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Degradation Modeling With Long-Term Memory
Considering Measurement Errors
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Abstract—With the advancement of measurement technology,
the long-term memory (LTM) effect within the degradation data
of many assets has recently been detected, which implies that
the future degradation process highly correlates with both the
current degradation status and historical degradation trajectory
across a long time period. To capture the LTM effect, several
LTM-integrated degradation models have been developed in the
literature. In practice, degradation data are often contaminated
with measurement errors, which are ignored in most existing LTM-
integrated degradation studies. Without considering measurement
errors, the asset degradation modeling and reliability analysis may
be biased. In this article, we propose a novel LTM-integrated
degradation model that quantitatively incorporates measurement
errors. Both fixed-effect and random-effect scenarios of degra-
dation growth are considered. A maximum-likelihood estimation
approach is developed to estimate the parameters of the proposed
model. Based on this model, asset reliability analysis and lifetime
prediction are developed. Simulation studies are implemented to
evaluate the performance of the proposed model. A real case study
using the capacity degradation data of lithium-ion pouch cells
is conducted to illustrate the superiority of the proposed model.
Results demonstrate that conventional LTM-integrated degrada-
tion models, which ignore the measurement errors, significantly
misestimate the uncertainty of asset lifetime.

Index Terms—Degradation test, fractional Brownian motion
(FBM), lifetime prediction, long memory, observational error,
reliability analysis.

NOMENCLATURE
Acronyms
Al Artificial intelligence.
BM Brownian motion.
BIC Bayesian information criterion.
FBM Fractional Brownian motion.
FFT Fast Fourier transform.
LTM Long-term memory.
MLE Maximum-likelihood estimation.
MC Monte Carlo.
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PHM Prognostics and health management.

PDF Probability density function.

RMSE Root-mean-square error.

Notation

K Number of test units.

N; Number of degradation measurements of unit j.
Y Ensemble of degradation measurements.

H Hurst parameter.

af(:ny) Trend term of asset degradation.

ny Parameters of trend term function.

o Diffusion parameter of degradation model.
By (+) Standard fractional Brownian motion.

€ij ith measurement error of jth degradation path.
d? Variance of measurement errors.

o Random-effect parameter of degradation.

Ha Mean of variable «;.

s2 Variance of ;.

n Vector of model parameters.

1 Estimator of 1.

Im[Y)  Log-likelihood function given observed data Y.
I(7) Observed Fisher information matrix.

2 x-quantile of standard normal distribution.
Yth Failure threshold value.

Ty First passage time.

1. INTRODUCTION

EGRADATION modeling and reliability analysis are cru-
D cial to the PHM of modern complex systems [1]-[3].
Recently, by virtue of advances in measurement technology,
a long-term memory (LTM) effect has been detected in the
degradation data of many assets, including turbofan engines
[4], blast furnaces [5], lithium-ion batteries [6], and chemical
catalysts [7]. The LTM effect (also referred to as long-range de-
pendence or long-range persistence) is a type of non-Markovian
property and refers to the fact that the increments of asset
degradation are highly correlated over a long time range [7], that
is, future degradation behavior not only depends on the current
asset health status but also highly correlates with the entire
degradation history. In addition to the performance degradation
of assets, the LTM effect has also been observed in many other
fields, such as finance [8], hydrology [9], and biology [10]. Due
to the widespread existence and importance of LTM effects,
several LTM-integrated degradation models have recently been
proposed for asset degradation modeling and reliability analysis
[11]-[13].
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In the real world, it is inevitable that most degradation data
are contaminated by measurement errors due to a variety of
technical limitations. The measurement error, also referred to as
observational error, has been widely studied in various research
fields, including psychology [14], biology [15], healthcare [16],
chemistry [17], and reliability [18]. Research has shown that
ignoring measurement errors can cause several serious prob-
lems. For example, in the healthcare field, Hutcheon et al. [16]
discovered that the failure to consider measurement errors in
systolic blood pressure measurement would lead to a biased
correlation quantification between systolic blood pressure and
the left ventricular mass index. Another example, in psychology,
is that ignoring measurement errors of the response in a job
satisfaction survey significantly increased the rate of drawing a
false conclusion [14]. In the context of reliability analysis, Liu
and Wang [18] demonstrated that ignoring measurement errors
would result in an inaccurate lifetime prediction. Therefore, it
is critical to incorporate the impact of measurement errors into
asset degradation modeling and reliability analysis.

In the reliability literature, most existing degradation models
eitherignore the LTM effect or measurement error. These models
can generally be classified into three groups, i.e., general path
models, stochastic process models, and artificial intelligence
(AI) models. For the first group, Lu and Meeker [19] incor-
porated measurement errors into a random-effect general path
model and studied fatigue crack growth. Si et al. [20] developed
a multivariate general path model to analyze dynamic mate-
rial deformation by considering measurement errors. For more
degradation studies using the general path model, one can refer
to [21] and [22]. To further capture the random behavior in a
degradation path, various stochastic processes have been intro-
duced to model asset degradations, including both Markovian
and non-Markovian processes. Typical Markovian processes
used for degradation modeling involve the gamma process [23],
[24], the inverse Gaussian process [25], [26], and the Wiener
process [27], [28]. On the basis of Markovian models, some
researchers have further integrated measurement errors. For ex-
ample, Whitmore [29] developed a fixed-effect Wiener process
model subject to measurement errors to analyze the degradation
of a transistor. Ye et al. [1] developed a random-effect Wiener
process model with measurement errors to study the degradation
of light-emitting diodes. Limited research has been conducted
on non-Markovian degradation modeling. For example, Zhou
and Huang [30] developed an autoregressive integrated moving
average model to predict the remaining useful life of lithium-ion
batteries. Although these non-Markovian processes can model
the memory effect among degradation up to a limited order,
they are not able to capture the LTM effect across the entire
degradation path. Recently, some Al methods have also been
developed for degradation analysis. For example, Kim et al.
[31] proposed a generic health index approach based on data
fusion to study multisensor degradation data. Zhu et al. [32]
developed a multiscale convolutional neural network model for
asset degradation analysis and remaining useful life prediction.
Wang et al. [33] modeled the degradation of turbo engines
through a deep-learning-based data fusion approach. However,
none of these methods can capture the LTM effect.
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To track the LTM effect in degradation data, some researchers
have adopted fractional Brownian motion (FBM) in asset degra-
dation modeling. The memory structure of FBM is characterized
by its Hurst parameter H € (0,1) [34]. When 0.5 < H < 1,
FBM demonstrates an LTM effect and therefore has recently
been employed to study LTM-integrated degradation data of
different assets. For instance, Xi et al. [4] proposed a degradation
model with LTM effect to predict the remaining useful life of
turbo engines. Zhang et al. [35] incorporated multiple degrada-
tion modes into an FBM-based degradation model. Si et al. [7]
considered the LTM effect in an accelerated degradation test.
Zhang et al. [6] developed an approximate explicit probability
density function (PDF) of remaining useful life based on an
LTM-integrated degradation model with multiple hidden state
variables. For more studies of FBM-based degradation models,
one can refer to [11]-[13]. However, these LTM-integrated
degradation models ignore measurement errors and therefore
may result in imprecise lifetime predictions. It should be men-
tioned that Xi er al. [36], in a conference paper, considered
measurement errors in an FBM-based degradation model to
analyze degradation data with a variant of the sigmoid trend.
However, their model parameters were estimated via an approxi-
mate multistep procedure that may lead to nonconvergent results,
and the random effects among degradation data that widely exist
in practice were not considered in that paper.

