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Sparse Deconvolution of Pulsatile Growth
Hormone Secretion in Adolescents

Jon X. Genty, Md. Rafiul Amin, Natalie D. Shaw, Elizabeth B. Klerman
and Rose T. Faghih

Abstract— Growth hormone (GH) is secreted by cells in the anterior pituitary on two time scales: discrete pulses over minutes
that occur within a 24-hr pattern. Secretion reflects the balance of stimulatory and inhibitory inputs from the hypothalamus and
is influenced by gonadal steroids, stress, nutrition, and sleep/wake states. We propose a novel approach for the analysis of GH
data and use this approach to quantify (i) the timing, amplitude and the number of GH pulses and (ii) GH infusion, clearance
and basal secretion (i.e., time invariant) rates, using serum GH sampled every 10 minutes during an 8-hour sleep study in 18
adolescents. In our method, we approximate hormonal secretory events by deconvolving GH data via a two-step coordinate
descent approach. The first step utilizes a sparse-recovery approach to estimate the timing and amplitude of GH secretory events.
The second step estimates physiological parameters. Our method identifies the timing and amplitude of GH pulses and system
parameters from experimental and simulated data, with a median R? of 0.93, among experimental data. Recovering GH pulses
and model parameters using this approach may improve the quantification of GH parameters under different physiological and
pathological conditions and the design and monitoring of interventions.

Index Terms— Biomedical signal processing, deconvolution, constrained optimization, state-space methods, growth hormone,

pulsatile hormones

1 INTRODUCTION

Growth hormone (GH) plays a vital role in mammalian
growth and metabolism across the lifespan. GH in-
duces linear growth in children primarily by stimulating
the hepatic secretion of insulin-like growth factor 1 (IGF1),
which then acts at the growth plate [1, 2]. GH also pro-
motes protein synthesis, lipolysis and maintains glucose
homeostasis [3] by acting on the liver, adipose tissue, mus-
cles and kidney [4]. Circulating GH in humans has a half-
life of roughly 20 to 30 minutes [5] and is cleared by the
liver and kidneys.

GH secretion is primarily controlled by two hypotha-
lamic neuropeptides, growth hormone-releasing hormone
(GHRH) and somatostatin (SST). GHRH stimulates GH
gene transcription and hormone release from the somato-
trophs in the anterior pituitary, while SST maintains a tonic
inhibitory tone [6, 7]. GH levels are also influenced by age,
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sex, diet, exercise, time of day, stress, and sleep/wake states
[8, 9, 10, 11, 6]. These factors modulate GH concentration
through effects on both GH pulse amplitude and fre-
quency [6, 12].

In men, sleep-associated pulses contribute to roughly
70% of daily GH output; the GH pulse at sleep-onset is gen-
erally the largest amplitude pulse observed over a 24-hour
(“diurnal”) period [13, 14]. While sleep-associated pulses
also occur in women, they typically account for only a
small proportion of total daily GH production [13, 14]. A
number of observational and interventional studies in hu-
man participants have shown that GH secretion is tempo-
rally associated with, and may be stimulated by, “deep” or
slow-wave sleep (SWS, stage N3 of non-REM sleep) [13,
15].

Previous studies of GH data usually used one of two
classes of methods to report metrics: GH concentration
peak detection (to identify a pulse) via cluster analysis as
in [10, 11] or a parameter sweep based on initial predictions
and subsequent refitting as in [6]. While methods of peak
detection can roughly estimate the number of GH pulses,
these methods struggle to identify statistically significant
peaks in cases where degradation after one pulse is incom-
plete before the subsequent pulse occurs. Additionally,
peak detection methods suffer in situations where GH am-
plitudes are so low that the observed data are susceptible
to Gaussian noise. Peak detection methods also cannot re-
cover underlying model parameters related to the infusion,
clearance and basal secretion rates of GH. The parameter
sweep approach to model fitting for GH requires initial
guessing of secretory event locations from a plot of the
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observed data. This method, of guessing and checking un-
til a suitable fit is reached, is time-consuming and lacks a
systematic approach. We develop an algorithm that accu-
rately estimates the timing and amplitude of GH pulses in
order to investigate the relationship between GH pulses
and sleep. To test this new method, we use GH data col-
lected during overnight frequent blood sampling studies
from 18 adolescent participants.

