15 

Median 0.08 0.04 0.01 5.5 0.998 13.4 12.4 0.06 
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represents the regularization parameter, facilitating a bal-

ance between the sparsity of the input and the residual er-

ror in the model-estimated levels of GH, such that signifi-

cant pulses are captured, and noise is filtered out. The spar-

sity of u increases with λ. Furthermore, the term 𝜆‖𝐮‖𝑝
𝑝 

with 0 ≤ 𝑝 < 2, from (13), encourages sparsity and curbs 

overfitting in the solution of 𝐮. The previously mentioned 

term from (13) allows us to perform sparse recovery within 

a range of sparsity levels. We apply an iterative coordinate 

descent approach until the model parameters converge: 

𝐮(𝑘+1) = arg min
𝐮≥0

 0≤‖𝐮‖0≤11

  𝐽𝜆(𝛃
(𝑘), 𝐮(𝑘)) (14)

  

𝛃(𝑘+1) = arg min
𝐂𝛃≤𝐛

𝐽𝜆(𝛃
(𝑘), 𝐮(𝑘+1)) (15) 

 We solve the optimization problem in (13), using the FO-
CUSS+ algorithm proposed by Murray in [28], such that u 
is nonnegative and has a maximum sparsity of 𝑛 (𝑛 = 11). 
This algorithm adopts a heuristic approach for updating 𝜆, 
which balances the sparsity of u against the residual er-
ror‖𝐲𝛃 − 𝐃𝛃u‖

2
, where 𝐲𝛃 = 𝐲 − 𝐅𝛃𝐻𝑑[0] − 𝛒. The FO-

CUSS+ algorithm works as follows, for 𝑟 = 1, 2, 3,⋯ , 30: 

1. 𝐏𝐮
(𝑟)
=diag(|𝐮𝑖

(𝑟)|2−𝑝) 

2. 𝜆(𝑟) = (1 −
‖𝐲𝛃−𝐃𝛃𝐮

(𝑟)‖
2

‖𝐲𝛃‖2

) 𝜆𝑚𝑎𝑥 , 𝜆 > 0 

3. 𝐮(𝑟+1) = 𝐏𝐮
(𝑟)
𝐃𝛃
𝐓(𝐃𝛃𝐏𝐮

(𝑟)
𝐃𝛃
𝐓 + 𝜆(𝑟)𝐈)

−1
𝐲𝛃 

4. 𝐮𝐢
(𝑟+1)

≤ 0 → 𝐮𝐢
(𝑟+1)

= 0 

5. After completing more than half of the total itera-

tions, if ‖𝐮(𝑟+1)‖
0
> 𝑛, select the largest 𝑛 values from 

𝐮(𝑟+1) and set the rest to zero 

6. Iterate 
 Independently, FOCUSS+ yields estimated values for 𝐮, 
and we estimate 𝛃 using the interior point method, itera-
tively solving equations (14) and (15). FOCUSS+ estimates 
𝐮 with 11 secretory events. However, 𝛃 and 𝐮 should be 
updated with a 𝜆 that balances the residual error and spar-
sity of the model. For this, we implement the Generalized 
Cross-Validation (GCV) technique for the selection of a 
regularization parameter [29]. The GCV function is defined 
as the following: 

𝐺(𝜆) =
𝐿‖(𝐈 − 𝐇λ)𝐲𝛃‖

(trace(𝐈 − 𝐇λ))
2 , (16) 

where 𝐿 is the number of data points and 𝐇𝜆 is the influ-
ence matrix. For FOCUSS+ algorithm, we define 𝐇𝜆 as 𝐇𝜆 =
𝐃𝛃𝐏𝐮

(𝑟)
𝐃𝛃
𝐓(𝐃𝛃𝐏𝐮

(𝑟)
𝐃𝛃
𝐓 + 𝜆(𝑟)𝐈)

−1
. The GCV-FOCUSS+ algo-

rithm works as follows, for 𝑟 = 1, 2, 3,⋯: 

1. 𝐏𝐮
(𝑟)
=diag(|𝐮𝑖

(𝑟)|2−𝑝) 

2. 𝐮(𝑟+1) = 𝐏𝐮
(𝑟)
𝐃𝛃
𝐓(𝐃𝛃𝐏𝐮

(𝑟)
𝐃𝛃
𝐓 + 𝜆(𝑟)𝐈)

