
Distinguishability of graphs: a case for
quantum-inspired measures

Athanasia Polychronopoulou
Temple University

Philadelphia, PA 19122 USA
Email: n.polychr@temple.edu

J. Alshehri
Temple University

Philadelphia, PA 19122 USA
Email: shehri.j@temple.edu

Zoran Obradovic
Temple University

Philadelphia, PA 19122 USA
Email: zoran.obradovic@temple.edu

Abstract—The question of graph similarity or graph distin-
guishability arises often in natural systems and their analysis
over graphical networks. In many domains, graph similarity is
used for graph classification, outlier detection or the identification
of distinguished interaction patterns. Several methods have been
proposed on how to address this topic, but graph comparison
still presents many challenges. Recently, information physics has
emerged as a promising theoretical foundation for complex net-
works. In many applications, it has been demonstrated that nat-
ural complex systems exhibit features that can be described and
interpreted by measures typically applied in quantum mechanical
systems. Therefore, a natural starting point for the identification
of network similarity measures is information physics and a series
of measures of distance for quantum states. In this work, we
report experiments on synthetic and real-world data sets, and
compare quantum-inspired measures to a series of state-of-the-
art and well-established methods of graph distinguishability. We
show that quantum-inspired methods satisfy the mathematical
and intuitive requirements for graph similarities, while offering
high interpretability.

I. INTRODUCTION

Most of the natural systems that surround us can be seen
as a collection of entities interacting with each other. Social
networks, genetic and protein interaction networks, airline and
road traffic networks, brain connectivity networks and web
graphs are only some of the examples. These systems are
typically analyzed using network theory, where they are repre-
sented as complex networks (graphs), whose nodes (entities)
are connected through edges (interactions).

The question of graph distinguishability or graph similarity
often arises in these natural systems [1]. For example, social
networks are compared to identify distinguished interaction
patterns, daily traffic networks are compared to facilitate
the detection of abnormal change in traffic patterns, brain
networks are compared to extract meaningful connectivity
information at the population level, and web graphs are
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compared for anomaly detection. In all these settings the
similarity between two graphs with overlapping sets of nodes
is assessed and the detection of changes in the connectivity
patterns is important. This problem is different from the
problem of inexact graph matching, the graph isomorphism
or the maximum common subgraph problem, where the node
correspondence is unknown [2].

Several approaches have been proposed to solve different
variations of the problem of calculating graph similarity. The
simplest approach would be the calculation of a variety of
the graphs’ structural properties (diameter, edges distribution,
degree and eigenvalues) and their subsequent comparison, but
this approach is not able to capture every aspect of the graphs.
More commonly, methods that estimate the graph edit distance
(GED) are used. GED measures the dissimilarity between
two graphs as the minimal cost of a sequence of elemen-
tary operations transforming one graph into another. Exact
computation of GED is NP-hard and typically approximate
or tangent solutions are implemented. Other solutions have
been proposed, such as the usage of the graph spectra [1],
or measures inspired by document similarity [3] and other
intuitive approaches [4]. More recently, spectral distances as
well as distances based on node affinities have been studied in
more depth [5], and the usage of Quantum Jensen Divergence
(QJSDiv) as a measure of graph distinguishability, has also
been proposed [6]. However, graph comparison remains an
open problem. Most of the solutions proposed so far are
empirical in nature and a more mathematical method with
high interpretability is required. Toward this goal, we study a
series of measures that have been effectively used in quantum
mechanics and quantum information theory, they satisfy the
mathematical properties of a metric and similarity measure
and offer intelligible results.

