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ABSTRACT
We present a method for obtaining origin-independent electronic circular dichroism (ECD) in the length-gauge representation LG(OI) with-
out the usage of London atomic orbitals. This approach builds upon the work by Caricato [J. Chem. Phys. 153, 151101 (2020)] and is applied
to rotatory strengths and ECD spectra from damped response theory. Numerical results are presented for time-dependent Hartree–Fock and
density-functional theory, the second-order algebraic diagrammatic construction method, and linear-response coupled-cluster theory with
singles and approximate doubles. We can support the finding that the common choice of placing the gauge origin in the center of mass of
a molecule in conventional length-gauge calculations involving chiroptical properties might not be optimal and show that LG(OI) is a valu-
able alternative for the origin-independent calculation of ECD spectra. We show that, for a limited test set, the convergence of the rotatory
strengths calculated with the LG(OI) approach toward the basis-set limit tends to be faster than for the established velocity gauge representa-
tion. Relationships between the sum-over-states expression of the optical rotation in the LG(OI) framework and its representation in terms
of response functions are analyzed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0088922

I. INTRODUCTION

Electronic circular dichroism (ECD) is the differential absorp-
tion of left- and right-circularly polarized light.1 A molecule must
be chiral in order to exhibit ECD, where the signals of two enan-
tiomers are identical in magnitude but opposite in sign.2 From an
experimentalist’s perspective, ECD is primarily interesting because
it can be helpful in assigning the absolute configuration of chiral
compounds by comparing experimental spectra with reference spec-
tra provided by calculations.3,4 To give an example, ECD can aid
the elucidation of the secondary and tertiary structure of proteins.5
Modern experimental applications include time-resolved monitor-
ing of the conformational dynamics of the backbone of peptides and
proteins6 as well as polymers during the aggregation process.7 Like-
wise from a theoretical point of view, ECD is a fascinating molecular
property, because, among other intricacies, it is much more sensitive
to structural perturbations or solvent effects than regular electronic

absorption spectra.8 Reliable theoretical methods are highly
useful for these applications, and developments toward accu-
rate computational schemes for calculating ECD are thus
indispensable.

Over the past decades, numerous computational methods have
emerged to predict and describe ECD,9–20 and most of them rely
on response theory of some sort. As arguably the most promi-
nent examples, time-dependent density-functional theory11,12,14

(TDDFT) and members of the hierarchy of coupled cluster methods,
such as coupled cluster with singles and doubles16,21 (CCSD), are
particularly worth mentioning. In calculations, ECD as a response
property can be determined by considering the real part of the com-
plex electric dipole–magnetic dipole polarizability tensor describing
a molecule’s electric dipole response to a perturbing external mag-
netic field.22,23 ECD is, thus, closely related to optical rotatory
dispersion (ORD), which depends on the imaginary part of this ten-
sor. In the context of exact response theory, the concept of gauge
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invariance implies that the choice of the quantum-mechanical oper-
ator to describe the interaction of a molecule with an external field
is not unique.24 To give an example, there exist different representa-
tions of the electric-dipole operator, which in turn also makes the
description of ECD ambiguous. In this regard, discussions of the
representation of the electric-dipole operator are typically confined
to its two most popular choices, namely, the length and the velocity
gauge.12,14,15,25

All computational response methods rely on approximate solu-
tions of the Schrödinger equation and additionally make use of
incomplete basis sets. As a result, the principles of exact response
theory do not necessarily apply anymore and numerical results of
ECD calculations may highly depend on the choice of the electric-
dipole operator (and potentially the coordinate origin).14,26 The fact
that there is no apparent reason to prefer one representation to
another is, thus, a large problem of using approximate methods
for the calculation of ECD (and ORD for that matter). However,
while properties described in the length gauge may converge faster
with the size of the basis set,14,27 approximate ECD calculations in
the length gauge depend on the origin of the molecule’s reference
Cartesian coordinate system and are, without further tools such as
London orbitals thus generally impractical.14,25,28 Conversely, cal-
culations using the velocity gauge are invariant with respect to
the choice of the (gauge) origin and have, therefore, become the
de facto standard.29,30

In this work, we extend a computational scheme for calculating
origin-independent optical rotation parameters in the length-gauge
representation [LG(OI)] proposed by one of us31 to electronic circu-
lar dichroism (ECD). In the original approach, the diagonal elements
of the optical-rotation tensor (and thus its isotropic part) are made
origin-independent. To this end, the electric-dipole polarizability
in mixed dipole representation, where one of the electric dipole
operators follows the length and the other one the velocity repre-
sentation, is decomposed via a singular-value decomposition and
the left and right singular vectors are applied to the optical-rotation
tensor. Here, we develop two strategies in order to transfer this con-
cept to calculations of ECD spectra: On the one hand, we start from
rotatory strengths that are commonly obtained along with excita-
tion energies. On the other hand, we consider ECD directly as the
real part of the electric dipole–magnetic dipole polarizability ten-
sor as it can be calculated using damped response theory.23,32–36 To
the best of our knowledge, we report the first application of origin-
independent ECD in the length-gauge representation not relying on
London atomic orbitals.37,38

This article is structured as follows: First, we provide a con-
cise derivation of the working equations. Second, we present some
proof-of-principle calculations for time-dependent Hartree–Fock
(TDHF)39 and density functional theory,40 the second-order alge-
braic diagrammatic construction method [ADC(2)],41 and linear-
response coupled-cluster theory with singles and approximate dou-
bles (LR-CC2)42,43 demonstrating the efficacy of this ansatz for
both ECD approaches. We then compare the basis-set convergence
behavior of the LG(OI) and the established velocity gauge rota-
tor strengths. Differences for both methods for a larger test case
with a delocalized π-system are discussed. The relationship between
the origin-independent length-gauge optical rotation introduced in
Ref. 31 and the rotatory strengths presented here is analyzed. Finally,
we conclude from our results.

