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Abstract

Synthesis of glycosaminoglycans, such as heparan sulfate (HS) and chondroitin sulfate (CS), occurs in the lumen of the
Golgi, but the relationship between Golgi structural integrity and glycosaminoglycan synthesis is not clear. In this study, we
disrupted the Golgi structure by knocking out GRASPS55 and GRASP65 and determined its effect on the synthesis, sulfa-
tion, and secretion of HS and CS. We found that GRASP depletion increased HS synthesis while decreasing CS synthesis
in cells, altered HS and CS sulfation, and reduced both HS and CS secretion. Using proteomics, RNA-seq and biochemical
approaches, we identified EXTL3, a key enzyme in the HS synthesis pathway, whose level is upregulated in GRASP knockout
cells; while GalNACcT1, an essential CS synthesis enzyme, is robustly reduced. In addition, we found that GRASP depletion
decreased HS sulfation via the reduction of PAPSS2, a bifunctional enzyme in HS sulfation. Our study provides the first

evidence that Golgi structural defect may significantly alter the synthesis and secretion of glycosaminoglycans.
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Introduction

The Golgi apparatus is a central station in the intracellu-
lar trafficking pathway and serves as the principal hub for
sorting and post-translational modifications of proteins and
lipids [1]. The basic structure of the Golgi is a stack of flat-
tened cisternae. In mammalian cells, multiple Golgi stacks
are latterly linked into a ribbon-like structure located in
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the perinuclear region of the cell. It has been previously
demonstrated that two Golgi peripheral membrane proteins,
GRASPS55 and GRASP65, function as the “glue” that links
Golgi membranes together and facilitates Golgi stacking and
ribbon formation. Knocking down or knocking out either
one of these two GRASP proteins decreases the number
of cisternae per stack, whereas depleting both GRASPs
disrupts the entire Golgi structure [2—4]. Most recently, it
has been shown that acute degradation of GRASP55 and
GRASP65 proteins causes defects in Golgi ribbon linking
and cisternae alignment [5], confirming an important role of
GRASP proteins in Golgi structure formation.

Functional studies revealed that destruction of the Golgi
structure by GRASP depletion accelerates protein traffick-
ing in the Golgi, but impairs accurate N-glycosylation and
protein sorting [6]. At the cellular level, GRASP depletion
reduces cancer cell attachment and invasion mainly through
the reduction of a5p1 integrin synthesis [7], indicating a role
of GRASPs and/or the Golgi structure in transcription regu-
lation. In addition to Golgi structure formation, GRASPs are
also involved in autophagy and unconventional secretion.
Under starvation or stress conditions, GRASP55, but not
GRASP635, trans-locates from the Golgi to other membrane
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structures, such as auto-phagosomes and endoplasmic retic-
ulum (ER), to regulate autophagy and unconventional secre-
tion of certain cytosolic or transmembrane proteins [§—13].

Glycosaminoglycans (GAGs) are main components of the
cell surface glycome and extracellular matrix [14]. GAGs are
long linear polysaccharides consisting of repeating disaccha-
ride units. Based on the core disaccharide structures, GAGs
are classified into three major forms, heparan sulfate (HS),
chondroitin sulfate (CS), and hyaluronan (HA). While HA
is synthesized at the plasma membrane and released, HS and
CS are synthesized and attached to serine residues of cargo
proteins in the Golgi, from where they are transported to
the cell surface and secreted to the extracellular space. The
biosynthesis of both HS and CS begins with the formation of
a tetra-saccharide linker on a serine residue in a protein core,
which is subsequently diversified to HS or CS depending on
the subsequent enzymatic reactions (Fig. 1A) [14].

For HS, the initiation of HS biosynthesis occurs as the
transferases Exostosin-like 2 (EXTL2) and 3 (EXTL3) trans-
fer an N-Acetylglucosamine (GlcNAc) to the initial linker
chain (Fig. 1A) [15, 16]. Next, Exostosin-1 (EXT1) and -2
(EXT?2), and Exostosin-like 1 (EXTL1) and EXTL3, extend
the chain by alternatively transferring GlcNAc and D-Glucu-
ronic acid (GlcA) residues to the sugar chain [17]. This HS
chain is then modified by the enzymes bifunctional heparan
sulfate N-deacetylase/N-sulfotransferase 1-4 (NDST1-4)
that have both N-deacetylase and N-sulfotransferase activi-
ties [18]. Other enzymes involved in HS sulfation include
heparan sulfate 2-O-sulfotransferase (H2ST), 6-O-sul-
fotransferases (H6ST1-3), and 3-O-sulfotransferases (H3ST)
1,2,3A, 3B, 4,5, and 6 [19]. These NDST enzymes and sul-
fotransferases rely on the sulfur donor 3'-phosphoadenosine
5'-phosphosulfate (PAPS), which is synthesized by 3'-phos-
phoadenosine 5'-phosphosulfate synthase 1 (PAPSS1) and
-2 (PAPSS2) in the cytosol and transported by adenosine
3'-phospho 5'-phosphosulfate transporter 1 (PAPST1) and
PAPST?2 into the Golgi lumen [20-23]. Most HS chains are
sulfated, which significantly affects their activity and func-
tion. For example, it has been shown that 3-O-sulfation of
HS increases its binding with Tau at the cell surface, which
facilitates Tau internalization [24].

