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Abstract

Industrial Internet of Things (I-IoT) is a network of devices that focus on monitoring industrial assets and continuously collecting

data. This data can be utilized by Machine Learning (ML) methods to perform Predictive Maintenance (PDM) which identifies

an optimal maintenance schedule for the industrial assets. The computational systems in the I-IoT are usually not designed with

security in mind. Their limited computational power creates security vulnerabilities that attackers can exploit to prevent asset

availability, sabotage communication, and corrupt system data. In this work, we first demonstrate that cyber-attacks can impact

the performance of ML-based PDM methods significantly, leading up to 120× prediction performance loss. Next, we develop a

stacking ensemble learning-based framework that stays resilient against various white-box adversarial attacks. The results show that

our framework performs well in the presence of cyber-attacks and has up to 60% higher resiliency compared to the most resilient

individual ML method.
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1. Introduction

Industry 4.0 is the latest industrial revolution aiming to de-

velop fully automated production systems. This idea brings the

notion of Industrial Internet of Things (I-IoT) which paves the

way for full automation, and higher reliability using computer

networks to collect big data from the connected machines and

convert this data into actionable information (Zhao et al. 2016).

However, these systems are often designed without security in

mind or use communication protocols that are not sufficiently

secure and vulnerable off-the-shelf commercial products (Tup-

tuk and Hailes 2018; Wu et al. 2018; Good Practices for Secu-

rity of Internet of Things in the context of Smart Manufacturing

2018). I-IoTs numerous small-scale devices, with their lim-

ited computation and communication capabilities, make them
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vulnerable to potential attacks. An attacker can discover these

vulnerabilities and exploit them to steal information, sabotage

communication, prevent asset availability, and corrupt monitor-

ing data (Tuptuk and Hailes 2018). These cyber-attacks might

result in serious negative financial outcomes, e.g., average esti-

mated loss of $10.7 million per breach of data among manufac-

turing organizations in Asia Pacific in 2019 (Understanding the

Cybersecurity Threat Landscape in Asia Pacific 2019). To min-

imize these costs, cyber-security measures should be taken such

as cyber-security awareness training, keeping softwares up-to-

date, installing a firewall, using strong passwords (Thames and

Schaefer 2017; He et al. 2019).

Predictive maintenance (PDM) goal is to find an optimal

maintenance schedule based on time-to-failure prediction of an

asset (Khan et al. 2020). It is becoming a more common prac-

tice across the industry where its global market size is expected

to grow from $4.0 billion in 2020 to $12.3 billion by 2025

(Predictive Maintenance Market 2020). Remaining useful life
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(RUL) estimation is a crucial PDM application (Kopuru, Rahimi,

and Baghaei 2019). Recently, data-driven RUL prediction meth-

ods (ML approach) became popular since I-IoT-based instru-

mentation has led to abundance of system monitoring data. Some

of these ML methods include long short-term memory (Zheng

et al. 2017), auto-encoders (Bampoula et al. 2021), convolu-

tional neural network (X. Li, Ding, and Sun 2018) etc. How-

ever, the performance of ML methods relies heavily on input

data quality. Thus, these methods are quite vulnerable to adver-

sarial attacks where an attacker can alter input data or model pa-

rameters worsening ML prediction performance significantly.

Since ML is in the center of data-driven RUL prediction, these

attacks may have serious consequences such as wrong mainte-

nance decisions causing undetected failures in a system (Mode

and Hoque 2020). We need novel ML solutions that can stay

resilient against adversarial attacks.

The performance of an ML-based application depends also

on the specific ML algorithm used. Selecting a single ML method

is a difficult process since its performance may change drasti-

cally based on the underlying dataset (Güngör, Akşanlı, and

Aydoğan 2019). For adversarial attacks, it is easier to decode

ML model parameters for a single method, reducing the system

resiliency against attacks (Mode, Calyam, and Hoque 2019).

Alternatively, ensemble learning combines multiple individual

algorithms (i.e., base learners) and it usually improves base

learner prediction performance (Shi et al. 2020; Gungor, Ros-

ing, and Aksanli 2021b). Against adversarial attacks, many

ensemble learning studies are proposed that are more resilient

than a single method (Pang et al. 2019; Mirzaeian et al. 2020;

Löwe et al. 2021). To the best of our knowledge, ensemble

learning has not been used previously to show its superior re-

siliency in RUL prediction in an I-IoT setting.

In this work, we propose a stacking ensemble learning frame-

work which can stay resilient against four different adversar-

ial attack scenarios: fast gradient sign, basic iterative, momen-

tum iterative, and robust optimization. We first train 10 dif-

ferent deep learning (DL) methods from three different archi-

tectures: recurrent, convolutional, and hybrid. Our ensemble

learner then combines the most resilient DL method predictions

based on our iterative selection procedure. Using NASA C-

MAPSS (Saxena et al. 2008), and UNIBO Powertools (Wong

et al. 2021) dataset, we demonstrate that adversarial attacks

can impact the performance of DL-method considerably, lead-

ing up to 120× prediction performance loss which can lead to

premature replacements or completely missed maintenance de-

cisions. We use this performance loss to quantify method re-

siliency, where more resilient methods would lead to smaller

performance loss. Our experiments show that proposed stack-

ing ensemble improves resiliency against adversarial attacks by

up to 60% (48% on average) compared to the most resilient sin-

gle method.

The rest of the paper is organized as follows: Section 2

lists the relevant studies. Section 3 demonstrates our proposed

stacking ensemble learner framework. Section 4 presents the

main results of our study. Section 5 concludes the paper.

2. Related Work

To understand where possible cyber-attacks can come from

an adversary in an I-IoT environment, we present Figure 1 which

illustrates DL enabled I-IoT architecture and its threat model. It

consists of 4 main layers: physical, edge, cloud, and visualiza-

tion (Mode and Hoque 2020). Physical layer contains indus-

trial equipments such as machinery, actuators, and sensors (Qiu

et al. 2020). The collected data from multiple sensors are sent

to edge layer where gateway first collects this data (K. Wang

et al. 2016). Then, it is pre-processed to be sent to cloud layer.

