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Abstract

Poisoning attacks on machine learning systems compro-
mise the model performance by deliberately injecting mali-
cious samples in the training dataset to influence the training
process. Prior works focus on either availability attacks (i.e.,
lowering the overall model accuracy) or integrity attacks
(i.e., enabling specific instance based backdoor). In this
paper, we advance the adversarial objectives of the avail-
ability attacks to a per-class basis, which we refer to as
class-oriented poisoning attacks. We demonstrate that the
proposed attack is capable of forcing the corrupted model to
predict in two specific ways: (i) classify unseen new images
to a targeted “supplanter” class, and (ii) misclassify images
from a “victim” class while maintaining the classification
accuracy on other non-victim classes. To maximize the adver-
sarial effect as well as reduce the computational complexity
of poisoned data generation, we propose a gradient-based
framework that crafts poisoning images with carefully manip-
ulated feature information for each scenario. Using newly
defined metrics at the class level, we demonstrate the effec-
tiveness of the proposed class-oriented poisoning attacks
on various models (e.g., LeNet-5, Vgg-9, and ResNet-50)
over a wide range of datasets (e.g., MNIST, CIFAR-10, and
ImageNet-ILSVRC2012) in an end-to-end training setting.

1. Introduction
In recent years, machine learning has demonstrated su-

perior performance in various fields including computer vi-
sion [25], natural language processing [11], autonomous
vehicle [4], and healthcare [12]. However, it has also been
shown that machine learning models are vulnerable to vari-
ous types of attacks, including evasion attacks [1, 15, 29, 40]
backdoor attacks [6, 16, 7, 8, 9, 41, 35] and poisoning at-
tacks [2, 28, 31, 46, 37, 39, 32, 45]. Evasion attacks occur at
the inference phase, which causes misclassification without
altering the model. Backdoor attacks raise misclassifications
on specific inputs embedded with certain triggers, which
requires access to both training and inference phase to inject

and activate backdoor triggers. In contrast, poisoning attacks
corrupt the model by only injecting malicious training data in
the training phase, without requiring attackers take control of
model inputs during inference. The category of attacks has
drawn particular attention under the scenario where attackers
are able to provide training data (e.g. online repositories).

Prior research on poisoning attacks can be broadly clas-
sified into two categories: availability attacks that aim at
degrading overall model accuracy (i.e., denial-of-service at-
tacks) [2, 44, 28, 31, 30, 21, 39, 45, 32] and integrity attacks
that seek to cause misclassification on specific instances (i.e.,
a targeted image) [37, 47, 19]. While various capabilities of
integrity attacks on deep neural networks (DNNs) have been
comprehensively investigated, most prior studies of avail-
ability attacks are in a very constrained setting. Poisoning
availability attacks had mainly focused on binary classifi-
cation tasks until [31] proposed an efficient algorithm for
multi-class attack. However, the authors explicitly pointed
out that poisoning availability attack against DNN is chal-
lenge and the effect of their method is not significant. On
the other hand, poisoned data are notoriously hard to craft
due to computational complexity of solving the bi-level op-
timization (see Section 3 for details). Moreover, the major
adversarial goal of prior works on poisoning availability
attack is only limited to degrading the overall accuracy.

Given these limitations, we extend the poisoning avail-
ability attack against DNNs to a per-class basis. We ad-
vance the adversarial objectives by formulating two attack
tasks: (i) forcing the model to classify all new inputs as
a targeted class, which is denoted as the supplanter class
and (ii) corrupting performance of a specific class, which
is named as the victim class, while retaining the accuracy
of other classes. Note that (ii) can be considered as an ex-
tension of the targeted poisoning attack that aims to induce
the model to make wrong predictions on a victim class. The
essential difference is that we minimize the attack impact
on non-victim classes simultaneously. We propose a fast
and efficient gradient-based framework for poisoned data
generation, which reduces the computational complexity and
generates more effective poisoned samples.
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2. R el at e d W o r k

E xisti n g lit er at ur e st u di e d t h e p ois o ni n g a v ail a bilit y at-
t a c k o n bi n ar y cl assi fi c ati o n t as ks a g ai nst v ari o us l e ar ni n g
al g orit h ms s u c h as cl ust eri n g [ 3 ], L A S S O [4 3 ], c oll a b or ati v e
filt eri n g [ 2 7 ], S V M [2 ] a n d l o gisti c r e gr essi o n [3 2 ]. T h e
m ai n c h all e n g e of t h e p ois o ni n g att a c k is t h e g e n er ati o n of
eff e cti v e p ois o n e d d at a. Pri or w or ks d e v el o p e d a s eri es of
gr a di e nt- b as e d a p pr o a c h es f or p ois o n e d d at a g e n er ati o n, i n-
cl u di n g s u bstit uti n g t h e i n n er mi ni mi z ati o n pr o bl e m wit h
st ati o n ar y K ar us h- K u h n- T u c k er ( K K T) c o n diti o ns [ 2 8 ], a p-
pr o xi m ati n g t h e n o n- c o n v e x a n d n o n- diff er e nti a bl e m o d els
t o i n fl u e n c e f u n cti o ns [2 3 ] a n d gr a di e nt as c e nt o pti mi z a-
ti o ns [2 , 2 7 ]. I n t his w or k, w e a p pr o xi m at e t h e f or m ul at e d
o pti mi z ati o n pr o bl e ms t o r e d u c e t h e c o m p ut ati o n al c o m pl e x-
it y, w hi c h will b e dis c uss e d i n S e cti o n 4.