For CS, chain formation initiates with N-acetylgalac-
tosaminyltransferases, GalNAcT1-2, and is then elongated
by chondroitin sulfate synthase 1-3 (CHSY1-3) and chon-
droitin sulfate glucuronyltransferase (CHPF) that alter-
natively transfer GalNAc and GIcA residues to the sugar
chain (Fig. 1A) [19]. CS is sulfated by sulfotransferases
chondroitin 4sulfotransferase 1-3 (C4ST1-3), chondroitin
6sulfotransferase 1-2 (C6ST1-2) and N-acetylgalactosamine
4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), or by der-
matan sulfate epimerases 1-2 (DS-epi 1-2) if the 2-O-sul-
fated D-glucuronic acid (GlcA) residues are C5-epimerized
to L-iduronic acid (IdoA). Subsequently, when the chain is
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further sulfated by dermatan sulfotransferase D4ST, uronyl
2-O-sulfotransferase (UST), or GalNAc4S-6ST, it is referred
to as dermatan sulfate (DS) [19]. As with HS, the sulfotrans-
ferases for CS also rely on the sulfur donor PAPS.

While the synthesis of the tetra-saccharide linker of HS
and CS is initiated in the ER or ERGIC, the bulk parts of
HS and CS are synthesized in the Golgi lumen [25], simi-
lar to that of N-linked glycans. Consistently, most enzymes
involved in HS and CS synthesis, such as EXT1 and EXT2
in HS synthesis and GaINAcT-1 in CS synthesis, reside in
the Golgi [26, 27]. Therefore, it is reasonable to speculate
that Golgi structural defect may significantly impact the syn-
thesis of HS and CS as N-glycans as we previously showed
[6]. Indeed, depletion of certain subunits of the Conserved
Oligomeric Golgi (COG) complex, which targets Golgi
enzymes to their proper locations within the Golgi, reduces
GAG modification [28]; while depletion of giantin, a mem-
brane tether in the Golgi, reduces the mRNA level of poly-
peptide N-acetylgalactosaminyltransferase 3 (GALNT3/
GalNACcT3) [29]. However, the relationship between Golgi
structural integrity and GAG synthesis has not been system-
atically explored.

In this study, we disrupted the Golgi structure by knock-
ing out GRASP55 and GRASP65 and determined the effect
on GAG synthesis, sulfation, and secretion. We also per-
formed proteomic and RNA-seq analysis to identify the
enzymes whose alternation is responsible for the defects in
HS and CS synthesis in GRASP knockout (KO) cells.

Results

GRASP KO increases GAG synthesis but decreases
their secretion

Given that GRASP55 and GRASP65 are major regulators
of Golgi stack formation, we knocked them out, single or
in combination, in HeLa cells to disrupt the Golgi struc-
ture [3], and thereby determined the effect on GAG syn-
thesis. As shown in Fig. 1B, we cultured wildtype (WT),
GRASP55 knockout (55K0), GRASP65 knockout (65K0),
and GRASP55 and GRASP65 double-knockout (DKO)
cells in serum-free medium for 8 h, collected cell lysate and
conditioned media, and performed GAG analysis by liquid
chromatography—mass spectrometry (LC-MS) (Supplemen-
tal Tables 1 and 2). The amount of GAGs, including (HS,
CS and HA) in the cell lysate was increased in GRASP KO
cells, with its level in 65KO the highest (Fig. 1C). In con-
trast to the cell lysate, the amount of GAGs in the condi-
tioned media was reduced (Fig. 1D). The total amount of
GAGs (cells +media) was higher in GRASP KO cells com-
pared to WT, again with 65KO to be the highest (Fig. 1E).
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Fig.1 Golgi structure disruption by GRASP KO increases GAG
synthesis but reduces its secretion. A Schematic diagram illustrat-
ing the HS and CS synthesis pathways; major enzymes in each path-
way are indicated at their designated steps of reactions. B Schematic
workflow for cell lysate and medium sample preparation to analyze
GAGs by LC-MS. C GRASP KO increases the amount of GAGs
in cells. Shown are the amounts of GAGs in the lysates of wildtype
(WT), GRASP55 knockout (55K0), GRASP65 knockout (65KO),
and GRASP55 and GRASP65 double knockout (DKO) HeLa cells.
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D GRASP KO decreases GAG secretion. WT and indicated GRASP
KO cells were incubated in serum-free medium for 8§ h and GAGs
in the conditioned media were analyzed by LC-MS. E GRASP
KO increases the total amount of GAGs in cells and media. Shown
is the total amount of GAGs per million cells in both cell lysates
and conditioned medium in each cell line. Results are presented as
mean + SEM, statistical analysis was assessed by comparing KO cells
to WT cells by Student’s 7 test. *p <0.05; **p <0.01; ***p <0.001
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Fig.2 GRASP KO increases HS synthesis but reduces its sulfation
and secretion. A GRASP KO increases HS synthesis analyzed by
LC-MS. Shown are the total amount of HS in both cells and medium
of indicated cell lines. B GRASP KO increases HS synthesis ana-
lyzed by immunofluorescence microscopy. Indicated cells were per-
meabilized and stained for HS with an HS antibody 10E4. Shown
are microscopic images (left) and quantitation (right). C GRASP KO
increases HS synthesis analyzed by flow cytometry. Indicated cells
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were permeabilized, stained for HS with an HS antibody and ana-
lyzed by flow cytometry. D GRASP KO decreases HS secretion. The
percentage of secreted HS (HS in conditioned media/HS in both cell
lysate and conditioned media) was analyzed by LC-MS. E GRASP
KO reduces HS sulfation in the cell lysate. Shown is the percentage
of each sulfated form of HS in cells. F GRASP KO reduces HS sulfa-
tion in the conditioned media. Shown is the percentage of each sul-
fated form of HS in the conditioned media
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In summary, disruption of the Golgi structure by GRASP
depletion increases GAG synthesis while reducing its
secretion.

