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Abstract—Reinforcement learning (RL) is increasingly being
used to optimize resource-constrained wireless Internet of
Things (IoT) devices. However, existing RL algorithms that are
lightweight enough to be implemented on these devices, such as
Q-learning, converge too slowly to effectively adapt to the expe-
rienced information source and channel dynamics, while deep
RL algorithms are too complex to be implemented on these
devices. By integrating basic models of the IoT system into the
learning process, the so-called postdecision state (PDS)-based
RL can achieve faster convergence speeds than these alterna-
tive approaches at lower complexity than deep RL; however, its
complexity may still hinder the real-time and energy-efficient
operations on IoT devices. In this article, we develop efficient
hardware accelerators for PDS-based RL. We first develop an
arithmetic hardware acceleration architecture and then propose a
stochastic computing (SC)-based reconfigurable hardware archi-
tecture. By using simple bitwise computations enabled by SC, we
eliminate costly multiplications involved in PDS learning, which
simultaneously reduces the hardware area and power consump-
tion. We show that the computational efficiency can be further
improved by using extremely short stochastic representations
without sacrificing learning performance. We demonstrate our
proposed approach on a simulated wireless IoT sensor that must
transmit delay-sensitive data over a fading channel while min-
imizing its energy consumption. Our experimental results show
that our arithmetic accelerator is 5.3× faster than Q-learning
and 2.6× faster than a baseline hardware architecture, while the
proposed SC-based architecture further reduces the critical path
of the arithmetic accelerator by 87.9%.

Index Terms—Action evaluation, hardware acceleration,
Internet of Things (IoT) systems, latency sensitive resource-
constrained online operation, postdecision state learning, rein-
forcement learning, stochastic computing (SC), wireless commu-
nication.
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I. INTRODUCTION

EMERGING applications, such as autonomous driving,
mobile augmented and virtual reality, remote multi-

view sensing, personalized healthcare, virtual teleportation,
unmanned aerial vehicles, 360◦ video streaming, remote robot
navigation, cooperative video delivery, and telemetry [1]–[10],
have been creating diverse capabilities for next-generation
Internet of Things (IoT) systems. However, they are still bot-
tlenecked by the limited capabilities and resources of IoT
devices [11]–[13].

In many emerging wireless IoT systems, the captured
latency-sensitive data and the channel dynamics are gov-
erned by stochastic processes that are unknown a priori. This
introduces the necessity of a self-learning system that can
dynamically adapt to such unknown dynamics and statistical
information. To this end, reinforcement learning (RL) [14],
[15] has proven to be a promising approach. For example, in
recent studies, the well-known Q-learning algorithm [16] has
been employed to maximize the throughput [17] of energy
harvesting transmitters, to minimize the sum of data compres-
sion and transmission energy of energy harvesting transmit-
ters [18], [19], and to optimally tradeoff power and delay
in IoT edge computing [13], [20]. Although Q-learning is
lightweight enough to be implemented on resource-constrained
IoT devices, it converges too slowly to effectively adapt to the
experienced information source and channel dynamics.

In parallel, deep RL has received increasing attention for
its ability to solve difficult decision-making problems with
large (and possibly continuous) state and action spaces, both
from the machine learning community [21]–[25] and from
the wireless networking community [26]–[28]. However, deep
RL algorithms have complex deep neural network architec-
tures that make them infeasible to implement on resource-
constrained wireless IoT systems where power, memory, and
computational resources are limited [29], [30].1 Worse still,
deep RL algorithms are typically trained offline; therefore,
they are not suitable for real-time learning where both train-
ing and decision-making need to be performed online, at
runtime. For these reasons, none of the previously cited
papers [26]–[28] deploy deep RL algorithms directly on end
devices and all of them train the algorithms offline. For

1For instance, in a recent study [31], even with optimizations to adapt deep
neural networks to low-power spectrum sensing applications, their solution
still required at least one 128-output hidden layer to achieve relatively good
performance, and the training phase of their model had to be executed on a
powerful GPU.
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instance, [26] investigates buffer-aware video streaming in a
small-cell wireless network, [27] studies uplink scheduling for
multiple energy-harvesting user equipments in a small-cell IoT
system, and [28] demonstrates scheduling control in sliced 5G
networks through an open radio access network (O-RAN). All
of these deploy the trained deep RL agent at the base station
or in the RAN, where sufficient computational resources are
available.

To address the limitations of the existing approaches
described above, our prior work advanced the concept of post-
decision states (PDS) [15], [32]–[36], as have others [12],
[14], [37]. PDSs allow us to exploit basic system knowledge
to improve the learning performance. Concretely, the learning
problem is decomposed into known and unknown components,
by identifying the transitory system state after the execution
of an action (hence the name PDS) and prior to the unknown
system dynamics taking place. With this property, PDS-based
RL is capable of significantly accelerating the learning conver-
gence rate compared to Q-learning, but this comes at the cost
of additional computational complexity to integrate the known
components into the algorithm. Although PDS learning is far
less complex than deep RL, its complexity may still hinder its
real-time implementation on resource-constrained IoT devices.

On the other hand, although software is a remarkable
option in most use cases due to its great flexibility, recent
literature demonstrates that hardware acceleration is essen-
tial for various machine learning methods to enable real-time
and lightweight applications in resource-constrained wireless
IoT systems [38]–[43]. Following this direction, this article
exploits efficient hardware architectures for PDS learning. We
first design a hardware accelerator for the action evaluation
(AE) step of PDS learning, which evaluates the value of a
prospective action. This was presented in our earlier short
preliminary study [43].2 Then, we propose a stochastic com-
puting (SC)-based and reconfigurable hardware architecture
for the PDS learning algorithm. Specifically, by adopting SC,
we eliminate the costly multiplications involved in the AE
and replace them with estimation from samples, which hence
simultaneously reduces the hardware area and power consump-
tion. Thanks to the resiliency of PDS learning to stochastic
perturbations, we can further improve the computational effi-
ciency by using extremely short stochastic representations (i.e.,
each signal is represented by a very small number of stochas-
tic samples) without sacrificing arithmetic performance. To
differentiate from the SC-based accelerator, we refer to the
arithmetic accelerator as the arithmetic circuit in the rest of this
article. The main contributions of this article are summarized
as follows.

1) We extend our short preliminary study in [43] to design
a hardware accelerator for PDS learning algorithms. The
proposed arithmetic-based design is 5.3× faster than
Q-learning while consuming 59% less power.

2) We propose a novel SC-based hardware architecture,
referred to as the transition probability distribution esti-
mator (TPDE), for calculating the known transition

2An earlier version of this article was presented at the 2020 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI).

Fig. 1. Wireless IoT system model.

probability from the state to the PDS without using
multipliers. Built upon our prior design in [43], TPDE
further accelerates the required computation and reduces
the induced power consumption.