−1
𝐲𝛃 

3. 𝐮𝑖
(𝑟+1)

≤ 0 → 𝐮𝑖
(𝑟+1)

= 0 

4. 𝜆(𝑟+1) = arg min
0≤𝜆≤0.01

𝐺(𝜆) 

5. Iterate until convergence 

 Using the GCV method in tandem with FOCUSS+, we 
find an optimal choice for 𝜆 at each iteration, such that 
noise is filtered out in the estimation of 𝐮 and iterate be-
tween solving (14) and (15) until convergence. We propose 
the following algorithm for the deconvolution of GH data: 

Algorithm 1 Deconvolution Algorithm 
1: Initialize 𝛃̃0 by sampling two uniform random varia-

bles 𝑟 and 𝑠 on [8.333 × 10−4, 1] and let 𝛃̃0 = [𝑟, 𝑠, 0]′ 
2: for 𝑙 =  1, 2, 3,⋯ , 30  do 
3: Set 𝛃̃ equal to 𝛃̃𝑙−1; using FOCUSS+, solve for 𝐮̃𝑙 by in-

itializing the optimization problem in (14) at vector of 
all ones 

4: Set 𝐮̃ equal to 𝐮̃𝑙 ; using the interior point method, solve 
for 𝛃̃𝑙  by initializing the optimization problem in (15) 
at 𝛃̃𝑙−1 

5: end for 
6: Initialize 𝛃̂0 and 𝐮̂0 by setting them equal to the 𝛃̂𝑙 , 𝐮𝑙  

and 𝛒̂𝑙  that minimize 𝐽𝜆(𝛃, 𝐮) in (13), and let 𝑚 = 1 
7: while until convergence do 
8: Set 𝛃̂ equal to 𝛃̂𝑚−1; using GCV-FOCUSS+, solve for 𝐮̂𝑚 

by initializing the optimization problem in (14) at 𝐮̂𝑚−1 
9: Set 𝐮̂ equal to 𝐮̂𝑚; using the interior point method, 

solve for 𝛃̂𝑚 by initializing the optimization problem 
in (15) at 𝛃̂𝑚−1 
𝑚 = 𝑚 + 1 

10: end while 
11: Set the estimated model parameters 𝛃 and input 𝐮  to 

the 𝛃 and 𝐮 of the 64 potential solutions that minimize 
𝐽𝜆(𝛃, 𝐮) in (13) 

 We account for the nonconvexity of this optimization 
problem by performing multiple and different initializa-
tions of model paramters at the beginning of the algorithm. 
Step 1 initializes 𝛃 at random values within a physiologi-
cally plausible range. Steps 2-5 use FOCUSS+ for sparse re-
covery and interior point method for finding algorithm in-
itial conditions. Step 6 finds a good initial condition for the 
coordinate descent portion of the algorithm. Steps 7-10 ap-
ply a coordinate descent approach, to estimate the timing 
and amplitude of secretory events and model parameters 
until said unknowns converge. We incorporate sparse re-
covery in our coordinate descent approach via GCV – FO-
CUSS+. GCV – FOCUSS+ applies generalized cross-valida-
tion to find the regularization parameter that balances be-
tween capturing sparsity and noise. Finally, the model pa-
rameters that minimize the cost function in (13), among all 
initializations, are selected in step 11. 
 We ran the proposed algorithm, with GH-specific con-
straints, for 64 initializations for each 8-hour measurement 
of serum GH concentration, for both datasets (Tables 1 and 
2). Data analysis and estimation were performed in 
MATLAB R2020a. 
 Using the model for GH secretion detailed in equations 
(1) and (2), we also simulate 18 (i.e., one per participant) 8-
hour GH time series with the model parameters from Ta-
bles 1 and 2 and the GH pulses from Figures S-1 and S-2 
(in Supplemental Information file. Then, we add zero mean 
Gaussian noise, using a range of signal to noise ratios 
(SNR) from 5 to 50 dB, at intervals of 5 dB, to the simulated 
GH time series, using the observation model (3). Finally, 
we evaluate the performance of our algorithm in estimat-
ing model parameters and recovering hormone pulses at 
these noise levels. Each of these simulated data are sam-
pled every 10 minutes. 
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3 RESULTS 