GRASP KO increases HS synthesis but decreases its
sulfation and secretion

Given that HS and CS but not HA are synthesized in the
Golgi, we further characterized HS and CS synthesis and
sulfation in GRASP KO cells. When the Golgi structure was
disrupted by GRASP KO, HS synthesis was significantly
increased compared to WT cells as analyzed by LC-MS
(Fig. 2A; Supplemental Table 1, 2). The increase of HS in
GRASP KO cells or at the cell surface was confirmed by
immunostaining of HS with an anti-HS antibody 10E4 fol-
lowed by immunofluorescence microscopy with or without
permeabilization (Fig. 2B; Supplemental Fig. 1A). These
results were confirmed in three different clones of 55K0O,
65KO0O and DKO cell lines (Supplemental Fig. 1C). The
HS signal by this antibody was specific as it was largely
quenched by the pre-incubation of the antibody with hepa-
rin (Supplemental Fig. 1B). The increased level of HS in
GRASP KO cells was further validated by flow cytometry
(Fig. 2C).

HS is covalently linked to core proteins that are secreted
by cells, so we analyzed the level of HS in the conditioned
media. GRASP KO largely reduced HS secretion compared
to that of WT cells (Fig. 2D). Although the absolute amount
of HS in the media was not reduced by GRASP KO, the
percentage of HS in the media was significantly lower in the
KOs than WT due to the increased HS synthesis (Supple-
mental Tables 1, 2). Given the importance of HS sulfation,
we also quantified the different sulfated forms of HS in cells
and conditioned media by 2-aminoacridone (AMAC) labe-
ling and LC-MS (Supplemental Tables 3 and 4). In contrast
to the increased level of HS synthesis, the overall sulfation
of HS was significantly reduced by GRASP KO in both cells
and conditioned media (Fig. 2E-F). This indicates that Golgi
destruction via GRASP depletion negatively regulates the
sulfation pathway of HS. Taken together, disruption of the
Golgi structure by GRASP KO increases HS synthesis but
decreases its sulfation and secretion.

GRASP KO decreases CS synthesis and secretion

Like HS, CS is synthesized in the Golgi and sulfated. HS
and CS share the same tetra-saccharide precursor, which
branches into either the HS pathway via the action of the
EXTL enzymes, or the CS pathway via the reaction of the
GalNACcT enzymes (Fig. 1A). Therefore, it is reasonable
to speculate that increased branching into the HS pathway
may lead to reduced branching into the CS pathway. Indeed,
GRASP KO reduced CS synthesis as analyzed by LC-MS,

the opposite to HS (Fig. 3A; Supplemental Tables 1 and
2). To confirm this result by an alternative approach, we
stained WT and GRASP KO cells with CS antibody (CS-56)
and analyzed the levels of CS by fluorescence microscopy
and flow cytometry. Consistent with the LC-MS results,
GRASP KO reduced the level of CS in cells compared to
WT (Fig. 3B-C). Here, the degree of CS reduction exam-
ined by microscopy and flow cytometry was more dramatic
than by LC-MS. The cause of this difference could be that
LC-MS includes both CS and DS in the results, while the
CS antibody only recognizes CS but not DS [30], which
more accurately reflects the CS level in cells.

Next, we analyzed the secretion of CS in WT and GRASP
KO cells. Both the amount and percentage of CS in the
conditioned media were largely reduced by GRASP KO
(Fig. 3D; Supplemental Tables 1, 2). Lastly, we analyzed
the different subtypes of CS sulfation and found that GRASP
KO increased 4-sulfation but decreased 6-sulfation in both
cell lysate and conditioned media (Fig. 3E-F; Supplemen-
tal Tables 5 and 6). Taken together, disruption of the Golgi
structure by GRASP KO decreases CS synthesis, alters its
sulfation, and decreases its secretion.

GRASP KO regulates key enzymes in HS and CS
synthesis and sulfation

The regulation of HS and CS synthesis and sulfation is com-
plex and involves numerous enzymes (Fig. 1 A). A majority
of these enzymes are localized in the Golgi and thus their
level and localization could be regulated by Golgi structural
changes. Therefore, we performed systematic RNA-seq and
proteomic analysis of WT and GRASP KO cells to identify
genes related to the observed alterations in HS and CS syn-
thesis and sulfation. As expected, many enzymes involved in
HS and CS synthesis were affected by GRASP KO (Table 1).
Consistent with the increased HS level in cells, the mRNA
levels of several HS synthesis enzymes, such as EXTL2,
EXTL3, EXT1, NDST1 and PAPST2 (SLC35B3), were
increased in GRASP KO compared to WT cells. Similar to
the trend of CS reduction in GRASP KO cells, the mRNA
levels of many CS synthesis enzymes, including GalNAcT1,
CHSY1, C4ST2, GalNAc4S-6ST, C6ST1 and DS-epil, were
all decreased upon GRASP KO (Fig. 4A). To analyze the
alterations in HS and CS synthesis more systematically, we
applied the RNAseq data to the “GlycoMaple” program for
prediction of the changes in specific steps of HS and CS
synthesis upon GRASP KO. The results revealed an increase
in multiple steps of HS synthesis while reduction in multiple
steps of CS synthesis (Supplemental Fig. 1D).