3) Since the PDS learning algorithm is inherently robust
to stochastic perturbations, we show that our proposed
hardware architecture is capable of achieving good
performance with a small number of samples for the
stochastic representation. Hence, we are able to sig-
nificantly reduce the number of clock cycles for each
computation, as opposed to typical SC-based systems
that suffer from either large latency or a large number
of processing elements (PEs) in a parallel architecture.

4) We introduce a high degree of reconfigurability into the
hardware accelerator. It can be adapted to any state and
action configuration within the designed maximum capa-
bility, while exploiting the tradeoff between speed and
energy consumption.

5) The advantages of the proposed hardware architecture
are comprehensively verified by experimental results.
We show that the proposed SC-based architecture fur-
ther accelerates the computation of the state value
expectation (SVE) by at least 8.3 times.

The remainder of this article is organized as follows.
Section II introduces the system model that we use to illus-
trate the proposed approach, and reviews background on
Q-learning, deep Q-learning (DQL), PDS-based RL, and SC.
We describe our proposed architecture in detail in Section III
and present our experimental results in Section IV. Finally,
Section V concludes this article.

II. BACKGROUND

A. System Model

We assume that a resource-constrained wireless IoT sensor
must transmit delay-sensitive data over a fading channel to a
receiver, while minimizing its power consumption. The system
operates over discrete time steps indexed by n ∈ {0, 1, . . .},
with fixed length �T seconds.

Fig. 1 illustrates the considered wireless IoT system. At the
beginning of time step n, the RL module observes the system’s
state sn � (bn, hn, xn) ∈ S , where bn ∈ Sb = {0, 1, . . . , Nb}
is the finite buffer state, which represents the number of
packets waiting in the buffer to be transmitted; hn ∈ Sh
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is the channel state, which represents the discretized chan-
nel gain between the transmitter and receiver; xn ∈ Sx is
the binary power management state, which indicates if the
radio is “on” and ready to transmit, or “off” in a power-
saving state; and S = Sb × Sh × Sx is the discrete and
finite set of states. Subsequently, the RL module takes an
action an = (BEPn, yn, zn) ∈ A, where BEPn ∈ ABEP is the
target maximum bit-error probability (BEP) at the receiver;
yn ∈ Ay is the binary power management action, which indi-
cates whether to turn “on” or “off” the radio; zn ∈ Az is
the packet throughput, which specifies the number of pack-
ets to transmit; and A = ABEP ×Ay ×Az is the discrete and
finite set of actions. In our specific model implementation (see
Section III), there are a total of 416 states and 110 actions,
which is relatively complex for resource-constrained wireless
IoT devices.

In the remainder of this section, we describe the chan-
nel, physical layer, transmission power, power management,
transmission buffer, and traffic models in detail.

Channel Model: We consider a frequency nonselective block
fading channel with channel gain hn ∈ Sh in time step n. As in
prior work [12], [17], [18], [35], [44], [45], we assume that the
set of channel states Sh is discrete and finite, that the channel
state hn is known and constant in each time step, and that it
evolves over time according to a discrete-time Markov chain
with transition probability function Ph(h′|h). We determine the
discretized channel state by defining fixed thresholds 0 = τ0 <

τ1 < · · · < τNh , where Nh denotes the number of channel
states. Then, we define the discretized channel state to be hk

if the channel gain falls in the interval [τk, τk+1).
Physical Layer Model: We consider a single-carrier single-

input single-output physical layer with a fixed symbol period
of Ts seconds. The physical layer supports M modulation
schemes that achieve data rates βn/Ts bits/s, where βn ∈
{β1, β2, . . . , βM} and βm is the number of bits per symbol
used by the mth modulation scheme. Therefore, to transmit zn

packets of size L bits in �T seconds, we must have

βn = �znLTs/�T� bits/symbol (1)

where �x� denotes the ceiling operator, which rounds x up
to the nearest integer. In time step n, the transmission sched-
uler module in Fig. 1 takes as input the maximum BEP BEPn

and the desired packet throughput zn, and then selects the
modulation scheme according to (1).

Transmission Power Model: Let Ptx(h, BEP, z) Watts denote
the power required to transmit z ∈ Az packets in channel state
h ∈ Sh with maximum BEP BEP ∈ ABEP. The transmission
power Ptx(h, BEP, z) depends on the physical layer modulation
scheme and is typically: 1) convex increasing in the number
of transmitted packets; 2) higher for lower bit-error probabili-
ties; and 3) higher in worse channel states. These assumptions
hold for typical modulation schemes, such as M-ary PSK and
M-ary QAM [46, Table 6.1], and under information-theoretic
bounds on the minimum power required for error-free com-
munication [47]. Note that as in [44] and [35], we do not
consider coding, but it can be introduced by appropriately
modifying (1) and defining Ptx(h, BEP, z). In the rest of this
article, we consider M-ary QAM for illustration; however, our

learning algorithm and hardware accelerator can be modified
to consider other modulation schemes and transmission power
models. Under M-ary QAM, the transmission power can be
expressed as follows [46, Table 6.1]:

Ptx(h, BEP, z) =
√

2N0
(
2β − 1

)
erf−1

(
1− β·BEP

4

)

3h
(2)

where N0 denotes the noise power spectral density, erf−1(·)
denotes the inverse error function, and β is the number of bits
per symbol determined using (1).

Power Management Model: To trade power for delay, the
wireless transmitter can be in one of two power manage-
ment states, Sx = {on, off}, and can be switched “on” and
“off” using one of two power management actions, Ay =
{s_on, s_off}.3 We let Pon and Poff Watts denote the power
consumed by the wireless transmitter in the “on” and “off”
states, respectively, and Ptr watts denote the power required
to transition between the “on” and “off” states. We assume
that Ptr > Pon > Poff > 0; therefore, there is a high cost for
switching between the states, but less power is consumed in
the “off” state than in the “on” state. Importantly, packets can
only be transmitted if x = on and y = s_on; otherwise, z = 0.

The total power cost ρ incurred by taking action a =
(BEP, y, z) ∈ A in channel state h ∈ Sh and in power man-
agement state x ∈ Sx can be expressed as a sum of the
transmission power and the system power: i.e.,

ρ([h, x], BEP, y, x)

=
⎧
⎨

⎩

Pon + Ptx(h, BEP, z), if x = on, y = s_on
Poff, if x = off, y = s_off
Ptr, otherwise.

(3)

As in prior work [48], we assume that the power manage-
ment state xn evolves over time according to a discrete-time
controlled Markov chain with the following transition proba-
bility function:

Px(x′|x, y = s_on
) =

on off
on
off

(
1 0
θ 1− θ

)
(4)

Px(x′|x, y = s_off
) =

on off
on
off

(
1− θ θ

0 1

)
(5)

where the row and column labels represent the current power
management state x and the next power management state x′,
respectively, and θ ∈ (0, 1] denotes the probability of a suc-
cessful power management transition (from “off” to “on” or
from “on” to “off”). For simplicity of exposition, we assume
that the power management state transition is deterministic,
i.e., θ = 1; however, our learning algorithm and hardware
accelerator can be extended to the nondeterministic case.