 The observed and model-estimated GH levels and the 
timing and amplitude of hormonal secretory events in two 
participants from the first of the two datasets analyzed are 
shown in Figure 1; the associated model parameters for 
each participant, from each data set, are detailed in Tables 
1 and 2, respectively. The median value for the square of 
the multiple correlation coefficient (𝑅2) among all experi-
mental datasets is 0.93, with only three datasets having an 
𝑅2 below 0.90. The timing and amplitude of the hormonal 
pulses and model parameters vary greatly among partici-
pants. A straight line in quantile-quantile plots of the meas-
urement error in the estimation of experimental GH levels 
demonstrates the Gaussian nature of the noise present in a 
participant’s data; this is observed in the quantile-quantile 
plot of one of three participants with a low 𝑅2, implying 
the probable role of Gaussian noise in producing a low 𝑅2 
value (Figure 2). However, slight deviations from a straight 
line in the quantile-quantile plots of other participants with 
low 𝑅2 values, suggest a margin of improvement in our 
model. Larger deviations in the quantile-quantile plots of 
other participants, including those with satisfactory 

𝑅2values, can be attributed to the combination of the low 
sampling rate of the experimental GH data and the small 
rise time of a participant’s serum GH level. This small rise 
time reflects high frequency components in the GH signal, 
making the estimation of rise times difficult with a low 
sampling frequency. 
 The estimated model parameters, number of recovered 
pulses, the square of the multiple correlation coefficient 
(𝑅2) and the absolute difference and percentage error in 
the estimation of model parameters for the fits of the sim-
ulated GH data, at a SNR of 20 dB are detailed in Tables 3 
and 4. The percent errors in the estimation of 𝛽𝐼 and 𝛽𝐶 
range from small values (0.06% and 0.29%) to high values 
(379% and 82.4%), at a SNR of 20 dB. In some cases, the 
noise added to the simulated data is comparable in ampli-
tude to the small GH pulses, facilitating a noticeable diver-
gence in pulsatile patterns between experimental and sim-
ulated GH time series. The nonconvexity of this optimiza-
tion problem ensures that differences in pulsatile patterns 
will also impact the estimation of timing and amplitude of 
GH pulses and model parameters. The actual sparse input, 
the estimated input and the simulated and estimated GH 
data, at a SNR of 20 dB for 2 of the 14 participants from 
Dataset 1 are in Figure 3. The estimated and simulated in-
puts are in good agreement, except at a higher noise level 
in which a few small amplitude pulses are ignored or noise 
is captured as a small pulse. For example, at a SNR of 20 
dB there are ten such cases, but at 35 dB there are only four 
instances. The estimation of simulated inputs improves at 
lower noise levels, as indicated by Figure 4, which illus-
trates the average percent error in the estimation of 
𝑙0−, 𝑙1 −, and 𝑙2 − norms of 𝐮 at different levels of noise. 
Similarly, Figure 5 demonstrates the average percent error 
in the estimation of GH infusion and clearance rates de-
creasing from 0 to ~25 dB and then flattening out at around 
20% error. 

4 DISCUSSION 

 Our method successfully fit experimental and simulated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Estimated deconvolution of simulated 8-hour GH levels associated with 2 of the 14 participants from Dataset 1 at a 

SNR of 20 dB. Each panel shows the simulated 8-hour GH time series (red crosses) generated from the "ground truth" pulse 

timing and amplitude (forest green vertical lines), the model-estimated GH levels (black curve), and the model-estimated pulse 

timing and amplitude (blue vertical lines) for a single participant. The estimated model parameters are provided in Table 3. 