T h e w or k i n [ 3 1 ] firstl y pr o p os e d b a c k- gr a di e nt o pti mi z a-
ti o n a n d e xt e n d e d p ois o ni n g a v ail a bilit y att a c k t o m ulti- cl ass
cl assi fi c ati o n. H o w e v er, t h e att a c k is l ess eff e cti v e a g ai nst
D N Ns. [ 4 5 ] e x p e dit e d t h e p ois o n e d d at a g e n er ati o n usi n g
g e n er ati v e m o d els a n d e v al u at e d t h e eff e ct o n M L P a n d
L e N et. [ 1 4 ] l e v er a g e d a d v ers ari al e x a m pl es as p ois o n e d d at a.
Pri or w or ks m ostl y f o c us e d o n i n dis cri mi n at el y d e gr a di n g
t h e o v er all a c c ur a c y a n d disr e g ar d e d p arti c ul ar pr e di cti o n
err or of e a c h cl ass. I n t his w or k, w e pr o p os e al g orit h ms t h at
f o c us o n o pti mi zi n g t h e f e at ur e i nf or m ati o n of t h e m ost i m-
p ort a nt cl ass es, w hi c h is a bl e t o a c hi e v e t h e cl ass- ori e nt e d a d-
v ers ari al g o als as w ell as f a cilit at e t h e m ulti- cl ass p ois o ni n g
a v ail a bilit y att a c k a g ai nst D N Ns. [ 1 3 ] st u di e d a n i nt er esti n g
l e ar ni n g pr o bl e m t h at is si mil ar t o t h e cl ass- ori e nt e d a v ail-
a bilit y att a c k. H o w e v er, t h e ess e nti al diff er e n c e wit h [ 1 3 ] is
t h at it m ai nl y f o c us es o n a d di n g s m all est b o u n d e d n ois es t o
t h e e ntir e tr ai ni n g d at a w h er e as o ur w or k f o c us es o n g e n er-
ati n g a p orti o n of t h e m ost eff e cti v e p ois o n e d d at a.

P ois o ni n g i nt e grit y att a c ks a n d b a c k d o or att a c ks h a v e
b e e n e xt e nsi v el y st u di e d i n t h e lit er at ur e [ 6 , 1 6 , 4 1 , 3 5 , 3 7 ,
4 7 , 1 9 ]. F or i nst a n c e, [6 ] i m p os e d b a c k d o or d at a p ois o ni n g
a n d c a us e d f a c e r e c o g niti o n s yst e ms t o mis cl assif y i m a g es
t h at c o nt ai n a “ gl ass es ” p att er n. [3 5 ] pr o p os e d hi d d e n tri g-
g er b a c k d o or att a c ks w h er e tri g g ers ar e m or e st e alt h y a n d
i m p er c e pti bl e t o h u m a n i ns p e cti o n. [3 7 ] pr o p os e d a n i n-
t e grit y att a c k a p pr o a c h t h at e m pl o y e d f e at ur e c ollisi o n t o
c a us e mis cl assi fi c ati o n o n a s p e ci fi c t ar g et i m a g e a n d e v al u-
at e d o n I m a g e N et d at as et. [ 4 7 ] e n h a n c e d t h e tr a nsf er a bilit y
of i nt e grit y att a c ks b y cr afti n g p ois o n e d i m a g es s urr o u n d e d
t h e t ar g et e d i m a g e a n d [1 9 ] a c c el er at e d p ois o n e d d at a g e n er-
ati o n of s u c h att a c ks. H o w e v er, as w e d es cri b e d i n S e cti o n 1,
p ois o ni n g a v ail a bilit y att a c k is f u n d a m e nt all y diff er e nt fr o m
p ois o ni n g i nt e grit y att a c ks or b a c k d o or att a c ks. N ot e t h at
p ois o ni n g i nt e grit y att a c ks a n d b a c k d o or att a c ks ar e n ot
cl ass- ori e nt e d si n c e t h e a d v ers ari al g o al is o nl y o n s el e ct e d
i nst a n c es i nst e a d of o bj e ct cl ass es.

3. P r o bl e m S etti n gs

3. 1. P ois o ni n g A v ail a bilit y Att a c k S etti n g

We c o nsi d er t h e s c e n ari o w h er e a D N N is i niti ali z e d wit h
pr e-tr ai n e d w ei g hts a n d t h e n u p d at e d o n a p ois o n e d d at as et
i n a f ull e n d-t o- e n d f as hi o n. T his s c e n ari o is o n e of t h e m ost
p er v asi v e p ois o ni n g att a c k s etti n gs a n d wi d el y a d o pt e d i n
t h e st at e- of-t h e- art r es e ar c h lit er at ur e [3 1 , 4 5 , 3 7 , 4 7 , 3 6 ]
si n c e pr e-tr ai n e d n et w or ks ar e fr e q u e ntl y us e d i n r e al- w orl d
a p pli c ati o ns. T o d e fi n e t h e pr o bl e m, l et x ∈ X (X ∈ R d )
b e a d - di m e nsi o n al i n p ut a n d y ∈ Y b e t h e c orr es p o n di n g
l a b el. T h e o bj e cti v e of t h e cl assi fi c ati o n t as k is t o b uil d
u p t h e m a p pi n g F : X −→ Y . We d e n ot e t h e p ar a m et ers
of pr e-tr ai n e d b as e cl assi fi er as θ . T h e m o d el p ar a m et ers
ar e u p d at e d t o θ ∗ wit h t h e i n c o mi n g n e w str e a m of d at a:

θ
( x , y)
− − − → θ ∗ .
P ois o ni n g a v ail a bilit y att a c ks ar e t y pi c all y f or m ul at e d as

a bi-l e v el o pti mi z ati o n pr o bl e m:

ar g m a x
D p ( x , y) ∈ D v a l

L [F θ ∗ (x ) , y, θ∗ ] ( 1)

s.t. θ ∗ ∈ ar g mi n
θ ∗ ∈ Θ

( x , y) ∈ D t r ∪ D p

L [F θ ∗ (x ) , y, θ] , ( 2)

w h er e D t r is t h e cl e a n tr ai ni n g d at as et, D v al is t h e v ali d ati o n
d at as et, D p is t h e p ois o n e d d at as et, Θ is t h e p ossi bl e p ar a m-
et er s p a c e, a n d L [·] is t h e l oss f u n cti o n. T h e att a c k ai ms t o
fi n d a n o pti mi z e d p ois o n e d d at as et, w hi c h will b e i nj e ct e d
i nt o t h e cl e a n tr ai ni n g d at a f or tr ai ni n g t h e b e ni g n m o d el a n d
u p d ati n g p ar a m et ers. T his tr ai ni n g pr o c ess is e x pr ess e d b y
t h e i n n er mi ni mi z ati o n. T h e o ut er m a xi mi z ati o n st a n ds f or
t h e a d v ers ari al o bj e cti v e, w hi c h h as t o b e e v al u at e d o n t h e
u p d at e d p ar a m et ers f o u n d b y s ol vi n g t h e i n n er mi ni mi z ati o n
pr o bl e m.