II. THEORY
To obtain a compact notation, we first introduce the following

property operators:

μ̂ = −

ne

∑
i

ri, (1)

m̂ = −
i
2

ne

∑
i
(r ×∇)i, (2)

p̂ = −i
ne

∑
i
∇i (3)

as the electronic-dipole operator [Eq. (1)], the magnetic-dipole oper-
ator [Eq. (2)], and the electronic momentum operator [Eq. (3)],
respectively. All operators include a sum over all ne electrons. Simi-
larly to Ref. 31, linear response properties will contain a superscript
(X, Y), indicating the representation of its underlying operators,
for example, the electric-dipole polarizability tensor in mixed-
gauge representation would be denoted α(μ,p). Furthermore, Hartree
atomic units will be used throughout this article unless stated
otherwise.

In response theory, it is especially convenient to express molec-
ular properties in terms of the linear response function ⟨⟨A;B⟩⟩ω,
which, in very general terms, describes the response of some prop-
erty described by operator A to an induced, possibly frequency
(ω)-dependent perturbation that can be represented by operator
B.44 For exact wave functions, the sum-over-states linear response
function reads45

⟨⟨A;B⟩⟩ω = ∑
n≠0

(
⟨0∣A∣n⟩⟨n∣B∣0⟩

ω + iγ − ω0n
−

⟨0∣B∣n⟩⟨n∣A∣0⟩
ω + iγ + ω0n

), (4)

which sums over all excited states n with excitation energies ω0n
and transition moments ⟨0∣A∣n⟩. If not explicitly specified other-
wise, we take the limit γ→ 0+ in the following. Any electronic-
structure theory with which the time-dependent expectation value
⟨A⟩ can be described provides such a response function, includ-
ing Hartree–Fock (HF), density-functional theory (DFT), or various
coupled cluster (CC) approximations, such as coupled cluster with
singles and (approximate) doubles (CC2, CCSD). In this work, we
only consider the general concept of response functions to make
use of their compact notation, which, besides exact response theory,
is commonly used across all approximate methods. Explicit expres-
sions and technical details concerning response functions in the CC
context can be found elsewhere.45,46 Remarks for HF/DFT linear
response functions can be found in the Implementation section of
the supplementary material or in Refs. 47–50.

Generally, isotropic chiroptical properties are related to
the electric dipole–magnetic dipole polarizability tensor G′ that
describes a magnetic-dipole perturbation on the electric dipole of
a molecule. Using the response-function notation from above, it can
be expressed as

G′(ω) = −⟨⟨μ; m⟩⟩ω, (5)

where the bold-type notation implies that this linear response
function can be evaluated for three Cartesian components of the
observable and the perturbation, respectively, and linear response
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functions for two dipole operators are, thus, generally 3 × 3 tensors.
The G′ tensor is related to the optical-rotation tensor β following30

β(ω) = −ω−1Im[G′(ω)]. (6)

Note that, in this article, we restrict ourselves to isotropic samples
and hence do not consider contributions of the electric dipole-
electric quadrupole tensor to the optical rotation. The isotropic
average of β

β(ω) =
1
3

Tr[β(ω)] (7)

is then directly related to the specific rotation [α] in deg/[dm (g/ml)]
conventionally reported in experimental studies29

[α]ω = 1.343 × 10−4 ν̃ 2

M
β(ω), (8)

where M is the molecular mass and ν̃ is the frequency of the incident
light in cm−1.

In practical calculations, the coordinate system a molecule is
placed in is arbitrary, and the results should be independent of
this choice. Using the dipole-length (LG) representation of the
electric-dipole operator, the optical rotation, as given in Eq. (6), is
inherently origin dependent, which, adopting the notation of Lazza-
eretti et al.,31,51,52 can be expressed as a function of some displaced
origin of this coordinate system O′ = O + d as

β(μ,m)
ij (O′) = β(μ,m)

ij (O) −
1
2

α(μ,p)
ik ϵjkldl. (9)

Here, the Einstein summation convention is used, the frequency
dependency is omitted for brevity, and ϵ and α(μ,p) denote the
Levi–Civita tensor and the electric-dipole polarizability in mixed
gauge representation, respectively. In response theory for exact wave
functions, the second summand in Eq. (9) vanishes for the trace of β
on the grounds of symmetry properties of ϵ and α.31 For calculations
involving approximate methods and finite basis sets, however, this is
not necessarily true for the LG optical rotation. This is related to the
fact that α(μ,p), in particular, is not a symmetric tensor.52

In Ref. 31, it was shown that a singular-value decomposition
(SVD) of the mixed-gauge polarizability,

α(μ,p)
(ω) = −ω−1 Im⟨⟨μ; p⟩⟩ω, (10)

yields the diagonal matrix α(μ,p)
D (ω) containing the singular values

as well as the frequency-specific unitary matrices Uω and Vω,

α(μ,p)
D (ω) = ⟨Uω∣α(μ,p)

(ω)∣Vω⟩, (11)

which can be used to make the trace of the LG optical rotation tensor
origin independent31 [cf. Eq. (9)],