To overcome the aforementioned challenges, in this article
we propose a novel LTM-integrated degradation model by
incorporating measurement errors. Specifically, both a fixed-
effect scenario and a random-effect scenario of the proposed
model are developed for asset degradation analysis. An exact
maximum-likelihood estimation (MLE) method is developed to
estimate the model parameters. Based on the proposed model,
reliability analysis and lifetime prediction are developed. Results
of simulation and case studies illustrate that the conventional
models, which ignore measurement errors, significantly bias the
uncertainty of lifetime estimation.

The rest of this article is summarized as follows. In Section II,
the novel LTM-integrated degradation model with measurement
errors under both fixed-effect and random-effect scenarios is
proposed, and the corresponding MLE approach for model
parameter estimation is developed. In Section III, the reliability
analysis based on the proposed model is developed to calculate
asset life distribution. In Section IV, simulation studies under
various scenarios are implemented to verify the proposed model.
In Section V, a real case study using the capacity degradation
data of lithium-ion pouch cells is conducted to demonstrate the
superiority of the proposed model over conventional degradation
models. Finally, Section VI concludes the article and outlines
future research.

II. DEGRADATION MODEL

We propose an LTM-integrated degradation model with mea-
surement errors for the degradation analysis of complex systems.
First, a fixed-effect scenario of the proposed model is developed
in Section II-A. To capture the heterogeneity among degrada-
tion paths, a random-effect scenario of the proposed model is
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developed in Section II-B. Following three model assumptions
are made in this article.
1) Degradation paths demonstrate a monotonically increas-
ing trend over time.
2) Measurement errors follow a Gaussian distribution.
3) The asset fails when its degradation level reaches a pre-
specified threshold value.
These assumptions have been widely made in the literature
[11, [19], [20].

A. Fixed-Effect Scenario

1) Model Description: We start by considering the fixed-
effect scenario, where all degradation paths are homogenous
with a common trend term. Under this scenario, an FBM-based
degradation model with measurement errors is proposed to
capture both the LTM effect and the influence of measurement
errors. Suppose there are K degradation paths collected from
K degradation units, and the jth degradation path contains N;
degradation measurements. The proposed fixed-effect degrada-
tion model is

Y (tij) = af(tijing) + o Bu(ti;) + €
€ij ~N(0,d*),i€1,2,...N;,j€1,2,....K (1)

where ¢;; is the time of the ith degradation measurement for the
Jjth unit; Y(¢;;) is the corresponding degradation measurement
at time ¢;5; o f (-|n ) is a monotonic trend term with parameters
« and Mg; o is a diffusion parameter; By () is the standard
FBM with Hurst parameter H € (0, 1); and ¢;; is the error of
the ith degradation measurement for unit j, which is assumed
to be normally distributed with a mean of zero and a variance
of d?.

Specifically, in model (1), FBM (i.e., By (+)) is a generalized
Brownian motion (BM) to capture the memory effect defined

as [34]
0
T (H : 12) {/m [t 9"

- (—s)H*W} dB (s) + /t (t —s)" %48 (s)} @)

0

By (t) = By (0) +

where I'(+) is the gamma function, i.e., ['(z) = fooo trle=tdt:
and B(-) is a standard BM. FBM is a Gaussian process with a
mean of zero and a covariance function as follows [37]:

1 H %4 %4
3 (\t|2 —l—|s|2 - |t—s\2 ) .
3)

Cov (By (t), By (s)) =

Furthermore, FBM satisfies the following properties [34]:

1) Bp(0) =0;

2) self-similar property, i.e., By (|alt) ~ |a| By (t);

3) property of stationary increments, i.e., By (t) — B (s) ~
By (t —s) fort > s;

4) sample paths of By (t) are almost surely (a.s.) Holder
continuous of order less than H and are a.s. nowhere
differentiable.

Based on the value of H, FBM can be classified into three
categories. When 0 < H < 0.5 , the increments of FBM are
negatively correlated for nonoverlapping time intervals, and the
incremental process exhibits a short-term memory effect; when
H = 0.5, FBM degenerates into conventional BM with inde-
pendent increments; and when 0.5 < H < 1, the increments are
positively correlated, and the incremental process exhibits the
LTM effect. Therefore, FBM with 0.5 < H < 1hasbeen widely
applied to analyze the degradation data with LTM effects in the
reliability field [4], [6], [28].