Note that edge layer also keeps pre-trained DL models for data

analytics. Cloud layer first collects the data (sent by edge layer)

and trains DL models. These trained models are sent back to the

edge layer (thus we have pre-trained models in edge layer). DL

models in the cloud layer may require retraining when new data

arrives and retrained models are sent back to the edge layer to

keep prediction performance at a certain level. According to our

architecture, DL model training can only happen at cloud layer,

yet there are some works where DL training can occur both at

edge and cloud layers (Thomas et al. 2019). The visualization
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Figure 1: I-IoT Architecture and Threat Model

layer utilizes data from both edge and cloud layers and provides

a visual representation of actionable insights to an engineer. In

Figure 1, we also provide practical threat model where an ad-

versary can attack to an I-IoT system. Here, we illustrate two

different realistic attack scenarios: 1) attacks on sensors and

sensor networks where an adversary can exploit the sensors

and the network between sensors and gateway for different pur-

poses such as transferring malicious code, capturing sensitive

information shared between devices (Subramanian et al. 2013).

2) attacks on DL models where an attacker exploits pre-trained

DL model knowledge to create perturbed examples leading to

worse prediction performance (Anthi et al. 2021). The focus of

this paper is on the latter since these attacks may have catas-

trophic consequences (e.g., undetected failures) and they are

much harder to detect by defense mechanisms.

2.1. Cyber-security in I-IoT

For I-IoT systems, cyber-security is a great challenge be-

cause of inadequate standardization, and the lack of required

skills to implement them (Lezzi et al. 2018). Wu et al. (2018)

summarize the manufacturing assets that are vulnerable to cyber-

attacks under 4 categories: operating systems or firmware, ap-

plication software, industrial communication protocols, and smart

devices. Similarly, recent work by Corallo et al. (2021) iden-

tify the critical assets to be protected against cyber-attacks and

make an assessment on the business impacts of these cyber-

attacks using CNC machines and 3-D printers. Corallo et al.

(2020) emphasize that these vulnerabilities can be exploited by

acting on data where data may be improperly modified, or their

flow may be interrupted. Increasing cyber-security awareness

is one of the crucial activities towards more secure I-IoT sys-

tems. Corallo et al. (2022) analyze how the existing works

deal with cyber-security awareness in the context of I-IoT. They

categorize the main elements of cybersecurity awareness under

three groups: 1) ensuring greater protection of data, informa-

tion, and networks, 2) raising knowledge level about security

threats, risks, and system vulnerabilities, 3) providing knowl-

edge to employees to be responsible for information security

and to be aware of cyber-attacks. We are witnessing an increas-

ing trend in cyber-attacks, e.g., cyber-threats against factories

increased by more than 200% in 2019 (Smart Futures 2019). To

ensure security in a production environment, it is also important

to understand possible cyber-attack types. Tuptuk and Hailes

(2018) summarize the common attacks in a manufacturing envi-

ronment under 13 different categories: denial of service, eaves-

dropping, man-in-the-middle, false data injection, time delay,

data tampering, replay, spoofing, side channel, covert-channel,

zero day, physical, and attacks against machine learning. In this

paper, we focus on adversarial attacks against ML where an ad-
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versary corrupts the collected data or model parameters through

attacks. An attacker exploits ML model information to create

malicious attacks. These attacks manipulate legitimate inputs

(by adding really small amount of noise) and force a trained

model to produce incorrect outputs leading to worse prediction

performance. This can bring serious negative implications on a

production environment such as undetected failures in the sys-

tem.

2.2. Adversarial Attack Methods Against Deep Learning

Deep learning (DL) has become extremely popular for pre-

dictive maintenance (PDM) due to its superior prediction per-

formance (Zhang, Yang, and H. Wang 2019). Since it is a

common ML method, there are a lot of potential vulnerabil-

ities such as program errors (leading to software crashes, an

infinite loop, or full memory depletion), and attacks at the time

of its testing (inserting little noise to test data causing worse

performance) (Tariq et al. 2020). This creates vulnerabilities

for data-driven PDM. There are three types of adversarial at-

tacks against ML in the literature: evasion, poisoning, and ex-

ploratory (Chakraborty et al. 2018). Evasion attacks target com-

promising the test data, poisoning attacks contaminate the train-

ing data, and exploratory attacks gain knowledge about the learn-

ing algorithm without changing the data. We focus on evasion

attacks since it is the most common type of attack in an ad-

versarial setting (ibid.). Evasion attacks can further be catego-

rized into two groups: white-box and black-box attacks. While

white-box attacks have detailed knowledge about the model,

black-box attacks assume no knowledge about the underlying

model. We consider white-box attacks because they are stronger

attacks and can be considered as worst-case scenarios to eval-

uate system resiliency. We analyze 4 white-box adversarial at-

tack methods: fast gradient sign, basic iterative, momentum it-

erative, and robust optimization.

2.2.1. Adversarial Attack Formulation on RUL prediction

The multivariate time-series input data with its correspond-

ing RUL values is illustrated in Figure 2. In this figure, we have

Figure 2: Multivariate time-series data illustration

S sensor data from N consecutive time stamps where each cell

represents individual sensor readings.

Accordingly, we make the following mathematical defini-

tions:

1. τi ∈ RS : [Reading1,i,Reading2,i, . . . ,ReadingS ,i] is the

vector containing all sensor readings for the time stamp

i, ∀i = 1, . . . ,N.

2. T ∈ RS×N : [τ1, τ2, . . . , τN] represents the multivariate

time-series data.

3. D ∈ R(S+1)×N : [(τ1,RUL1), (τ2,RUL2), ..., (τN ,RULN)]

denotes the supervised training data.

4. f (.) ∈ F : RS×N 7→ RN is DL model which maps all sen-

sor readings to the remaining useful life prediction values

ˆRUL.