Quantum mechanics is a valuable resource for the inves-
tigation of the behavior of complex networks [7]. A variety
of quantum systems have been seen as metaphors for natural
systems described by complex networks. Quantum gases have
been used to describe network evolution and the emergence
of different structures in complex networks, has been repre-
sented in terms of a quantum–classical transition for quantum
gases [8]. Quantum transport probability and state fidelity
have been implemented as a closeness function and used for
community detection [9], while quantum random walks have



been shown to offer significant performance improvements on
traditional computer science algorithms with respect to the
classical random walks [10], and have been implemented for a
quantum-inspired ranking algorithm [11]. Quantum distances
are used to reduce the complexity of calculating Euclidean
distances between multidimensional points,and improve the
performance of algorithms such as k-means [12]. Given this
interconnection between quantum mechanics and complex
networks, quantum network theory is a natural place to look
for similarity measures.

In this work we evaluate the use of quantum inspired mea-
sures for graph distinguishablity. We consider four possible
measures, that have been broadly used in quantum information
theory as measures of distance between quantum states [13].
They have been extended for use with quantum processes
and have been studied in detail for quantum systems [14],
[15]. In this work we evaluate their ability to distinguish two
complex networks and we elucidate the properties of the four
distance measures. We first utilize a series of artificial data to
study in detail the effectiveness of these measures with various
graphical structures and for complex network distances of
various types and significance. We then report experiments on
real-world data sets, from a variety of domains, and compare
the quantum-inspired measures to a series of state-of-the-art
and well established methods.

II. METHODS

In an attempt to define a measure of distance for complex
networks that is mathematically well established and has high
interpretability, we consider a series of distance measures for
quantum states, that are particularly important in Quantum
Information Science [13], [14], [15]. In this work we limit
our consideration to measures which have been shown to
be a metric, or in the case of the Quantum Jensen-Shannon
Divergence are expected to be metrics [16]. The metric char-
acter of a distance measure between two complex networks
Gσ and Gρ requires three fundamental properties: D(Gσ ,
Gρ) ≥ 0 , with the equality to zero occurring if and only if
Gσ = Gρ, D(Gσ , Gρ) = D(Gρ, Gσ) i.e. the distance measure
is symmetric and finally the triangle inequality is satisfied and
D(Gσ , Gρ) ≤ D(Gσ , Gτ ) +D(Gτ , Gρ).

The quantum-inspired distance measures considered in this
work are based on the definition of a density matrix. In
quantum mechanics, a density matrix is a matrix that describes
the statistical state of a quantum mechanical system. Mathe-
matically, it is a hermitian matrix that is positive semidefinite
with trace equal to 1. In graph theory, the density matrix ρ of
a graph can be defined through the combinatorial Laplacian of
the graph [17]. Let G = (V,E) be a simple undirected graph
with a set of vertices V (G) = 1, 2, ..., n and a set of edges
E(G) ⊆ V (G)×V (G). Then the density matrix is defined as:

ρG =
∆(G)−A(G)

Tr(∆(G))
(1)

In this equation A(G) is the adjacency matrix with
[A(G)]u,v = 1 if u, v ∈ E(G) and [A(G)]u,v = 0 otherwise.

∆(G) is the degree matrix, which is a diagonal matrix with
elements equal to the degree d(u) of each node u i.e. the
number of edges adjacent to each vertex. The normalization
using the trace of ∆(G) guarantees that the density matrix
will have a trace of 1. For a weighted graph G = (V,E,W )
each edge is associated with an edge weight and in this case
the density matrix becomes:

ρG =
∆(G)−W (G)

Tr(∆(G))
(2)

where W (G) is the weights matrix with [W (G)]u,v = wuv
and [W (G)]u,v = 0 if the nodes u and v are not connected.
The degree matrix ∆(G) is again a diagonal matrix holding
for each node u the value du =

∑n
v=1 wuv .

Using this formulation we can then compare networks the
same way we would compare states in quantum mechanical
systems. In this work we evaluate the following measures,
from quantum information processing, for use with complex
networks:

A. Trace Distance

The trace distance between two quantum states, or two
networks, with density matrices σ and ρ is given by:

Dtrace(σ||ρ) =
1

2
[trace(

√
(σ − ρ)2)] (3)

It is a metric and is bounded to be 0 ≤ Dtrace ≤ 1 with
the equality to 0 holding if and only if ρ = σ and the
equality to 1 holding if and only if ρ and σ have orthogonal
supports. The trace distance is the quantum generalization of
the Kolmogorov distance for classical probability distributions
and, as it’s classical counterpart, the trace distance can be inter-
preted to represent the maximum probability of distinguishing
between two quantum systems, or in our case two networks.