2) Model Parameter Estimation: For the proposed
model described in Section II-Al, we develop an
MLE approach to estimate the model parameters
n= (g a,0% H,d*)", given the collection of degra-
dation  observations Y ={Y1,Ys,..., Y}, where
Y = (Y(t), Y (t5)s -, Y (tn;5)) " denotes the
measurement collection of the jth degradation path.
Let £ = (f(ty;Ing). fltglng)s s Fltn, )™ BY,
= (Bu(ty), Bu(ty), ., Bu(ty,;))"; and € =

(€15, €25, .-, eij)T. A vector form of the jth degradation
path function can be written as

Y; = of; + 0B); +¢;. 4)

Since FBM is a Gaussian process, Bjﬁ follows a multivariate
Gaussian distribution, i.e., B}, ~ MVN(0, ;), where ; is
the covariance matrix that can be calculated via (3). As a
result, Y, follows a multivariate Gaussian distribution, i.e.,
Y; ~ MVN(af;, G;), where the (u,v)th entry of the covariance
matrix G is calculated as

(G ) o L; ti?—"_tQH - ‘tu] _tvj| +d2; foru =wv
o L; ti? + t%? - ‘tuj - t'uj|2H ; foru 7& v
)

where t,; and t,; represent the time epochs of the uth and vth
degradation measurements of the jth unit, respectively. There-
fore, the log-likelihood function given degradation path j is
derived as

lj (I]‘Y]) = — &IH(QW) —

1
5 5111|Gj|

1
-5 - af;) G, (Y —afj). (6)

On the basis of (6), the overall log-likelihood function given
the degradation data collection Y can be developed as

I(mY)= —In( 27r27_721n\c;|
1 K
52 —af)TGN (Y —afy). (D)
j=1

The parameters n are estimated by maximizing the overall
log-likelihood function with respect to the model parameters,
ie.,

n = argmax {I (1| Y)}. ®
n
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In addition to the point estimation of 1, we further develop an
interval estimation method so that the confidence interval of i
can be constructed. Based on the theory of MLE, the estimator
1 follows an asymptotically normal distribution under a large
sample size. Its covariance matrix S is computed as the inverse of
the observed Fisher information matrix I(7), i.e., S=(I(q)) !,
where I(1) can be calculated via [38]

O’l(m]Y)

€))

n=n

The square roots of the diagonal elements of the covariance
matrix S provide the standard errors of the corresponding estima-
tors, i.e., se(7);) = \/Sii, Where 7; is the ith element of 1), and s,
is the (m,n)th entry of the matrix S. Therefore, the 100(1 — a)%
confidence interval of n; (the ith element of ) can be constructed
as (M — z1—ay2 X 5€(0;), i + 21-a/2 X se(7;)), where z, is
the x-quantile of the standard normal distribution.

B. Random-Effect Scenario

1) Model Description: To further capture the heterogeneity
among degradation paths of various units, a random-effect sce-
nario of degradation model is developed in this section. In this
scenario, the degradation parameter « is assumed to be random
and follow a normal distribution to capture the heterogeneity.
This normality assumption to model the random effects of asset
degradations has been widely adopted in the literature [1], [19].
Although the normality assumption can result in a sample of
negative value of «, the issue can be neglected when the standard
deviation is much lower than the mean of «. The proposed
random-effect LTM-integrated degradation model with mea-
surement errors is as follows:

Y (tij) = oy f (tijmy) + 0By (ti;) + €ijs €5 ~ N (07d2) ,

OéjNN(,LLa,SQ) 1€1,2,3....N;,7€1,2,3..
(10)

where «; is normally distributed with a mean of y, and a
variance of s2 as a random-effect parameter in the trend term
of the jth degradation path. Notice that when H = 0.5, model
(10) will degenerate into the conventional Wiener-process-based
degradation model with measurement errors [1].

2) Model Parameter Estimation: To estimate the parameters
n= My, ta> 52,02 H,d*)T of the random-effect model, an
MLE approach is developed given the degradation measure-
ments Y = {Y1,Ys,..., Yk} Specifically, a vector form of
Y ; based on model (10) can be written as

Yj:Oéjfj+O'BJII_I+€j;OZjNN(MQ,Si). (11)

As o follows a Gaussian distribution, Y ; follows a multivari-
ate Gaussian distribution, denoted as Y; ~ MVN(u.f;, Q;)
, where the (u,v)th entry of the covariance matrix QQ; can be
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calculated by
f(tug) f(toy)st
+%2 2425 — |t — tvj\QH) +d?; foru=v
(Q])uv f' (tuj) f(tvj)si .
Jr%Q 2 28 — |ty — tvj|2H) : foru # v

12)

Given the degradation observations Y, the overall log-
likelihood function is derived as

K 1 K
Z(TI|Y)=—111(27T)Z7 52 In Q]

S

Jj=1

)'Q (Y — pafy). (13)

M\H

The parameters of the random-effect model can be estimated
as M = argmax{/(n|Y)}.
n

In numerous actual cases, asset degradations are measured
under the same sampling scheme, i.e., all degradation paths share
the same sampling time epochs. Under such a circumstance, the
overall log-likelihood function (13) can be efficiently reduced.
Suppose each degradation path contains N measurement points.
Then, Q; and f;will be identical across different units so that
the subscript j can be removed. Therefore, the log-likelihood
function in (13) can be written as

- ﬂln@w) - Eln\Q|

Y,

J=1

L(nY) =

)'QH(Y — paf). (14)

M\»—A

Based on (14), we calculate the partial derivatives of I(n|Y)
with respect to parameters /i, and s2, and set them to zero.
Therefore, the estimators of parameters 1, and si are derived
and summarized in Proposition 1. The proof of Proposition 1 is
provided in Appendix A.