β̃ (μ,m)
(ω) = ⟨Uω∣β(μ,m)

(ω)∣Vω⟩, (12)

β̃ (μ,m)
(O, ω) = β̃ (μ,m)

(O′, ω). (13)

Here and in the following, the purpose of a tilde above a tensor is
to denote an origin independency of its trace. We note that this

transformation can equally well be applied to G′ and the optical-
rotation tensor, since these are related by a simple scalar multiplica-
tion for a specific frequency [see Eq. (6)]. This origin-independent
length-gauge representation is denoted as LG(OI).31

A. Electronic circular dichroism
In practice, the inherently complex linear response function in

Eq. (4) is routinely approximated by taking the limit γ→ 0+. This
is a well-justified approximation in off-resonant spectral regions.
However, it renders the response function either purely real or imag-
inary and leads to singularities for ω→ ω0n. By contrast, damped
response theory employs a finite value for γ such that the linear
response function remains complex and these singularities do not
appear. From the imaginary part of the electric-dipole polarizability
and the real part of the electric dipole–magnetic dipole polarizabil-
ity (both in length-gauge representation), the linear absorption and
electronic circular dichroism can be obtained directly as a function
of the frequency, respectively.

Conversely, the real part (as indicated by a bar) of the mixed-
gauge electric-dipole polarizability ᾱ (μ,p),

ᾱ (μ,p)
(ϖ) = −ω−1 Re⟨⟨μ; p⟩⟩ϖ, (14)

is related to linear absorption, where ϖ = ω + iγ. This is due to the
fact that the response function ⟨⟨μ; p⟩⟩ is purely imaginary for real
frequencies. The real part of the mixed-gauge polarizability can,
similarly to Eq. (11), be decomposed via SVD

ᾱ(μ,p)
D (ϖ) = ⟨Uϖ∣ᾱ (μ,p)

(ϖ)∣Vϖ⟩, (15)

again yielding frequency- and damping-specific unitary matrices
Uϖ and Vϖ and singular-value matrix ᾱ(μ,p)

D (ϖ). Analogously, G′

becomes complex if a complex frequency is employed in the evalua-
tion of the response function. While the optical rotation is related
to its imaginary part, ECD is related to its real part that can be
expressed as

G ′(μ,p)
(ϖ) = −Re⟨⟨μ; m⟩⟩ϖ. (16)

The trace of Ḡ ′ can be made origin independent by virtue of a trans-
formation using the Uϖ and Vϖ matrices obtained from an SVD of
the real mixed-gauge polarizability (see above),

̃G ′(μ,m)
(ϖ) = ⟨Uϖ∣G ′(μ,m)

(ϖ)∣Vϖ⟩. (17)

The isotropic ECD is then obtained as22,23

Δϵ̃(ϖ) = −6.334ω Tr[̃G ′(μ,m)
(ϖ)]. (18)

B. Rotatory strengths
The isotropic optical rotation β(ω) can be formulated via a

sum-over-states expression in terms of the rotatory strengths of all
transitions12,53

β(ω) =
2c
3 ∑n≠0

R0n

ω2
0n − ω2 , (19)
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where c is the speed of light. In case of the LG(OI) optical rota-
tion, the left-hand side is origin independent. Therefore, it seems
plausible to assume that there exists an LG representation of the
rotatory strengths that is equally origin independent. In general
terms, rotatory strengths can be expressed as54,11

R(μ,m),0n
=

1
2

Im[⟨0∣μ̂∣n⟩ ⋅ ⟨n∣m̂∣0⟩ + (⟨0∣m̂ ∣n⟩ ⋅ ⟨n∣μ̂ ∣0⟩)∗], (20)

an expression that turns out to be nothing but the trace of the elec-
tric dipole–magnetic dipole transition-strength tensor T(μ,m),0n for
transition 0→ n45

T(μ,m),0n
=

1
2

Im[(⟨0∣μ̂∣n⟩ ⊗ ⟨n∣m̂∣0⟩) + (⟨0∣m̂ ∣n⟩ ⊗ ⟨n∣μ̂ ∣0⟩)†
],
(21)

where ⊗ denotes the outer product and † the conjugate transpose.
Furthermore, we have used a symmetrized formulation for the sake
of generality across the approximate computational methods used in
this article.

A comparison to the sum-over-states representation of the
origin dependence of the optical rotation tensor

β(μ,m)
ij (O′) = β(μ,m)

ij (O) −
1
2

α(μ,p)
ik ϵjkldl, (22)

⇔ 2c∑
n≠0

T(μ,m),0n
ij (O′)
ω2

0n − ω2 = 2c∑
n≠0

T(μ,m),0n
ij (O)

ω2
0n − ω2 −

1
2

2∑
n≠0

T(μ,p),0n
ik

ω2
0n − ω2 ϵjkldl,

(23)

= 2c∑
n≠0

T(μ,m),0n
ij (O) − 1

2c T(μ,p),0n
ik ϵjkldl

ω2
0n − ω2 (24)

allows us to identify the origin dependence of the electric
dipole–magnetic dipole transition-strength tensor T(μ,m),0n, similarly
to Eq. (9), as