We adopt a model of GH secretion similar to that pro-
posed by Klerman et al. [6]. We apply a deconvolution al-
gorithm, similar to those proposed by Faghih et al. [16, 17,
18, 19] for cortisol data and later extended by Amin et al.
[20] for skin conductance signals, to analyze serum GH lev-
els. This deconvolution method recovers the timing and
amplitude of hormonal secretory events using a sparse re-
covery method and estimates model parameters with an
interior point method. A coordinate descent approach
combines the previously described methods to iteratively
estimate sparse secretory events and model parameters.
We also implement generalized cross-validation, as in [18],
to recover the accurate number of hormone pulses while
maintaining a balance between the sparsity and residual
error of the estimate.

2 METHODS

2.1 Experiment

In both experiments, serum GH levels were measured in
blood samples collected every 10 minutes for 8 hours
through a peripheral intravenous catheter (PIVC) during
scheduled overnight sleep sessions. Each participant there-
fore contributed 49 data points. Information on participant
sex, age, body mass index (BMI) and Apnea-Hypopnea In-
dex (AHI) is included in the Supplemental Information.
Sleep was recorded by polysomnography using estab-
lished techniques [21]. GH was assayed from participant
blood samples using the Roche Elecsys E170 immunoassay
platform, with an interassay and total imprecision coeffi-
cient of variance (CV) of 0.6-1.7% and 1.7-4.1%, respec-
tively [22].
1) Dataset 1: 14 adolescents, ages 11.3 to 14.1 years, 50%
male, with no chronic medical conditions.
2) Dataset 2: 4 adolescents, ages 11.8 to 14.4 years, 75%
male, with very mild obstructive sleep apnea (OSA). OSA
is a condition characterized by the repetitive obstruction of
the upper airway during sleep, causing episodic hypox-
emia followed by awakening/arousal, and is often associ-
ated with daytime sleepiness [23]. Mild pediatric OSA is
defined as an apnea-hypopnea index (AHI) greater than 1
and less than or equal to 5 [24]. During scheduled sleep,
the participants used a continuous positive airway pres-
sure (CPAP) machine to treat their OSA, facilitating an un-
disturbed sleep session similar to the participants from Da-
taset 1.
2.2 Model Formulation

We build a model based on the two-dimensional linear
differential equations proposed by Klerman et al. [6], de-
scribing diurnal GH secretion. Originally, this model in-
cluded feedback, due to the inhibitory effect of GH on GH
release [25]; this effect occurs at the hypothalamic level

through a short loop mechanism, inhibiting GHRH and
stimulating the release of SST into peripheral circulation
[6]. However, the model we propose does not include GH
negative feedback, because of (i) feedback’s insignificant
and/or erroneous effect on model fits [6], (ii) feedback de-
creases the parsimony of the system, and (iii) Klerman et
al. [6] noted that GH secretion model fits were graphically
indistinguishable with or without negative feedback. We
model the dynamics of GH secretion with the following
two-dimensional linear differential equations:

dhy(t)

0 =y (6) + u(t) W
dhy(t)

T Brhy(t) — Bchy(t) )

where h,(t) represents the releasable GH in the anterior
pituitary and h,(t) represents the GH concentration in the
peripheral serum. §; and f5; represent the GH infusion rate
from the pituitary and GH clearance rate by the kidneys
and liver, respectively. u(t) corresponds to the hypotha-
lamic pulses that stimulate GH secretion where u(t) =
YN q6(t — 1) [18]. Finally, we assume that pulses occur
at integer minute values. In this abstraction of hormone
pulses, g; represents the amplitude of the hormone pulse,
T; represents the pulse timing and N represents the length
of the input (N = 481). If g; is zero, then a pulse did not
occur at time ;.