B. Hilbert–Schmidt distance

The Hilbert-Schmidt distance

DHS(σ||ρ) =
√
trace(σ − ρ)2 (4)

is a Riemannian metric that is bounded to be 0 ≤ DHS ≤
2Dtrace. As it is defined on the space of operators it is unclear
how to impose an operational interpretation, however, in [18]
the authors suggest that it can be seen as an information
distance between two quantum states. It has been recently
used in [12] to reduce the complexity of calculating Euclidean
distances between multidimensional points and thereby reduce
the complexity of classification algorithms such as k-means
but it has not been studied so far as a measure for the
distinguishability of graphs.

C. Hellinger distance

The Hellinger distance is given by:

DH(σ||ρ) =
√

2[1−A(σ||ρ)] (5)

with
A(σ||ρ) = trace(

√
σ
√
ρ) (6)



representing the quantum affinity, a measure that characterizes
the closeness of two quantum states and whose classical
analog is the Bhattacharya coefficient between two classical
probability distribution. The Hellinger distance is a metric,
bounded to be 0 ≤ DH ≤

√
2 [19].

D. Bures distance

The Bures distance is expressed through quantum Fidelity,
which is a measures of overlap between two quantum states:

F (σ||ρ) = [trace(
√√

ρσ
√
ρ)]2 (7)

It can be shown that the fidelity is symmetric and is bounded
to be 0 ≤ F (σ||ρ) ≤ 1, with F (σ||ρ) = 1 if and only if σ = ρ.
Although not a metric, the fidelity can easily be turned into a
metric and the most common approach is the Bures metric:

DB(σ||ρ) =

√
2[1−

√
F (σ||ρ)] (8)

E. Quantum JSDiv

The Von Neumann entropy of a network, similarly to the
Von Neumann entropy of a quantum system, can be interpreted
as a measure of regularity and is given by the expression:

S(ρ) = −Tr(ρ log2 ρ) (9)

Then, the distinguishability of two quantum states or two
networks with density matrices σ and ρ can be measured
using the von Neumann relative entropy (or quantum relative
entropy) defined as:

SN (σ||ρ) = Trσ(lnσ − lnρ) (10)

where lnσ is the matrix base 2 logarithm of σ. Notice that the
quantum relative entropy is the quantum mechanical analog
of relative entropy, otherwise called Kullback–Leibler diver-
gence, commonly used in statistics as a measure of comparison
for probability distributions. Relative entropy is not symmetric,
does not satisfy the triangle equality and it is well defined
only if the support of σ is a subset of the support of ρ (the
support being the subspace spanned by the eigenvectors of the
density matrix with non-zero eigenvalues). However, it can be
extended to provide the Quantum Jensen-Shannon divergence
(QJSDiv) [20], given by:

QJSDiv(σ||ρ) =
1

2
[SN (σ||σ + ρ

2
) + SN (ρ||σ + ρ

2
)] (11)

where SN is the quantum relative entropy of equation 10 and
can be alternatively written as:

QJSDiv(σ||ρ) = S(
σ + ρ

2
)− 1

2
S(ρ)− 1

2
S(σ) (12)

where S is the quantum entropy of equation 9. Quantum
Jensen-Shannon divergence was introduced as a measure of
distinguishability between mixed quantum states [20], and it’s
properties have been extensively studied [16]. It bounded to be
0 ≤ QJSDiv ≤ 1, with the equality to 0 holding if and only
if ρ = σ, and it is always well-defined, with the restriction
previously imposed on the supports of ρ and σ now lifted.
The authors of [6] have shown that Quantum Jensen-Shannon

divergence can be used to quantify the distance between pairs
of networks, and they have applied it to successfully cluster the
layers of a multilayer system. In this work, we aim to compare
the performance of Quantum Jensen-Shannon divergence with
the rest of the measures presented here as well as a series of
baseline measures commonly used in the domain.