Transmission Buffer and Traffic Model: At the end of the
time step n, ln new packets arrive into the IoT sensor’s
transmission buffer from the information source, where ln is

3The power management action s_on should be interpreted as “stay on” in
the “on” state or “switch on” in the “off” state; and s_off should be interpreted
as “stay off” in the off state and “switch off” in the “on” state.
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distributed according to the packet arrival distribution Pl(l).4

The buffer state evolves according to the following Lindley
recursion:

bn+1 = min
(
bn − f n(BEPn, zn)+ ln, Nb

)
(6)

where Nb is the maximum number of packets that can be stored
in the buffer and f n(BEPn, zn) is the packet goodput (i.e., the
number of packets successfully delivered to the receiver). Note
that zn ≤ bn because it is not possible to transmit more packets
than are in the buffer and f n(BEPn, zn) ≤ zn because it is
not possible to receive more packets than are transmitted. We
assume that the value of f n is sent to the transmitter over the
feedback channel at the end of time step n.

Assuming that bit-errors are independent, the packet loss
rate (PLR) can be expressed as

PLR = 1− (1− BEP)L (7)

where L is the packet size in bits, and the goodput f has the
following binomial distribution:

Pf (f |BEP, z) = Bin(z, 1− PLR)

=
(

z

f

)
(1− PLR)f (PLR)z−f (8)

where
(z

f

) = z!/f !(z− f )!. Importantly, since packets arrive at
the end of each time step, packets that arrive in time step n
cannot be transmitted until time step n+ 1 or later. Moreover,
any packets that are not successfully delivered to the receiver
in time step n remain in the buffer to be retransmitted in a
future time step. Based on the above discussion, the buffer
state bn evolves over time according to a discrete-time con-
trolled Markov chain with the following transition probability
function:

Pb(b′|b, BEP, z
)

=
∞∑

l=0

z∑

f=0

Pf (f |BEP, z)Pl(l)I{b′=min(b−f+l,Nb)} (9)

where I{·} is an indicator function that is set to 1 when the
condition in {·} is true and is set to 0 otherwise.

Recall that our goal is to transmit delay-sensitive data while
minimizing the IoT sensor’s power consumption. We already
defined the power cost in (3). Now, we need to define the
expected buffer cost, which we introduce to penalize buffer
delays and overflows. The expected buffer cost incurred when
transmitting z ∈ Az packets with target maximum BEP BEP ∈
ABEP in buffer state b ∈ Sb can be expressed as

g(b, BEP, z) =
∞∑

l=0

z∑

f=0

Pf (f |BEP, z)Pl(l)

× {[b− f ]+ η min(b− f + l− Nb, 0)} (10)

where the holding cost b− f penalizes large buffer states, the
overflow cost η min(b − f + l − Nb, 0) penalizes each packet
overflow by η > 0, and the expectation is taken with respect to
the packet arrival distribution Pl and goodput distribution Pf .

4We assume that the arrivals in each time step are independent and iden-
tically distributed; however, the proposed system model can be extended to
include Markovian traffic arrivals.

B. Markov Decision Process Formulation

The problem described above can be formulated as a
Markov decision process (MDP) with discrete and finite state
space S = Sb × Sh × Sx and discrete and finite action space
A = ABEP×Ay×Az. The state sn evolves over time accord-
ing to a discrete-time controlled Markov chain with transition
probability function

P
(
s′|s, a

) = Pb(b′|b, BEP, z
)
Ph(h′|h)

Px(x′|x, y
)

(11)

and cost function defined as a weighted sum of the power and
buffer costs: i.e.,

c(s, a) = ρ(s, a)+ λg(s, a) (12)

where λ ≥ 0 can be used to set the buffer cost constraint.
The goal is to determine the optimal policy π : S → A,
which specifies the optimal action to take in each state to
minimize the average power cost subject to an average buffer
cost constraint.

For a given λ, the optimal solution satisfies the following
Bellman equation:

V∗(s) = min
a∈A

{

c(s, a)+ γ
∑

s′∈S
P(s′|s, a)V∗

(
s′
)
}

︸ ︷︷ ︸
Q∗(s,a)

∀s ∈ S (13)

where V∗(s) is the optimal value function, which indicates
how good it is to be in each state when following the optimal
policy π∗(s), and the related optimal action-value function
Q∗(s, a) indicates how good it is to take an arbitrary action in
each state and then follow the optimal policy thereafter. The
optimal policy π∗(s) can be determined by taking the action
that minimizes the right-hand side of (13) in each state.

If the cost and transition probability functions are known,
then the optimal value function can be computed numerically
using dynamic programming (e.g., value iteration or policy
iteration [14]) and the optimal value of λ that satisfies the
buffer cost constraint can be computed using the subgradient
method. In the considered problem, however, the cost func-
tion in (12) is only partially known because the buffer cost
in (10) depends on the unknown packet arrival distribution
Pl(l). Moreover, the transition probability function P(s′|s, a)

defined in (11) is only partially known because the buffer state
transition probabilities Pb(b′|b, BEP, z) defined in (9) depend
on the unknown packet arrival distribution Pl(l), and the chan-
nel state transition probabilities Ph(h′|h) are unknown. Hence,
the optimal value function and policy cannot be computed
using dynamic programming; instead, they must be learned
online, based on experience. Q-learning is a popular approach
for this task, as described next.

C. Q-Learning

In each time step n, Q-learning updates an estimate of the
action-value function based on the observed experience tuple
(sn, an, cn, sn+1), which comprises the current state, selected
action, incurred cost, and next state. The update is performed
as follows:

Authorized licensed use limited to: TUFTS UNIV. Downloaded on May 27,2024 at 13:10:00 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: HARDWARE ACCELERATION FOR POSTDECISION STATE REINFORCEMENT LEARNING 9893

Qn+1(sn, an)

← (
1− αn)Qn(sn, an)+ αn

[
cn + γ min

a′∈A
Qn

(
sn+1, a′

)]

(14)

where sn+1 ∼ P(·|sn, an) and E[cn] = c(sn, an); a′ is the
greedy action in state sn+1; αn ∈ [0, 1] is a time-varying
step size parameter; and Q0(s, a) can be initialized arbitrarily
∀(s, a) ∈ S ×A.

In the literature, many researchers have explored various Q-
learning-based RL hardware accelerator structures for better
performance and lower power consumption [20], [49], [50].
However, due to the limited training data and learning time
for real-time learning, these hardware optimization techniques
are not, at least directly, applicable in emerging wireless IoT
systems because of Q-learning’s slow convergence speed. In
real-time learning, training data are generated or observed over
time, which means that the agent has to wait for the new
data no matter how fast each iteration is. Under these circum-
stances, slow convergence speed means that Q-learning will
spend a relatively long period of time to reach the anticipated
optimization level, during which energy and time are wasted.
Different from Q-learning, PDS-based methods are uniquely
optimized for the underlying wireless IoT system to increase
the learning convergence speed.