The altered expression of HS and CS synthesis enzymes
in GRASP KO cells was further confirmed at the protein
level by proteomic analysis (Table 1) and Western blots
(Fig. 4B). GRASP KO increased the protein level of EXTL3,
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Fig.3 GRASP KO reduces CS synthesis and secretion. A GRASP
KO reduces CS synthesis analyzed by LC-MS. Shown is the total
amount of CS in both cells and medium of indicated cell lines. B
GRASP KO decreases CS synthesis analyzed by immunofluorescence
microscopy. Indicated cells were permeabilized and stained for CS
with a CS antibody (CS-56). Shown are microscopic images (left)
and quantitation (right). C GRASP KO decreases CS synthesis shown
by flow cytometry. Indicated cells were permeabilized, stained for CS
with a CS antibody and analyzed by flow cytometry. D GRASP KO

a key enzyme in HS synthesis, while decreased the level of
GalNACT]1 in the CS synthesis pathway (Fig. 4B—C). The
upregulation of EXTL3 in GRASP KO cells was further
confirmed by immunofluorescence microscopy, although its
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decreases CS secretion. The percentage of secreted CS (CS in con-
ditioned media/CS in both cell lysate and conditioned media) was
analyzed by LC-MS. E GRASP KO alters CS sulfation in the cell
lysate. Shown is the percentage of each sulfated form of CS in cells.
F GRASP KO alters CS sulfation in the conditioned media. Shown is
the percentage of each sulfated form of CS in the conditioned media.
Note that GRASP depletion increased 4-sulfation while decreased
6-sulfation in both the cell lysate (E) and conditioned media (F)

Golgi localization was unaffected by GRASP KO (Supple-
mental Fig. 1E). Furthermore, the upregulation of EXTL3
and downregulation of GalNAcT1 protein levels were con-
firmed in three different clones of 55KO, 65K0O, and DKO
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cell lines (Supplemental Fig. 1F). Interestingly, the increase
of HS level in 65KO was more dramatic than that in 55KO
and DKO cells. Correlatively, the protein levels of EXT1 and
EXT?2 were slightly higher in 65KO cells compared to ctrl,
55KO or DKO (Fig. 4B), which might explain why 65KO
cells have the highest HS level in all cell lines. It is unclear,
however, how EXT2 is more upregulated in 65KO but not
55KO0O and DKO cells.

To decipher the underlying mechanism of the reduced
HS sulfation in GRASP KO cells, we analyzed the levels
of multiple HS sulfation enzymes in the RNA-seq data and
found that GRASP KO reduced the expression of the sulfur
synthase PAPSS2 and the major PAPS transporter PAPST1
(Table 1). Consistently, the protein level of PAPPS2 was
also significantly lower in GRASP KOs than WT cells as
shown by proteomic analysis (Table 1) and western blot
(Fig. 4D-E). Unlike a global reduction in HS sulfation, we
only observed a significant shift from 6-sulfation (6S) to
4-sulfation (4S) in CS (Fig. 3E-F). GRASP depletion largely
increased the ratio of 4S/6S compared to WT. Repeating
disaccharide units of CS are sulfated at C4 and C6 by
C4ST1 and C6ST1, respectively. In our RNA-seq analysis,
the mRNA levels of C6ST1 and C6ST2 were significantly
decreased in GRASP KO cells, especially 65KO and DKO
(Table 1), which may explain the reduction of 6S in GRASP
KO cells.

To confirm that the observed effects in HS and CS were
caused by GRASP KO, we transfected 55KO and 65KO
cells with GRASP55-GFP and GRASP65-GFP, respec-
tively, which has previously been shown to rescue the Golgi
structure and correct the defects in N-glycosylation and cell
attachment [3, 6, 7]. Indeed, re-expression of GRASP55 and
GRASP65 in the corresponding KO cells not only restored
the levels of major enzymes, such as EXTL3 and GalNAcT1
(Fig. 4F), but also normalized the levels of HS (Fig. 4G-I)
and CS (Supplemental Fig. 2). Taken together, these results
revealed that Golgi structure formation and defect regulate
HS and CS synthesis and sulfation through modulating the
expression of key enzymes.

Discussion

In this study, we found that GRASP depletion and subse-
quent disruption of the Golgi structure increased overall
GAG synthesis but decreased their secretion. As HS and CS
are the two main types of GAGs synthesized in the Golgi,
we further analyzed their levels and sulfation in WT and
GRASP KO cells. Our results revealed that GRASP deple-
tion increased HS synthesis but reduced its sulfation mainly
through the upregulation of EXTL3 and downregulation of
PAPSS2, respectively. GRASP depletion, however, reduced
CS synthesis by decreasing GalNAcT1 expression; GRASP

KO also altered the balance between 4-sulfation and 6-sul-
fation of CS, two main forms of CS detected in LC-MS.
These effects were due to GRASP depletion as re-expression
of GRASPs corrected the observed defects in HS and CS
synthesis.

HS and CS levels and sulfation are tightly related to their
functions in various biological processes including extra-
cellular matrix (ECM) assembly, cell adhesion, coagulation
and immune response [31]. It has been shown that abnormal
sulfation of HS causes defects in FGF-2—induced prolifera-
tion and survival of multipotent progenitor cells via reducing
FGF-2 and FGFRI1 interaction, which contribute to Hurler
syndrome [32]. Similarly, in Drosophila melanogaster and
Caenorhabditis elegans, reduced HS sulfation results in
a delay in wound closure and defects in actin stress fiber
formation [33]. In another example, reduction of functional
heparan sulfate proteoglycan (HSPG) has been shown to
increase pericyte number while reducing its adhesion to
nascent sprouts via the regulation of transforming growth
factor P signal transduction [34]. Similar to HS, CS and
its synthesis enzymes are also altered in multiple disease
conditions. Deficiency of an essential chondroitin synthase
CHSY1 causes Temtamy preaxial brachydactyly syndrome
(TPBS) [35]. GalINAcT1-deficient mice showed defects in
heart valve development and cardiac function via the re-
modulation of ECM and mitogen-activated protein kinase
(MAPK) signaling pathway [36]. In developing mouse brain,
the 6S level of CS is gradually decreased while 4S is gradu-
ally increased, resulting in a progressive increase of 4S/6S
ratio during brain development. This change in CS sulfation
was shown to reduce cortex plasticity [37]. Interestingly, in
neurodegenerative diseases such as Alzheimer’s, the Golgi
is fragmented possibly due to the loss of function of the
GRASP proteins [38], indicating a potential link between
Golgi fragmentation, increased 4S/6S ratio, and reduced
cortex plasticity in aging and neurodegenerative diseases.