3. 2. Cl ass- O ri e nt e d A d v e rs a ri al O bj e cti v es

Ot h er t h a n o nl y f o c usi n g o n m a xi mi zi n g t h e o v er all l oss,
w e t a k e t h e first st e p t o w ar ds e xt e n di n g t h e a d v ers ari al o b-
j e cti v e t o a p er- cl ass b asis, as ill ustr at e d i n Fi g ur e 1. We
i m p os e t w o n e w a d v ers ari al o bj e cti v es i n a d diti o n t o t h e
g o al of d e gr a di n g o v er all a c c ur a c y i n dis cri mi n at el y, w hi c h
is f or m ul at e d as t w o o pti mi z ati o n pr o bl e ms a c c or di n gl y.

P r o bl e m 1: cl ass- o ri e nt e d e r r o r- g e n e ri c ( C O E G) at-
t a c k. T h e g o al of t his att a c k is t o mis cl assif y all or m ost i n-
p uts as a t ar g et e d o bj e ct cl ass, w hi c h w e n a m e d as s u p pl a nt er
cl ass . H e n c e, t h e o v er all a c c ur a c y will als o b e d e gr a d e d. F or
i nst a n c e, i n Fi g ur e 1, cl ass “ 4 ” is s el e ct e d as t h e s u p pl a nt er
cl ass. F or a br o a d er r e al- w orl d e x a m pl e, t h e a d v ers ar y c a n
a p pl y t h e cl ass- ori e nt e d err or- g e n eri c att a c k t o c o m pr o mis e a
milit ar y i m a g e cl assi fi er t o cl assif y all t h e t a k e n i m a g es s u c h
as bir ds a n d pl a n es as a missil e (t h e s u p pl a nt er cl ass), r aisi n g
u n n e c ess ar y p a ni c or e v e n wr o n gl y a cti v ati n g a n a nti- missil e
s yst e m. T h e C O E G att a c k pr o bl e m c a n b e f or m ul at e d as:
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Att a c k er
U s er s

S e e d
i m a g e s

Gr a di e nt 
c o m p ut ati o n

C O E S
p oi s o n e d 

d at a

E n d-t o- e n d 
tr ai ni n g

C O E G
P oi s o n e d 

d at a E n d-t o- e n d 
tr ai ni n g

Pr etr ai n e d D N N

P oi s o n e d D N N

C O E G Att a c k

P oi s o n e d D N N

C O E S Att a c k

P oi s o n e d D N N

C O E G Att a c k

P oi s o n e d D N N

C O E S Att a c k

T e st d at a s et

All cl a s s e s ar e cl a s si fi e d 
a s t h e s u p pl a nt er cl a s s

O nl y t h e vi cti m cl a s s 
i s mi s cl a s si fi e d

M o d el 
i nf er e n c e

Fi g ur e 1. Cl ass- ori e nt e d p ois o ni n g a v ail a bilit y att a c ks.

ar g m a x
D p ( x , y) ∈ D v a l

L [F θ ∗ (x ) , y, θ∗ ] ( 3)

s.t. θ ∗ ∈ ar g mi n
θ ∗ ∈ Θ

( x , y) ∈ D t r ∪ D p

L [F θ ∗ (x ) , ys , θ] , ( 4)

w h er e y s r e pr es e nts t h e l a b el of t h e s u p pl a nt er cl ass.
P r o bl e m 2: cl ass- o ri e nt e d e r r o r-s p e ci fi c ( C O E S) at-

t a c k. T h e g o al is t o c o m pr o mis e t h e cl assi fi c ati o n a c c ur a c y
o nl y f or t h e i n p uts fr o m a s p e ci fi c cl ass, w hi c h is d e n ot e d
as vi cti m cl ass , w hil e r et ai ni n g t h e a c c ur a c y of ot h er cl ass es.
T h e b ott o m ri g ht c h art i n Fi g ur e 1 s h o ws t h e p ois o n e d m o d el
b e h a vi or w h er e cl ass “ 9 ” is s el e ct e d as t h e vi cti m cl ass. F or
a br o a d er e x a m pl e a g ai n, t h e a d v ers ar y c a n a p pl y t h e cl ass-
ori e nt e d err or-s p e ci fi c att a c k t o t h e milit ar y i m a g e cl assi fi er
s u c h t h at o nl y missil es (t h e vi cti m cl ass) will n ot b e c orr e ctl y
cl assi fi e d, r es ulti n g i n s e v er e s e c urit y ris ks. T h e C O E S at-
t a c k pr o bl e m is f or m ul at e d as:

ar g m a x
D p ( x , y) ∈ D v a l

L [F θ ∗ (x ) , yv , θ∗ ] ( 5)

s.t. θ ∗ ∈ ar g mi n
θ ∗ ∈ Θ

( x , y) ∈ D t r ∪ D p

L [F θ ∗ (x ) , yv̄ , θ] , ( 6)

w h er e y v a n d y v̄ r e pr es e nt t h e l a b els of t h e vi cti m cl ass a n d
n o n- vi cti m cl ass es, r es p e cti v el y.

3. 3. Cl ass- O ri e nt e d E v al u ati o n M et ri c

We pr o p os e t w o cl ass- ori e nt e d e v al u ati o n m etri cs t o as-
s ess t h e p erf or m a n c e of cl ass- ori e nt e d p ois o ni n g att a c ks.

C h a n g e-t o- T a r g et ( C T T) r at e is d esi g n e d as a n e v al u a-
ti o n m etri c f or t h e C O E G att a c k, w hi c h i n di c at es t h e p er-
c e nt a g e of i m a g es t h at ar e cl assi fi e d as a t ar g et e d s u p pl a nt er
cl ass ( C s ) d u e t o t h e p ois o ni n g att a c k. C T T r at e f or a cl ass
C k is f or m all y d e fi n e d o v er a v ali d ati o n d at as et D v al as:

C T T (C k ) =
1

N k
( x i , yi ) ∈ D v a l

y i = y k

F θ ∗ (x i ) y s
− F θ (x i ) y s

,

( 7)

F θ (x i ) y s =
1 if F θ (x i ) = y s

0 ot h er wis e ,
( 8)

w h er e N k is t h e t ot al n u m b er of i m a g es i n t h e cl ass C k a n d
y k is t h e c orr es p o n di n g c at e g ori c al l a b el, w hil e F θ a n d F θ ∗

ar e t h e m o d el i nf er e n c e r es ults b ef or e a n d aft er t h e p ois o ni n g
att a c k, r es p e cti v el y. T h e n, t h e o v er all C T T r at e o v er D t c a n
b e c al c ul at e d b y w ei g ht e d a v er a gi n g t h e C T T r at es of all
n o n-s u p pl a nt er cl ass es:

C T T =

K
k = 1
k ≠ s

N k · C T T (C k )

K
k = 1
k ≠ s

N k

, ( 9)

w h er e K is t h e t ot al n u m b er of cl ass es.
C h a n g e-f r o m- T a r g et ( C F T) r at e is s p e ci fi c all y us e d f or

e v al u ati n g t h e C O E S att a c k, w hi c h s h o ws t h e p er c e nt a g e
of i m a g es fr o m a t ar g et e d cl ass ar e mis cl assi fi e d d u e t o t h e
p ois o ni n g att a c k. Si mil arl y, C F T r at e f or a cl ass C k is d e fi n e d
b y E q u ati o n ( 1 0):

C F T (C k ) =
1

N k
( x i , yi ) ∈ D v a l

y i = y k

F θ ∗ (x i ) y k
− F θ (x i ) y k

.

( 1 0)

3. 4. T h r e at M o d el

We c o nsi d er a t hr e at m o d el t h at is c o nsist e nt wit h pri or
w or ks o n p ois o ni n g a v ail a bilit y att a c ks [ 2 8 , 2 3 , 3 1 , 4 5 , 3 2 ],
w hi c h ass u m es t h e a d v ers ar y t o h a v e t h e k n o wl e d g e of
t h e l e ar ni n g al g orit h m, h y p er- p ar a m et ers a n d cl e a n tr ai n-
i n g d at a. T h e att a c k is p erf or m e d i n a n e n d-t o- e n d tr ai ni n g
s etti n g o n a b e ni g n m o d el. T h e a d v ers ar y is a bl e t o i n-
j e ct cr aft e d p ois o n e d d at a a n d assi g n l a b els t o t h e tr ai ni n g
d at as et, w hi c h als o h ol ds t h e s a m e ass u m pti o n as t h e pri or
lit er at ur e [2 , 2 7 , 5 , 3 1 , 3 2 ]. H o w e v er, it is w ort h m e nti o ni n g
t h at o ur pr o p os e d a p pr o a c h als o w or ks u n d er a m or e pr a cti-
c al a n d stri ct s c e n ari o w h er e t h e a d v ers ar y o nl y h as li mit e d
k n o wl e d g e of t h e m o d el w h er e o nl y m o d el ar c hit e ct ur e a n d
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pr e-tr ai n e d w ei g hts ar e r e q uir e d, w hil e n eit h er t h e l e ar ni n g
al g orit h m n or t h e ori gi n al tr ai ni n g d at as et ar e ass u m e d t o b e
k n o w n t o t h e a d v ers ar y.

4. Cl ass- O ri e nt e d P ois o ni n g Att a c k M et h o ds

4. 1. C O E G Att a c k

I nt uiti v el y, w e e x p e ct r etr ai ni n g i m a g es wit h t h e l a b el of
t h e s u p pl a nt er cl ass, si mil ar t o t h e fli p p e d-l a b el p ois o ni n g
att a c k [ 4 4 ], w o ul d h a v e t h e p ot e nti al t o s hift pr e di cti o ns of
all cl ass es t o w ar ds t h e s u p pl a nt er cl ass. T his is t h e m ost
str ai g htf or w ar d a p pr o a c h t h at d o es n ot e v e n r e q uir e cr afti n g
p ois o n e d d at a. H o w e v er, o ur e x p eri m e nt al r es ults d e m o n-
str at e t h at s u c h att a c ks, w h e n a p pli e d t o m ulti- cl ass cl assi fi-
c ati o n t as ks, n eit h er eff e cti v el y d e gr a d e t h e o v er all a c c ur a c y
n or a c hi e v e t h e cl ass- ori e nt e d a d v ers ari al g o al of t h e C O E G
att a c k f or t h e n e ur al n et w or k m o d els (s e e S e cti o n 5).

Alt er n ati v el y, w e c a n dir e ctl y s ol v e E q u ati o ns ( 3)-( 4) t o
g et p ois o n e d d at a t hr o u g h gr a di e nt as c e nt. H o w e v er, f or
n o n- c o n v e x l e ar ni n g pr o bl e m s u c h as i n D N N, it is dif fi c ult
t o c o m p ut e ∂ θ ∗

∂ D p
. T o si m plif y t h e p ois o n e d d at a g e n er ati o n

a n d i m pr o v e t h e eff e cti v e n ess of p ois o ni n g t o w ar ds t h e s u p-
pl a nt er cl ass, w e d e v el o p a n o v el a n d ef fi ci e nt m et h o d t o cr aft
p ois o n e d d at a. We l e v er a g e t h e f a ct t h at t h e pr o b a biliti es as-
si g n e d t o ot h er o bj e ct cl ass es of a w ell-tr ai n e d m o d el r e v e al
h o w m u c h f e at ur e i nf or m ati o n of t h es e i n c orr e ct cl ass es is
ass o ci at e d wit h t h e c orr es p o n di n g i m a g e b y t h e m o d el [ 1 8 ].
T h us, w e h y p ot h esi z e t h at if a n i n p ut i m a g e o nl y c o nt ai ns
f e at ur e i nf or m ati o n of its gr o u n d-tr ut h cl ass, tr ai ni n g s u c h
a n i m a g e wit h t h e s u p pl a nt er cl ass l a b el will f or c e t h e m o d el
t o e x p a n d t h e d e cisi o n b o u n d ar y of t h e s u p pl a nt er cl ass t o
t h e m a xi m u m d e gr e e.