5. L f (., .) denotes the loss function of the model f .

6. T̈ = T + δT is the crafted adversarial example. T̈ is

obtained by adding a perturbation δT with the sample T

such that ¨RUL , ˆRUL and ∥T̈ − T∥ ≤ ϵ where ϵ ≥ 0 ∈ R

is a maximum perturbation magnitude, ∥.∥ is any norm

w.l.o.g (e.g., L∞), f (T ) = ˆRUL, and f (T̈ ) = ¨RUL.

7. Given a trained DL model f and original data T , adver-

sarial example T̈ is found as a solution to the following

box-constrained optimization problem:

T̈ = T + argmin
δT
{∥δT∥ : f (T + δT ) , f (T )} (1)

This problem yields the minimum perturbation amount

δT while ensuring that RUL prediction is altered.

Most DL models make this formulation (Equation 1) non-

linear and non-convex, making it hard to find a closed-

form solution (ibid.). Hence, we implement different tech-
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niques to find an approximate solution to this optimiza-

tion problem.

2.2.2. Fast Gradient Sign Method (FGSM)

FGSM was suggested as an efficient attack method to fool

the GoogLeNet model (I. J. Goodfellow, Shlens, and Szegedy

2014). This method initially calculates the gradient of the cost

function with respect to the input of the neural network. Adver-

sarial examples are created based on a gradient direction:

T̈ = T + ϵ ∗ sign(∇τL f (T, ˆRUL)) (2)

where ϵ denotes the amount of the perturbation.

2.2.3. Basic Iterative Method (BIM)

BIM is an extension of FGSM where FGSM is applied mul-

tiple times with really small step size (Kurakin, I. Goodfellow,

S. Bengio, et al. 2016). At each iteration of the algorithm, BIM

perturbs the original data in the direction of the gradient multi-

plied by the step size α:

T̈ = T + α ∗ sign(∇τL f (T̈ , ˆRUL)) (3)

where α is calculated by dividing the amount of perturbation

by the number of iterations: α = ϵ/I. Then, BIM clips the

obtained time series elements to make sure that they are in the

ϵ-neighborhood of the original time series:

T̈ = min{T + ϵ,max{T − ϵ, T̈ }} (4)

2.2.4. Momentum Iterative Mehod (MIM)

MIM integrates momentum into the BIM to stabilize the up-

date directions and to escape from poor local maxima (Dong et

al. 2018). At each iteration i, the variable gi gathers the gradi-

ents with a decay factor µ:

gi+1 = µ ∗ gi +
∇τL f (T̈i, ˆRUL)

∥∇τL f (T̈i, ˆRUL)∥1
(5)

where the gradient is normalized by the L1 distance. Then, the

perturbed data is generated in the direction of the sign of gi+1

with a step size α:

T̈i+1 = T̈i + α ∗ sign(gi+1) (6)

In MIM, the algorithm also ensures that the crafted adversarial

examples T̈ satisfy the L∞ norm bound constraint:

∥T̈ − T∥∞ ≤ ϵ

2.2.5. Robust Optimization Method (ROM)

The general goal in a supervised learning problem is to find

model parameters θ that minimize the empirical risk

E(T,RUL)∼Ξ[L(T,RUL, θ)] where Ξ is the underlying supervised

data distribution. However, this formulation cannot handle data

adversary properly. To solve that problem, set of allowed per-

turbations ∆ is introduced initially.

Then, we modify the empirical risk formulation by feed-

ing samples from the distribution Ξ directly into the loss L

which leads to the following min-max optimization formulation

(Madry et al. 2017):

min
θ
ζ(θ), where ζ(θ) = E(T,RUL)∼Ξ[max

δ∈∆
L(T + δ,RUL, θ)].

(7)

Here, while inner maximization finds an adversarial version of

a given data point T that achieves a high loss, outer minimiza-

tion discovers model parameters to minimize the adversarial

loss given by the inner attack problem. ROM replaces every in-

stance with its FGSM-perturbed counterpart to solve this prob-

lem.

While all these four methods use the gradient information of

the loss function, they modify the test data by adding different

amounts of perturbation representing separate attack scenarios.

An attacker, who is able to access the trained DL methods, can

implement these methods and harm the prediction performance

without being detected.

2.3. Adversarial Attacks in Predictive Maintenance (PDM)

Adversarial attacks targeting PDM applications can bring

serious outcomes such as delayed maintenance/replacement of

a machine (Mode and Hoque 2020). There are few studies that

analyze the impact of adversarial attacks on data-driven PDM.

Mode, Calyam, and Hoque (2019) focus on false data injec-

tion attack (FDIA) on PDM systems which alters the collected
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sensor data by a very small margin. They demonstrate the im-

pact of different FDIA techniques (e.g., continuous, random) on

different DL methods e.g., gated recurrent unit (GRU), convo-

lutional neural network (CNN) using NASA C-MAPSS (Com-

mercial Modular Aero-Propulsion System Simulation) dataset

(Saxena et al. 2008). Their results show that CNN is extremely

sensitive to attacks while GRU is the most resilient method.

Further work by Mode and Hoque (2020) analyze the effect

of adversarial attacks against ML methods. Specifically, they

utilize Fast Gradient Sign Method (FGSM) and Basic Iterative

Method (BIM) to create adversarial examples and compare per-

formances of different DL models under those attacks. Again,

by using NASA C-MAPSS dataset, they show that these at-

tacks can cause up to 5× worse prediction performance. These

two similar works consider limited number of DL methods and

attack scenarios. Besides, their experimental analysis includes

the simplest and most predictable data set from C-MAPSS. They

also did not propose a novel ML solution to increase system re-

siliency against adversarial attacks.