T(μ,m),0n
ij (O′) = T(μ,m),0n

ij (O) −
1
2c

T(μ,p),0n
ik ϵjkldl, (25)

which holds for each transition separately. In Eq. (25), we use the
same definitions as in Eq. (9) and T(μ,p),0n is the mixed-gauge electric-
dipole transition-strength tensor defined in Eq. (26). Corresponding
to the real or imaginary part of G′, the tensor in Eq. (25) needs to be
transformed via a transformation as is proposed in Eq. (11) to make
its trace origin independent. Here, the transformation is obtained
from an SVD of the mixed-gauge electric-dipole transition-strength
tensor

T(μ,p),0n
=

1
2

Im[(⟨0∣μ̂∣n⟩ ⊗ ⟨n∣p̂∣0⟩) + (⟨0∣p̂ ∣n⟩ ⊗ ⟨n∣μ̂ ∣0⟩)†
], (26)

yielding the transition-specific unitary matrices ∣U0n⟩ and ∣V0n⟩ and
singular-value matrix T(μ,p),0n

D ,

T(μ,p),0n
D = ⟨U0n∣T(μ,p),0n

∣V0n⟩. (27)

Already at this point it becomes apparent that the rotation matri-
ces that diagonalize individual transition-strength tensors [as given
in Eq. (26)] will, in general, be different from those matrices that
diagonalize the sum of the tensors in the last term of Eq. (24).
As a result, one has to choose between reference coordinate sys-
tems that make the optical rotation origin independent and those
that make individual transition-strength tensors origin independent.
More details on this point are given in Sec. IV E. Applied to the
electric dipole–magnetic dipole transition-strength tensor, one finds

T̃ (μ,m),0n
= ⟨U0n∣T(μ,m),0n

∣V0n⟩, (28)

R̃ 0n
= Tr(T̃ (μ,m),0n

), (29)

where R̃ 0n is the origin-independent LG(OI) rotatory strength. Note
that as for the frequency-dependent case, this transformation must
be performed for each transition separately so that the ∣U0n⟩ and
∣V0n⟩ matrices will generally be different for different transitions.

III. COMPUTATIONAL DETAILS
The LG(OI) approach for ECD has been implemented in a

development version of the quantum-chemistry code SERENITY55,56

and will be a part of an upcoming release of that program.
All calculations presented in the following were performed with
this software. To avoid numerical noise, we use very tight (con-
vergence) thresholds, i.e., (i) an integral neglect and Schwarz
prescreening threshold of 10−14 a.u., (ii) a HF-energy threshold
of 10−9 a.u., (iii) a maximum RMSD of density matrix of 10−9

a.u., (iv) a maximum residual norm of the ground-state CC vector
function of 10−9 a.u. (only relevant for CC2), (v) a maximum
residual norm of excitation vectors (rotatory strengths) of 10−9

a.u., and (vi) a maximum residual norm of response vectors
(damped ECD) of 10−9 a.u. is employed. An aug-cc-pVDZ57,58 basis
set is used throughout. The (LR-)CC2/ADC(2) calculations make
full use of the resolution-of-the-identity (RI) approximation,43,59

and the correlation-consistent auxiliary basis set corresponding to
aug-cc-pVDZ60 was used. To be consistent with Ref. 31, we used the
same three prototypical chiral molecules as employed in that study.
These include (−)-hydrogen peroxide (1), (S)-(P)-2,3-pentadiene
(2), and (S)-(−)-norbornenone (3) (see Fig. 1). Structures of
molecules 2 and 3 were taken from Ref. 61. All geometries were
optimized using DFT employing B3LYP62,63 as an approximation for
the exchange–correlation functional and an aug-cc-pVTZ57,58 basis
set. The center of mass of all molecules was set to O = (0, 0, 0)T . To
demonstrate the origin (in)dependence of the LG(OI)-ECD spectra,
we employ the displacement vector d = −(103, 103, 103

)
T Å, by

which the molecule is to be translated so that its origin is moved
to O′ = O + d. Instead of displacing the molecule, however, we set
the gauge-origin of the dipole operators to O − d effectively having
the same effect.
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FIG. 1. Structures of the molecules employed in Ref. 31 and in this study.

IV. RESULTS AND DISCUSSION
A. Rotatory strengths

In Table I, we show a comparison of rotatory strengths of
the four lowest-lying transitions of molecule 1 in dipole-velocity
representation (VG), in dipole-length representation (LG), and in
origin-independent dipole-length representation [LG(OI)]. Results

for the approximate methods TDHF, ADC(2), and LR-CC2 are
shown. Across all three methods, we find an origin dependence of
the R02 (rotatory strength belonging to the ∣0⟩ → ∣2⟩ transition) and
R03 rotatory strengths, while none is found for R01 and R04, or is
negligible at most. The LG(OI) approach leads to rotatory strengths
that are origin independent regardless of its dipole-length represen-
tation for all methods and considered transitions. In some cases, see,
e.g., R03

(O) computed with ADC(2), a large deviation between the
LG(OI) approach with respect to the LG one of the order of 25% can
be observed. This agrees with one of the findings in Ref. 31 stating
that the center of mass need not necessarily be an optimal choice for
the gauge origin in optical-rotation calculations.31 This result is not
surprising given the close relationship of these two properties [see
Eq. (19)].