D. Deep Q-Learning

Unlike tabular Q-Learning, DQL estimates action values
with a deep Q-network (DQN [51]). By updating the weights
of the DQN-based on minibatches of experience tuples,
DQL learns successful policies directly from (possibly high-
dimensional) sensory inputs and optimizes its action selection
policy to fit the unknown dynamics.

In recent studies, DQL showed great potential in IoT wire-
less network optimization [26], [52]–[54]. Nevertheless, all
their DQL agents run on powerful platforms, such as network
servers, base stations, and satellites. Rajendran et al. [31] real-
ized that deep learning was not suitable for low-power wireless
applications and optimized their model, but it still required at
least one hidden layer with 128 units to achieve relatively good
performance, and only the inference phase could be performed
on a low-power platform.

E. Postdecision State Learning

Before we can describe PDS learning, we need to formally
introduce the PDS concept. A PDS denotes a state of the
system after all known and controllable effects of the action
have occurred but before the unknown dynamics occur [12],
[14], [32]. In our wireless IoT system, the PDS in time step
n is defined as follows:

s̃n �
(̃
bn, h̃n, x̃n) = ([

bn − f n], hn, yn) ∈ S (15)

where b̃n = bn − f n denotes the buffer state after packets are
successfully delivered to the receiver, but before new packets
arrive;5 h̃n = hn since we do not know anything about the

5Although we do not know the realization of the goodput f n until the end of
time step n, we know the goodput distribution defined in (8). This is sufficient
to include f n in the definition of the postdecision buffer state.

channel state transition; and x̃n = yn since we assume that the
power management state transition is deterministic. Given the
PDS in time step n, we can express the state in time step n+1
as follows:

sn+1 =
(

bn+1, hn+1, xn+1
)

=
(

min
(̃
bn + ln, Nb

)
, hn+1, x̃n

)
(16)

where ln ∼ Pl(·) and hn+1 ∼ Ph(·|̃hn) denote the realizations
of the packet arrivals and next channel state, respectively.

We formulate our problem in terms of PDSs by decompos-
ing the transition s→ s′ into two parts: 1) a known transition
s→ s̃ with expected cost ck(s, a) and transition probabilities
Pk (̃s|s, a) and 2) an unknown transition s̃→ s′ with expected
cost cu(̃s) and transition probabilities Pu(s′|̃s), such that

P(s′|s, a) =
∑

s̃
Pk (̃s|s, a)Pu(s

′|̃s) and (17)

c(s, a) = ck(s, a)+
∑

s̃
Pk (̃s|s, a)cu(̃s). (18)

Each of these factors can be easily derived based on the tran-
sition probability and cost functions defined in (11) and (12),
respectively. For example, the unknown cost is nothing more
than the expected overflow cost, i.e.,

cu(̃s) = η
∑∞

l=0
Pl(l) min

(̃
b+ l− Nb, 0

)
(19)

because the arrival distribution Pl is the only unknown com-
ponent of the cost function defined in (12).

To map traditional RL to PDS learning, we define two value
functions V(s) and Ṽ (̃s) over the conventional states and PDSs,
respectively. The corresponding optimal value functions are
related by the following two Bellman equations:

Ṽ∗(̃s) = cu(̃s)+ γ
∑

s′∈S Pu(s
′|̃s)V∗(s′

)
(20)

V∗(s) = min
a∈A

{
ck(s, a)+

∑

s̃∈S Pk (̃s|s, a)Ṽ∗(̃s)
}
. (21)

Given the PDS value function Ṽ∗(̃s), the optimal policy
π∗(s) can be found by taking the action in each state that
minimizes the right-hand side of (21).

To solve the problem online, we use the PDS learning algo-
rithm presented in Algorithm 1 [15], [32]. First, the PDS value
function Ṽ0(̃s) is initialized to 0 for all s̃ ∈ S (line 1). In
each time step n, PDS learning takes the greedy action defined
in (23) using the known cost (KC) function ck(s, a), the known
transition probability function Pk (̃s|s, a), and the current esti-
mate of the PDS value function Ṽn(̃s) (line 3). Subsequently,
PDS learning updates the estimated PDS value function as
in (24) based on the observed experience tuple (̃sn, cn

u, sn+1)

(lines 4 and 5), where the PDS s̃n ∼ Pk(·|sn, an) is defined
in (15); the realization of the unknown cost

cn
u = η min

(̃
bn + ln − Nb, 0

)

satisfies E[cn
u] = cu(̃sn), where cu(̃sn) is defined in (19); and

the next state sn+1 ∼ Pu(·|̃sn) is defined in (16). In [35], we
proved that the sequence of PDS value functions Ṽn gen-
erated by the PDS learning algorithm converges to Ṽ∗ with
probability 1 as n→∞.

PDS learning has several advantages over Q-learning. First,
only the unknown information in the transition s̃→ s′ needs
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Algorithm 1 PDS Learning

1: initialize Ṽ0(̃s) = 0 for all s̃ ∈ S
2: for time slot n = 0, 1, 2, . . . do
3: Take the greedy action:

an = arg min
a∈A

{
ck(s

n, a)+
∑

s̃
Pk (̃s|sn, a)Ṽn(̃s)

}
(23)

4: Observe PDS s̃n, cost cn
u, and next state sn+1.

5: Update Ṽn+1(̃sn):

Ṽn+1(̃sn) = (1− αn)Ṽn(̃sn)+ αn[cn
u + γ Vn(sn+1)], (24)

where

Vn(sn+1) = min
a∈A

{
ck(s

n+1, a)+
∑

s̃
Pk (̃s|sn+1, a)Ṽn(̃s)

}

6: end for

to be learned. Second, by updating the value of one PDS,
we learn about all state–action pairs that can precede it due
to the expectation over the known transition probabilities in
both (23) and (24). Third, in RL, there is a tradeoff between
exploiting actions that currently have the best estimated value
and exploring other actions that might be better. However,
if the unknown transition probabilities do not depend on the
action (as in the considered problem), then PDS learning does
not require exploration.

Together, the above three features significantly increase PDS
learning’s convergence speed compared to Q-learning; how-
ever, this comes at the cost of increased action selection and
learning update complexity. In Q-learning, the action selec-
tion and update steps both require optimizing Qn(s, a) over
the actions, so they have complexity O(A). In PDS learning,
in addition to optimizing over the actions, both (23) and (24)
require calculating the action-value estimate Qn(s, a) for each
prospective action based on the KC and transition probability
functions.6

Qn(s, a) = ck(s, a)+
∑

s̃
Pk (̃s|s, a)Ṽ (̃s). (22)

Therefore, both steps have complexity O(S ×A). We will
refer to the calculation in (22) as the action evaluation step.
In Section III, we present efficient methods to calculate the
KC ck(s, a) and the SVE

∑
s̃ Pk (̃s|s, a)Ṽ (̃s), which appear in

the AE step.