2.4. Ensemble Methods

Under different adversarial attack scenarios, single ML method

prediction performance can change significantly (Mode, Calyam,

and Hoque 2019). Ensemble learning is an effective solution

towards more generalizable and robust models. It combines a

variety of ML algorithms based on three well-known methods

(Polikar 2012): 1) bagging combines similar types of learners

from different subsamples of the training data (e.g., random for-

est), 2) boosting fixes the prediction errors of a prior model in

the sequence of models (e.g., AdaBoost), 3) stacking combines

the predictions of different types of learners using a second-

level learner (meta-learner). In PDM domain, there are multiple

ensemble learning approaches towards more accurate predic-

tions. We summarize some of the most recent ensemble works

in Table 1 including our paper. In this table, we provide the

authors, publication year, the research goal, and the proposed

ensemble method of the corresponding work. Ensemble learn-

ers are especially useful to provide additional security against

cyber-attacks since they can learn more robust features (Ku-

rakin, I. Goodfellow, S. Bengio, et al. 2018; Liao et al. 2018).

Against adversarial attacks, different ensemble learners are pro-

posed for image classification. Pang et al. (2019) present a di-

versity promoting ensemble improving adversarial robustness

while maintaining state-of-the-art accuracy. Mirzaeian et al.

(2020) propose a resilient ensemble where each member learns

a radically distinct latent space through diverse knowledge dis-

tillation. This method improves security of the state-of-the-art

defense methods.

To the best of our knowledge, our work is the first to use

ensemble learning towards more resilient PDM. Our ensemble

results are also more generalizable since we increase the num-

ber of attack scenarios, deep learning models, and experimental

datasets significantly compared to the state-of-the-art.

3. Proposed Stacking Ensemble Learner Framework

3.1. Selected Deep Learning (DL) Methods

We select 10 different DL models from recurrent (RNN,

LSTM, BLSTM, GRU, BGRU), convolutional (CNN, WAVE),

and hybrid architectures (CLSTM, CGRU, GLSTM). With these

10 models, we cover a good range of DL methods from different

architectures, increasing the generalizability of our study.

1) Recurrent Neural Network (RNN): RNN is a time-

aware feedforward neural network (Géron 2019). Our network

contains 3 RNN layers having 64, 32, and 16 units which are

consecutively connected to 2 fully connected feed forward neu-

ral networks (each with 8 units). Final 1-dimensional output

layer provides the RUL prediction.

2) Long Short-Term Memory (LSTM): LSTM has special

memory cells to store information for longer. Updates in this

cell can happen by the activation of three distinctive gates: 1)

forget gate (the memory cell is cleared completely), 2) input

gate (memory cell stores the received input), and 3) output gate

(next neurons obtain the stored knowledge from the memory

cell) (Gensler et al. 2016). We adapt a similar network structure

where RNN layers are replaced with LSTM layers.
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Table 1: Ensemble Methods for PDM Related Work

Author Research Goal Proposed Method

Z. Li, Goebel, and Wu (2019) More accurate RUL prediction

Combine multiple traditional ML

methods (e.g., random forest,

elastic net) using particle swarm

optimization and sequential quadratic

programming to discover optimal

weights of the base learners.

Shi et al. (2020) More accurate RUL prediction

Combine multiple traditional ML

methods (e.g., extra tree, random

forest) by using the most diverse

base learners and features from different

degradation stages.

Gungor, Rosing, and Aksanli (2021a)

Minimize retraining overhead

while keeping RUL prediction

accuracy at a certain level

Combine different DL methods (e.g.,

convolutional neural network, long

short-term memory) by discovering

the most accurate and diverse base

learners iteratively.

Our paper

(STEWART)

Resilient stacking ensemble

learner framework against

adversarial attacks in

RUL prediction

Combine different DL methods (e.g.,

gated recurrent unit, convolutional neural

network) using a stacking ensemble to find

the most resilient base learners.

3) Bi-directional LSTM (BLSTM): BLSTM also consid-

ers future data by adding a backward direction to LSTM net-

works (J. Wang et al. 2018). The overall network structure is

similar to LSTM model where LSTM layers are replaced with

BLSTM layers.

4) Gated Recurrent Unit (GRU): GRU is a simplified ver-

sion of LSTM (Cho et al. 2014). Specifically, forget and input

gates are controlled by a single gate controller and there is no

output gate, instead a new gate controller decides which part

of the information to be transferred. We use the same network

structure as LSTM except we change the LSTM layers to GRU.

5) Bi-directional GRU (BGRU): Similar to BLSTM, BGRU

takes future data into consideration (She and Jia 2021). We

construct this model by simply replacing BLSTM layers with

BGRU layers.

6) 1-D Convolutional Neural Network (CNN): 1D convo-

lutional layer slides kernels across a sequence, producing a 1D

feature map per kernel and each kernel learns to detect a single

very short sequential pattern (Géron 2019). We adopt the 1-D

CNN network proposed by Li et al. (X. Li, Ding, and Sun 2018)

which contains five consecutive CNN layers, Flatten (Dropout)

layer, one fully-connected layer (with 100 nodes) and an output

layer with 1 node.

7) Wavenet (WAVE): We implement the model proposed

by Géron (2019) where we stack 4 layers of 1-D causal convo-

lutional layers with 1, 2, 4, and 8 dilation rates (with 20 filters of

size 2) two times. These layers are connected to another convo-

lutional layer with 10 filters of size 1 and Flatten layer. Lastly,

connection to fully connected neural network (with 100 units)

and output layer (with 1 unit) is performed.

8) CNN-LSTM (CLSTM): We combine our LSTM archi-

tecture with 1-D CNN where we utilize in parallel connected

CNN and LSTM layers. These two paths are then concate-

nated and connected to fully connected neural network (with

100 units) and output layer (with 1 unit). Similar parallel CNN-

LSTM structure was recently proposed by Al-Dulaimi et al.

(2019).

9) CNN-GRU (CGRU): We connect our CNN and GRU

networks in parallel. On one path, we have our 1-D CNN ar-

chitecture, on another path we have our GRU model. These

are then connected to fully connected neural network with 100

units and output layer (with 1 unit).
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10) GRU-LSTM (GLSTM): We combine our GRU and

LSTM models in parallel. On one path, we have our GRU ar-

chitecture, on another path we have our LSTM model. These

two paths are concatenated and connected to fully connected

neural network (with 100 units) and output layer (with 1 unit).