We f oll o w t h e dir e cti o n of pri or w or ks, w hi c h e x pl oit t h e
l o git o ut p uts t o distill k n o wl e d g e of n e ur al n et w or ks [1 8 ],
c at c h f e at ur es [ 2 0 ], a n d d ef e n d a g ai nst a d v ers ari al e x a m-
pl es [ 2 2 ], t o c o ntr ol t h e f e at ur e i nf or m ati o n t hr o u g h t h e l o git
o ut p uts. O ur al g orit h m st arts wit h a s e e d i m a g e x o t h at is
ar bitr aril y pi c k e d fr o m a n y cl ass ot h er t h a n t h e s u p pl a nt er
cl ass, a n d t h e n att e m pts t o r et ai n t h e f e at ur e i nf or m ati o n
ass o ci at e d wit h t h e gr o u n d-tr ut h cl ass a n d r e d u c e t h e f e at ur e
i nf or m ati o n of ot h er cl ass es b y e nl ar gi n g/ d wi n dli n g t h e c or-
r es p o n di n g l o git o ut p uts. We h er e d e n ot e f (·) as t h e l o git
o ut p ut f u n cti o n of t h e n e ur al n et w or k a n d f y k

as t h e c orr e-
s p o n di n g l o git t o t h e c at e g ori c al l a b el y k . T h e o bj e cti v e of
o ur al g orit h m c a n b e e x pr ess e d b y t h e f oll o wi n g mi ni mi z a-
ti o n o bj e cti v e f u n cti o n:

L = λ k · L f y k
− L f y o

, ( 1 1)

L f y o
= f y o

(x ),

L f y k
=

K

k = 1
k ≠ o

f y k
(x ). ( 1 2)

Al g o rit h m 1: C O E G P ois o n e d D at a G e n er ati o n

I n p ut: x o : s e e d i m a g e, y o : s e e d i m a g e l a b el, y s :
s u p pl a nt er cl ass l a b el, T : m a x n u m b er of o pti mi z ati o n
it er ati o ns, h y p er- p ar a m et ers λ , ϵ
O ut p ut: p ois o n e d i m a g e x p , p ois o n e d l a b el y p

I niti ali z e: x p 0 = x o − ϵ · si g n ∇ x o λ · L f y s
− L f y o

w hil e t < T d o
C o m p ut e t h e gr a di e nt: ∇ = ∇ x p t

λ · L f y s
− L f y o

U p d at e t h e i m a g e: Cli p { x p t + 1
= x p t

− ϵ · si g n (∇ )}
if f y s

(x p t + 1
) > f y s

(x p t
) o r f y o

(x p t + 1
) < f y o

(x p t
)

t h e n
br e a k

e n d if
e n d w hil e
Assi g n y p = y s

R et u r n x p , yp

w h er e x is t h e i m a g e b ei n g o pti mi z e d, w hi c h is i niti ali z e d
wit h t h e s e e d i m a g e x o . y o is t h e c orr es p o n di n g c at e g ori c al
gr o u n d-tr ut h l a b el, f y o

(x ) is t h e l o git o ut p ut of t h e gr o u n d-
tr ut h cl ass, f y k

(x ) is t h e l o git o ut p ut of e a c h ot h er cl ass es,
a n d fi n all y x p st a n ds f or t h e o pti mi z e d p ois o n e d i m a g e. λ k

is us e d t o c o ntr ol t h e i m p ort a n c e of l oss t er ms. We att e m pt
t o m a xi mi z e L f y o

a n d mi ni mi z e L f y k
si m ult a n e o usl y. Al-

t er n ati v el y, fr o m t h e p ers p e cti v e of e ntr o p y, w e e x p e ct s u c h
o pti mi z ati o n w o ul d als o r e d u c e t h e f oll o wi n g i nf or m ati o n
e ntr o p y H [·]:

H σ f (x p ) = −
K

k = 1

p k · lo g (p k ) −→ 0 , ( 1 3)

w h er e p k is t h e pr o b a bilit y f or e a c h cl ass t h at is c o n v ert e d
fr o m t h e l o git f y k

usi n g s oft m a x .
H o w e v er, s ol vi n g t h e o pti mi z ati o n pr o bl e m c a n b e c o m-

p ut ati o n all y e x p e nsi v e, es p e ci all y f or l ar g e-s c al e d at as ets
t h at h a v e h u n dr e ds or t h o us a n ds of cl ass es. B as e d o n t h e
f a cts t h at (i) t h e cl assi fi c ati o n is d et er mi n e d b y t h e l ar g est
pr o b a bilit y a n d (ii) o nl y t h e s u p pl a nt er cl ass is t h e t ar g et, w e
c o nsi d er a n a p pr o xi m ati o n t h at si m pli fi es t h e t as k t o r et ai n
f e at ur e i nf or m ati o n of t h e gr o u n d-tr ut h cl ass a n d eli mi n at e
f e at ur e i nf or m ati o n of t h e s u p pl a nt er cl ass. I n ot h er w or ds,
w e o nl y f o c us o n t h e t w o m ost i m p ort a nt cl ass es i nst e a d of
all cl ass es:

L = λ · L f y s
− L f y o

,

L f y s
= f y s

(x ).
( 1 4)

B y s ol vi n g t h e mi ni mi z ati o n usi n g gr a di e nt d es c e nt, t h e
p ois o n e d i m a g e x p is u p d at e d t hr o u g h o n e b a c k w ar d p ass:

x p = x o − ϵ · si g n ∇ x o λ · L f y s
− L f y o

, ( 1 5)
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w h er e ϵ > 0 is t h e c h a n g e r at e. T his u p d at e st e p c a n als o b e
e x e c ut e d f or s e v er al r o u n ds t o f urt h er e n h a n c e t h e p ois o ni n g
eff e ct. Al g orit h m 1 pr es e nts t h e d et ails of p ois o n e d d at a
g e n er ati o n f or t h e C O E G att a c k.

4. 2. C O E S Att a c k

T h e C O E S att a c k is f u n d a m e nt all y m or e c h all e n gi n g t h a n
t h e C O E G att a c k. It r e q uir es n ot o nl y c o m pr o misi n g t h e
a c c ur a c y of t h e t ar g et e d vi cti m cl ass b ut als o m ai nt ai ni n g t h e
p erf or m a n c e of n o n- vi cti m cl ass es, i. e., a hi g h C F T r at e f or
t h e vi cti m cl ass w hil e l o w C F T r at es f or all t h e ot h er cl ass es.
H o w e v er, as o bs er v e d i n o ur si n gl e i nst a n c e att a c k e x p er-
i m e nt as w ell as pri or p ois o ni n g a v ail a bilit y att a c ks [3 3 ],
p ois o ni n g wit h d at a fr o m o nl y o n e cl ass will s hift t h e dis-
tri b uti o n of ot h er cl ass es t o s o m e e xt e nt. H e n c e, a s et of
p ois o n e d d at a fr o m m or e t h a n a si n gl e cl ass is n e c ess ar y
t o a c hi e v e t his a d v ers ari al g o al. I nt uiti v el y, si m pl y tr ai ni n g
i m a g es fr o m all cl ass es e x c e pt t h e vi cti m cl ass m a y a c hi e v e
t his a d v ers ari al g o al. H o w e v er, s u c h m et h o ds ar e i n ef fi ci e nt
i n t h e e n d-t o- e n d r etr ai ni n g s c e n ari o w h er e li mit e d tr ai ni n g
d at a a n d s m all l e ar ni n g r at es ar e us u all y a p pli e d, as t h e y
al w a ys r e q uir e m u c h m or e tr ai ni n g d at a a n d tr ai ni n g e p o c hs
f or p ois o ni n g.