F. Stochastic Computing

To further optimize our hardware circuit, we design a TPDE
based on SC. SC [55] enables complex computations to be per-
formed using simple bitwise operations on streams of random
bits. SC has recently been exploited for various low-energy
or low-area applications, such as neural networks acceleration
and 5G decoding [56]–[59]. In particular, SC is highly suit-
able for error-tolerant applications where approximated results
are acceptable or certain errors in the intermediate stages

6PDS learning’s action selection and update steps are given in (23) and (24),
respectively, and require calculating Qn(sn, a) and Qn(sn+1, a), respectively,
using (22) for each prospective action.

(a)

(b)

(c)

Fig. 2. SC circuit. (a) Stochastic multiplier implemented as an AND gate.
(b) Stochastic bit-stream generator. (c) Stochastic-to-binary conversion.

are not perceivable by the end used [60], [61]. Moreover,
SC enables very lightweight hardware implementations for
resource-constraint devices. One example of an SC circuit is
shown in Fig. 2(a). It can be seen that stochastic multiplication
can be easily realized by an AND gate on the two bit-streams,
as the probability to get a “1” as the output equals to the prod-
uct of the equivalent probabilities for each of the inputs. In a
typical SC architecture, stochastic number generators (SNGs)
and comparators are also needed to convert binary signals to
stochastic representations and stochastic bit-streams back to
binary signals, respectively. To this end, a linear feedback shift
register (LFSR) has been widely used as the SNG to generate
stochastic bit-streams, as shown in Fig. 2(b), while a counter
can effectively perform the stochastic-to-binary conversion, as
illustrated in Fig. 2(c). Note that the goal of adopting SC is
to accelerate the hardware computation, which is qualitatively
different from Bayesian-based methods.

Although SC offers simpler hardware for complex opera-
tions, it requires a long sequence of stochastic bits to obtain
a precise result [56]. As a result, stochastic systems suffer
from high latency or require a large number of PEs (e.g.,
AND gates for multiplication) to operate on the bit-streams
in parallel. Thus, it is imperative to exploit ways for reducing
the length of the bit-streams while maintaining the arithmetic
performance. In Section III-C, we develop an SC-based accel-
erator to efficiently estimate the known transition probability
function Pk (̃s|s, a) rather than computing it arithmetically.

III. PROPOSED HARDWARE ARCHITECTURE

To address the high computational complexity of PDS learn-
ing, we design an optimized hardware accelerator framework
for the critical AE step in (22). As noted earlier, this step
is performed once for each prospective action in both the
action selection step (23) and the learning update step (24).
For our accelerator framework, it consists of two main compo-
nents: 1) the KC block for computing ck(s, a) and 2) the SVE
block for computing

∑
s̃ Pk (̃s|s, a)Ṽ (̃s). To realize a hardware

accelerator for a specific system, we design the programmable
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Fig. 3. AE hardware accelerator designs for the example system model.
The SVE block is illustrated in (a) assuming that up to ten packets can be
transmitted in each time step, i.e., Sz = {1, 2, . . . , 10}. (b) Alternative SVE
module with TPDE.

lookup table (PLUT) (green) with state encoding (light blue),
TPDE (gray), state value array (orange), and tree structure
(blue), according to the unique characteristics of both the
system and the PDS-based RL algorithm.

For illustration, in the remainder of this article, we con-
sider an instance of the example system model in Section II-A
with 26 buffer states (b ∈ Sb = {0, 1, . . . , 25} pack-
ets), eight channel states (h ∈ Sh = {−18.82,−13.79,
−11.23,−9.37,−7.80,−6.30,−4.98,−2.08} dB), two power
management states (x ∈ Sx = {ON, OFF}), two power man-
agement actions (y ∈ Ay = {SWITCH_ON, SWITCH_OFF}),
five target BEPs (BEP ∈ ABEP yielding PLRs of 0.01, 0.02,
0.04, 0.08, and 0.16 for packets of size L = 5000 bits), and
11 transmission scheduling actions (z ∈ Sz = {0, 1, . . . , 10}).
Therefore, there are a total of 416 system states and 110 pos-
sible actions. Although we consider this specific parameter
configuration, the PDS learning algorithm and hardware accel-
eration architectures can be applied for any values of these
parameters.

Fig. 3(a) illustrates an instance of the hardware accelerator
design for the example system model in Section II-A, which
is extended from our prior work [43]. Recall that we do not
have complete information about our model because we do not
know the data arrival probability distribution Pl(l) or the chan-
nel state transition probabilities Ph(h′|h). We briefly introduce
the circuit functions below, while detailed circuit designing
can be found in Sections III-A–III-C.

The bottom KC block in Fig. 3(a) calculates the known
buffer cost and transmission cost, and then combines them to
calculate the known components of (12). The known buffer
cost only includes the known components of (10), which do
not depend on Pl(l), i.e.,

gk(s, a) =
z∑

f=0

Pf (z|BEP, z)[b− f ] (25)

and is computed with an arithmetic circuit. For the transmis-
sion cost, the dominant part is the computation of Ptx defined
in (2), where we implement two lookup tables to simplify the
calculation. By multiplying Ptx by h, Ptx∗h lookup cancels the
existence of h and stores the results for all the combinations
of BEPs and zs. Then, with another lookup table outputting
values for 1/h, Ptx is calculated with very minimal cost.

The top block in Fig. 3(a) computes the SVE as
∑

s̃∈S
Pk (̃s|s, a)Ṽ (̃s)

=
∑

x̃∈Sx

z∑

f=0

Px(̃x|x, y)Pf (f |BEP, z)Ṽ(b− f , x̃, h) (26)

where Pf is the goodput distribution defined in (8). The SVE
block includes the following components.

1) The BEP Lookup block takes as input the BEP’s address
and outputs both PLR and 1−PLR, where PLR is defined
in (7).

2) The Power Tree block takes as input p = PLR and q =
1−PLR and outputs p0, p1, . . . , p10 and q0, q1, . . . , q10,
which are used to calculate the goodput distribution
in (8).

3) The Choose Lookup block takes as input the transmis-
sion action z and outputs the values c(f ) = (z

f

)
when

f ≤ z and c(f ) = 0 when f > z, for f = 0, 1, . . . , 10.
The combinations c(f ) are also used to calculate the
goodput distribution in (8).

4) The State Value Selection block takes as input the current
state S and all state values, and then outputs the state
values for possible PDSs.

5) Finally, the Multisum Tree block takes as input the out-
puts of the State Value Selection, Choose Lookup, and
Power Tree blocks, and outputs the SVE.

More details about the Power Tree and State Value Selection
blocks are provided in Section III-A.

Fig. 3(b) illustrates the proposed novel alternative SC-based
SVE module, which we describe further in Section III-C.