3.2. Deep Learning Methods Compromise Calculation

In order to quantify the resiliency of DL models, we use

our framework presented in Figure 3. The process starts with

training 10 DL algorithms with training data (see Section 3.1

for model details). The trained models are then evaluated un-

der two different test data: 1) normal, and 2) perturbed data.

Adversary creates the perturbed data by adding imperceptible

noise to the normal test data. This noise generation process is

obtained by using one of the selected adversarial methods in

Section 2.2. Predictive models output two different remaining

useful life (RUL) estimations: normal RUL predictions, and

compromised RUL predictions. Given true RUL values, our er-

ror metric root mean squared error (RMSE) is calculated for

both normal and compromised prediction scenarios based on

the following formulation:

RMS E =

√√√
1
N

N∑
i=1

ϵ2i (8)

where N is the number of samples, ϵ is the difference between

the estimated RUL (RULest) and the true RUL (RULtrue). Us-

ing these error values, we calculate the DL model compromise

which is formulated as:

Compromise =
RMS Ecompromised

RMS Enormal
(9)

where Compromise > 1 (under the assumption that attacks lead

to worse prediction performance). The smaller the compromise

value, the more resilient the model is against the adversarial

attack. For instance, given two methods CNN and LSTM, and

their compromise values 8, and 5 respectively, we can conclude

that LSTM is more resilient against the adversarial attack. If

we have M number of adversarial attacks (where M > 1), then

we need to calculate the mean compromise value for each DL

method as follows:

Compromisemean =

 M∑
i=1

RMS Ei
compromised

RMS Enormal

 /M (10)

Since we have multiple attack techniques (in our case M = 4),

this metric gives a more accurate idea about single model re-

silience. Overall, we obtain mean compromise values for each

DL model from Section 3.2.

3.3. Stacking Ensemble Learner

Stacking (short for stacked generalization) is one of the most-

used ensemble learning methods (other than bagging, and boost-

ing) where single method predictions are aggregated using a

second-level learner, or meta-learner (Géron 2019). Since our

ensemble learner combines different DL model predictions, we

select stacking as the most suitable ensemble approach.

3.3.1. Ensemble Learner Training

We present the general framework for stacking ensemble

training in Figure 4. We start the training process by splitting

training data into two subsets. We use the first subset (subset

1) to train the DL models. Here, for the sake of simplicity, the

figure shows only two methods, namely CNN and RNN. After

model training is completed, we obtain our predictive models.

These models are used to make prediction on the subset 2. Ba-

sically, each DL method outputs RUL predictions using subset

2. Then, these RUL predictions are given to the stacking en-

semble training for which different meta-learners are trained.

This training part is different from DL model training. In DL

training, as an input we have time series data, yet in ensemble

training, we have the RUL prediction values obtained from dif-

ferent DL methods. As an output of ensemble learner training,

we obtain our predictive ensemble models. For illustration pur-

poses, linear regression (LR) is used as the meta-learner to map

single model RUL predictions to real RUL values in Figure 4.

Overall, we train 4 different meta-learners to find out the most

resilient one against adversarial attacks:

1) Linear Regression (LR): This linear model makes a pre-

diction by calculating a weighted sum of the input features, plus

8



Figure 3: Framework for DL Methods Compromise Calculation

Figure 4: Framework for Stacking Ensemble Training
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Figure 5: Framework for Stacking Ensemble Testing

a bias term (Géron 2019): ŷ = θ0 + θ1x1 + θ2x2 + · · · + θnxn

where ŷ indicates the predicted ensemble RUL value, n is the

number of DL models, xi is the ith DL model RUL prediction,

θi (∀i = 1, . . . , n) is the ith DL model weight, and θ0 is the bias

term.

2) Random Forest (RF): RF is an ensemble of decision

trees trained by the bagging method (ibid.). The algorithm con-

structs multiple decision trees at training time and outputs the

mean prediction of the individual trees.

3) AdaBoost: AdaBoost is one of the most famous boost-

ing approaches where focus is given to the training instances

that the predecessor underfitted. The weights of instances are

adjusted according to the error of the current prediction (ibid.).

That is, subsequent estimators focus more on difficult cases.

4) Extreme Gradient Boosting (XGBoost): XGBoost is

an an efficient and effective implementation of the gradient boost-

ing algorithm. Gradient boosting, different than AdaBoost, fits

the new predictor to the residual errors made by the previous

predictor (ibid.). The two main reasons why XGBoost is heav-

ily used are execution speed and model performance.

3.3.2. Ensemble Learner Test

We test our stacking ensemble learner based on the frame-

work provided in Figure 5. Similar to single DL model testing,

we obtain the compromise value for our ensemble learner as an

output. Given normal test data and perturbed test data (crafted

by the adversary using adversarial attack methods described

previously), pre-trained (predictive) DL models (e.g. CNN,

RNN) make normal and compromised RUL predictions. These

single method predictions are then given to our pre-trained (pre-

dictive) ensemble model (e.g. LR) to generate ensemble normal

and compromised RUL predictions. Similarly, the compromise

value is calculated by dividing the compromised RMSE by the

normal RMSE. Since we have multiple attack scenarios, we

need to calculate mean compromise for our ensemble learner

formulated in Equation 10. To show the benefit of our ensem-

ble learner, we calculate the ensemble improvement over single

method based on the following formulation:

Improvement =
(
Compromisesingle −Compromiseensemble

Compromisesingle

)
(11)

where Compromisesingle denotes the single DL model mean

compromise value, and Compromiseensemble is the ensemble mean

10



compromise value. We report the improvement in percentage

(%). Here, improvement demonstrates the resiliency of our en-

semble learner against adversarial attacks compared to a single

learner. The higher the improvement is, the more resilient our

ensemble learner is compared to single DL model.