Proposition 1: The MLE estimators of parameters p, and
52 are as follows:
YR YFer

_ el 1
Hoa=KfTC-1f (1%

2
1) 2 K To-1
S 1 S (et (e Yrer)
* fTCf K(fTC-1f)? (KETC-1f)?
(16)
where the (u,v)th entry of matrix C is
2 (28 4 20 |t —t,[*) + d?; foru=v
(C)uv = o2 2H 2H 2H
Gt T — [ty — o] ; foru #£ v
a7

where t,, and ¢, are the time epochs of the uth and vth degradation
measurements shared by all degradation paths when all units
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adopt the same sampling scheme, respectively, i.e., t,, = t,1 =
tu2 ... =ty and t, = t,] =ty ... = K.

Let 0" = (ng, H,02,d*)" be the collection of other model
parameters. By substituting /i, and s2 into (14), the reduced
log-likelihood function is obtained as

. 1 KN K
(W] Y) = —3K - =~ In(2r) - —In[C
K _ 2 K “1e) 2
K1 KZ]‘:I (fTC 1Yj) - (Zj:l YjTC 1f)
2 K2 (fTC-'f)

S (Yie )’
2fTCIf

1 K
§ ‘rT —117

j=1

(18)

In (18), the reduced log-likelihood is a function of parame-
ters n*, which can be estimated as 1* = arg max,. {{(n*[Y)}.
Subsequently, s, and s2 can be calculated by substituting the
estimated parameters ﬁ; = (ﬁ;, f], EE, dAz)T into (15) and (16),
respectively.

To obtain an mterval estimation of n*,

parameters 1 £ H 02 and d2 are calculated from the inverse of
the Fisher information matrix with respect to the log-likelihood

the standard errors of

function (18). Subsequently, the standard errors of ji,, and Eg
are calculated based on (15) and (16) using the Delta rule [38],
which are summarized as

se (fla)
(wase (%)) + (wase (7))
= sqrt +(W386 (dA))2 + (gn (nf1))2
X 2 2
+(Bse (7)) + o+ (Bemse (7))
(19)
(3)
(wase (%)) + (wase ()"
= sqrt (Wese ( )) (871;1 nfl))
2 - 2
+(Bhse (772)) ++ o+ (Ehse (77m) )
(20)
where Ny = (971,72, .,nym) ", and the details of Wy — W

are derived and provided in Appendix B.

III. RELIABILITY ANALYSIS

Based on the proposed LTM-integrated degradation model
with measurement errors, we develop a method of reliability
analysis to obtain the asset lifetime distribution given the esti-
mated parameters 1. The failure time Ty of an asset is assumed
to be the first passage time when its underlying degradation level
goes beyond a predetermined degradation threshold value y;,
ie.,

Ty = inf {t] Yy ({[n) = yen} 21

Algorithm 1: A Monte Carlo Approach to Calculate the
Asset Lifetime Distribution.

Step 1. Obtain the point estimates 1) of model parameters
via the MLE method in Section II.

Step 2. For j = 1 ~ L, simulate the jth underlying
degradation path (i.e., Y7) using 1 (L is sufficiently
large):

2.1 Simulate the jth trend term:
for the fixed-effect scenario, o = @; fo/r\ the
random-effect scenario, &; ~ N(fia, s2); and f; is
simulated based on parameters ﬁ;

2.2 Simulate the jth FBM term Bf;{ using a fast Fourier
transformation (FFT) method [39].

2.3 Obtain Y7, of the fixed-effect and random-effect
scenarios, respectively, as follows:
Y/ = af; +aB and Y7 = o;f; —‘rO’BA

Step 3. Calculate the hfetlme distribution:

3.1 Forj =1~ L, calculate the jth failure time using
(21), denoted as TJ
3.2 Calculate the hfetlme distribution as

F(tn) = 1ZJ L I(T}), where

; : fTJ <t
I (TJ) Ll st
AN 0; otherwise

where Y, (¢|n) is the underlying degradation level, and Y (¢|n) =
Y. (t|n) + (t). Due to the complexity of the proposed model,
the closed-form lifetime distribution is not available in most
situations. To overcome this difficulty, a Monte Carlo (MC)
approach is developed to calculate the lifetime distribution.
Details of the MC method are summarized in Algorithm 1.
More specifically, in Step 2.2 of Algorithm 1, the FFT method
is applied to simulating B7,. In the literature, there are three
major approaches to simulate a path of the FBM, i.e., Hosking
method [40], Cholesky method [41], and FFT method. Among
them, the FFT method has the lowest computational complex-
ity of O(nlog(n)) for simulating a discretized FBM of length
n, whereas the computational complexity of the Hosking and
Cholesky methods are O(r’) and O(n?), respectively [42].

IV. SIMULATION STUDY

To evaluate the performance of the proposed model and the
corresponding MLE approach for parameter estimation, we im-
plement simulation studies under both fixed-effect and random-
effect scenarios. The fixed-effect model and the random-
effect model are assessed in Section IV-A and Section IV-B,
respectively.

A. Fixed-Effect Model

1) Data Simulation: For illustration purposes, a linear trend
term is selected in the degradation modeling as the degradation
or transformed degradation of numerous assets exhibits a linear
trend [1], [29]. The degradation paths are simulated using the
following fixed-effect LTM-integrated model with measurement
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Fig. 1. Simulated degradation paths using model P .
TABLE 1
POINT ESTIMATES AND STANDARD ERRORS OF P; PARAMETERS
Parameter Point Estimate Standard Error
H 0.809 0.0363
o’ 0.862 0.116
a 4.04 0.152
d’ 0.107 8.69x1073
errors:

P :Y (t)=at+0By (t)+€e~ N (0,d°). (22)

The model parameters n = (H, 02, o, d?)T are specified as
(0.8,1,4,0.1)T, and the number of generated degradation paths
is set at K= 10. Each degradation path contains N;= 100
measurements that are equally spaced in a time interval [0, 30].
The simulated degradation paths are shown in Fig. 1.

2) Parameter Estimation: The simulated degradation paths
shown in Fig. 1 are then analyzed using the fixed-effect model
P1. The model parameters n and corresponding standard errors
are estimated through (8) and (9), which are listed in Table 1.
Note that the point estimates of the model parameters are close
to the prespecified values, which demonstrates that the proposed
MLE method performs well under the current sample size.