III. RESULTS

The experimental evaluation of the proposed graph distance
measures is divided in two major parts, each concerned with
applications on different types of data. The first part utilizes a
series of experiments on artificial data aiming to answer three
important research questions: ‘Can each of the measures act as
a measure of distinguishability between graphs?’, ‘Can each of
the measures capture intuitive similarity aspects?’ and finally
‘Can each of the measures capture structural characteristics?’.
In the second part we use the proposed distance measures in
real-world applications using data from different domains and
answer the question: ‘Can each of the measures be effectively
used as a similarity measure for real-world complex data?’.

A. Experiments on Artificial Data

1) ‘Can each of the measures act as a measure of dis-
tinguishability between graphs?’: To answer this research
question, we run a series of experiments following the general
concept of graph edit distance. Artificial networks with 100
nodes are generated and then modified using a discrete-time
process in which one elementary graph edit operation is
applied at every step. The artificial networks are undirected
and unweighted, and they are created using several graphical
models or canonical structures: Random graphs, Preferential
attachment, a symmetric Forest Fire model, binary trees, lines,
circles, and a fully connected clique network. Three types of
elementary graph edit operations are studied: the removal of
a randomly selected edge, the removal of a randomly selected
node and the rewiring of two randomly selected edges. For
every step, we calculate the distance between the modified and
original network and the results are presented in Figure 1. The
monotonically increasing behavior of the distance measures is
evident and confirms that they act as measures of graph dis-
tinguishability, accommodating all possible elementary graph
edit operations and all types of networks.

As the elementary graph edit step increases and the graph
becomes smaller the curvature of the plots increases. As
intuitively expected, the same modification is more crucial for
smaller networks. Notice that this is not the case for node
removals and Bures Distance, while the Hellinger distance is
equally sensitive to modifications of large and small networks,
something that is also very intuitive. It is interesting to notice
that, as intuitively expected, in the cases of edge rewiring and
removal, the distance increases more rapidly for graphs like
lines and circles and less rapidly for random graphs.

2) ‘Can each of the measures capture intuitive similarity
aspects?’: Graph similarity measures should take into account
that targeted operations are expected to affect the network



Fig. 1. The progression of each of the distance measures between the original graph and the graph after applying a series of elementary graph edit operations.
Each elementary graph edit operation corresponds to a random edge removal, a random node removal, or the rewiring of two randomly chosen edges.

more than random ones, and operations that create discon-
nected components in the graph should affect it more than
operations that do not. To answer our second research question
we generate a random graph, and apply a similar discrete-time
process with repeated edge removals. These edge removals
occur in three different ways: with a random process, where
the edge to be removed is randomly selected, with a semi-
targeted process, by randomly selecting a node and removing
in a random order all of it’s edges before proceeding to
the next node, and with a fully-targeted process, targeting
again one node at a time, but now the targeted node is the
one with the maximum degree in the graph. The results are
presented on Figure 2. It is clear that targeted modifications
result in higher distance values. The two modes of targeted
edge selection do not appear to be significantly different, and
a closer look at the plots reveals the reason. In the fully
targeted approach all the popular nodes are removed in order,
while the graph is still large enough and the effect of their
removal is still small. In the targeted random approach, some
popular nodes are removed at the beginning while others are
removed in later steps, when the effect is more significant.
The bottom part of Figure 2 answers a different aspect of the
same question. The steps of the discrete-time edge removal
process are separated in two categories based on whether the
step’s edge removal created a new disconnected component
or not. Then we compare the values of each of the distance
measures between the two categories. The results show that,

the distance values are in general larger and more varied when
the edge removal generates a disconnected component. For a
more precise analysis a two sample t-test is applied, testing
the null hypothesis that the two data samples come from two
distributions with the same mean, without assuming equality
of the variances. The hypothesis is in each case rejected at 5%
significance level, with p values (averaged over 10 repetitions):
ptrace = 6.4 ∗ 10−29, pHS = 0.0081, pH = 1.8 ∗ 10−48,
pB = 1.3 ∗ 10−32, and pQJSDiv = 1.2 ∗ 10−21, indicating a
smaller separation for QJSDiv and DHS .