3.3.3. Most Resilient Stacking Ensemble Selection

In order to determine the most resilient ensemble learner

configuration, we follow our proposed solution procedure pre-

sented in Algorithm 1. This algorithm increases the number of

base learners (to be used in the ensemble) iteratively, and finds

the most resilient ensemble configuration where resiliency can

no longer be improved. Given single method mean compro-

mise values C, the algorithm first sorts C in an ascending order.

We start the ensemble search with the 2 most resilient meth-

ods. We train the ensemble, test it, and calculate the ensemble

mean compromise value using these two methods. The func-

tion that calculates ensemble mean compromise is also pro-

vided in Algorithm 2. This function first trains the ensemble

learner given true RUL values and base learner RUL predictions

(Figure 4). Then, it makes ensemble RUL predictions for both

normal and perturbed test data. As an input, it uses single DL

method normal and perturbed test data RUL predictions. The

algorithm then calculates the RMSE for both normal and com-

promised scenarios using real RUL values and ensemble RUL

predictions. It finally finds out the ensemble mean compromise

(Figure 5). After we obtain ensemble compromise value, we

check if this value is smaller than the single best method com-

promise and update the best compromise accordingly. We then

continue with the next most resilient method selection and add

this method to our base learner subset. For this new ensemble

configuration, we calculate its compromise value (Algorithm

2) and update the best compromise if it improves the best com-

promise value. If there is no improvement, we increment the

variable worsenedcounter. This variable controls whether we

should continue or terminate the ensemble search process. We

allow only a fixed number of iterations with performance de-

crease, worsenedtolerance, after which we terminate the search

process and return the best compromise value.

Algorithm 1: Most Resilient Stacking Ensemble Selection
Input : C = [C1,C2, . . . ,CN] (single method mean

compromise values)

Output: bestcompromise

1 ensemblecompromise =∞, i = 2, worsenedcounter = 0,

worsenedtolerance = 2;

2 [Csorted, I] = sort(C, ascend);

3 bestcompromise = Csorted(1);

4 while i ≤ N do

5 if i == 2 then

6 modelindexes = I(1 : i);

7 ensemblecompromise =

calculateCompromise(. . . ,modelindexes);

8 if ensemblecompromise < bestcompromise then

9 bestcompromise = ensemblecompromise

10 end

11 end

12 else

13 modelindexes = [modelindexes, I(i)];

14 ensemblecompromise =

calculateCompromise(. . . ,modelindexes);

15 if ensemblecompromise < bestcompromise then

16 bestcompromise = ensemblecompromise;

17 end

18 else

19 worsenedcounter++;

20 if worsenedcounter == worsenedtolerance then

21 break;

22 end

23 end

24 end

25 i + + ;

26 end

27 return bestcompromise;
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Algorithm 2: Calculate Compromise
Input : RULsubset2 (true RUL values for training subset 2),

RULtest (true RUL values for test data),

ˆRUL = [ ˆRUL1, ˆRUL2, . . . , ˆRULN] (single method

RUL predictions for training subset 2),

˜RUL = [ ˜RUL1, ˜RUL2, . . . , ˜RULN] (single method

RUL predictions for normal test data),

¨RUL = [ ¨RUL1, ¨RUL2, . . . , ¨RULN] (single method

RUL predictions for perturbed test data), N (number

of base learners), M (number of attack methods),

modelindexes

Output: meancompromise

1 meancompromise, i = 0;

2 while i < M do

3 ensemble = trainensemble( ˆRUL(modelindexes),RULsubset2);

4 ˜RULensemble = testensemble( ˜RUL);

5 ¨RULensemble = testensemble( ¨RUL);

6 RMS Enormal = calculateensemble(RULtest, ˜RULensemble);

7 RMS Ecompromised = calculateensemble(RULtest, ¨RULensemble)

;

8 ensemblecompromise =
RMS Ecompromised

RMS Enormal
;

9 meancompromise += ensemblecompromise;

10 i + + ;

11 end

12 meancompromise /=M;

13 return meancompromise;

4. Experimental Analysis

4.1. Dataset Description

To validate the improved resiliency of our proposed ensem-

ble learner framework against adversarial attacks, we use two

different datasets: NASA C-MAPSS (Saxena et al. 2008), and

UNIBO Powertools (Wong et al. 2021).

NASA C-MAPSS is a benchmark dataset for remaining

useful life (RUL) estimation. This dataset includes multiple

aircraft engines simulated under different operating and fault

conditions. Fig. 6 depicts the simplified version of simulated

engine diagram and its major components: fan, turbine, com-

pressor, and combustor. The data is collected using various sen-

Figure 6: Engine Diagram Simulated in C-MAPSS (Saxena et al. 2008)

Table 2: C-MAPSS Data Set

Data Set FD001 FD002 FD003 FD004

Train trajectories 100 260 100 249

Test trajectories 100 259 100 248

Max/Min cycles for train 362/128 378/128 525/145 543/128

Max/Min cycles for test 303/31 367/21 475/38 486/19

Operating conditions 1 6 1 6

Fault conditions 1 1 2 2

sors (e.g. temperature, pressure) placed on these components.

NASA C-MAPSS comprises of 4 different datasets in increas-

ing complexity: FD001∼FD004. Table 2 presents the dataset

and their corresponding features. We can observe that while

FD001 is the simplest data set, FD004 is the most complicated

one (i.e. the highest number of operating and fault conditions).

For each dataset, we have separate training and test data where

the goal is to predict RUL for the test data. Our feature columns

include the engine ID, cycle index, three operational settings,

and 21 sensor measurements.