To further evaluate the performance of the proposed MLE
method, we repeat the simulation process for // = 1000 times
under different sample sizes, i.e., i = 10, 20, and 50. The root-
mean-square errors (RMSEs) of the parameter estimation are
calculated as RMSE(#);) = sqrt (57 fvil (n; — @1)2), where
7;; is the estimate of parameter 7); in the /th iteration, and results
are summarized in Table II. It can be observed that the RMSEs
are generally small. As the sample size increases, the RMSEs of
the parameter estimation all decrease, which demonstrates the
efficiency of the MLE approach.

3) Model Comparison: Toillustrate the advantage of the pro-
posed fixed-effect model Py, a model comparison is conducted
between P; and a conventional LTM-integrated fixed-effect

degradation model (P5) that ignores measurement errors
P :Y (t) =at+ oBy (t) 23)

where Py depends on three parameters n = (H, 02, «)T. Model
P is applied to study the simulated degradation data in Fig. 1.
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TABLE II
RMSES OF PARAMETER ESTIMATION OF P UNDER DIFFERENT SAMPLE SIZES

Sample Size (K) 10 30 50
RMSE (H ) 0.0395 0.0213  0.0165
RMSE(o”) 0.132 0.0715  0.0564
RMSE (a) 0.162 0.0918  0.0719
RMSE AQ) 9.20x10%  5.16x10°  3.88x107

TABLE III

POINT ESTIMATES AND STANDARD ERRORS OF P5 PARAMETERS

Parameter Point Estimate Standard Error
H 0.526 0.0150
o’ 1.20 0.0704
o 4.05 0.0690
o l\ — P1
2 S i ! “ -- P2
2 'y 1 true lifetime
3 7 ;o
2o ;)
B o] '
<
e
8 -
o
o
S
o r T T T T 1

20 30 40 50 60 70

Time (hours)

Fig. 2. PDFs of the predicted lifetime using P; and Pa.

Point estimates of the model parameters and corresponding
standard errors are summarized in Table III.

Based on the estimated parameters of Py and P, the PDFs
of the predicted lifetime using these two models are computed
following Algorithm 1, where the failure threshold value is spec-
ified as yy, = 150. The predicted lifetime distributions along
with a histogram of the true lifetime are presented in Fig. 2.
Note that the histogram of the true lifetime is obtained based on
the true/prespecified parameter values of model P .

In addition, the means and standard deviations of the predicted
lifetime distributions of P; and P are calculated. The means of
lifetime are 37.52 and 37.07 for P, and P, respectively, and the
standard deviations are 4.41 and 1.82, respectively. It can be seen
that the mean values are relatively close, whereas the conven-
tional model P5 significantly underestimates the uncertainty of
asset lifetime. Therefore, it is critical to consider measurement
errors in LTM-integrated degradation modeling.

B. Random-Effect Model

1) Data Simulation: For some assets, the degradation
may demonstrate heterogeneities among different units.
To capture such heterogeneities, we consider a random-effect
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TABLE V
S | RMSES OF PARAMETER ESTIMATION OF P35 UNDER DIFFERENT SAMPLE SIZES
E s Sample Size (K) 10 30 50
£g RMSE (H ) 00393  0.0229  0.0160
<
o o~
B - RMSE (o) 00826 00531 00347
@)
(o) _ o~
< RMSE d*) 5.58x10°7  3.21x10°  2.43x10°
o —~
T T T T T T
) i % - pa =5 RMSE (41, ) 0.376 0.211 0.163
Time (hours) 5
RMSE (s 0.593 0.373 0.296
Fig. 3. Simulated degradation paths using model Ps. ~
RMSE () 1.62x102  9.06x10°%  7.50x10°
TABLE IV
POINT ESTIMATES AND STANDARD ERRORS OF P3 PARAMETERS TABLE VI

POINT ESTIMATES AND STANDARD ERRORS OF P; PARAMETERS

Parameter Point Estimate Standard Error
H 0.833 0.0370 Parameter Point Estimate Standard Error
o’ 0.469 0.0652 H 0.601 0.0182
d’ 0.0491 5.46x1073 o’ 0.519 0.0305
U, 4.82 0.0213 M, 4.93 0.336
s, 0.671 0.105 s, 0.765 0.424
B 0.709 0.0148 B 0.697 0.0111
o
LTM-integrated degradation model with measurement errors as S . g — Ps
follows: " -- Py
= ™ 1 true lifetime
Py:Y (t) = at? + 0By (t) + € —°§o
a~N (ta,s2),e~N(0,d%). (24 %’8 \
< N
Specifically, a power law trend term is employed in the '§ ] N
degradation model, which has been widely used in the reli- al i """"ili e
ability literature [1], [43]. The model parameters of P3 are g (-) 5-0 160 15_-)0 260 25_-)0 360
n=(H,0% d? jia,s%,B)T. To simulate degradation paths .
using Pj3, the model parameters are designated as n = Time (hours)
T . .
(0.85,0.5,0.05,5,1,0.7)". Based on this parameter setting, Fig. 4. Predicted lifetime distributions using P and Py.

we simulate K= 10 degradation paths, and each path contains
N;= 100 measurements that are equally distributed in a time
interval [0, 50]. The simulated degradation paths are illustrated
in Fig. 3.

2) Parameter Estimation: We apply the proposed random-
effect model to analyze the simulated degradation paths in Fig. 3.
The model parameters n and the corresponding standard errors
are estimated using the MLE method developed in Section I1-B2,
which are summarized in Table IV.

To examine the performance of the proposed MLE approach
for parameter estimation, an RMSE test is also conducted under
different sample sizes. We repeat the simulation process in
Section IV-B1 for M= 1000 times, and the sample sizes are
specified as K = 10, 30, and 50. Table V summarizes the
calculated RMSEs of parameter estimates of Ps. It can be seen
that the RMSEs are generally small and decrease as the sample
size increases, which demonstrates a good performance of the
proposed MLE approach.