The case of weighted networks is studied by expanding our
elementary graph edit operations to include edge re-weighting
and edge weight redistribution. In the first case, the weight of
a random edge is substituted by a new random value and in the
second case two random edges are chosen and their weights
are interchanged. We use a random graph with weights gen-
erated randomly from a uniform distribution and the discrete-
time process with elementary graph edit operations is repeated.
These operations are random node removals, random edge
removals, targeted removal of the edge with the highest weight,
edge rewiring, and edge weight redistribution. The results are
presented in Figure 3. As intuitively expected, node removal
is much more effective than edge removal. Furthermore,
removing higher weight edges is more effective than removing
edges randomly. Finally, in all cases the removal of an edge
causes a bigger change to the graph than edge re-weight or
rewiring. For these two cases QJSDiv and DHS maintain low
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Fig. 2. Top:The progression of the distance measures with continuous edge removals. The edge selection can be random, targeted with random node selection
or targeted with popular node selection. Bottom: Comparison of the values of the distance measures between two categories of edge removal steps: those that
created a new disconnected component and those that did not.

values for the entire process and seem to be less sensitive.

3) ‘Can each of the measures capture structural character-
istics?’: For the last research question, a similar experimental
process is applied on a random graph, but this time at every
step several structural properties of the graph along with the
distance measures are calculated. The correlation between the
evolution of the value of each structural measure and the value
of each distance is calculated and reported on Table I. A
series of structural properties are considered, each describing
a different aspect of the network and representing both global
and local graph characteristics. The closeness centrality of a
node measures the mean distance of it to other nodes and
can be seen as evidence of the access that the node has to
information or the influence it has on other nodes. It has
been shown that the closeness centrality distance can be used
to effectively distinguish between randomly generated and
actual evolutionary paths of two dynamic social networks [21].
Eigenvector centrality is also a measure of the importance
of the node, measured now with respect to both the number
and the importance of the node’s neighbors [22]. In graph
theory, the clustering coefficient is a well-established measure
of the degree to which nodes in a graph tend to cluster
together. The local clustering coefficient acts complementary
to it, as it can be used as a probe for the existence of
so-called ‘structural holes’ in a network and, in this sense,

it represents a local betweenness centrality, measuring the
extent to which a vertex lies on paths between its immediate
neighbors. The eccentricity of a node [23] is it’s maximum
graph distance to any other node and is a measure commonly
used to extract graph characteristics such as the radius and
diameter. The friends of a friend measure counts the nodes
that are connected to one’s neighbors but are not connected to
the one, while the common neighbors [24], the Adamic-Adar
[25] and the Jaccard Coefficient [26] provide an actual and
a normalized count of the common neighbors between two
nodes. Finally, graph entropy can be interpreted as a measure
of graph regularity as it tends to increase with the number
of connected components, long paths, and nontrivial symme-
tries [27]. All distances present high correlations with these
measures making it clear that they can all capture structural
characteristics and hence can be used as measures of structural
change. Averaging these results for each distance measure
we get µtrace = 0.7150, µHS = 0.6099, µH = 0.7160,
µB = 0.7135, µQJSDiv = 0.7014, showing a very consistent
correlation of the Hellinger distance.