UNIBO Powertools is a lithium-ion (Li-Ion) battery dataset

collected in a laboratory test by an Italian Equipment producer

(ibid.). It contains 27 batteries which are run until their end of

life. We use 17 of these batteries for training and 10 of them for

testing. These batteries have different nominal capacities and

they are tested under different conditions: 1) standard test: bat-

tery was discharged at 5A current in main cycles, 2) high cur-

rent test: battery was discharged at 8A current in main cycles,

3) preconditioned test: battery cells are stored at 45°C envi-

ronment for 90 days before conducting the test. The following

procedure is used to create the dataset where during discharge,

the sampling period is set to 10 seconds (ibid.): 1) Charge cy-

cle: Constant Current-Constant Voltage (CC-CV) at 1.8A and

4.2V (100mA cut-off), 2) Discharge cycle: Constant Current
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until cut-off voltage (2.5V), 3) Repeat steps 1 and 2 (main cy-

cle) 100 times, 4) Capacity measurement: charge CC-CV 1A

4.2V (100mA cut-off) and discharge CC 0.1A 2.5V, 5) Repeat

the previous steps until the battery cell end of life. We have dif-

ferent columns in this dataset: battery id, time, voltage, current,

charging capacity, discharging capacity, watt hour (wh) mea-

surements during charge and discharge, temperature, and cycle

count.

4.2. Experimental Setup

4.2.1. Adversarial Attack Methods

We use the following parameters for the selected adversar-

ial methods fast gradient sign, basic iterative, momentum iter-

ative, and robust optimization (Fawaz et al. 2019; Dong et al.

2018; Madry et al. 2017): amount of perturbation(ϵ)=0.1, step

size(α)=0.001, number of iterations(I)=100, decay factor(µ)=1.

4.2.2. Deep Learning Methods

Although we use the same model structures (see Section

3.1 for the model details) for both datasets, we select differ-

ent hyper-parameters to run the models so as to obtain the best

possible performance. We replicate each experiment 10 times

and report average compromise values where we run all exper-

iments on a PC with 16 GB RAM and an 8-core 2.3 GHz Intel

Core i9 processor.

NASA C-MAPSS: Adam optimizer with learning rate 0.001,

elu activation function, batch size of 128, and a max number of

epochs of 150 where callback is activated (patience is set to 10

for validation data), and sliding time window size of 80.

UNIBO: Adam optimizer with learning rate 0.0001, selu

activation function, batch size of 256, and a max number of

epochs of 100 where callback is activated (patience is set to 10

for validation data), and sliding time window size of 500.

4.2.3. Stacking Ensemble

For the selected meta-learners, we perform hyperparameter

optimization using a grid search (Bergstra and Y. Bengio 2012).

This gives us the optimal hyper-parameters to combine predic-

tions from different DL models using stacking ensemble. For

Table 3: Single DL Models Mean Compromise

DL Model / Dataset FD001 FD002 FD003 FD004 UNIBO

CLSTM 8.0 120.3 6.8 86.2 27.2

CNN 20.6 72.0 13.5 12.5 22.6

WAVE 17.6 25.6 14.4 5.6 7.2

CGRU 9.0 13.6 7.8 6.5 32.8

BLSTM 6.7 8.4 8.7 6.0 10.5

GLSTM 6.4 8.4 7.9 6.2 6.8

BGRU 6.1 7.4 7.5 5.9 7.5

LSTM 5.7 7.9 7.2 5.4 6.3

GRU 5.2 7.7 6.5 7.1 4.5

RNN 5.3 4.3 5.0 4.6 7.1

the ensemble training, we split training data into two subsets

using the ratio 70% (subset 1) to 30% (subset 2). We use subset

1 for DL model training, and subset 2 for ensemble training.

We set worsenedtolerance to 2 since it leads to the selection of

optimal ensemble configuration.

4.3. Single DL Models Resiliency

Table 3 presents mean compromise values for each DL method.

In this table, each row represents a different DL model and each

column corresponds to a distinct dataset. We first observe that

DL model performance is impacted poorly by the adversarial

attacks where there is up-to 120× compromise. We also no-

tice that the resiliency of a DL method changes with respect

to the dataset. Here, we present the most resilient methods at

the bottom of the table. We observe that GRU is the most re-

silient algorithm at FD001, and UNIBO while RNN is the best

at the remaining datasets. We can conclude that recurrent ar-

chitectures (e.g., GRU) are superior over others. CNN-based

methods are extremely sensitive to the attacks where the pre-

diction performance degrades by up to 72×. Hybrid methods

can be resilient if solely recurrent architectures are combined

(e.g., GLSTM). For the most resilient ensemble selection, we

utilize these compromise values.
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4.4. Proposed Stacking Ensemble Learner Resiliency

4.4.1. Meta-learner Resiliency Analysis

We first analyze the meta-learner resiliency of our ensem-

ble learner. Figure 7 illustrates the meta-learner mean com-

promise values where each meta-learner is represented with a

distinct color. In each sub-figure, x-axis shows the number of

base learners, and the y-axis provides the ensemble compro-

mise. We first note that the meta-learner resiliency fluctuates

considerably with respect to the number of base learners. To

illustrate, at FD003 (Figure 7c), AdaBoost (ADA) is the most

resilient at 5 and 6 base learner ensemble scenarios, yet it is the

worst if we only select 3 base learners. The best performing

meta-learner also changes based on the number of base learn-

ers. However, this is not the case for all datasets. For instance,

ADA is always the most resilient meta-learner at FD004 (Fig-

ure 7d), and UNIBO (Figure 7e). When we analyze the average

performance of each meta-learner over all dataset and ensem-

ble learner configurations, we obtain 6.43, 4.91, 4.88, and 4.47

compromise values for LR, RF, XGB, and ADA respectively.

This shows that ADA is the most resilient meta-learner while

LR being the least resilient (on average). For the rest of our

ensemble analysis, we select the best meta-learner for each en-

semble configuration and report those measurements. To ex-

emplify, for UNIBO dataset and any ensemble configuration,

we present the ADA compromise values since its value is the

smallest (Figure 7e). However, ADA is not selected for any

ensemble configuration at FD001.

4.4.2. Stacking Ensemble Analysis

We first analyze the resiliency of ensemble learners having

different number of base learners. Figure 8 demonstrates a vari-

ety of stacking ensemble learner compromise values under the

selected adversarial attack scenarios. In each sub-figure, x-axis

shows the attack method, the y-axis denotes the ensemble com-

promise. Each figure shows the best single method and multiple

ensemble learner configurations for different attack methods.