B. ECD from damped response theory
In Fig. 2, we show a comparison of ECD as a function of the

frequency from damped TDHF response theory calculated with the
conventional LG and the modified LG(OI) approach. Here, instead

TABLE I. Excitation energies and rotatory strengths of the four lowest-lying transitions of molecule 1 for the approximate
methods TDHF, ADC(2), and LR-CC2 in dipole-velocity representation (VG), in dipole-length representation (LG), and in
origin-independent dipole-length representation [LG(OI)]. For one set of results, the gauge origin was set to the center of
mass of the molecule (O), and for the other one, it was set to O′ = O − d. Excitation energies ω0n and rotatory strengths
R0n are given in eV and 10−40 esu2 cm2, respectively. Note that in the VG case, we have R0n

(O′) = R0n
(O) throughout,

and the expression in Eq. (29) was used in the LG(OI) case. An aug-cc-pVDZ basis was used.

TDHF

VG LG LG(OI)

n ω0n R0n(O) R0n(O) R0n(O′) R0n(O) R0n(O′)

1 6.53 −5.8810 −4.6650 −4.6651 −4.6650 −4.6650
2 7.82 8.2826 6.9391 520.8796 7.7895 7.7895
3 8.71 −16.7286 −16.5477 −21.8373 −16.5241 −16.5241
4 9.37 26.9990 26.7123 26.7123 26.7123 26.7123

ADC(2)

VG LG LG(OI)

n ω0n R0n(O) R0n(O) R0n(O′) R0n(O) R0n(O′)

1 5.99 −17.6547 −10.2772 −10.2769 −10.2772 −10.2772
2 6.33 −22.4459 −14.7681 676.6863 −17.4712 −17.4712
3 7.20 25.6568 16.8182 2494.9335 20.6852 20.6852
4 7.38 36.0989 27.9774 27.9759 27.9774 27.9774

LR-CC2

VG LG LG(OI)

n ω0n R0n(O) R0n(O) R0n(O′) R0n(O) R0n(O′)

1 6.01 −13.2386 −12.3090 −12.3090 −12.3090 −12.3090
2 6.44 −19.0926 −18.7460 194.1181 −19.6258 −19.6258
3 7.22 20.0030 18.6443 760.1031 20.1136 20.1136
4 7.49 34.4190 35.3473 35.3471 35.3473 35.3473
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FIG. 2. Comparison of the conventional and modified LG-ECD as a function of the frequency (for molecule 1). For each method, the ECD is shown with the gauge origin
placed in either the center of mass of the molecule [(0, 0, 0)T

] or translated to (102, 102, 102
)

T Å. A damping parameter of 0.1 eV was used for all calculations. The damped
TDHF response equations were solved for 201 equidistant frequencies in the 6–10 eV frequency window.

of O′, we chose to employ −(102, 102, 102
)

T as a displacement vec-
tor (or, more precisely, (102, 102, 102

)
T as the gauge origin) because

O′ led to very large absorption maxima making the interpretation
of the spectra difficult. We find that the LG(OI) approach leads
to a spectrum that is independent of the employed gauge origin.
In contrast, clear differences are found for the conventional LG
approach, especially for the second-lowest absorption maximum.
This is consistent with what was found for the rotatory strengths

for which an origin dependence could only be identified for the
second- and third-lowest transition (where it was only significant
for the former of the two) while the lowest and fourth-lowest
ones were largely unaffected by the gauge-origin displacement. We
would like to point out that the LG(OI) approach also yields origin-
independent rotatory strengths and damped-response ECD from
TDDFT (see Table S2 and Fig. S1, respectively, in the supplementary
material). This was to be expected since TDHF and TDDFT

FIG. 3. Basis-set dependence of the LG(OI) and VG rotatory strengths for all three molecules (columns) and the four lowest-lying transitions (starting at the top row with
the lowest transition). (TD-)DFT was used in combination with PBE064,65 as an approximation for the exchange–correlation functional as well as the singly and doubly
augmented correlation-consistent basis sets aug-cc-pv X and d-aug-cc-pv X .
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share the general structure of their respective linear response
function.

C. Basis-set convergence
In Fig. 3, we display the basis-set dependence of the LG(OI) and

VG rotatory strengths of the four lowest-lying transitions of all three
molecules to discuss possible advantages and disadvantages of the
LG(OI) approach with respect to convergence with the size of the
basis set.

For most of the transitions and molecules shown, we find a
smooth convergence toward the basis-set limit, to which the doubly
augmented basis sets are on average closer than the singly aug-
mented ones. In general, the LG(OI) and VG rotatory strengths give
very similar results, which are almost indistinguishable for some
transitions and basis sets, especially for ζ = 4 or 5. The most interest-
ing question in this context is however, whether the LG(OI) rotatory
strengths converge faster to the basis set limit than the VG ones
or vice versa. To answer this question, those rotatory strengths for
which the behavior of LG(OI) and VG differs significantly are con-
sidered in detail. The first and third transition of molecule 1 and the
first transition of molecule 3 stand out in this respect. For these three
rotatory strengths, the LG(OI) results are close to the basis set limit
already for ζ = 2 or 3, regardless of the augmentation level, while the
VG ones are still far from convergence. Apart from these clear cases,
there are some excitations where one of the two approaches has a
slight advantage in terms of basis-set convergence. For molecule 2,
the rotatory strength of the second-lowest transition shows a dif-
ferent behavior. Here, the VG results are a little closer to the basis
set limit than the LG(OI) results. However, the fourth-lowest transi-
tions of both molecule 2 and 3 represent cases for which the LG(OI)
results are moderately closer to the basis-set limit than the VG ones.
For all other rotatory strengths, no significant difference between
LG(OI) and VG is found. Overall, we find a clear advantage of the
LG(OI) approach for three of the 12 transitions, as well as two tran-
sitions for which the LG(OI) approach and one transition for which
the VG approach exhibits a slightly faster basis-set convergence. In
the other cases, the basis-set convergence is very similar for both
approaches.