TABLE 1
ESTIMATED INFUSION, CLEARANCE AND BASAL SECRETION
RATES, NUMBER OF SECRETORY EVENTS AND THE SQUARES
OF THE MULTIPLE CORRELATION COEFICIENTS (R?) FOR THE
FITs oF THE OBSERVED GH DATA FROM DATASET 1.

Participant | B;(min."*) | B¢(min. ") p(%) N | R?
1-1 0.17 0.03 0.06 | 7 0.95
1-2 0.12 0.09 0.19 | 8 0.93
1-3 0.12 0.05 0.04 | 4 [0.96
1-4 0.16 0.11 0.10 |110.87
1-5 0.19 0.10 0.10 | 7 0.93
1-6 0.04 0.03 0.00 | 8 0.99
1-7 0.16 0.1 048 |10/0.88
1-8 0.05 0.04 0.00 | 6 [0.96
1-9 0.14 0.27 048 | 8 [0.96
1-10 0.15 0.14 0.39 | 5 [0.88
1-11 0.06 0.04 0.23 | 5 0.91
1-12 0.06 0.04 0.00 | 6 0.93
1-13 0.14 0.03 196 | 7 (0.96
1-14 0.05 0.03 0.00 |110.92

Median 0.13 0.05 0.10 | 7 0.93

Therefore, beginning at y, , we have GH samples at 10-
minute intervals for M samples (M = 49) for each partici-

pant. Let Y, Ve,o0 - 1 Vegom

Ve, = hy(t) +p + Uty 3)
where y,, represents the serum GH level, p represents the
time-invariant basal secretion rate of GH and v,
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represents the measurement error; missing data points are
removed listwise, with a maximum of two samples miss-
ing from a participant. A description and discussion of list-
wise deletion rationale and method is provided in the Sup-
plemental Information. We apply a least squares approach
in our estimation algorithm, modelling v,, as a Gaussian
random variable. Using the serum GH level (h,) with a
sampling interval of 10 minutes, we estimate f;, f, p, the
number of secretory pulses and their corresponding timing
and amplitude, with a 1 minute resolution.

TABLE 2
ESTIMATED INFUSION, CLEARANCE AND BASAL SECRETION
RATES, NUMBER OF SECRETORY EVENTS AND THE SQUARES
OF THE MULTIPLE CORRELATION COEFICIENTS (R?) FOR THE
FITs oF THE OBSERVED GH DATA FROM DATASET 2.

Participant | 8;(min.”") | Bc(min.”") B (ﬂ) N| R?
ml

2-1 0.09 0.05 0.07 0.91

2-2 0.05 0.04 0.00 0.92

2-3 0.06 0.04 0.07 0.96

2-4 0.17 0.06 0.62 (11| 0.93

Median 0.08 0.04 0.07 |5.5| 0.93

2.3 Multi-Rate State-Space Formulation

In order to estimate the model parameters and deter-
mine the timing and amplitude of secretory pulses, we per-
form our deconvolution in the discrete time domain, as de-
scribed by Amin et al. [20]. We reformulate (1, 2) by letting

ORI A A
B; = [(1)] and C, = [0 1]. Hence the state-space model can
be written as:
h(t) = Ach(t) + Beu(t) (4)
y(@) = Cch(®) +p +v(0) (5)
where y(t) is the observed serum GH level and v(t) is the

measurement noise at time t. Assuming that the inputs and
the states are continuous over T,, we let A = ¢*™, and

r= fOT“e“(Tu‘S) ds, we can write the discrete state-space
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form as:
hlk + 1] = Ah[k] + T u[k] (6)
ylk] = Cchlk] + p + v[k]. @)

We let the blood sampling frequency T, = LT,, where L
is an integer (L = 10 in this study) . If we let 4; = A%,
By = [A*7'T  AMPT rl,
uglk] = [u[Lk] wu[Lk+ 1] u[Lk + L —1]7,
vylk] = v[Lk] and hy[k] = h[Lk], then we can represent the
multi-rate system as:
halk + 1] = Aghglk] + Bauglk] ®
ylk] = Cchylkl+p + vqlk] (C)]
where 4, and B, are functions of §; and f. Using the state
transition matrix and considering the causality of the sys-
tem, we can write the system equation as:

ylk] = F[k]hq[0] + D[k]u + p + v4[K] (10)
where F[k] = C.A%, D[k] =
c, [AZ‘le A§?By By 0 - 0],