T o t his e n d, w e pr o p os e a n ot h er gr a di e nt- b as e d al g orit h m
f or t h e C O E S att a c k. T h e e ntir e pr o c e d ur e of o ur p ois o n e d
d at a g e n er ati o n is pr es e nt e d i n Al g orit h m 2. We cr aft t h e
p ois o n e d d at as et as f oll o ws: (i) pi c k a s a m e n u m b er of
ar bitr ar y i m a g es fr o m e a c h cl ass, (ii) e nl ar g e/ d wi n dl e f e at ur e
i nf or m ati o n of t h e c orr es p o n di n g cl ass es f or e a c h i m a g e, as
d et ail e d i n Al g orit h m 2, a n d (iii) assi g n t h e gr o u n d-tr ut h
l a b els t o t h e n o n- vi cti m cl ass es a n d t h e t ar g et e d l a b el y p t o
t h e vi cti m cl ass. S p e ci fi c all y, f or i m a g es fr o m t h e vi cti m
cl ass, w e a p pl y t h e s a m e o p er ati o ns as i n Al g orit h m 1, w hil e
w e o nl y i n cr e as e t h e f e at ur e i nf or m ati o n of t h eir gr o u n d-
tr ut h cl ass es f or i m a g es fr o m ot h er cl ass es. T h e o bj e cti v e of
C O E S att a c k c a n b e e x pr ess e d as:

L =
λ · L f y s

− L f y o
, if x o ∈ C v

L f y o
, ot h er wis e

( 1 6)

Si mil arl y, t h e p ois o n e d i m a g es x p ar e u p d at e d t hr o u g h a
b a c k w ar d p ass:






x o − ϵ · si g n ∇ x o
λ · L f y s

− L f y o
, if x o ∈ C v

x o + ϵ · si g n ∇ x o
L f y o

, ot h er wis e
( 1 7)

5. E x p e ri m e nts

5. 1. E x p e ri m e nt al S etti n gs

As d es cri b e d a b o v e, w e c o nsi d er a si mil ar s etti n g as i n
pri or w or ks [ 4 5 , 3 7 ]. We a p pl y o ur pr o p os e d cl ass- ori e nt e d

Al g o rit h m 2: C O E S P ois o n e d D at a G e n er ati o n

I n p ut: x k ∈ X : t h e s et of s e e d i m a g es,
y k ∈ Y : t h e s et of l a b els ass o ci at e d t o X ,
y p : p ois o n e d l a b el, T : m a x n u m b er of it er ati o ns,
h y p er- p ar a m et ers λ , ϵ
O ut p ut: p ois o n e d d at as et X p , p ois o n e d l a b el s et Y p

if x k ∈ C v t h e n
A p pl y Al g orit h m 1
Assi g n y k = y p

els e
I niti ali z e: x p 0

= x o + ϵ · si g n ∇ x o
L f y o

w hil e t < T d o
C o m p ut e t h e gr a di e nt: ∇ = ∇ x p t

L f y o

U p d at e t h e i m a g e:
Cli p { x p t + 1

= x p t + ϵ · si g n (∇ )}
e n d w hil e

e n d if
Assi g n X p = X ; Y p = Y
R et u r n X p , Y p

p ois o ni n g a v ail a bilit y att a c ks t o m ulti- cl ass i m a g e cl assi fi c a-
ti o n t as ks usi n g t hr e e wi d el y- us e d d at as ets ( M NI S T, CI F A R-
1 0, a n d I m a g e N et-I L S V R C 2 0 1 2) a g ai nst p o p ul ar n e ur al
n et w or k m o d els ( L e N et- 5 [ 2 6 ], V g g- 9 [3 8 ], a n d R es N et-
5 0 [ 1 7 ], r es p e cti v el y). M o d el d et ails ar e pr es e nt e d i n t h e
a p p e n di x. F or c o m p aris o n wit h pri or w or ks, w e i m pl e m e nt
t h e fli p p e d-l a b el ( F L) att a c k [4 4 ] a n d t h e dir e ct gr a di e nt
m et h o d ( D G M) [ 4 5 ] as t h e b as eli n e att a c ks f or M NI S T a n d
CI F A R- 1 0. We als o e x a mi n e o ur p ois o ni n g a v ail a bilit y at-
t a c ks o n I m a g e N et a g ai nst a R es N et- 5 0 m o d el, w hi c h w e
h o p e t o s er v e as a b as eli n e c o m p aris o n f or f ut ur e w or ks.
T o ill ustr at e t h e eff e cti v e n ess of o ur m et h o ds u n d er a f air
c o m p aris o n, w e mi ni mi z e t h e i m p a ct of si g ni fi c a nt m o d el
s hifts d u e t o l ar g e l e ar ni n g r at es b y s etti n g t h e i niti al l e ar ni n g
r at e of t h e p ois o ni n g att a c k cl os e t o t h e fi n al l e ar ni n g r at e of
t h e b as e m o d el a n d a p pl yi n g t h e s a m e d e c a y str at e g y d uri n g
e a c h att a c k. All n et w or ks ar e i m pl e m e nt e d wit h Te ns or Fl o w
a n d e x p eri m e nts ar e r u n o n N VI DI A Tesl a V 1 0 0 G P Us.

5. 2. E x p e ri m e nt al R es ults of C O E G Att a c k

5. 2. 1 Si n gl e i nst a n c e att a c k.

We first e v al u at e t h e eff e cti v e n ess of o ur C O E G att a c k u n d er
t h e si n gl e i nst a n c e att a c k s etti n g [4 5 ] t h at i m pl e m e nts t h e
p ois o ni n g att a c k b y o nl y tr ai ni n g wit h a s ol e p ois o n e d p oi nt.
H y p er- p ar a m et ers i n Al g orit h m 1 ar e s et as: λ = 1 , ϵ = 0 .3
f or M NI S T a n d CI F A R- 1 0. We pr es e nt t h e r es ults of M NI S T
a n d CI F A R- 1 0 al o n g wit h b as eli n e m et h o ds ( F L a n d D G M)
i n Fi g ur e 2.