FIG. 4. Structure of (P)-[11]helicene as taken from Ref. 66.

D. (P)-[11]helicene
As a larger test case with a delocalized π-system, we con-

sider (P)-[11]helicene that, as a member of the helicene family,
has been studied previously in the literature.67,66 The geometry was
taken from the supplementary material of Ref. 66 and is displayed
in Fig. 4. We employ the SOS68,69-ADC(2)70 method in combi-
nation with an opposite-spin scaling of 1.369 as well as a Laplace
transformation of the orbital-energy denominator71 and a thresh-
old of 10−5 for the numerical integration resulting in six quadrature
points. The Laplace grid points were generated with the open-
source library laplace-minimax.72,73 Furthermore, we use natural
auxiliary functions74,75 neglecting the virt–virt block of the three-
index MO integrals and discard those with an eigenvalue below
10−2. We freeze all 1s orbitals of second-row atoms and employ an
aug-cc-pVDZ basis set.

In Fig. 5, we compare the LG, LG(OI) and VG ECD spectra of
(P)-[11]helicene for two choices of gauge-origin O. The 50 lowest-
lying excitation energies and corresponding rotatory strengths were
determined for these spectra with the methodology described ear-
lier. The experimental ECD spectrum was taken from Ref. 76, and
the computed spectra were red-shifted by 0.2 eV. In the frequency
window between 3 and 5 eV, there are four main bands of the

FIG. 5. Comparison of LG, LG(OI), and VG ECD spectra of (P)-[11]helicene obtained with a Laplace-transformed variant of SOS-ADC(2) and an opposite-spin scaling of 1.3.
An aug-cc-pVDZ basis was used. The rotatory strengths were broadened with Lorentzian functions with a full width at half maximum of 0.2 eV. The experimental spectrum
was taken from Ref. 76 and digitized. The computed spectra are red-shifted by 0.2 eV and scaled so that the first band of the LG(OI) spectrum matches the first experimental
one.
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experimental spectrum, namely, a large positive one at about 3.2 eV
(A), a small negative one at about 3.9 eV (B), and two large, overlap-
ping negatives ones at about 4.6 and 4.8 eV (C, D). The general shape
of the computed spectra reproduces the experimental one fairly well.
However, the transition energies of the upper three bands (B, C,
and D) seem to be underestimated by several tenths of eV, and the
magnitude of the rotatory strengths is far too small. While the regu-
lar LG approach yields origin-dependent ECD spectra, the spectra
computed with the LG(OI) and VG approaches are as expected,
origin independent. Placing the gauge origin in the center of mass
of the molecule, the LG and LG(OI) spectra are visibly different as
evidenced by the negative band at about 4.3 eV. Displacing the gauge
origin to O = (50, 50, 50)T , we find a strong origin-dependence of
the rotatory strength of this particular transition in the LG case. The
LG ECD spectrum for the strongly displaced gauge origin appears to
be in better agreement with the experiment, but this is obviously due
to error cancellation between method-inherent errors and the (arbi-
trary) choice of gauge origin. When comparing the LG(OI) and VG
results, only small differences are found for the values of the rotatory
strengths where the VG ones are generally somewhat smaller.

E. Sum-over-states representability
As already mentioned earlier, the derivation of the LG(OI)-

ECD scheme seemingly suggests that the LG(OI) optical rotation
might be representable via a sum-over-states expression of the
LG(OI) rotatory strengths. In the following, we will first demon-
strate in detail why this is generally not the case and proceed by
rationalizing the actual relationship between the two expressions.

The regular LG optical rotation tensor reads

β(μ,m)
(ω) = 2c∑

n≠0

T(μ,m),0n

ω2
0n − ω2 . (30)

Performing a SVD for the mixed-gauge polarizability for the same
frequency and multiplying both sides of the equation from the left
with ⟨Uω∣ and from the right with ∣Vω⟩ yields

β̃ (μ,m)
(ω) = 2c∑

n≠0

⟨Uω∣T(μ,m),0n
∣Vω⟩

ω2
0n − ω2 . (31)

Comparing the origin dependence of the optical rotation tensor
[Eq. (9)] to that of the electric dipole–magnetic dipole transition
strength tensor [Eq. (25)], it becomes clear that, in general,

⟨Uω∣T(μ,m),0n
∣Vω⟩ ≠ T̃ (μ,m),0n

= ⟨U0n∣T(μ,m),0n
∣V0n⟩ (32)

since obviously the frequency-specific rotation matrices ∣Uω⟩ and
∣Vω⟩ are not necessarily identical to the transition-specific rotation
matrices ∣U0n⟩ and ∣V0n⟩, respectively. This, in particular, implies
that the frequency-specific reference coordinate system [which is
obtained from an SVD of the mixed-gauge polarizability and in
which the LG(OI) optical rotation tensor is evaluated] is not nec-
essarily identical to each of the transition-specific ones [which are
obtained from an SVD of the mixed-gauge electric dipole–electric
dipole transition strength tensors and in which the LG(OI) rota-
tory strength is evaluated]. As a result, simply summing up the
LG(OI) rotatory strengths leads to a mismatch of reference coor-
dinate systems and will, thus, generally not yield the LG(OI) optical

rotation without further considerations. We note in passing that this
implies that the trace of ⟨Uω∣T(μ,m),0n

∣Vω⟩ is not necessarily origin
independent while its sum over states n of course is.