N—-kL
p=[p P P1% 1, and u=
[ual0] uql1] uglk — 1] ug[M —1]]".u and p

represent the entire input over the duration of the study
and the basal secretion rate of GH, respectively. Consider-
ing the initial condition h;(0) = 0 and y(0) = h,(0) = y,,,
we can let Hy[0] = [0 e ]T. Then, let
y = [y[1] y[2] y[M]]5x1, where y represents all of
the observed data points. Furthermore, we let

Fg = [F[0] F[1] FIM — 1]]}x2,
D; = [D[0] DI[1] DIM — 111% . and
v=[v[1] v[2] v[M]]% 1. Therefore, we can repre-

sent this system as:
y = FgHy[0] + Dgu + p +v.
2.4 Estimation
We cast the system from (11) as the following least-
squares optimization problem:

11

(12)

However, a least-squares solution for an underdeter-
mined system could yield an incorrect estimation, as any
given hormone assay can be erroneous. Moreover, the op-
timization problem is non-convex with respect to the pa-
rameters By, B¢, and p [18]. Some of these potential solu-

s e s 1 2
minimize E”y — FgHy[0] — Dgu — p||2

tions may be outside of physiologically bounds,
Participant 1 - 14
18- -140
16 15
14 30
12 28
-E, 10
£ 20
- 8
(L] 15
6
4 10
2 T s
0 : 0

Time (hours)

Figure 1. Estimated deconvolution of experimental 8-hour GH levels from 2 of the 14 participants from Dataset 1. Each panel
shows the observed 8-hour GH time series (red crosses), the model-estimated GH levels (black curve), and the model-estimated
pulse timing and amplitude (blue vertical lines) for a single participant. The estimated model parameters are provided in Table 1.

Hormone Pulse Amplitude (ng/ml/min}
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necessitating the implementation of GH specific con-
straints. We apply problem constraints based on the ob-
served minimal and maximal values of model parameters
and the timing and amplitude of GH secretory events from
similar GH studies.

In modeling GH secretion over a 24-hour period, Berg et
al. [11] reported an average of 11 secretory events for men
and 13 secretory events for women. Previous studies have
also demonstrated that the frequency of secretory events
increases at night [14, 11]. However, Klerman et al. [6] re-
ported a maximum of 3 secretory events per sleep episode
in 12 female participants. These discrepant findings for GH
parameters may be due to differences in GH immunoassay
platforms [26], different study populations [27], or other
unknown factors. We use these experimental values from
previous studies to guide the application of constraints, en-
suring that the estimated number of secretory pulses is
within physiologically plausible bounds. We select a con-
straint of 11 possible secretory events during a sleep epi-

a result, we mitigate the underestimation of secretory
events that could arise due to known or unknown differ-
ences between this study and previous GH studies. We as-
sume that u contains at most 11 positive elements out of
490 possibilities (0 < [[ully < 11, u = 0). We impose a spar-
sity constraint on u,to limit the number of predicted
pulses. Additionally, we extend the bounds on f; and S,
provided by [6], from 8.333 x 10™* and 0.1333 min~?! to
8.333 x 107* and 1 min™?, because preliminary analyses,
bounding f; and f; between 8.333 x 10™* and 1 min™?,
yielded estimates of f§;, and f; always within bounds,
which are appropriate.

We solve this optimization problem by reformulating

(12), with model constraints, as follows:
2

1
minimize J,(B,u) = 2 ly - FgH,[0] — Dgu — p|| + A||u||§(13)
2

CB <b,
uz=0,
0<|ul, <11

subject to

sode, significantly more than the maximum of 3 secretory 10 =1 0 07

events observed by Klerman et al. [6]. Applying suchagen- whereB=[8 B pl,C=|0 1 0 -1 0|,

erous constraint allows our algorithm to estimate the num- 00 0 0 -1

ber of secretory events within a broad range of values. As b=[1 1 -8333x10"% —8333x10"* 0]. A
TABLE 3

ESTIMATED INFUSION, CLEARANCE AND BASAL SECRETION RATES, NUMBER OF SECRETORY EVENTS AND THE SQUARES OF THE
MULTIPLE CORRELATION COEFICIENTS (R?) FOR THE FITS OF THE SIMULATED GH DATA FROM DATASET 1 ATA SNR OF 20 DB.