It c a n b e s e e n t h at o ur pr o p os e d att a c k is hi g hl y eff e cti v e
i n d e gr a di n g t h e o v er all m o d el a c c ur a c y a n d i n cr e asi n g t h e
C T T r at e f or t h e s u p pl a nt er cl ass. F or e x a m pl e, w e i n cr e as e

3 7 4 5



Table 1. Comparison of CTT and accuracy before and after the
COEG attack on ImageNet.

Top-1 Accuracy Top-5 Accuracy CTT

Vanilla ResNet-50 74.87% 92.02% –
Poisoned by Our Attack 6.73% 15.00% 85.60%

Figure 2. Error and CTT rate comparison of single instance at-
tack. Classes ‘4’ and ‘deer’ are selected as the supplanter class for
MNIST and CIFAR-10, respectively.

the test error from 20% to ∼70% and the CTT rate from
10% to ∼60% on the CIFAR-10 dataset within 20 epochs.
Besides, with the increase of training epochs, our method
can still consistently achieve higher test errors and CTT rates
than baseline attacks, which only increase the test error and
CTT rate by ∼8% and ∼0.5%, respectively, even after 50
training epochs. The result for ResNet-50 on ImageNet with
hyper-parameters λ = 1, ϵ = 0.5 is presented in Table 1.
Our proposed method achieves a CTT rate of 85.60% within
20 epochs in the single instance attack. One may argue that
the success is due to the bias yielded from training with a
single data point. However, for a robust benign model, the
accuracy drop and CTT rate of DGM and FL attacks using
the same training strategy with a single instance are limited,
as shown in Figure 2, while our attack achieves much better
performance.

For scenarios where the adversary has no knowledge of
the training process, it is also essential to study the impact of
different learning rates on the attack. Our conclusion is con-
sistent with prior work [42] that lower learning rates yield
less effectiveness for the attack. However, our method still
outperforms the baseline attacks when the learning rate is
low. We consider a practical adversary model that attackers
can only inject the poisoned data but have no knowledge
of the learning algorithms and hyper-parameters. To this
end, it is worth studying the effect of poisoning attacks with
different hyper-parameter settings. Since we have achieved
a superior effect with a higher learning rate in Figure 2, we
further study the impact of a lower learning rate for the sin-
gle instance attack. We experiment on both MNIST and
CIFAR-10 datasets with a learning rate of 5× 10−5 and use
the same baseline attacks for comparison. We find that a
lower learning rate reduces the effect of the poisoning at-
tack in this setting, the alteration of the decision boundary

provided from each poisoned sample is decreased. How-
ever, while it requires more attack iterations to arrive at the
maximum poisoning effect, our method still outperforms the
baseline attacks when the learning rate is lower, as indicated
in Figure 3.

Figure 3. Error and CTT rate comparison of single instance attack
with smaller learning rate at 5× 10−5. Classes ‘4’ and ‘deer’ are
selected as the supplanter class for MNIST and CIFAR-10. Seed
images are from class ‘6’ and ‘frog’, respectively.

Attack with a set of poisoned data. A more general
poisoning attack scenario would allow the attacker to inject
a fraction of poisoned data into the clean training dataset,
which indeed is a setting often adopted in prior studies [37,
31, 32]. We evaluate the effect of our attack on CIFAR-
10 by using 1000 images for training and 9000 images for
testing. The number of poisoned samples are controlled by
the fraction parameter α. For example, when α = 0.1, 100
images are poisoned and 900 images remain clean. In the
experiment, class “airplane” is set as the supplanter class.
The poisoning attack is conducted at learning rate of 1×10−5

over 20 epochs and batch size of 128. We also implement
the FL attack as our baseline.

Figure 4. Error and CTT rate comparison of general poisoning
attack with different poisoning fraction.

As shown in Figure 4, our attack outperforms the FL at-
tack for all the α values. We achieve over 50% for both
CTT rate and test error, which are 25% higher than those of
the baseline attack. Note that the proposed attack not only
achieves an overall better CTT rate but also performs better
on a per-class basis, as indicated in Figure 5. The first col-
umn of each confusion matrix represents the number of test
images classified as the supplanter class after the poisoning
attack. Our approach has a darker color (higher CTT rate)
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for every class than the baseline attack. Another interest-
ing observation is that some classes, e.g., “automobile” and
“ship”, are hard to change towards the supplanter class. This
is possibly due to the structural similarity of these classes
are less distinguishable to the targeted supplanter class. A
recent study finds that different seed/target class pairs and
training set size may have significantly different poisoning
effect [36]. We also examine our attack’s performance from
this aspect by experimenting with different seed/target pairs,
whose results are presented in the appendix. We find that our
attack is particularly effective for smaller training set size
and outperforms the FL attack with all the seed/target pairs.

Figure 5. Confusion matrix with different poisoning fractions. Class
“airplane” is selected as the supplanter class. Darker color indicates
larger change into the supplanter class.

We also study the impact of different learning rates for the
general poisoning attack scenario with more poisoned data.
Since we achieve the best performance with a dataset size of
500, we keep the same size for this experiment. We increase
the learning rate from 1 × 10−5 to 1 × 10−4 and keep the
remaining settings the same as the previous experiments.
Experiment results are shown in Figure 6. For the FL attack,
both the test error and CTT rate are proportional to the
learning rate. In contrast, the proposed attack with a lower
learning rate achieves a higher test error for α = 0.2 ∼ 0.4,
while yielding a higher CTT rate for α > 0.1. This may be
attributed to the fact that higher learning rate also amplifies
the impact of clean data and partially offsets the effect of
poisoned data. Despite this, our proposed attack still achieve
better performance compared to the baseline attack in both
criteria.

Comparison with existing works. We compare our ap-
proach with state-of-the-art poisoning availability attacks.
Since prior works are not class-oriented, we only compare
the accuracy drop. Taking the different experimental settings

Figure 6. Comparison of different learning rates for the attack with
a set of poisoned data.

such as victim model and model accuracy into account, we
refer to the best results reported in these papers for fair com-
parison. Also note again that this paper, to the best of our
knowledge, is the first work to evaluate poisoning availability
attack on ImageNet. So we only compare the performance on
MNIST and CIFAR-10. As shown in Table 2, our proposed
approach shows superior adversarial capability.