A. Tree Structure, Ordered State Value Array, and
Component Autodisable

Tree Structure: The values of all possible PDSs and their
corresponding probabilities are involved in the SVE calcula-
tion [see (23) and (24)]. This slows down the SVE module
significantly and makes it critical to accelerating the circuit.
Tracing this issue, we propose a parallelized structure for the
SVE block that leverages two tree structures: 1) a power
tree and 2) a multisum tree [blue blocks in Fig. 3(a)]. The
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(a) (b)

Fig. 4. Proposed parallel structures for (a) power tree and (b) multisum tree.

Fig. 5. Ordered storage array (left) versus random storage array (right).

power tree [Fig. 4(a)] takes a probability p as input and out-
puts the values p0, p1, . . . , p10 simultaneously. One instance
of the power tree takes p = PLR as input and another takes
q = (1 − PLR), and their outputs are used to calculate the
goodput distribution in (8). Then, the multisum tree [Fig. 4(b)]
takes the outputs of both power trees (pi and qi), the outputs of
the Choose Lookup block (c(0), . . . , c(10)), transition proba-
bility for x̃ (denoted by Px′

x̃ = P(̃x|x, y) in any figures), and
the corresponding PDS values (denoted by Ṽ for x̃ = ON and
Ṽ ′ for x̃ = OFF in any figures). Then, it calculates the SVE
according to (26) with only three stages of multipliers. These
tree structures can accelerate the computation while reducing
the power consumption since they decrease the critical path
and eliminate the need for extra registers for data buffering or
redundant computation.

Ordered State Value Array: During the AE step, a set
of state values for each possible PDS needs to be selected
among all the state values (i.e., Ṽ (̃s) for all PDS s̃ such that
Pk (̃s|s, a) �= 0). This process introduces two challenges to the
hardware design: 1) the total number of states could change
significantly based on the complexity of the system model and
2) the number of possible PDSs may vary, for instance, when
the current buffer state b is smaller than the maximum value
of the transmission action z in our example system model. We
propose to use an ordered state value array and a component
autodisable mechanism to simplify the computation.

In all cases, the range of possible PDSs is near the current
state b0, i.e., the PDS buffer state range {b0 − z, b0 − z +
1, . . . , b0} in our system model is just like the area around
a player’s location in video game that can be reached within
one step. Therefore, we reorder the storage array such that
all candidates of the PDSs for each possible case are stored
consecutively, as shown in Fig. 5. At the same time, we
design the selection module to always output PDS values for
b̃ = b0 to (b0− zmax) for both x̃ = ON and OFF, since redun-
dant state values will be canceled by the 0 s from the Choose

Fig. 6. Component autodisable.

Fig. 7. Example of state encoding where the input bit-width is compressed
from 3 to 1.

Lookup. With all the designs above, the selection module needs
to find only the location for Ṽ(b0) and then outputs it with its
very next 21 state values. As a result, by implementing this
for our wireless model, the selection module is reduced from
416-to-(2∼22) selection (total 416 states and possible 2∼22
PDSs) to 52-to-1 selection, which only finds b0 (26-to-1) and
x (2-to-1).

Component Autodisable With Visual State: In addition, the
number of potential PDSs may vary depending on the current
state, e.g., when a player moves to the edge of the map in a
game and there are not many places to move; or the current
buffer state is small and there are not many packets available
to send in our system model. This brings challenges to both
the selection module and multisum tree since they need to deal
with different numbers of outputs and inputs. To avoid adding
redundant control circuits, we add visual states that are out of
the border of the state space but within the range of one action
from the border [e.g., Ṽ (̃b = −1) to Ṽ (̃b = −10)]. Those
visual states have zeros as their state values so that the circuit
can maintain the same output number for the selection module.
The unused part of the multisum is disabled correspondingly
based on (23). One example is illustrated in Fig. 6, where red
paths are canceled by 0 s. Here, Ṽ stands for x̃ = ON and Ṽ ′
stands for x̃ = OFF.

B. Programmable Lookup Table With State Encoding for RL

The channel state in the PDS learning algorithm is quan-
tized into discrete state values. Since the number of states
is typically limited to simplify the learning process and save
energy in IoT applications, we implement lookup tables for the
input stages to further accelerate the computation. For a direct
implementation, there will be 232 possible input values (for
a 32-bit system) from the channel sensor, which corresponds
to a ‘costly’ 32-bit lookup table. However, since many input
cases share the same output and there are only eight channel
fading states h in our model, we introduce state encoding (SE)
to compress the input space of the lookup table. It encodes the
input values into successive binary state addresses to compress
the input bit-width, as illustrated in Fig. 7, where a 3-bit input
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Fig. 8. PLUT with memory and SCM.

Fig. 9. Logic circuit of state encoding (SE) module (four states example).

is mapped into two states with “100” as the boundary. With
state encoding applied, its input width is compressed by 3
(from 3 to 1 bit). Additionally, in order to adapt the same
IoT circuit to various environments and use cases, the lookup
table and state encoding are designed to be programmable with
a memory module controlled by an SCM (single chip micro-
controller). The functionality and state encoding of the lookup
table are defined by the corresponding values from memory,
which can be modified by the SCM, as shown in Fig. 8.

The circuit design for state encoding is shown in Fig. 9.
Each block illustrates the basic SE unit, where port in takes the
input value of the lookup table and std indicates the boundary
value between the neighboring states that can be defined by
the memory. The SE unit will compare in with std and then
set one of the 1-bit outputs large or small to “1” and another
to “0.” Besides, when en is “0,” both large and small will be
set to “0”, which can be simply implemented by logical AND
operations.

By connecting multiple SE unit blocks as a binary tree
structure and making all ins share the same input value as
the input of the lookup table, we can easily obtain a pro-
grammable state encoding circuit for arbitrary state numbers.
A four-state circuit design is demonstrated in Fig. 9, which
has the function

State =

⎧
⎪⎪⎨

⎪⎪⎩

0, if in ∈ (0, b1]
1, if in ∈ [b1, b0)

2, if in ∈ [b0, b2)

3, if in ∈ [b2,+∞).

(27)

The circuit for our lookup table is designed based on the SE
unit, as shown in Fig. 10. S0 to Sn−1 are outputs of the state
encoding circuit that correspond to n states. Then, the desired
value can be quickly selected using AND gates, where D0
to Dn−1 are the corresponding output values from memory.
To reconfigure the function for different use cases, we only
need to update the boundary values and output values in the
memory.

Fig. 10. Lookup table with state encoding.