Participant By (min."1) Be(min.™") p (%) vyRE % (%) % 6 lo =71 (5)
1-1 0.17 0.03 000 | 7| 099 0.29 123 0.06
1-2 0.22 0.06 012 |8 0995 74.8 356 0.06
13 0.12 0.05 006 |5 0991 6.98 2.61 0.02
1-4 0.16 0.09 007 |10| 0.89% 2.72 15.8 0.03
1-5 0.19 0.09 007 |11| 0980 0.30 5.88 0.02
1-6 0.04 0.03 008 |8 0999 2.81 0.06 0.08
1-7 0.15 0.11 046 | 9| 0987 8.00 416 0.02
1-8 0.05 0.03 000 |6 0998 156 9.15 0.00
1-9 0.26 0.15 046 |10| 0994 82.4 443 0.02
1-10 0.20 0.11 028 | 9| 0999 32,0 24.8 0.11
1-11 0.1 0.03 008 | 6| 0986 72.8 28.6 0.14
1-12 0.05 0.04 000 |6 0993 5.71 8.36 0.00
1-13 0.12 0.03 124 [10] 0997 13.9 2.85 0.71
1-14 0.05 0.03 000 |11| 0999 197 2.21 0.00

Median 0.1 0.04 005 |75 0997 6.59 10.8 0.02
TABLE 4

ESTIMATED INFUSION, CLEARANCE AND BASAL SECRETION RATES, NUMBER OF SECRETORY EVENTS AND THE SQUARES OF THE
MULTIPLE CORRELATION COEFICIENTS (R?) FOR THE FITS OF THE SIMULATED GH DATA FROM DATASET 2 AT A SNR OF 20 DB.

Participant pi(min.”") Bc(min.™") p (%) N R? |/31;IE| (%) |ﬁcﬁ_fcl %) |lp = Al (g)
2-1 0.12 0.04 0.07 5 0.995 24.8 13.0 0.00
2-2 0.23 0.03 0.02 8 | 0.987 379 36.9 0.02
2-3 0.05 0.04 0.00 6| 0.99% 14.5 4.46 0.07
2-4 0.15 0.05 047 9| 0992 10.0 21.9 0.15

Median 0.08 0.04 001 |55 0.998 134 12.4 0.06
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represents the regularization parameter, facilitating a bal-
ance between the sparsity of the input and the residual er-
ror in the model-estimated levels of GH, such that signifi-
cant pulses are captured, and noise is filtered out. The spar-
sity of u increases with A. Furthermore, the term Allull}
with 0 < p < 2, from (13), encourages sparsity and curbs
overfitting in the solution of u. The previously mentioned
term from (13) allows us to perform sparse recovery within
a range of sparsity levels. We apply an iterative coordinate
descent approach until the model parameters converge:
uk+d = arggglin (8%, u®) (14)
u

o0<|luflos11

B+ = arg minJ; (X, u®+V) (15)
CB=b

We solve the optimization problem in (13), using the FO-
CUSS+ algorithm proposed by Murray in [28], such that u
is nonnegative and has a maximum sparsity of n (n = 11).
This algorithm adopts a heuristic approach for updating 4,
which balances the sparsity of u against the residual er-
r0r||y3 — Dﬁu” where yg =y —FgH;[0] —p. The FO-
CUSS+ algorltﬁm works as follows, for r = 1, 2,3, -+, 30:

1. P =d1ag(|u§r)|2 ?)

-D (@]
2. A0 = (1 _ IroDp ™, “2> Anaze A >0

llysll,
-1
3. uV = pD(DgPI DY + A1) Ty,
ui(r+1) <0- ui(r+1) =0
5. After completing more than half of the total itera-
tions, if [[u*|| > n, select the largest n values from

u™*D and set the rest to zero

6. [Iterate

Independently, FOCUSS+ yields estimated values for u,
and we estimate B using the interior point method, itera-
tively solving equations (14) and (15). FOCUSS+ estimates
u with 11 secretory events. However, f and u should be
updated with a A that balances the residual error and spar-
sity of the model. For this, we implement the Generalized
Cross-Validation (GCV) technique for the selection of a
regularization parameter [29]. The GCV function is defined
as the following;:

L[| — H)yg||
(trace(l — H;‘))2 ’
where L is the number of data points and H, is the influ-
ence matrix. For FOCUSS+ algorithm, we define Hy asH; =
DgP.’Df(DgP’DF + A71) . The GCV-FOCUSS+ algo-
rithm works as follows, forr=1,2,3,--:

1. PY =diag(ju{”|2?)

-1
2. u*D = pI'DE(DEPI DY + 271)
3. W<o-u" =0
4. A0*D = argmin G (1)
5.

G = (16)

0<1<0.01
Iterate until convergence
Using the GCV method in tandem with FOCUSS+, we
find an optimal choice for A at each iteration, such that
noise is filtered out in the estimation of u and iterate be-
tween solving (14) and (15) until convergence. We propose
the following algorithm for the deconvolution of GH data:

Algorithm 1 Deconvolution Algorithm

1: Initialize B° by sampling two uniform random varia-
bles r and s on [8.333 x 1074, 1] and let B° = [r, s, 0]’

2. forl=1,2,3,---,30 do

3:  Set B equal to B'~%; using FOCUSS+, solve for ' by in-
itializing the optimization problem in (14) at vector of
all ones

4: Setiiequal to U; using the interior point method, solve
for B by initializing the optimization problem in (15)
at gt

5:  end for

6: Initialize B° and @° by setting them equal to the B, u’
and p' that minimize J;(B,u) in (13), and let m = 1

7:  while until convergence do

8: Set E equal to Em‘l ; using GCV-FOCUSSH, solve for ™
by initializing the optimization problem in (14) at ™!

9: Set Ul equal to U™; using the interior point method,
solve for B™ by initializing the optimization problem
in (15) at ™!
m=m+1

10: end while

11: Set the estimated model parameters B and input u to
the B and u of the 64 potential solutions that minimize

/2(B,w) in (13)

We account for the nonconvexity of this optimization
problem by performing multiple and different initializa-
tions of model paramters at the beginning of the algorithm.
Step 1 initializes B at random values within a physiologi-
cally plausible range. Steps 2-5 use FOCUSS+ for sparse re-
covery and interior point method for finding algorithm in-
itial conditions. Step 6 finds a good initial condition for the
coordinate descent portion of the algorithm. Steps 7-10 ap-
ply a coordinate descent approach, to estimate the timing
and amplitude of secretory events and model parameters
until said unknowns converge. We incorporate sparse re-
covery in our coordinate descent approach via GCV - FO-
CUSS+. GCV - FOCUSS+ applies generalized cross-valida-
tion to find the regularization parameter that balances be-
tween capturing sparsity and noise. Finally, the model pa-
rameters that minimize the cost function in (13), among all
initializations, are selected in step 11.

We ran the proposed algorithm, with GH-specific con-
straints, for 64 initializations for each 8-hour measurement
of serum GH concentration, for both datasets (Tables 1 and
2). Data analysis and estimation were performed in
MATLAB R2020a.