Before turning to the general case, we would first like to stress
that specific rotations from LG(OI), either evaluated directly

β̃ (μ,m)
(ω) =

1
3

Tr⟨Uω∣β(μ,m)
(ω)∣Vω⟩ (33)

or via a sum-over-states expression using the origin-independent
LG(OI) rotatory strengths [cf. Eq. (19)]

R̃ 0n
= Tr⟨U0n∣T(μ,m),0n

∣V0n⟩ (34)

are necessarily identical in two different limits. First, they converge
to the same value in the limit of a complete basis set (at least for
TDHF/TDDFT) that eliminates any origin dependency and, thus,
trivially makes the LG(OI) optical rotation sum-over-states repre-
sentable by the LG(OI) rotatory strengths. An illustration for specific
rotations from TDDFT for molecule 1 is shown in Fig. 6. In the
second limiting case, we assume a (model) response problem con-
sisting of only one transition. This may approximately be the case
if there is an energetically well-separated transition in resonance
with the external field of frequency ω so that one term in the sum
dominates the entire expression. Under these circumstances, the
sum-over-states expression in Eq. (30) relates the optical rotation
and the electric dipole–magnetic dipole transition-strength tensor
by merely a scalar multiplication. Therefore, the ∣Uω⟩ and ∣Vω⟩

matrices (regardless of ω) are identical to ∣U01⟩ and ∣V01⟩, respec-
tively, of that specific transition ∣0⟩ → ∣1⟩. We have numerically
verified this using molecule 1 (TDHF, aug-cc-pVDZ), restricting the
reference orbitals to the highest-occupied and lowest-unoccupied
molecular orbitals. Here, we find for both approaches the following
specific rotations (in deg/[dm (g/ml)]): (i) −52.7689 for λ = 633 nm,
(ii) −61.3416 for λ = 589 nm, and (iii) −184.4429 for λ = 355 nm.

In the general case, however, it is also possible to express the
LG(OI) optical rotation tensor in a sum-over-states fashion, includ-
ing the LG(OI) electric dipole–magnetic dipole transition-strength
tensors [which are used to calculate the LG(OI) rotatory strengths].
To do so, we recall that, for each transition and frequency, the ∣U⟩

and ∣V⟩ matrices are always orthogonal because they consist of the
singular vectors of a singular-value decomposition, i.e.,

⟨U ∣U⟩ = ∣U⟩⟨U ∣ = ⟨V ∣V⟩ = ∣V⟩⟨V ∣ = 1. (35)

Inserting the outer-product identities of transition ∣0⟩ → ∣n⟩ into
Eq. (31), one obtains

β̃ (μ,m)
(ω) = 2c∑

n≠0

⟨Uω∣U0n⟩⟨U0n∣T(μ,m),0n
∣V0n⟩⟨V0n∣Vω⟩

ω2
0n − ω2 , (36)

= 2c∑
n≠0

⟨U0n→ω∣T̃ (μ,m),0n
∣V0n→ω⟩

ω2
0n − ω2 , (37)

with the definitions

∣U0n→ω⟩ = ⟨U0n∣Uω⟩, (38)
∣V0n→ω⟩ = ⟨V0n∣Vω⟩. (39)
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FIG. 6. Basis-set dependence of the specific rotation evaluated directly [LG(OI)] and obtained as a sum-over-states expression using the LG(OI) rotatory strengths
[LG(OI)(ΣR̃)] for molecule 1 and three wavelengths. The gauge origin was set in the center of mass of the molecule. The aug-cc-pVX and d-aug-cc-pVX basis sets
were employed, and PBE64 was used as an approximation for the exchange–correlation functional.

The product of two orthogonal matrices is always orthogonal; hence,
the matrices ∣U0n→ω⟩ and ∣V0n→ω⟩ must also be orthogonal. A mul-
tiplication with one of these matrices can, thus, be understood
as yet another rotation that, in this context, can be identified as
the rotation from the LG(OI) reference coordinate system for the
transition 0n (in which the trace of T(μ,m),0n is origin-independent
and corresponds to the rotatory strength) to that of the frequency
ω (in which the trace of β̃ (μ,m)

(ω) is origin-independent and a
third of which corresponds to the isotropic optical rotation). A
numerical verification can be found in Table II where the spe-
cific rotations corresponding to the right-hand side of Eq. (37)
[LG(OI)(ΣR̃ ′)] are compared to regular length gauge [LG], regular
length gauge calculated via a sum-over-states expression [LG(ΣR)]
and origin-independent length gauge evaluated directly [LG(OI)].

We note again that the LG(OI) optical rotation [Eq. (12)] is
not necessarily sum-over-states representable by the LG(OI) rota-
tory strengths [Eq. (29)]. However, rewriting Eq. (31) the way done
in Eq. (37) clearly demonstrates that the reason for this is simply a

TABLE II. Comparison of the Hartree–Fock specific rotations {in deg/[dm (g/ml)]} for
molecule 1 in regular length gauge [LG], regular length gauge calculated via a sum-
over-states expression [LG(ΣR)], origin-independent length gauge [LG(OI)], and
origin-independent length gauge calculated via a sum-over-states expression, where
the additional rotations as discussed in Eq. (37) were performed [LG(OI)(ΣR̃ ′)]. An
aug-cc-pVDZ basis set was used.