B. Experiments on Real Data

1) Graph Classification: We evaluate the effectiveness of
the distance measures using three real world data sets available
under SNAP data repository [28]. The first data set describes
all incoming and outgoing email between members of a large
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Closeness Centrality 0.14 0.07 0.18 0.21 0.11 0.71 0.48 0.72 0.76 0.56 0.80 0.80 0.80 0.80 0.80
Clustering Coef 0.56 0.73 0.55 0.44 0.67 0.80 0.60 0.80 0.82 0.67 0.74 0.74 0.74 0.74 0.82

Local Clustering Coef 0.97 0.76 0.95 0.92 0.98 0.87 0.62 0.88 0.91 0.74 0.73 0.74 0.74 0.74 0.80
Entropy Difference 0.89 0.96 0.89 0.81 0.95 0.92 0.96 0.90 0.86 0.97 0.61 0.62 0.62 0.62 0.69

Eccentricity 0.89 0.84 0.88 0.82 0.94 0.11 0.26 0.07 0.01 0.29 0.59 0.59 0.59 0.59 0.62
Eigenvector Centrality 0.98 0.81 0.97 0.93 0.99 0.96 0.74 0.97 0.98 0.92 0.63 0.62 0.62 0.62 0.55

Friend of a Friend 0.92 0.57 0.94 0.98 0.84 0.77 0.53 0.78 0.82 0.61 0.74 0.74 0.74 0.74 0.82
Adamic Adar 0.95 0.61 0.96 0.99 0.87 0.82 0.57 0.83 0.87 0.68 0.26 0.28 0.28 0.28 0.41

Common Neighbor 0.92 0.56 0.93 0.97 0.83 0.75 0.51 0.76 0.80 0.59 NaN NaN NaN NaN NaN
Jaccard Coef 0.98 0.67 0.98 0.99 0.93 0.92 0.68 0.92 0.95 0.80 0.71 0.71 0.71 0.71 0.70

TABLE I
THE PEARSON CORRELATION BETWEEN THE EVOLUTION OF DIFFERENT STRUCTURAL MEASURES AND THE EVOLUTION OF THE DISTANCE MEASURES,

FOR THREE DIFFERENT GRAPH MODIFICATION APPROACHES. THE RESULTS ARE AVERAGES OVER 5 REPETITIONS.

European research institution [29]. It contains information on
1005 researchers, and their communications creating a network
of 1005 nodes and 25571 edges, where an edge (u, v) exists
if researchers u and v have exchanged at least one email.
Using these data we extract the ego-network of each node,
creating 1005 networks with 1005 nodes each (self-edges are
not considered). Each individual belongs to exactly one of 42
departments and the purpose of this experiment is to predict
the department of each researcher using only the intrinsic
properties of the email exchange network. The assumption is
that researchers who belong in the same department will have
similar email ego-networks.

The second data set is a butterfly similarity network. Nodes
represent organisms and edges represent visual similarities
between them [30], calculated using butterfly images. The
data set contains information on 832 butterflies in 10 classes,
with each class consisting of between 55 and 100 samples.
Using these data we extract the ego-network of each node,
creating 832 networks with 832 nodes each. The purpose of
this experiment is to predict the class of each butterfly using
again only the structure of their ego-networks. The assumption
is that butterflies who belong in the same class will have
similar ego-networks.

The third data set describes the ego-networks of Eastern
European users collected from the music streaming service
Deezer in February 2020. Nodes are users and edges are
mutual follower relationships [31]. The ego-networks of the
9,629 users have been extracted, and the related classification
task is the prediction of gender for each of the ego-nodes.

Using all the distance measures reported in this work,
as well as several baselines, we calculate the dissimilarities
between all pairs of ego-networks for the three different data
sets. Then for each data set and each ego-node we follow a
leave-one-out classification approach, where we calculate the
average similarity of it with the ego-networks of each of the
labels. We assign the ego-node to the label that is on average
most similar.