Using the model for GH secretion detailed in equations
(1) and (2), we also simulate 18 (i.e., one per participant) 8-
hour GH time series with the model parameters from Ta-
bles 1 and 2 and the GH pulses from Figures S-1 and S-2
(in Supplemental Information file. Then, we add zero mean
Gaussian noise, using a range of signal to noise ratios
(SNR) from 5 to 50 dB, at intervals of 5 dB, to the simulated
GH time series, using the observation model (3). Finally,
we evaluate the performance of our algorithm in estimat-
ing model parameters and recovering hormone pulses at
these noise levels. Each of these simulated data are sam-
pled every 10 minutes.
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3 RESULTS

The observed and model-estimated GH levels and the
timing and amplitude of hormonal secretory events in two
participants from the first of the two datasets analyzed are
shown in Figure 1; the associated model parameters for
each participant, from each data set, are detailed in Tables
1 and 2, respectively. The median value for the square of
the multiple correlation coefficient (R?) among all experi-
mental datasets is 0.93, with only three datasets having an
R? below 0.90. The timing and amplitude of the hormonal
pulses and model parameters vary greatly among partici-
pants. A straight line in quantile-quantile plots of the meas-
urement error in the estimation of experimental GH levels
demonstrates the Gaussian nature of the noise presentin a
participant’s data; this is observed in the quantile-quantile
plot of one of three participants with a low R?, implying
the probable role of Gaussian noise in producing a low R?
value (Figure 2). However, slight deviations from a straight
line in the quantile-quantile plots of other participants with
low R? values, suggest a margin of improvement in our
model. Larger deviations in the quantile-quantile plots of
other participants, including those with satisfactory

Participant 1 -4
0.2

=)
s =
= o
T T
+
+

Quantiles of Input Samples

R
01 F P ++

+
3 2 1 0 1 2 3
Standard Normal Quantities

Figure 2. Quantile-Quantile plot of the measurement error in
the estimation of Participant 1-4's observed GH levels.
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R?values, can be attributed to the combination of the low
sampling rate of the experimental GH data and the small
rise time of a participant’s serum GH level. This small rise
time reflects high frequency components in the GH signal,
making the estimation of rise times difficult with a low
sampling frequency.

The estimated model parameters, number of recovered
pulses, the square of the multiple correlation coefficient
(R?) and the absolute difference and percentage error in
the estimation of model parameters for the fits of the sim-
ulated GH data, at a SNR of 20 dB are detailed in Tables 3
and 4. The percent errors in the estimation of §; and S,
range from small values (0.06% and 0.29%) to high values
(379% and 82.4%), at a SNR of 20 dB. In some cases, the
noise added to the simulated data is comparable in ampli-
tude to the small GH pulses, facilitating a noticeable diver-
gence in pulsatile patterns between experimental and sim-
ulated GH time series. The nonconvexity of this optimiza-
tion problem ensures that differences in pulsatile patterns
will also impact the estimation of timing and amplitude of
GH pulses and model parameters. The actual sparse input,
the estimated input and the simulated and estimated GH
data, at a SNR of 20 dB for 2 of the 14 participants from
Dataset 1 are in Figure 3. The estimated and simulated in-
puts are in good agreement, except at a higher noise level
in which a few small amplitude pulses are ignored or noise
is captured as a small pulse. For example, at a SNR of 20
dB there are ten such cases, but at 35 dB there are only four
instances. The estimation of simulated inputs improves at
lower noise levels, as indicated by Figure 4, which illus-
trates the average percent error in the estimation of
lo—,1; — and I, — norms of u at different levels of noise.
Similarly, Figure 5 demonstrates the average percent error
in the estimation of GH infusion and clearance rates de-
creasing from 0 to ~25 dB and then flattening out at around
20% error.

4 DI1SCUSSION

Our method successfully fit experimental and simulated

Participant 1 - 14
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14 0
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= 25
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Figure 3. Estimated deconvolution of simulated 8-hour GH levels associated with 2 of the 14 participants from Dataset 1 at a
SNR of 20 dB. Each panel shows the simulated 8-hour GH time series (red crosses) generated from the "ground truth" pulse
timing and amplitude (forest green vertical lines), the model-estimated GH levels (black curve), and the model-estimated pulse
timing and amplitude (blue vertical lines) for a single participant. The estimated model parameters are provided in Table 3.
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Figure 4. Average Percent Error in the [,—,l; — and I, —Norms
of u vs. SNR (dB). The red circles correspond to the average
percent error in the ly-norms of u, the green squares corre-
spond to the average percent error in the l;-norms of u and
the blue crosses correspond to the average percent error in the
l,-norms of u.
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Figure 5. Average Percent Error in the Estimation of GH Infu-

sion (B;) and Clearance (B.) Rates vs. SNR (dB).