Note that in these figures, EnL represents our ensemble learner

with n most resilient learners. We consider different number

of base learners (from 2 to 7, e.g., ‘E2L’ uses 2 most resilient

base learners) and the most resilient single method (‘Best Sin-

gle’). All methods in each figure are represented with distinct

colors and the legend of each figure shows the order in which

these methods are presented. Each ensemble compromise value

in this figure corresponds to the compromise value of the best

meta-learner. We can find the most resilient ensemble config-

uration from Figure 8 which is the right most bar in each sub-

figure in Figure 8. For instance, at FD003 (Figure 8c), E5L

(represented with yellow color) is the most resilient configura-

tion. E3L (i.e., ensemble learner using 3 most resilient base

learners), E2L, E5L, E6L, and E4L are the most resilient en-

semble configuration for FD001, FD002, FD003, FD004, and

UNIBO respectively. Besides, we observe that increasing the

number of base learners does not always lead to more resilient

learner. To illustrate, the best performing ensemble at FD002

only uses 2 base learners (Figure 8b). This result motivates us

for a more clever ensemble method selection approach which

can both terminate the search process early (i.e., it might not

be necessary to try all base learners) while it can find the most

resilient ensemble configuration.

4.4.3. Adversarial Attacks Compromise Analysis

Based on the results in Figure 8, we also analyze the impact

of an adversarial attack on the model compromise. Figure 9

shows the average compromise values for each attack method.

On the y-axis, we calculate the average compromise over all

ensemble and the best single method scenarios, x-axis corre-

sponds to the dataset. Momentum iterative method (MIM) leads

to highest compromise (up to 5.8×) whereas BIM is the least

strong attack among all.

4.4.4. Most Resilient Stacking Ensemble Selection

Table 4 presents the results of the most resilient ensemble

configuration search process. In this table, the columns show

the dataset, best ensemble configuration, mean ensemble com-

promise, best single method mean compromise, and the ensem-

ble resiliency improvement over the single method respectively.
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(a) FD001 (b) FD002

(c) FD003 (d) FD004 (e) UNIBO

Figure 7: Meta-learner Compromise Analysis

(a) FD001 (b) FD002

(c) FD003 (d) FD004 (e) UNIBO

Figure 8: Stacking Ensemble Compromise Analysis

Table 4: Most Resilient Stacking Ensemble Configuration

Dataset Ensemble Configuration Compromise Best Single Compromise Improvement (%)

FD001 3 Learners (E3L) 3.76 5.21 27.83%

FD002 2 Learners (E2L) 2.88 4.34 33.64%

FD003 5 Learners (E5L) 4.49 5.00 10.20%

FD004 6 Learners (E6L) 3.32 4.63 28.29%

UNIBO 4 Learners (E4L) 2.34 4.49 47.88%
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Figure 9: Adversarial Attacks Compromise Analysis

We can observe that the best ensemble configuration is differ-

ent at each dataset, e.g., E3L (i.e., ensemble learner using 3

most resilient base learners) for FD001, E2L for FD002, and

so on. In Section 4.4.2, we find out the most resilient ensem-

ble configurations. We can validate that our proposed algo-

rithm is able to select those ensemble configurations success-

fully. While we obtain the best ensemble mean compromise

at UNIBO (2.34×), the smallest single method compromise is

obtained at FD002 (4.34×). Our stacking ensemble approach

achieves up to 47.9% mean compromise improvement. We also

analyze the proposed stacking ensemble compromise improve-

ment for the adversarial attack methods individually. Table

5 shows our proposed ensemble method’s resiliency improve-

ment over the best single method under each attack scenario.

We reach up-to 59.9% improvement at UNIBO. For FD001,

FD002, FD003, and FD004, the maximum improvements are

31.5%, 35%, 16.5%, and 29.8% respectively.

Table 5: Proposed Stacking Ensemble Compromise Improvement Over the

Most Resilient DL Method (%)

Dataset / Attack Method FGSM BIM RO MIM

FD001 27.4 23.6 31.5 27.5

FD002 35.0 32.6 32.0 34.5

FD003 5.3 8.4 16.5 10.1

FD004 28.2 29.8 29.2 26.6

UNIBO 40.4 45.3 59.9 46.0

5. Conclusions and Future Work

In this work, we propose a stacking ensemble learning frame-

work which is more resilient against adversarial attacks com-

pared to single deep learning (DL) methods. We use 4 different

attack methods (fast gradient sign, basic iterative, momentum

iterative, and robust optimization) and 10 distinct DL models

from recurrent, convolutional, and hybrid architectures. We

find that recurrent neural network based architectures provide

more resilient learning whereas convolutional neural network

structures are extremely sensitive to the attacks. We observe

that the most resilient single ML method changes based on the

data set or attack method. To address this issue, we propose a

framework that finds the most resilient ensemble configuration

against multiple attacks. The results show that our proposed

ensemble learner framework can improve the resiliency of the

most resilient single method by up to 60%. From research per-

spective, this means that the proposed ensemble solution can

still perform well under adversarial attacks. In management

level, this leads to more accurate replacement and maintenance

decisions even under cyber-attacks.

Limit and Constraints: As we provided in Figure 1, DL-

enabled I-IoT systems contain different layers. Cyber-attacks

against those systems can target different components such as

communication protocols, smart devices, and DL models. Our

proposed stacking ensemble learning framework can provide a

cyber-security solution against only DL model attacks, not all

type of attacks in an I-IoT system. Hence, our proposed method

would be a part of wider cyber-security solution towards more

resilient I-IoT systems.

Future Work: To overcome these limitations, as a fu-

ture work, we are first planning to add black-box attack meth-

ods which do not have any knowledge about the attacked mod-

els. Thus, we can analyze a more realistic attack scenarios

and examine the performance of the proposed stacking ensem-

ble learning framework, generalizing the resiliency of our ap-

proach.
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