 

 

Figure 2. Quantile-Quantile plot of the measurement error in 

the estimation of Participant 1-4’s observed GH levels. 
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GH data from 18 participants: 14 healthy adolescents and 
4 adolescents with mild OSA who used a CPAP machine 
during sleep. 
 From our analysis of these 18 experimental sleep epi-
sodes, we identified an average of 7 hormonal secretory 
events per episode. This is greater than twice the average 
number of secretory events observed by Klerman et al. [6] 
and by Nindl et al. [30] and nearly half the number ob-
served by Ho et al. [10] and Berg et al. [11] using data from 
healthy adults. Additionally, we found the the average es-
timated GH infusion and clearance rates are 0.11 min.−1 
and 0.07 min.−1, respectively; Klerman et al. [6] observed 
average GH infusion and clearance rates of 0.02 min.−1 for 
both parameters. The variations of the model parameters 
and number of secretory events between studies is most 
likely due to the different ages of the study populations 
[27]. 
 We hypothesize that the 𝑅2 < 0.90 in at least one of four 
participant’s experimental datasets is due to the Gaussian 
noise present in those particular blood samples. The quan-
tile-quantile plot displayed in Figure 3 demonstrate the 
Gaussian nature of the noise present in the observed GH 
signal, making the estimation of model parameters and 

hormone pulses difficult for our sparse recovery algo-
rithm. The CVs of the Elecsys GH immunoassay indicate 
that the GH data collected are likely both reproducible and 
robust. However, we do not have the standard deviations 
of noise related to the GH assay used in this experiment. 
As a result, we simulated GH data at ten different noise 
levels to evaluate the performance of our algorithm. If we 
had the noise levels for each GH assay performed, then we 
could simulate GH data with comparable noise levels to 
the experimental one. 
 The algorithm produces accurate estimations of model 
parameters for noise levels less than 20 dB (Figures 4 and 
5). At a SNR greater than or equal to 20 dB, our algorithm 
performed well on most simulated GH data, with less than 
20% error on average in the estimation of model parame-
ters. Nevertheless, the nonconvexity of the optimization 
problem and the existence of many local minima can cause 
our algorithm to converge to a solution other than the 
ground-truth and produce a large error in the estimation 
of model parameters. At a SNR of 20 dB, there is a single 
outlier of 379% error in the estimation of the GH infusion 
rate. While the GH infusion and clearance rates are con-
strained to physiologically plausible values, the lower 
bound is close to zero, yielding model-estimated parame-
ters close to zero in some cases. Therefore, a small absolute 
error can lead to a large pergentage error. For example, the 
absolute error, in this instance, is 0.19 𝑚𝑖𝑛.−1, producing a 
percentage error of 379%, as the ground-truth GH infusion 
rate is 0.05 𝑚𝑖𝑛.−1. There are several potental ways to im-
prove the estimation of model parameters and the timing 
and amplitude of hormone pulses: (i) reducing the error 
introduced by the GH assay procedure itself and (ii) in-
creasing the sampling rate of GH data, since the rise time 
of a GH pulse is shorter than its decay, meaning that our 
estimation algorithm has less data to estimate the GH infu-
sion rate than the clearance rate. If a system for noninva-
sive and continuous sampling (such as exists for cortisol 
[31]) were available for GH, then GH detection with a 
higher sampling frequency might improve estimation. 

5 CONCLUSION AND FUTURE WORK 

 In this study, we have demonstrated a robust method for 
the deconvolution of serum GH data to obtain physiologi-
cally important metrics by formulating an optimization 
problem to recover model parameters and GH pulses with 
physiologically plausible constraints.  
 We proposed a two-step coordinate descent approach, 
incorporating sparse recovery for GH secretory events and 
the interior point method for model parameters. We also 
implemented GCV to obtain regularization parameters, 
balancing the residual error against the sparsity of GH se-
cretory events. Finally, we demonstrated the effectiveness 
of a previously used (on other pulsatile hormone data sets) 
sparse recovery framework for GH. 

Using these methods, we can, in future studies, examine 
the relationship between GH pulse onset and/or pulse am-
plitude with sleep stage or other physiological events and 
the effect of sleep disruption, other physiological events, or 
clinical or other interventions on GH secretory parameters 

Figure 4. Average Percent Error in the 𝑙0−, 𝑙1 − and 𝑙2 −Norms 

of u vs. SNR (dB). The red circles correspond to the average 

percent error in the 𝑙0-norms of u, the green squares corre-

spond to the average percent error in the 𝑙1-norms of u and 

the blue crosses correspond to the average percent error in the 

𝑙2-norms of u. 

 

Figure 5. Average Percent Error in the Estimation of GH Infu-

sion (𝛽𝐼) and Clearance (𝛽𝐶) Rates vs. SNR (dB). 
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in different ages and populations and in normal and path-
ophysiological states. 
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