GH data from 18 participants: 14 healthy adolescents and
4 adolescents with mild OSA who used a CPAP machine
during sleep.

From our analysis of these 18 experimental sleep epi-
sodes, we identified an average of 7 hormonal secretory
events per episode. This is greater than twice the average
number of secretory events observed by Klerman ef al. [6]
and by Nindl et al. [30] and nearly half the number ob-
served by Ho et al. [10] and Berg et al. [11] using data from
healthy adults. Additionally, we found the the average es-
timated GH infusion and clearance rates are 0.11 min.”*
and 0.07 min.”?, respectively; Klerman et al. [6] observed
average GH infusion and clearance rates of 0.02 min.”* for
both parameters. The variations of the model parameters
and number of secretory events between studies is most
likely due to the different ages of the study populations
[27].

We hypothesize that the R? < 0.90 in at least one of four
participant’s experimental datasets is due to the Gaussian
noise present in those particular blood samples. The quan-
tile-quantile plot displayed in Figure 3 demonstrate the
Gaussian nature of the noise present in the observed GH
signal, making the estimation of model parameters and

hormone pulses difficult for our sparse recovery algo-
rithm. The CVs of the Elecsys GH immunoassay indicate
that the GH data collected are likely both reproducible and
robust. However, we do not have the standard deviations
of noise related to the GH assay used in this experiment.
As a result, we simulated GH data at ten different noise
levels to evaluate the performance of our algorithm. If we
had the noise levels for each GH assay performed, then we
could simulate GH data with comparable noise levels to
the experimental one.

The algorithm produces accurate estimations of model
parameters for noise levels less than 20 dB (Figures 4 and
5). At a SNR greater than or equal to 20 dB, our algorithm
performed well on most simulated GH data, with less than
20% error on average in the estimation of model parame-
ters. Nevertheless, the nonconvexity of the optimization
problem and the existence of many local minima can cause
our algorithm to converge to a solution other than the
ground-truth and produce a large error in the estimation
of model parameters. At a SNR of 20 dB, there is a single
outlier of 379% error in the estimation of the GH infusion
rate. While the GH infusion and clearance rates are con-
strained to physiologically plausible values, the lower
bound is close to zero, yielding model-estimated parame-
ters close to zero in some cases. Therefore, a small absolute
error can lead to a large pergentage error. For example, the
absolute error, in this instance, is 0.19 min.”*, producing a
percentage error of 379%, as the ground-truth GH infusion
rate is 0.05 min.”*. There are several potental ways to im-
prove the estimation of model parameters and the timing
and amplitude of hormone pulses: (i) reducing the error
introduced by the GH assay procedure itself and (ii) in-
creasing the sampling rate of GH data, since the rise time
of a GH pulse is shorter than its decay, meaning that our
estimation algorithm has less data to estimate the GH infu-
sion rate than the clearance rate. If a system for noninva-
sive and continuous sampling (such as exists for cortisol
[31]) were available for GH, then GH detection with a
higher sampling frequency might improve estimation.

5 CONCLUSION AND FUTURE WORK

In this study, we have demonstrated a robust method for
the deconvolution of serum GH data to obtain physiologi-
cally important metrics by formulating an optimization
problem to recover model parameters and GH pulses with
physiologically plausible constraints.

We proposed a two-step coordinate descent approach,
incorporating sparse recovery for GH secretory events and
the interior point method for model parameters. We also
implemented GCV to obtain regularization parameters,
balancing the residual error against the sparsity of GH se-
cretory events. Finally, we demonstrated the effectiveness
of a previously used (on other pulsatile hormone data sets)
sparse recovery framework for GH.

Using these methods, we can, in future studies, examine
the relationship between GH pulse onset and/or pulse am-
plitude with sleep stage or other physiological events and
the effect of sleep disruption, other physiological events, or
clinical or other interventions on GH secretory parameters
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in different ages and populations and in normal and path-
ophysiological states.
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