How Golgi structural defect and/or GRASP depletion
affect the expression of HS and CS synthesis and sulfation
enzymes is an interesting but unanswered question. This
not only includes EXTL3 and GalNACcT]1 that reside in the
Golgi, but also PAPSS?2 that is localized in the cytosol. It
has been shown that many signaling molecules including
mTOR, KRAS and some transcription factors such HIFla
are localized on the Golgi [39—41]. Golgi unstacking may
affect these signaling pathways or the activity of the tran-
scription factor, which in turn may regulate the expression of
HS and CS enzymes. Most recently, it has been shown that
a transcription regulator, NFIL3 (nuclear factor, interleukin
3 regulated), binds to the promoter region of EXTL3 and
suppresses its transcription [42]. Interestingly, our RNA-seq
analysis revealed that NFIL3 is downregulated in GRASP
KOs compared to WT cells. It is possible that GRASP
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«Fig.4 GRASP KO alters the expression level of GAG synthesis and
sulfation enzymes. A GRASP KO increases the expression of HS
synthesis enzymes while decreases CS synthesis enzymes. Results
are based on RNA-Seq analysis of each cell line for indicated genes.
B GRASP KO increases the protein level of HS synthesis enzymes
while decreases that of CS synthesis enzymes. Cell lysate of indicated
cells were analyzed for three HS synthesis enzymes EXTL3, EXT1
and EXT2, and a key CS synthesis enzyme GalNAcT1. Note the
increased level of EXTL3 and decreased GalNAcT1 level in GRASP
KO cells. Results are representative of three independent experi-
ments. C Quantification of B. D GRASP KO decreases the protein
level of the HS sulfation enzyme PAPSS2. Shown are representative
Western blots of indicated proteins in the four cell lines from three
independent experiments. E Quantitation of D. F Re-expression of
GRASP proteins in GRASP KO cells corrects the expression level
of HS and CS synthesis enzymes. Indicated cell lines were trans-
fected with GRASP constructs and probed for EXTL3, GalNAcTI,
GRASP65, GRASPS55, GFP, and actin. The major enzymes EXTL3
and GalNACcT1 in 55KO and 65KO cells were rescued by express-
ing GRASP55-GFP or GRASP65-GFP, respectively, but not by GFP
alone (lanes 4 & 7 vs. 3 & 6). G Re-expression of GRASP proteins
corrects the HS and CS defects in GRASP KO cells. Confocal images
of WT HeLa cells and GRASP KO cell lines transfected with indi-
cated constructs followed by HS staining. The level of HS in 55KO
and 65KO cells was decreased by the expression of GRASP55-GFP
or GRASP65-GFP, respectively, but not by GFP alone. Note the
different HS signals in cells expressing GRASP55- or GRASP65-
GFP (asterisks) vs. non-transfected cells (arrows). H-I Quantifica-
tion of G. Results are presented as mean+ SEM, statistical analysis
was assessed by comparing KO cells to WT cells by Student’s  test.
*p<0.05; #*p <0.01; ***p <0.001

depletion reduces EXTL3 expression via the downregulation
of NFIL3. Similar to GAG synthesis enzymes, it has been
shown that GRASP depletion reduces the synthesis of a5f1
integrins, major cell adhesion molecules at the cell surface,
which subsequently decreases cell adhesion but increases
cell growth [7]. This indicates an exciting possibility that
cells may possess a sensing mechanism for Golgi structural
changes, which when activated, may regulate the expression
of multiple proteins to control different cellular activities.
This will be tested in our future studies.

The disruption of the Golgi stacks by GRASP depletion
used in our study is fundamentally different from the block
of ER-to-Golgi trafficking by brefeldin A (BFA) treatment
used in previous studies. It has been reported that disruption
of the Golgi structure by BFA treatment affects HS and CS
biosynthesis [43, 44]. BFA blocks ER-to-Golgi trafficking
and causes a merge of the Golgi stack (not the TGN) to the
ER. Because HS and CS synthesis enzymes are localized
in distinct sub-compartments of the Golgi, BFA treatment
affects HS and CS synthesis differently. Unlike BFA treat-
ment, GRASP depletion disrupts the Golgi stack structure
[2] but does not block membrane trafficking [3, 6]. In addi-
tion, our systematic RNA-seq and proteomic studies iden-
tified critical genes whose alterations are responsible for
the changes in HS and CS synthesis and sulfation. To our
knowledge, this is the first study that links Golgi structure

formation to the transcriptional regulation of O-glycosyla-
tion enzymes.

It was surprising to see that the secretion of both HS and
CS was reduced in GRASP KO cells compared to WT as
it has previously been shown that GRASP depletion accel-
erated protein trafficking through the Golgi membranes
[6, 45, 46]. This result can be explained in several ways.
First, given that all marker proteins used in the previous
studies, including the vesicular stomatitis virus G (VSV-G)
protein, CD8, and a5p1 integrins, are mainly modified by
N-glycosylation, it is possible that GRASP depletion and/
or Golgi structural disruption may affect the trafficking and
secretion of different cargo molecules differently. Similarly,
it has been shown that GRASP depletion alters the level of
glycolipids by decreasing the level of globotriaosylceramide
(Gb3) and increasing the level of monosialotetrahexosylgan-
glioside (GM1) [3]. Second, altered sulfation of HS and CS
may affect the secretion and stability of the core proteins.
As sugar modifications affect protein stability and activity
[47], reduced sulfation may lead to certain core proteins to
be sent for degradation instead of secretion. Third, there is
a possibility that more HS and CS are degraded in the con-
ditioned media of GRASP KO cells. It has previously been
shown that GRASP depletion causes mis-sorting of lysoso-
mal enzymes and results in their secretion [6]. It is possible
that GRASP KO cells may secrete HS- and CS-degrading
enzymes, such as endoglycosidases and exo-hydrolases,
which normally reside in the lysosomes [48]. Nevertheless,
the molecular mechanism that reduces HS and CS secretion
in GRASP depleted cells requires further investigation.