3) Model Comparison: To demonstrate the superiority of
the proposed random-effect model P3, we compare it with an
LTM-integrated random-effect model without considering the
measurement errors as follows:

Py:Y (t)=at’ + 0By (t);a ~ N (pta, s2) (25)

where the parameters of model Py are n = (H, 02, 1o, 52, 5)T.
The model P, is applied to study the simulated degradation paths
in Fig. 3. Point estimates of 1 and corresponding standard errors
are computed and listed in Table VI.

On the basis of the estimated parameters of models P3 and Py,
the lifetime distributions of both models are calculated using Al-
gorithm 1 with a failure threshold value specified as y;;, = 100.
The predicted lifetime distributions along with the histogram
of the true lifetime are illustrated in Fig. 4. Furthermore, we
compute the means and standard deviations of the predicted
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Fig. 5. Degradation paths of eight Kokam 740 mAh lithium-ion pouch cells

(loss of capacity versus degradation cycle).

lifetime distributions of P3 and P4. The means of P3 and Py
are 88.63 and 83.15, respectively, and the standard deviations
are 70.14 and 30.43, respectively. Similarly, results reveal that
the means are relatively close for these two models, whereas
the conventional model P4, which ignores measurement errors,
significantly misestimates the lifetime uncertainty. This also
demonstrates the necessity of incorporating measurement errors
into the LTM-integrated degradation model.

V. CASE STUDY

To further verify the proposed model, we conduct a real case
study based on the degradation data of lithium-ion pouch cells.
Section V-A briefly describes the dataset, Section V-B provides
the estimation results of model parameters, and Section V-C
performs comparisons between the proposed model and con-
ventional models.

A. Data Description

A publicly accessible dataset on the capacity degradation
of eight Kokam 740 mAh lithium-ion pouch cells is applied
to validate the performance of the proposed model [44]. The
capacity degradation of these cells was measured via an aging
experiment, which was conducted in a thermal chamber at 40 °C
under predetermined stress cycles. Each stress cycle consisted
of a constant-current-constant-voltage charging process and a
discharging process based on the urban Artemis profile. The
capacities of the cells were periodically measured with a time
interval of 100 cycles via a pseudo open-circuit voltage discharg-
ing method (i.e., discharging cells under a current of 40 mA).
Fig. 5 illustrates the eight capacity degradation paths of the
cells (notice that eight outliers have been removed from the 511
measurements in total).

B. Parameter Estimation

We apply the proposed model to study the cell degradation
data in Fig. 5. Since these degradation paths demonstrate an
approximate power law trend, a power law function is selected

IEEE TRANSACTIONS ON RELIABILITY

TABLE VII
POINT ESTIMATES AND STANDARD ERRORS OF P5 AND Pg PARAMETERS

P5 P6
Point Standard Point Standard

Estimate Error Estimate Error
H 0.967 0.0179 H 0.964 0.0196
o> 0451 0.205 o’ 0.638 0.136
d*>  0.166 0.0139 d? 0.177 0.0150
B 0.836 0.0135 B 0.839 0.0129
a 4.61 0.254 M, 4.63 0.254
— s; 0.170 0.868

to model the trend term of degradation. Therefore, the proposed
models under the fixed-effect and random-effect scenarios are
constructed, respectively, as follows:

P5:Y (t)=at’ + 0By (t) + e~ N (0,d*)  (26)
Ps:Y (t)=at’ + 0By () + ¢
o~ N (pa,s2) e~ N (0,d%). (27)

Parameters of the fixed-effect model P; and random-
effect model Pg are m= (H,02% d? 3,a)T and nm=
(H,0%,d?, B3, ie, s2) T, rtespectively. Given the degradation
measurements shown in Fig. 5, the parameters and
corresponding standard errors of models P; and Pg are
calculated using the MLE approach in Sections II-A2 and
II-B2, respectively, which are listed in Table VII. It can be
observed from Table VII that the standard deviation of « (i.e.,
0.170) is much lower than the mean value of « (i.e., 4.63)
using the proposed random-effect model Pg. This justifies the
normality assumption made earlier in Section II-B1. Similar
observations can also be made from Table IV in the simulation
study.

C. Model Comparison

To demonstrate the superiority of the proposed model, a
comparison with conventional models that ignore measure-
ment errors is conducted. The following models P; and Pg
denote the conventional fixed-effect and random-effect models,
respectively:

P;:Y (t) = at? + 0By (t) (28)

Py:Y (t)=at? + 0By (t);a ~ N (1ta, 52) - (29)

The model parameters of P7 and Pg are n = (H, 02, 3,a)T
and n = (H,02, 3, j1a, 52)T, respectively. Models P; and Pg
are then applied to analyze the degradation data of pouch cells
shown in Fig. 5. Parameters and corresponding standard errors
of P; and Pg are computed via the MLE approach and are
summarized in Table VIIL.

For reliability analysis of the pouch cells, we specify the
failure threshold value as y;;, = 150 mAbh, i.e., the failure occurs
when the loss of capacity reaches 150 mAh. Based on the
estimated model parameters, the predicted lifetime distributions
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TABLE VIII
POINT ESTIMATES AND STANDARD ERRORS OF P7 AND Py PARAMETERS