λ/nm LG LG(ΣR) LG(OI) LG(OI)(ΣR̃ ′)

[α]λ(O)

633 11.506 3 11.506 3 11.1409 11.1409
589 12.497 3 12.497 3 12.0680 12.0680
355 −8.970 1 −8.970 1 −10.4569 −10.4569

[α]λ(O′)

633 7 131.891 8 7131.891 8 11.1409 11.1409
589 8 359.961 5 8359.961 5 12.0680 12.0680
355 28 156.490 1 28 156.490 1 −10.4569 −10.4569

mismatch of the frequency-specific and transition-specific LG(OI)
coordinate systems: Diagonalizing a sum of tensors simply requires
different rotation matrices than diagonalizing each term in the sum
separately. As such, this mismatch is straightforwardly eliminated by
simple additional rotations via the orthogonal transformations per-
formed by ∣U0n→ω⟩ and ∣V0n→ω⟩. It is important to mention that this
mismatch is merely a result of the different origin dependencies as
evidenced by comparing Eqs. (9) and (25) and thus clearly does not
imply unphysical behavior of the LG(OI) approach. Similar argu-
ments can be given in the case of damped LG(OI) ECD when using
complex frequencies, and we refer to Sec. 2 of the supplementary
material for a more detailed discussion.

V. CONCLUSION
In this article, we have presented a simple extension of the

LG(OI) approach for calculating origin-independent optical rota-
tion in the length gauge proposed in Ref. 31 to electronic cir-
cular dichroism. Using this method, origin-independent ECD in
the dipole-length representation can be obtained from both con-
ventional rotatory strengths and damped response theory, regard-
less of the approximate computational method used. Similarly to
the transformation of the optical-rotation tensor shown in Ref.
31, we consider the mixed representation of the electric dipole
transition-strength tensor and the real part of the electric-dipole
polarizability tensor in mixed dipole representation (length, veloc-
ity), respectively. A singular-value decomposition of these ten-
sors yields the unitary matrices making the traces of the electric
dipole–magnetic dipole transition strength (whose isotropic aver-
age gives the rotatory strength) and the real part of the electric
dipole–magnetic dipole polarizability tensor (being proportional to
the frequency-dependent ECD) origin independent.

We implemented the LG(OI) method for ADC(2) and LR-CC2
as well as TDHF and TDDFT. The spin-scaled variants of the former
[explicitly demonstrated for the spin-opposite scaled ADC(2) case in
this article] and the Tamm–Dancoff approximation of the latter two
approaches is also included. Tamm–Dancoff results can be found
in the supplementary material. For (−)-hydrogen peroxide, we have
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shown rotatory strengths for some transitions of three flavors: veloc-
ity gauge (VG), length gauge (LG), and modified length gauge
[LG(OI)]. We could verify that the LG(OI) rotatory strengths are
origin independent, regardless of the employed electronic-structure
method, variational or not. Furthermore, we could, similarly to
Ref. 31, observe that the center of mass might not always be the best
choice for a gauge origin if one is forced to use the conventional LG
approach. Additionally, we also considered ECD computed using
damped response theory. Here, we have presented results consistent
with the rotatory strengths investigated in the preceding step, and
the efficacy of the LG(OI) approach was shown. Based on the three
small test molecules and the four lowest-lying transitions each, we
have performed a basis-set convergence study comparing the per-
formance of the LG(OI) and VG rotatory strengths. For three of
the 12 transitions, we have found a clear advantage of the LG(OI)
approach, two with a small advantage for LG(OI) approach and one
with a small advantage for the VG approach. This indicates that the
basis-set convergence in the length gauge may actually be faster on
average, which is in line with a recent work by Parsons et al.,77 which
found LG(OI) to have a slight advantage over the modified velocity
gauge representation of optical rotation in this respect. We have suc-
cessfully applied the LG(OI)-ECD approach to (P)-[11]helicene as
a larger molecule with a delocalized π-system. We have discussed
the relationship between the LG(OI) optical rotation presented in
Ref. 31 and LG(OI) rotatory strengths. By virtue of simple math-
ematical arguments, we have shown that the former is not simply
sum-over-states representable by the latter. However, we have pre-
sented a way to reconcile the expressions for the LG(OI) optical
rotation and rotatory strengths via a sum-over-states expression.
Here, we have shown that an additional rotation of the corre-
sponding electric dipole–magnetic dipole transition tensor from the
transition-specific coordinate system (as it is used for the rotatory
strengths) to the frequency-specific one (as it is used for the optical
rotation) is necessary.

Given the fact the VG rotatory strengths are also origin inde-
pendent, it is still of great interest to systematically assess whether
the convergence toward the basis-set limit (in the TDHF/TDDFT
case) using the dipole-length representation is, in fact, faster than
in the dipole-velocity one.15,31,78,79 Moreover, one could use LG(OI)
rotatory strengths as an additional indicator for determining a gen-
erally better standard choice gauge origin in chiroptical-property
calculations than the center of mass of a molecule.31

SUPPLEMENTARY MATERIAL

Discussion of the implementation within the TDHF and
TDDFT as well as ADC(2) and CC2 framework, discussions of
the sum-over-states representability of the damped ECD, excitation
energies and rotatory strengths (for CIS and TDDFT), and damped
ECD spectra (TDDFT) of molecule 1 as well as excitation energies
and rotatory strengths [TDHF, ADC(2), and LR-CC2] and damped
ECD spectra (TDHF) of molecules 2 and 3 can be found in the
supplementary material.
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