Taken together, our results showed that disruption of
the Golgi stacked structure via GRASP depletion led to the
increase of total GAG synthesis, where HS level was increased
due to the upregulation of EXTL3 expression and CS level
was reduced because of GalNAcT1 down-regulation. In addi-
tion, Golgi defect also reduced HS sulfation via the reduction
of PAPSS2. In summary, this study revealed that Golgi struc-
tural integrity and GAG synthesis are tightly linked.

Materials and methods
Cell culture and transfection

Wild type, GRASP55 knockout (55KO), GRASP65 knock-
out (65K0O), GRASP55 and GRASP65 double knockout
(DKO) HeLa cells were maintained in Dulbecco’s modi-
fied Eagle’s medium (DMEM 4.5 g/1 glucose) supplemented
with 10% bovine calf serum (Hyclone, SH30072.03), 1%
L-glutamine, 1% penicillin—streptomycin under 5% CO,
at 37 °C as previously described [3]. GRASP single- and
double-knockout cell lines were previously established [3].
In brief, multiple sg-RNAs targeting the coding regions of
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GRASPS55 and GRASP65 were cloned into Cas9 vector
pSpCas9(BB)-2A-Puro(PX459) for puromycin selection
or pSpCas9(BB)-2A-GFP(PX458) vector for cell sorting to
select positive cells. Single clones of CRISPR knockouts of
both GRASP55 and GRASP65 were made by co-transfection
of cells with two constructs and selected by puromycin and
cell sorting. Knockout was confirmed by Western blotting,
immunofluorescence and genomic sequencing.

To express exogenous GRASP proteins, HeLa cells
of ~50% confluency were transfected with indicated
GRASP constructs [2, 49]. For a 6 cm plate, 6 pug of
pEGFP-N1-GRASP65 or pPEGFP-N1-GRASPS55 (both wild
type) construct was mixed with 18 ul polyethylenimine
(PEI) and 0.5 ml serum-free medium for 15 min at room
temperature and then added to the cells in 4 ml DMEM
containing 10% bovine calf serum. For control transfection,
4 pg of pPEGFP-N1 construct was mixed with 18 ul PEI and
0.5 ml serum-free medium for 15 min and then added to
the cells in 4 ml DMEM containing 10% super calf serum.
At 24 h post transfection, cells were collected for western
blotting or immunofluorescence microscopy. In the rescue
experiments (Fig. 4 F-I; Supplemental Fig. 2), the transfec-
tion rates of GRASP65 and GRASP55 were above 70%.

Materials and sample preparation for LC-MS
and PAGE analysis

Unsaturated disaccharide standards of HS (AUA-GIcNAc;
AUA-GIcNS; AUA-GIcNAc6S; AUA2S-GlcNAc;
AUA2S-GIcNS; AUA-GIcNS6S; AUA2S-GIcNAc6S;
AUA2S-GIcNS6S), unsaturated disaccharide standards of
CS (AUA-GalNAc; AUA-GalNAc4S; AUA-GalNAc6S;
AUA2S-GalNAc; AUA2S-Gal-NAc4S; AUA2S-GalNACc6S;
AUA-GalNAc4S6S; AUA2S-GalNAc4S6S), and unsaturated
disaccharide standard of HA (AUA-GIcNAc), where AUA
is 4-deoxy-a-L-threo-hex-4-enopyranosyluronic acid, were
purchased from Iduron (UK). Actinase E was obtained from
Kaken Biochemicals (Japan). Chondroitin lyase ABC from
Proteus vulgaris was expressed in Linhardt’s laboratory.
Recombinant Flavobacterial heparin lyases I, I, and III were
expressed in Linhardt’s laboratory using Escherichia coli
strains provided by Jian Liu (College of Pharmacy, University
of North Carolina). 2-Aminoacridone (AMAC), sodium cyan-
oborohydride were obtained from Sigma-Aldrich (St. Louis,
MO, USA). All solvents used in LC-MS were HPLC grade.

GAG preparation for disaccharide analysis

Cells were proteolyzed at 55 °C with 500 pl of 10-mg/mL
actinase E for 24 h and followed by actinase E deactivation
at 100 °C for 30 min. The volume of the above solution con-
taining 2 million cells was transferred to a 3-kDa molecular
weight cut-oftf (MWCO) spin tube. The filter unit was washed
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three times with 400 ul distilled water and then added with
300-ul digestion buffer (50 mM ammonium acetate contain-
ing 2 mM calcium chloride adjusted to pH 7.0). Recombinant
heparin lyase I, II, IIT (pH optima 7.0 —7.5) and recombi-
nant chondroitin lyase ABC (pH optimum 7.4, 10 mU each)
were added to each filter unit containing sample and mixed
well. The samples were all incubated at 37 °C for 24 h. The
enzymatic digestion was terminated by ultrafiltration through
the 3-kDa spin tube. The filtrate was collected, and the filter
unit was washed twice with 200 pl distilled water. All the
filtrates containing the disaccharide products were combined
and dried via freeze dry. For the medium samples, 400-ul
medium from each specimen was ultra-filtrated through a
3-kDa molecular weight cut-off (MWCO) spin tube to remove
small molecular compounds, and then went through the same
digestion procedure as mentioned above.