TABLE IX
POINT ESTIMATES AND STANDARD ERRORS OF P PARAMETERS

Py Py Parameter Point Estimate Standard Error
1 Point Standard 1 Point Standard o’ 0.690 0.0358
i B | Gdme Ew g om
' ' ' ' 0.806 0.00840
o’ 0574 0.0371 o’ 0.529 0.0340 p 5.06 0.270
B 0813 0.0116 B 0.812 0.0103 ﬂza ) ’
a 4386 0231 | 4, 494 0.286 Sa 0578 0156
— s, 0.301 0.184 <
o
o
T 2
/ £
g ] —p
o [ ) 5 © o
z ro —— Py 2 S
z o = o
. toa g
2o o e
= ! \ >
- ! ! =
o N o
& © A S,
o o T T T T T T T
4 20 40 60 80 100 120 140
S Time (Hundred cycles)
< 2‘0 4‘0 6‘0 8|0 160 1é0 1&0 Fig. 8. PDFs of the predicted lifetime calculated by models Pg and Pg.
Time (Hundred cycles)
Fig. 6. PDFs of the predicted lifetime using models P5 and P7. The BM-based model is
Pg:Y (t)=at’ + 0B(t) + ¢
S | o~ N (pa,s2) e~ N (0,d) (30)
o
— where B(t) is the standard BM. The model parameters of P are
Z O n = (0%,d%, B, pta, %) ", which are estimated using the Li-ion
_:o pouch cell degradation data in Fig. 5 by an MLE approach and
% S i summarized in Table IX.
£0 Based on the estimated parameters of model Pg, the predicted
HE lifetime distribution is computed. Fig. 8 shows PDFs of the
o predicted lifetime calculated by models Pg and Pg. It can be
o observed that the conventional BM-based degradation model,
8 i ; . : : ; ; Pg, which ignores the LTM effect, underestimates the lifetime
20 40 60 8(? 3 i] 00 120 140 uncertainty_
Ame (S syees) To further compare the performances of models P; — Pg
Fig.7. PDFs of the predicted lifetime using models Pg and Pg. and Pp, the means of life prediction, standard deviations of

of models P5 — Pg are calculated using Algorithm 1. Figs. 6 and
7 illustrate PDFs of the predicted lifetime using the proposed
model and the conventional model under the fixed-effect and
random-effect scenarios, respectively. It is observed that the
conventional model that ignores measurement errors signifi-
cantly biases the uncertainty of the lifetime estimation under
both scenarios, which is consistent with the results of simulation
studies discussed in Section IV.

In addition to the conventional LTM-integrated degradation
models, we further compare the proposed model with a conven-
tional BM-based random-effect degradation model with mea-
surement errors in [1], which does not consider the LTM effect.

life prediction, and Bayesian information criteria (BICs) are
calculated and listed in Table X. It is observed that the means
of these five models are relatively close, whereas the standard
deviations of models P; and Pg are significantly smaller than
those of models P5 and Pg, respectively. This indicates that
the conventional models P; and Pg, without considering mea-
surement errors, significantly underestimate the uncertainty of
the lifetime estimation. Moreover, model Pg, which ignores
the LTM effect, also significantly underestimates the life un-
certainty. In addition, the proposed models have significantly
smaller BICs than conventional models, which also demon-
strates the superiority of the proposed models. It can be seen
that the predicted lifetime distributions using models P5 and P,
as shown in Fig. 9, are similar, and their BICs are relatively
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TABLE X
LIFE MEANS, STANDARD DEVIATIONS, AND BICS OF P5 — Pg AND P

IEEE TRANSACTIONS ON RELIABILITY

TABLE XI
POINT ESTIMATES AND STANDARD ERRORS OF PR PARAMETERS

Model Standard

Index Mean Deviation BIC
Ps 69.85 29.36 1071.894
Ps 69.74 35.38 1077.301
P 68.42 5.990 1184.579
Ps 68.18 10.68 1177.271
Pg 69.62 14.92 1182.508
o
(s2]
S
o
28
£ 9
K=
z
Zo
S -
8o
o
o
3 A
© 100
Time (Hundred cycles)
Fig. 9. PDFs of the predicted lifetime using models Ps and Pg.

close. This indicates a similar performance between P5 and Pg
in analyzing the capacity degradation of the lithium-ion pouch
cells, that is, for the lithium-ion pouch cell data, the better fit
attained by introducing heterogeneity as in model Pg does not
improve the performance in terms of BIC.

In addition, we also consider the random effect of more param-
eters in the proposed model. Besides the normality assumption
on parameter o, parameters o> and d? are further assumed to
follow gamma distributions to guarantee the nonnegativity. This
random-effect model is summarized as

Pr:Y (t)=at’ + 0By (t) + ¢
awN(ua,si),ewN(O,dz)

0? ~ Gamma (k,2,0,2) ,d*> ~ Gamma (kg2,042)

3D

where k,2 and 6,2 are the shape and scale parameters of
o2, respectively; kg2 and 642 are the shape and scale param-
eters of d?, respectively; and the model parameters are n =
(H, B, f1as 82, ko2, 052, kg2, 042) T . Based on an MLE approach,
1 is estimated and summarized in Table XI.

To compare the proposed random-effect model Pg with model
Pr, the BIC of model Py is computed as 1081.152, which is
slightly larger than the BIC of Pg (i.e., 1077.301). Therefore,
model Pg performs slightly better than model Pg. This result
indicates that considering the random effect of more parameters
does not improve the performance of the proposed model in
terms of BIC. This is due to the fact that although Py is more

Parameter Point Estimate Standard Error
H 0.895 0.0138
B 0.816 0.00727
u, 4.68 0.185
52 0.348 0.156
k. 2.74 1.42
0. 0.154 0.0939
k, 2.52 1.62
0, 0.110 0.0876

general, it introduces several additional parameters that are
penalized in the BIC.

VI. CONCLUSION

The LTM effect has recently been detected in the degradation
process of various assets. Most existing LTM-integrated degra-
dation studies have ignored measurement errors, which may
result in a biased reliability estimation and life prediction. In this
article, we proposed a novel LTM-integrated degradation model
by incorporating measurement errors under both fixed-effect
and random-effect scenarios. An MLE method was developed
for the model parameter estimation. Based on the model and
estimated parameters, asset reliability analysis was developed to
compute the lifetime distribution of assets. Simulation studies
were implemented to evaluate the performance of the proposed
model, and a real case study on the capacity degradation of
lithium-ion pouch cells was conducted to validate the proposed
model. Results reveal that the conventional LTM-integrated
models, which neglect the measurement errors, significantly
misestimate asset life uncertainty, whereas the proposed model
provides more accurate life estimations.