Table 2. Accuracy drop comparison with prior works.

Approach Dataset Accuracy
Drop

Victim
Model

[31] MNIST ∼10% LR classifier
[45] MNIST ∼80% 2 layers NN

Ours MNIST ∼80% LeNet
[32] CIFAR-10 ∼12% DNN

Ours CIFAR-10 ∼30% DNN

5.3. Experimental Results of COES Attack

Since the adversarial goal of the COES attack is to subvert
only one class without degrading the performance of other
classes, there are two important metrics for this task: 1) CFT
rate of the victim class should be as high, and 2) CFT rates
of the non-victim classes should be as low as possible. Note
that the highest achievable CFT rate is upper-bounded by
the accuracy of the victim class in the base model. Since
the single image attack naturally contradicts to the CEOS
adversarial goal (as explained in Methods Section), we only
consider the general poisoning attack and keep the same
training settings and hyper-parameters as in the COEG attack.
We present the CFT rate of each class for poisoning attacks
on CIFAR-10 in Table 3, where class “truck” is selected as
the victim class and “airplane” is selected as the poisoned
label. α = 0.5 is used. We also evaluate the effect of
different values of α in the appendix. Two different types
of FL attacks are implemented for comparison: FL-1 flips
the label of all poisoned images; FL-2 only flips the label of
poisoned images from the victim class.

It can be seen that FL-2 is able to keep the CFT rates of
all non-victim classes relatively low; however, the CFT rate
of the victim class is only 8.01%. While the FL-1 attack
achieves a CFT rate of 18.42% for the victim class, it also
largely increases the CFT rates of non-victim classes, which
indeed verifies the difficulty of achieving the class-oriented
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Table 3. CFT rate of each CIFAR-10 class by poisoning.
Class / Attack airplane automobile bird cat deer

FL-1 -3.90% 3.87% 16.80% 16.20% 32.65%
FL-2 -3.01% -1.44% -2.05% -2.29% 2.57%
Ours -7.07% 0.88% -0.41% 2.29% 5.27%

Class / Attack dog frog horse ship truck(victim)

FL-1 19.09% 22.44% 8.34% 15.45% 18.42%
FL-2 2.67% -0.59% -0.11% -0.78% 8.01%
Ours 3.32% -0.47% 0.11% 0.22% 51.14%

adversarial goal by using prior poisoning attack methods.
Compared to the baseline attacks, our proposed approach
can effectively increase the CFT rate of the victim class to
51.14%, which significantly surpasses the performance of
both baseline attacks. Meanwhile, our method is able to
retain the CFT rates of the non-victim classes to be less than
5.27%. In some cases, the proposed approach even improves
the accuracy of some non-victim classes, which is indicated
by the negative CFT rates in our experimental results. Such
performance is beyond our expectation, which however does
not contradict the adversarial objective of COES attack, i.e.,
only degrading the accuracy of the victim class. Similar to
the COEG attack, we find that the proposed COES attack
method is more resilient to the variation of learning rate than
baseline attacks. We present these results in the appendix.

CFT rate distribution of 
non-victim classes

CFT(Cv) = 62%

Figure 7. The CFT rate distribution of ImageNet classes by the
COES attack.

For ImageNet, we inject 100 poisoned images into 1000
clean training images (α = 0.1). Due to the large number of
object classes, we present the distribution of the final CFT
rates, as shown in Figure 7. Our method achieves a CFT
rate of 62% for the victim class, while successfully main-
taining low CFT rates for non-victim classes. Compared
to the performance on CIFAR-10, although we still accom-
plish the adversarial goal, we find our attack is slightly less
effective on ImageNet (i.e. CFT of non-victim classes are
more difficult to control). A possible rationale behind this
phenomena is that it becomes harder to completely decouple
the feature information of one class from all other classes
during the poisoning, with the number of classes scaling
up. On the other hand, our experimental results also reveal
the importance of studying poisoning availability attack on
large-scale/dimensional dataset, which lacks a systematic
study yet in the existing literature.

6. Possible Defenses
Since the main objective of this paper is to extend the

adversarial capability of poisoning availability attack to a
per-class basis on deep neural networks, we expect the pro-
posed attacks to have similar performance as prior poisoning
availability attacks in general when evaluated under possible
defenses.

Data sanitization is a defensive technique against poison-
ing attack that works by distinguishing and removing outliers
(poisoned data) from the training dataset [10, 34]. However,
it has been shown that a broad range of data sanitization can
be easily compromised or bypassed [24]. Therefore, we can
also leverage such techniques for our proposed attacks to
evade detection. In fact, in most recent works on poisoning
attacks, data sanitization is no longer considered a certified
defensive strategy [32, 21, 42].

Alternatively, a possible countermeasure is to periodi-
cally check the accuracy and/or loss of the learning mod-
els [31, 45]. Although expensive in terms of cost and time,
these approaches are intuitively effective based on the fact
that poisoning availability attack aims at degrading the ac-
curacy. Since the poisoned data are tailored to influence the
learning model’s training process maliciously, we suggest
exploiting averaged stochastic gradient classifier [42] and
combinational models such as bagging [27], where the classi-
fication results are no longer dependent on a single model, to
defend against the poisoning attack. However, the overhead
for deploying multiple classifiers should also be carefully
considered.

7. Conclusions
This paper introduced the concept of class-oriented poi-

soning attack. We formulated two attack problems, i.e.,
“COEG” and “COES”, which seek to compromise the model
behavior on a per-class basis. Accordingly, we defined two
new metrics to evaluate the performance of poisoning at-
tacks at the class level. Our proposed gradient-based algo-
rithms successfully achieved the class-oriented adversarial
objectives through manipulating the feature information in
images for poisoned data generation. The effectiveness of
the proposed methods is comprehensively studied in our
experiments.

Acknowledgment
This work is partially supported by the National Science

Foundation award 2047384.

3748



References
[1] Anish Athalye, Nicholas Carlini, and David A. Wagner. Ob-

fuscated gradients give a false sense of security: Circumvent-
ing defenses to adversarial examples. In Proceedings of the
35th International Conference on Machine Learning, ICML,
pages 274–283, 2018.

[2] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning
attacks against support vector machines. In Proceedings of the
29th International Conference on Machine Learning, ICML,
2012.

[3] Battista Biggio, Ignazio Pillai, Samuel Rota Bulò, Davide
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