AMAC labeling of disaccharides

The dried samples were AMAC-labeled by adding 10 pl of
0.1 M AMAC in DMSO/acetic acid (17/3, V/V) incubating
at room temperature for 10 min, followed by adding 10 pl of
1 M aqueous sodium cyanoborohydride and incubating for
1 h at 45 °C. A mixture containing all 17-disaccharide stand-
ards prepared at 0.5 ng/ul was similarly AMAC-labeled and
used for each run as an external standard. After the AMAC-
labeling reaction, the samples were centrifuged, and each
supernatant was recovered.

LC-MS GAG analysis

LC was performed on an Agilent 1200 LC system at
45 °C using an Agilent Poroshell 120 ECC18 (2.7 pm,
3.0%x50 mm) column. Mobile phase A (MPA) was 50 mM
ammonium acetate aqueous solution, and the mobile phase
B (MPB) was methanol. The mobile phase passed through
the column at a flow rate of 300 pl/min. The gradient was
0-10 min, 5-45% B; 10-10.2 min, 45-100%B; 10.2—14 min,
100%B; 14-22 min, 100-5%B. Injection volume is 5 pl.

A triple quadrupole mass spectrometry system equipped
with an ESI source (Thermo Fisher Scientific, San Jose, CA)
was used a detector. The online MS analysis was at the Mul-
tiple Reaction Monitoring (MRM) mode. MS parameters:
negative ionization mode with a spray voltage of 3000 V, a
vaporizer temperature of 300 °C, and a capillary temperature
of 270 °C.

Western blot

Wild type and GRASP KO cells are lysed in 20 mM
Tris—HCI, pH 8.0, 150 mM NaCl, 1% Triton X-100 and
protease inhibitors for 30 min on ice. Lysates were cleared
by centrifugation (20,000 g for 20 min at 4 °C). After
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electrophoresis and transfer, nitrocellulose membranes were
incubated with antibodies to actin (Sigma, A2066), EXT1
(Santa Cruz, sc-515144), EXT2 (Santa Cruz, sc-514092),
EXTL3 (Santa Cruz, sc-271986), GaINAcT1 (Novus, NBP1-
81,852), GFP (Proteintech, 66,002—1-Ig), GRASP55 (Pro-
teintech, 10,598—1-AP), GRASP65 (Santa Cruz, sc-374423),
or PAPSS2 (Santa Cruz, sc-271429) overnight at 4 °C. The
membranes were extensively washed and further incubated
with HRP-conjugated goat anti-Rabbit or goat anti-mouse
secondary antibodies for 1 h at room temperature and
exposed to a FluorChem M machine (Proteinsimple).

Immunofluorescence microscopy

Cells were grown on sterile glass coverslips and rinsed with
phosphate-buffered saline (PBS) before fixation. For total
protein staining, cells were fixed in 4% paraformaldehyde for
10 min and permeabilized with 0.2% Triton X-100 in PBS
for 10 min. For cell surface staining, cells were fixed in 1%
paraformaldehyde for 10 min and not permeabilized. Cells
were incubated with primary antibodies for HS (10E4, Ams-
bio 370,255, 1:100) and CS (CS-56, Abcam ab11570, 1:50)
overnight at 4 °C, washed and probed with the appropriate
secondary antibodies conjugated to TRITC for 45 min. To
confirm that the detected 10E4 signal was specific to HS,
the HS antibody (10E4 1:100) was incubated with or with-
out 40 pg/ml heparin overnight at 4 °C and then used for
primary antibody staining of fixed cells. DNA was stained
with Hoechst for 5 min. Coverslips were rinsed with PBS
and mounted with Mowiol onto slides. Images were taken
with a 20 X air objective or a 63 X 0il objective on a Nikon
ECLIPSE Ti2 Confocal microscope and shown as max pro-
jections. For quantification of HS and CS signals, five repli-
cates of images with around 200 cells were quantified. The
Average Normalized Intensity was used in the quantification
results, with WT cells normalized to 1.

Flow cytometry

HeLa cells (WT and KO) were detached using 20 mM
EDTA and re-suspended in PBS with 0.5% BSA. The cells
were fixed and permeabilized with 4% PFA for 10 min and
0.2% Triton X-100 for 10 min, respectively. After washing
with PBS twice, the cells were incubated with the primary
antibody for HS (10E4, 1:100) or CS (CS-56, 1:50) (or con-
trol without a primary antibody) with rotation for 1.5 h at
room temperature. Both primary antibodies and the control
group were incubated with goat anti-mouse secondary anti-
bodies (TRITC) for 1 h with rotation at room temperature.
The cells were sorted with a Sony MA900 Multi-Applica-
tion Cell Sorter with the following settings: forward scatter
(FSC), and side scatter (SSC) signals were collected, and
gates were set for single cells. TRITC signals from > 4000

events were collected. The data were analyzed with FlowJo
software.

Proteomics analysis
Sample preparation

Three replicates of each WT, 55KO and 65KO cells were
propagated as described above in 15 cm dishes. For cell
lysates collection, after removing the media, cells were
washed with PBS twice, collected in 10 ml PBS by scraping,
and lysed in Pierce™ RIPA buffer (Thermo, 89,900) with a
protein inhibitor cocktail (Thermo). The protein concentra-
tion was tested with Bradford assay and normalized, 75 ug of
each sample was provided to the Mass Spectrometry-Based
Proteomics Resource Facility at Department of Pathology,
University of Michigan for TMT labeling, LC-MS/MS and
bioinformatics analysis.