We compare the results of all the distance measures with a
series of state-of-the-art and well-established methods of graph
comparison. The authors of [3] study five similarity measures,
the best of which is the Signature Similarity (SS), based on

the SimHash algorithm. We also compare our results with
DELTACON, an intuitive algorithm proposed by [4], that uses
fast belief propagation to model the diffusion of information
throughout the graph, and is able to capture both local and
global structures. Finally, we compare with the graph edit
distance (GED) and the edge-weight distance (DEW), two well
established measures of graphs similarity, studied in detail in
[1]. Mathematically, the graph edit distance (GED) between
two graphs Gσ = (Vσ, Eσ) and Gρ = (Vρ, Eρ) is given by:

GED =
|Vσ|+ |Vρ| − 2|Vσ ∩Vρ|+ |Eσ|+ |Eρ| − 2|Eσ ∩Eρ|

|Vσ|+ |Vρ|+ |Eσ|+ |Eρ|
(13)

while the edge-weight distance for the two graphs, on the
simplified case of Vρ = Vσ = V is defined in [1] as:

DEW =
∑
u,v∈V

|wσuv − wρuv|
max(wσuv, w

ρ
uv)

(14)

with wiuv the weight of the edge between nodes u and v of
graph Gi.

Using the above data, experimental setup and baselines, we
predict the label of each ego-node, using only the similarity
between the ego-networks. The results are reported in terms
of the F1 score for all methods and all data sets in Table II
and they indicate that most of the distance measures presented
in this work are able to complete the classification task
outperforming the more traditionally used baselines. With the
exception of the Deezer data set, that appears to pose a difficult
classification problem for all the methods, Hellinger Distance
outperforms the rest, with QJSDiv following closely.

2) Graph Outlier Detection: For this experiment, we utilize
data from the Correlates of War Project [32], that track total
national trade and bilateral trade flows on a global level from
1870-2014. The data can be represented in the form of 145
weighted networks, one for each year of data. Then each
network will be of 207 nodes, one for each country (as defined
in [33]), connected with each other with edges, whose weights
represent the bilateral trade reported in the data.

The aim of this experiment is to identify outlier years, years
of unexpected change in national trade. We compare the net-



Dissimilarity Dataset
Email-EU Butterfly Deezer

Dtrace 0.5560 0.7566 0.5211
DHS 0.4056 0.6950 0.5009
DH 0.6123 0.7806 0.5195
DB 0.5610 0.7678 0.4925

QJSDiv 0.5946 0.7742 0.5242
GED 0.5726 0.7554 0.5149
DEW 0.5728 0.7595 0.5158

DELTACON 0.4179 0.7433 0.5294
SS 0.3262 0.2716 0.5195

TABLE II
F1 SCORES FOR EACH OF THE CLASSIFICATION TASKS AND EACH OF THE

METHODS APPLIED.

work structure of each year to the network of the year before
and report their dissimilarity for all distances and the baselines.
For each data point we use the zscore = (d − median)/σ
as a means to describe its relationship to the median and
standard deviation of the distribution of the dissimilarity values
for each of the distance measures (the median is used instead
of the mean, since the data do not follow normal distribution).
Then, the years that exhibit a value that is smaller than
median + 3σ (have a zscore smaller than 3) are considered
non-anomalous and the years that are outside this limit are
considered anomalous or outliers. The dissimilarity results are
presented in Figure 4, where the outlier years, as identified by
each of the methods, are also clearly marked.

In their majority, the years that are identified as anomalous,
correspond to significant historical events that are expected to
affect the international trade. All of the methods have identified
the most prominent events, years 1914, 1919, 1920, 1930,
1939 - 1946 (inclusive), 1948. The year 1914 marks the start of
WWI and the economic recession of 1913-1914. In 1919 and
1920 the Treaty of Versailles is held, the League of Nations is
founded and Germany begins reparation payments. Then 1930
corresponds to the Great Depression, the years 1939 - 1945
are the years of WWII and 1946 is the year following the end
of WWII with post war recovery and civil unrest in Europe.
In 1948 the Cold War begins, the Marshall Plan takes place
and the Arab-Israeli War began. Furthermore, all the quantum-
inspired methods agree on a series of other outlier years:1918,
1955, 1960, and 1990. The year 1918 marks the end of WWI
and is also associated with the Russian revolution and the
dissolution of Austria-Hungary. The year 1955 is the start of
the space race, 1960 marks the first phase of the Vietnam war,
and 1990 is associated with the fall of the Berlin Wall (Nov.
1989), the fall of communism in the Eastern Europe, and the
beginning of Gulf War.