C. Transition Probability Distribution Estimator and
Stochastic Sample Generator

TPDE: The TPDE estimates the distribution of the PDS
based on the current state and action as Pk (̃s|s, a), where s̃
denotes the PDS and s and a are the current state and action,
respectively. In PDS RL, this distribution is crucial as it needs
to be computed at least two times in each time step (once for
action selection and once for the learning update). However,
calculating the entire transition probability distribution can be
computationally expensive. For example, the transition proba-
bility distribution from the buffer state b to the post-decision
buffer state b̃ = b− f depends on the goodput distribution Pf

defined in (8).
It can be seen that costly operations, including

multiplications and powers, are involved in (8), which
are not suitable for resource-constraint IoT systems. To
tackle this challenge, we design a novel SC-based TPDE that
can significantly reduce complexity while lowering power
consumption. Based on the Monte Carlo sampling method,
which is widely adopted for estimating expectations, in order
to get

E[f (x)] =
∑

x
f (x)p(x) (28)

we can sample L data points {x1, . . . , xL} and then establish
an unbiased estimator for E[f (x)]

f̂ = 1

L

∑L

i=1
f (xi). (29)

The variance can be given by var(f̂ ) = (1/L)E[(f −E[f ])2],
which indicates that the estimation accuracy improves with
the sample size L. The goal of the TPDE is to estimate the
transition probability distribution

P(Si|S, A) =
∑

S′
f (Si, S′)P(S′|S, A) (30)

where Si is one specific case of the next state, f (Si, S′) = 1
when S′ = Si and 0 when S′ �= Si. By gathering L samples
S′1, . . . , S′L for the PDSs from distribution P(S′|S, A), based
on (28) and (29), we can obtain P̂(Si|S, A) as the unbiased
estimator for P(Si|S, A), which is expressed as

P̂(Si|S, A) = 1

L

∑L

j=1
f (Si, S′j). (31)

Thus, based on (30) and (31), we construct a TPDE with a
sample generator (P(S′|S, A)) and a discriminator (f (Si, S′)).

Stochastic Sample Generator (SSG): To obtain an accu-
rate estimation for the transition probability distribution, it
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Fig. 11. Framework of the stochastic sample generator.

Fig. 12. TPDE for the binomial distribution family.

is also crucial to design a sample generator that can gener-
ate samples based on the specific distribution. The design of
our SSG is shown in Fig. 11, which consists of three main
structures: 1) SNG; 2) distribution tuner; and 3) accumulative
discriminator array.

We use the same SNG as in most prior SC designs, which
is composed of LFSRs and a comparator that can generate a
random bit-stream with a probability of P to be 1. After the
SNG, the distribution tuner turns the bit-stream into samples
based on the target distribution. For example, the tuner directly
outputs each n bits as one sample for the binomial distribution
in our PDS learning algorithm

Si ∼ Bin(P, n). (32)

It is shown in prior works [62], [63] that the binomial dis-
tribution can be used to fit many other common distributions,
such as Poisson distribution with λ = nP and standard distri-
bution with μ = nP and σ 2 = nP(1−P). It is also possible to
design a tuner for a logically descriptive distribution, similar to
the distribution on the check node of the LDPC decoding [64].

Finally, the accumulative discriminator array will gather all
the samples. Each discriminator will count the number of sam-
ples Ni that belong to the specific state Si. The output of the
Si discriminator is an estimate of L ∗ P(Si), i.e.,

P(Si) ≈ Ni

L
. (33)

Although a larger L will increase the accuracy of this
estimation, we find that the PDS learning method implies
remarkable tolerance to the random error, which means a small
L can be adopted for acceleration and energy saving. This
property is further discussed in Section IV-B.

TPDE Circuit Design for Binomial Distribution: The cir-
cuit design of the TPDE for the binomial distribution family
(Bin(n, p)) is shown in Fig. 12, where the controlled counter
is implemented as a distribution tuner. It takes a stochastic
bit-stream and the throughput z (corresponding to the n of the

Fig. 13. Programmable 4-way AE structure.

binomial distribution), generates one sample for each z-bit, and
informs the accumulative discriminator array when one sam-
ple is ready. For the accumulative discriminator array, each
discriminator will count the number of received samples that
belong to its state.

D. Programmable Parallel Greedy Action

In PDS-based RL, the AE step defined in (22) must be per-
formed twice for every action in each time step (i.e., once
for every action during the action selection step and once for
every action during the learning update step). This presents
challenges to wide applicability since the length of one time
step can be small due to the high communication frequency,
which brings the requirement of high-speed computation. On
the other hand, in scenarios such as smart homes, saving
energy becomes more important. Therefore, programmability
is desired to enable a tradeoff between speed and power con-
sumption for different applications. A 4-way example of the
proposed programmable parallel structure is shown in Fig. 13.
Here, AE represents the AE module as described above. MC
is the minimum comparator module that takes two numbers
as input and compares them, then outputs the smaller one. By
connecting the MC module in series, we can then realize the
arg min function. With the MUX gate at the output node, the
parallelism can be configured by the control signals.

IV. EXPERIMENTAL RESULTS

A. Experiments Setup

For software simulation, all algorithms are coded and tested
with MATLAB on Windows 11, with a 3.80 GHz i7-10700K
processor and 32-GB RAM. As wireless IoT systems usu-
ally have fewer computing resources, we consider this setting
as a guaranteed upper bound for the software implementa-
tion’s speed. For hardware testing, we implement our circuits
with Verilog HDL, and then map them into a 32-nm technol-
ogy node using Synopsys Design Compiler. All simulations
are conducted using the state and action sets defined at the
beginning of Section III and with packet size L = 5000 bits.

B. Algorithmic Performance

Fig. 14 compares the simulated performance of our PDS
learning implementation (Algorithm 1), Q-learning, and DQL.
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Fig. 14. Comparison between PDS learning, Q-learning, and DQL.
(a) Cumulative average delay. (b) Cumulative average power. (c) Comparison
of convergence speed.

DQL is implemented with MATLAB’s deep RL toolbox.
We examine two architectures with one and two fully con-
nected hidden layers. The activation function is ReLU.
The feature input layer for our model inputs current state,
(bn, hn, xn), to DQL and applies data normalization. The
output layer is designed with the same size as the action
space A, so that each output corresponds to one possible
action. In order to minimize the cost function, the reward
for each action selection is defined as −c(s, a). Consistent
with the network size of a recent study [31] on low power
wireless applications and the output layer’s size for our
model (110), we set the output size for each fully con-
nected layer to be 128. The learning step size for DQL
is 1× 10−3.

All results are averaged over at least 75 000 time slots. It
can be seen from Fig. 14 that our PDS learning algorithm
outperforms Q-learning and DQL in terms of both cumulative
average delay and power consumption. Moreover, we find that
DQL with one hidden layer (marked as “DQL 1 × 128”) per-
forms much worse than DQL with two hidden layers (marked
as “DQL 2 × 128”), which further proves that DQL requires
a relatively complex network in order to achieve acceptable
performance.

Fig. 15. Effect of stochastic process from SSG. (a) Cumulative average
delay. (b) Cumulative average power. (c) Convergence speed.