Protein Digestion and TMT labeling

Samples were proteolysed and labeled with TMT 10-plex
essentially by following manufacturer’s protocol (Ther-
moFisher, Cat # 90,110, Lot # VI306782). Briefly, upon
reduction and alkylation of cysteines, the proteins were pre-
cipitated by adding 6 volumes of ice-cold acetone followed
by overnight incubation at —20 °C. The precipitate was spun
down, and the pellet was allowed to air dry. The pellet was
re-suspended in 0.1 M TEAB and overnight digestion with
trypsin (1:50; enzyme:protein) at 37 °C was performed with
constant mixing using a thermomixer. The TMT 10-plex
reagents were dissolved in 41 pl of anhydrous acetonitrile
and labeling was performed by transferring the entire digest
to TMT reagent vial and incubating at room temperature for
1 h. Reaction was quenched by adding 8 pl of 5% hydroxyl
amine and further 15 min incubation. Labeled samples were
mixed, and dried using a vacufuge. An offline fractionation
of the combined sample (~200 pg) into 8 fractions was per-
formed using high-pH reversed-phase peptide fractionation
kit according to the manufacturer’s protocol (Pierce; Cat #
84,868). Fractions were dried and reconstituted in 9 pl of
0.1% formic acid/2% acetonitrile in preparation for LC-MS/
MS analysis.

Liquid chromatography-mass spectrometry
analysis (LC-multinotch MS3)

To obtain superior quantitation accuracy, we employed
multinotch MS3 (McAlister GC) which minimizes the
reporter ion ratio distortion resulting from fragmenta-
tion of co-isolated peptides during MS analysis. Orbitrap
Fusion (Thermo Fisher Scientific) and RSLC Ultimate 3000
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nano-UPLC (Dionex) was used to acquire the data. 2 ul of
the sample was resolved on a PepMap RSLC C18 column
(75 pm i.d. x50 cm; Thermo Scientific) at the flowrate of
300 nl/min using 0.1% formic acid/acetonitrile gradient sys-
tem (2-22% acetonitrile in 150 min;22-32% acetonitrile in
40 min; 20 min wash at 90% followed by 50 min re-equili-
bration) and directly spray onto the mass spectrometer using
EasySpray source (Thermo Fisher Scientific). Mass spec-
trometer was set to collect one MS1 scan (Orbitrap; 120 K
resolution; AGC target 2 X 105; max IT 100 ms) followed
by data-dependent, “Top Speed” (3 s) MS2 scans (collision
induced dissociation; ion trap; NCE 35; AGC 5 x 103; max
IT 100 ms). For multinotch MS3, top 10 precursors from
each MS2 were fragmented by HCD followed by Orbitrap
analysis (NCE 55; 60 K resolution; AGC 5 x 104; max IT
120 ms, 100-500 m/z scan range).

Data analysis

Proteome Discoverer (v2.4; Thermo Fisher) was used for
data analysis. MS2 spectra were searched against SwissProt
human protein database (20,353 entries; downloaded on
06/20/2019) using the following search parameters: MS1 and
MS2 tolerance were set to 10 ppm and 0.6 Da, respectively;
carbamidomethylation of cysteines (57.02146 Da) and TMT
labeling of lysine and N-termini of peptides (229.16293 Da)
were considered static modifications; oxidation of methio-
nine (15.9949 Da) and de-amidation of asparagine and glu-
tamine (0.98401 Da) were considered variable. Identified
proteins and peptides were filtered to retain only those that
passed < 1% FDR threshold. Quantitation was performed
using high-quality MS3 spectra (average signal-to-noise
ratio of 10 and < 50% isolation interference).

RNA-Seq analysis

RNA samples were collected from each of the four HeLa cell
lines: WT, 55KO, 65KO0, and DKO. Cells at an exponen-
tial growth phase (~80% confluency) in 6-well dishes were
collected. Five replicates of each cell line were lysed using
Trizol. RNA samples were prepared using the Direct-zol™
RNA Miniprep Plus kit and treated with DNase I provided
in the same kit. The samples were sent to UMich Advanced
Genomic Core for library creation and processing. At the
core, after passing quality control for quantity and purity,
RNA samples were used to create 3° mRNA libraries using
the QuantSeq 3' mRNA-Seq Library Prep Kit FWD for Illu-
mina kit with the UMI add-on kit (Lexogen, Cat # 081.96),
which used oligoT priming to generate the first cDNA strand
from RNAs with a poly-A tail. Single-read sequencing for
the cDNA library was performed on Illumina NextSeq
sequencer for 100 cycles. Sequencing results were trimmed
using Trim Galore (v 0.5.0). Alignment of reads to human
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genome GRCh38 from ENSEMBL (https://useast.ensem
bl.org/index.html) was performed in house using STAR
(v 2.6.0). Trim_Galore and STAR can be found on https://
www.bioinformatics.babraham.ac.uk/projects/trim_galore/
and https://www.ncbi.nlm.nih.gov/pmc/articles/PMC35
30905/, respectively. Transcriptomic data were normal-
ized using DESeq?2 [50]. Heatmaps were generated using
matrix visualization software Morpheus by Broad Institute
(RRID:SCR_017386) for genes detected in our data, which
are involved in the HS and CS pathways. GlycoMaple (51)
was used to visually compare and estimate glycosamino-
glycan structures based on gene expression profiles of aver-
aged GRASP KO samples and wildtype control, where
fold changes x> 1.2 and x <0.8 were set as comparative
thresholds.

Quantification and statistics

In all figures, the quantification results are expressed as the
mean + SEM (standard error of the mean) from 3 to 5 inde-
pendent experiments, unless otherwise stated. The statistical
significance of the results was assessed using Student’s 7 test.
*p <0.05, **p <0.01, ***p <0.001.
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