One notable difference is that all the quantum-inspired
distances appear to have a favorable signal-to-noise ratio,
providing more confidence in their outlier reporting. The
signal-to-noise ratio, defined as the ratio of the average value
of dissimilarity for outlier years, over the average value of
dissimilarity for non-outlier years, is reported on Table III.
Another, more subtle difference, is seen in the confidence at
which each method reports some of the outliers, empirically
seen as the height of each point in the dissimilarity plots of
Figure 4. While all methods recognise the importance of the
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Fig. 4. The dissimilarity between the networks of each year y and the year
before. The anomalous years identified by each method are also marked.

years of WWI and WWII, other events, such as the Great
Depression of 1930 and the Gulf War of 1990, are reported
with varying confidence. Using the value of zscore for each
data point, that represents the distance of the data point from
the median of the distribution in terms of standard deviations,
we report in Table III for each method the confidence at which
it identifies some of the prominent historical events. For both
these years Hellinger and Bures distance appear to be more
confident, while QJSDiv, trace and Hilbert-Schmidt are under-
emphasising them.

Following the same rational, we can study the differences
in other years,such as 1894, 1900 and 1952. The year 1894
marks the start of the first Sino-Japanese war and also follows
the Panic of 1893, an economic recessions in the United States
that began in the second half of 1893 and affected every sector
of the economy. The 1900 has the Boxer Rebellion in which
Russia, Japan, US, China, UK, France participated and finally,
1952 corresponds to the years of Korean War (1950-1953), the
Sino-Japanese Peace Treaty is signed, the year that Elizabeth
II becomes queen regnant, and the Great Smog of 1952 in
London. The events of these years are significant enough to



SNR z1930 z1990 z1894 z1900 z1952
Dtrace 8.21 6.87 4.36 2.65 0.92 1.24
DHS 10.95 5.91 6.00 2.64 0.89 1.04
DH 5.81 6.08 10.68 4.51 3.02 4.15
DB 5.62 5.44 9.46 4.06 2.74 3.76

QJSDiv 39.68 3.35 5.77 1.71 0.98 1.38
GED 4.24 3.16 1.56 6.61 3.91 1.49
DEW 1.77 3.14 2.44 3.03 1.45 1.63

DELTACON 1.55 3.51 9.35 5.27 2.95 5.87
SS 5.59 18.15 1.45 0.73 7.26 2.18

TABLE III
RESULTS OF THE SIGNAL-TO-NOISE RATIO AND THE CONFIDENCE IN

OUTLIER DETECTION BASED ON THE zscore FOR VARIOUS YEARS, FOR
ALL GRAPH SIMILARITY MEASURES

have affected the international trade, however these years are
not identified as outliers by all of the methods. Focusing on the
quantum-inspired methods, years 1894 and 1952 are identified
by Hellinger and Bures distance, while 1900 is only identified
by Hellinger distance. These results emphasize the previously
observed trend, that Hellinger distance is able to highlighting
events of a wider rage of significance.

IV. DISCUSSION

In this work, we introduce measures for graph similarity
inspired by distances on a set of quantum states. We have
shown that these measures can effectively distinguish graphs,
and can be used with both weighted and unweighted net-
works, while identifying graph structure changes, such as
the introduction of disconnected components. These mea-
sures intuitively capture and incorporate, several structural
characteristics, that are often used to describe and compare
networks, providing a holistic approach. We utilized real-world
data sets to showcase that they can be effectively used on a
variety of applications, domains, and problems outperforming
previously well-established and state-of-the-art methods. One
of the measures, Hellinger Distance, has proven to have
the most consistent response and in most cases outperforms
the rest. Two additional important features distinguish these
methods from previously published approaches: they are well-
established mathematical methods that incorporate the intrinsic
structure of the entire network and have high interpretability.
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