We also evaluate the convergence speed of our algorithm
in Fig. 14(c) with 3 × 106 time slots. The red curve (circle
markers) denotes the cumulative average cost incurred up to
time slot n by Q-learning (where the cost is defined in (12) as
a weighted sum of the power cost and delay cost, which makes
it the best representative of the overall performance) and the
blue curve (+markers) denotes the cumulative average cost for
PDS learning. While PDS learning approximately converges
in 250 000 time slots, Q-learning has still not converged after
3 000 000 time slots, and hence, is at least 12 times slower
than PDS learning.

We now evaluate the algorithmic performance when using
the TPDE. As discussed in Section III-C, the randomness
introduced by the TPDE is highly dependent on the sample
number L. By decreasing the sample number for each estima-
tion, the delay and energy consumption of the TPDE can be
reduced. However, the convergence of the learning algorithm
may suffer from the estimator’s high variance. To study the
impact of this randomness on the learning process of our PDS
model and to select the best sample number for the hardware
test, we also evaluate the arithmetic performance of the SSG
model. The same learning simulation processes are executed
for sample numbers per estimation of a single PDS of 1, 10,
100, 1000, and 10 000. The results are shown as Fig. 15, which
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Fig. 16. Convergence for a single sample.

Fig. 17. Error tolerance.

show that all learning processes with different sample num-
bers converge similarly. Note that the differences between each
curve are caused by the combination of the stochastic channel
model, stochastic arrivals, and randomness from the TPDE.
We further repeat the simulation of the learning process five
times with only a single sample per estimation and compare
the results with arithmetic PDS learning in Fig. 16, where we
print the best and worst cumulative average cost among all
five learning episodes for each time slot. It can be seen that
all the learning curves have similar convergence speeds. Thus,
we conclude that PDS learning is very resilient to the random-
ness introduced by SC, which can be leveraged to optimize
the hardware cost by using a single sample without sacrificing
the arithmetic performance.

C. Fault Tolerance

Fault tolerance is another advantage of SC, which indeed
is also a desired characteristic for wireless IoT systems
under noisy and low-energy environments. Many studies have
shown that bit-flip errors are very common in those envi-
ronments [65], while SC is inherently resilient to these soft
transient errors [66]–[68]. Based on that we verify the error
tolerance of our proposed method in Fig. 17, where we ran-
domly flip the bits of all the outputs from multipliers in the
power tree and multisum tree based on the error rate. The
results show that our PDS learning accelerator achieves a high
degree of error tolerance as all learning processes converge
similarly.

D. Hardware Performance

We implement our proposed efficient architecture, a straight-
forward baseline design without employing the proposed
optimization, and Q-learning using Verilog HDL. For a fair

TABLE I
ARITHMETIC VERSUS BASELINE HARDWARE VERSUS

Q-LEARNING (32-BIT)

Fig. 18. Layout of the arithmetic hardware design.

comparison, all common intrinsic variables and state values
V(s) use a bit-width of 32.

We evaluate and compare the execution delays and aver-
age runtime for our two hardware designs and the software
implementation of PDS learning. The power and area consump-
tion of the arithmetic hardware accelerator and the baseline
design is also compared to illustrate the effectiveness of the
proposed hardware optimization techniques. These results and
comparisons are shown in Table I, where the execution times
and power/area consumption are normalized with respect to
those of the arithmetic hardware design. It can be observed
that our arithmetic hardware accelerator is 2.6× faster than
the baseline circuit while achieving a 1× 104 times accelera-
tion over the software implementation. Besides, the power and
area consumptions are also decreased by 85.7% and 86.1%,
respectively, compared to the baseline hardware design.

We use Synopsis IC compiler to generate the layout of the
arithmetic hardware design with 32-nm technology, as shown
in Fig. 18, where the postlayout area (not # of cells) and power
are 0.38 mm2 and 5.72 mW, respectively.

The implementation of Q-learning is based on (14).
According to the simulation results in Section IV-B,
Q-learning converges over an order of magnitude slower than
PDS-based learning. We normalize the hardware cost with
respect to the convergence time for a fair comparison. These
results show that even though Q-learning costs less for a
single iteration compared to PDS learning, when consider-
ing the convergence time, the proposed PDS-based learning
accelerator yields reductions of 81% and 61% in delay and
power consumption, respectively, compared to Q-learning.
Therefore, we can conclude that the proposed PDS learn-
ing architecture achieves much superior hardware performance
than Q-learning.
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Fig. 19. Replaced circuit from the arithmetic accelerator.

TABLE II
COMPARISON WITH OUR PRIOR WORK [43] (32-BIT)

E. TPDE Versus Arithmetic Circuit

From the experimental results, we find that the delay of
the Know Cost module is only 39.8% of the SVE module
and the SVE module’s delay takes 100% of the total delay
(which means it is the critical path of the accelerator), indicat-
ing that the optimization for the SVE module is more crucial
for speeding up the overall accelerator. This further confirms
the motivation to adopt SC (i.e., TPDE) in the proposed
architecture.

For a fair comparison, we implement TPDE and the cor-
responding circuit from the arithmetic accelerator (Fig. 19)
that performs the same function as the TPDE. Here, the cor-
responding circuit is the SVE module without the state value
selection module (as it is not included in the critical path)
or adders at the output stage that perform the sum function.
Both circuits are individually implemented under the same 32-
bit input setting. The comparison of the arithmetic hardware
architecture in our prior work [43] and the proposed TPDE is
summarized in Table II, where the time per result for TPDE
is defined by ([z× SampleNumber]/ClkFreq) (z ∈ [1, 10]).
We set the sample number for one estimation as 1. It can be
seen that the TPDE is 86.7% faster while consuming only
0.74% energy compared to the optimized arithmetic hardware
architecture even with the largest packet throughput z.

From the results, we can see that the TPDE significantly
reduces the energy consumption and circuit area as most
stochastic circuits do. Besides that, the TPDE is 8.3× faster
compared to the corresponding arithmetic circuit that executes
the same function thanks to the resiliency of the PDS learning
algorithm to the stochastic errors as shown in Fig. 15.

TABLE III
4-WAY PARALLEL AE (32-BIT)

F. Programmable Parallel Greedy Action

To adapt our learning accelerator to broader application sce-
narios, we introduce programmable parallel greedy action in
Section III-D. The comparison of nonparallel and 4-way par-
allel AE (Fig. 13) is shown in Table III. In the worst case
(i.e., all four paths are activated), the additional MC modules
and 4-to-1 MUX only incur an additional delay of 3.69 ns and
0.17 mW extra power consumption, which correspond to only
3.7% and 2.9% overhead, respectively.

V. CONCLUSION

This article presented efficient hardware architectures for
accelerating PDS learning in IoT applications. We first
designed a hardware accelerator for the most costly computa-
tion, i.e., the AE step. Then, building upon this architecture,
we developed an SC-based hardware architecture, which can
further simplify the computation while simultaneously reduc-
ing the power consumption. The effectiveness of the proposed
methods is comprehensively verified from both arithmetic and
hardware perspectives. Future work will be directed toward the
generalization of the proposed architecture to various wireless
and IoT settings.
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