In this article, the random effect of the trend term was
considered in the degradation modeling as widely adopted in
the literature. In the future, it would be an interesting topic to
further consider the heterogeneity of the Hurst parameter among
various degradation paths. Moreover, measurement errors are
assumed to be independently and identically distributed across
degradation signals in the proposed model. Another future topic
would be to apply nonidentical or correlated distributions to
model measurement errors.

APPENDIX
A. Proof of Proposition 1

Using the vector notation, the matrix Q in (14) can be written
as Q = s2ffT + C. We obtain the determinant of Q as

det (Q) = det (s3ff" + C) = det (C (I+ C's2ff7))

=det (C)det (I+ C's2ffT). (32)

Authorized licensed use limited to: WICHITA STATE UNIVERSITY LIBRARIES. Downloaded on April 02,2022 at 01:50:16 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHAO AND SI: DEGRADATION MODELING WITH LONG-TERM MEMORY CONSIDERING MEASUREMENT ERRORS 11
Using Sylvester’s determinant theorem [45], det(Q) is SE YTclcif  KfT'cle YK yTels
derived as Wy = == - =
KfrCc-1f (KfTC-1f)?
det (Q) = det (C)det (I+ C's2ff") (40)
=det (C) (1 + s2fTC7'f) . (33) fre1oS ey YL 2y Teifyfet S e
4= 2 2
fTC-1f K(fTC-1f
By applying the Sherman—Morrison formula [46], the inverse ( ) ( )
matrix of Q can be calculated by 2KETCHETC 12 Cif Zle (Y]-chlf)2
- 1
B 2 Cflfchfl KQ(chflf)
Q= (2EET4+C) = O - (B4
54 2 (L YrC) (S, Yie g5 e )
We then substitute (33) and (34) into (14), and the following - (KfTC*lf)Q
log-likelihood function is obtained: 5
2K2fTC‘1ffTC‘13—CC‘1f(ZK Y.Tc—lf)
KN K 002 j=1 "1
I(MY)=———1In(27) — —In(det (C) (1+ s2fTC'f +
K (41)
1 T . s2CffTC
— = (Y - paf) (c e e ) (Y — pa). X ) e
2 ; L+ s3f1Cif - fre12c-1y YK 2y, fy;Te 1 8C ot
(35) (fTC-1f)? K(fTC-1f)?
To maximize [(n|Y), we calculate its partial derivatives with 2KfTC1ffTC! g—gC’lf ZjK:l (YJ-TC’lf)2
respect to parameters /i, and si, and set these two derivatives - K2(fTC-1 f)4

to 0. The following equations are derived:
2 (Ll YrC) (S, Yie g e )

(| Y) L, 2clTe! - ;
o« - - T -1
" Ota ZY (C 1+ )t (KETCH)

2
_ — — K _
2KATCFIC 80 (DI, YIC )

K 2C-1ppT -1
. fre-letf YK 2Y»TC‘1fY<TC‘1C‘1f( |
. (aTzY) — KETCTf (14 53£7C7) RTCICET I = ;((chflé)z
Koo (ZfileTC‘lf)Q B 2KfT01ffTC§CT1f_21:%1 (Y,"Cc'f)’
+;(fc Y;) + = =0. K2(fTC-'f)
37) 2 (LS Yre ) (S, yic e )
By solving (36) and (37), we obtain the MLE estimators of (K fTC_lf)Q
e and s2 as in (15) and (16), respectively. 2K2fTC*1ffTC*1C*1f<Z§(:1 YJ-TC*f)Q
B. Details of W1 —Wyg - (KfTC*lf)Al “3)

The results of Wy — Wg in (19) and (20) are derived as follows:

K T-10C -1 .
Zj:l Yj C gzC'f and the (u,v)th entry of matrices 9C and aH is calculated,

Wy = o2
! KfTC-1f respectively, by
KfTCc 128 c iy YIC i
- (KfTC-1f)? B8 oo —1( B, 21, —t IQH) (44)
K T—10C (1 00% ) 2 s
“ YTcl2Ccir
Wy — 2 =1 i 7?H (tu)+t,* In(t,)) ; foru=v
KfrCc-If 2H 2H
p ln (tu)+t,2" In(ty) foru v
_Kf'cgCc iyl vic 9) —|t —t, P, —t, )T
(KfTC-1f)? (45)
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TABLE XII
POINT ESTIMATES AND STANDARD ERRORS OF P3 PARAMETERS UNDER
THREE LEVELS OF MEASUREMENT ERRORS

P3(d*=0.1)
Parameter Point Estimate Standard Error
H 0.880 0.0372
o’ 0.406 0.0787
d’ 0.103 0.00739
)7 5.24 0.0304
52 0.532 0.223
B 0.684 0.0159
P3(d*=05)
Parameter Point Estimate Standard Error
H 0.841 0.0531
o’ 0.468 0.0771
d? 0.482 0.0297
Y 5.09 0.0688
s 1.09 0.181
B 0.703 0.0171
Pi(d*=1.0)
Parameter Point Estimate Standard Error
H 0.839 0.0562
o’ 0.527 0.0832
d’ 1.03 0.0573
Y 5.41 0.102
s 0.585 0.192
B 0.683 0.0213

C. Effect of Signal-to-Noise Ratio

A simulation study is conducted to verify the proposed
model under various amplitude levels of measurement errors.
Specifically, based on model Ps3, degradation paths are gen-
erated under three higher levels of measurement errors, i.e.,
d?> =0.1,0.5, and 1.0, whereas all other parameters are the
same as described in Section I'V-B. Using the MLE approach,
the parameter estimation results are obtained and summarized
in Table XII.

From Table XII, it can be seen that the point estimates of
model parameters are all close to the specified values, which
demonstrates the robustness of the proposed model under vari-
ous levels of signal-to-noise ratio. To further verify the proposed
model, reliability analyses are also conducted under a failure
threshold of y;;, = 100. The PDFs of lifetime along with the
true lifetime histogram are illustrated in Fig. 10. It can be seen
that the predicted lifetime distributions under the three levels of
measurement errors are all close to the true lifetime distribution.
This further demonstrates the robustness of the proposed model
under various levels of signal-to-noise ratio.
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