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in the L1 loop, the docking domain, and the KSPK motif in the extended 
C-terminal tail [12,15]. H2A.W exclusively occupies constitutive het
erochromatin [11,16] in plants, while the bodies of expressed genes are 
covered by H2A and H2A.X, with the first nucleosomes occupied by 
H2A.Z [11,17]. In mammals, macroH2A can be found at constitutive or 
facultative heterochromatin, and it is frequently associated with tran
scriptional silencing, but a positive effect on transcription for a subset of 
genes has been reported as well [9,18,19]. The specific genomic location 
of each type of variant suggests dedicated mechanisms of deposition for 
each variant. 

3. Chromatin remodelers and chaperones 

At the DNA replication fork, nucleosomes are deposited by dedicated 
chaperones that assemble a tetramer (2H3 -2H4) and two heterodimers 
H2A-H2B. The general chaperone proteins, such as Nucleosome As
sembly Protein 1 (Nap1) and FAcilitates Chromatin Transcription 
(FACT), mediate deposition of the H2A-H2B heterodimer irrespective of 
the H2A variant [20–22]. To date, no chaperone has been identified that 
deposits a specific type of H2A variant at the DNA replication fork. Thus, 
additional undiscovered mechanisms must exist that explain why his
tone variants such as H2A.Z, macroH2A and H2A.W show enrichment at 
specific genomic locations. The incorporation of H2A variants into 
chromatin at specific genomic regions is generally not coupled to 
replication [3,9,23,24], so localized deposition via differential replica
tion timing is not possible. 

In addition to chaperones, chromatin remodeling complexes can 
regulate the deposition, as well as the removal, of H2A variants [3,25, 
26]. Chromatin remodeling complexes consist of multiple peptide sub
units, and all contain at least one member of the SWI2/SNF2 subfamily 
of DNA-dependent ATPases, which belongs to the superfamily of SF2 
helicases and translocases [27–30]. For example, the yeast SWR1 
chromatin remodeling complex contains Swr1 as its DNA-dependent 
ATPase, and the yeast INO80 complex contains Ino80 as its SNF2-like 
protein [26]. Some chromatin remodelers have been shown to reposi
tion nucleosomes on a small DNA fragment in vitro, while others pro
mote disassembly of the histone octamer, alter nucleosome 
conformation, or perform exchange of histone variants. Some chromatin 
remodelers of the SWI2/SNF2 subfamily act only in a large 
multi-subunit complex, as has been reported for Swr1, whereas others 
can act in vitro on their own [31,32]. 

The highly conserved ATPase domain is found in all members of the 
SWI2/SNF2 family and is required for chromatin remodeling function 
[26,30,33]. SWI2/SNF2 members of the SF2 family share the ability of 
translocation along DNA with other helicases. However, SWI2/SNF2 
members do not catalyze DNA strand separation as do bona fide helicases 
of the SF1 family because they lack the necessary wedge domain. One 
model suggests that DNA loops are formed during the process of direc
tional translocation and that these loops are propagated on the nucle
osome surface, resulting in repositioned nucleosomes. 

SWI2/SNF2 family members are generally grouped into four or more 
subfamilies based on additional domains that confer specific functional 
properties [33,34]. For example, the INO80/SWR1 subfamily member 
Swr1 includes a helicase SANT-associated (HSA) domain that binds actin 
or actin-related proteins, while the ISWI subfamily contains a 
HAND-SANT-SLIDE (HSS) domain that recognizes unmodified histone 
H3 tails; other subfamilies are characterized by chromodomains or have 
additional bromodomains [30,34]. 

Several dedicated chromatin remodeling complexes have been 
identified that perform an exchange of the histone variant H2AZ, 
including the yeast SWR1 complex [26,31,33]. The SWR1 complex 
shows a stepwise deposition of H2AZ in vitro: first, one H2A-H2B dimer 
is exchanged with a H2AZ-H2B dimer resulting in a heterotypic nucle
osome, followed by another H2AZ-H2B dimer deposition, resulting in a 
homotypic nucleosome [35]. The reaction of the SWR1 complex is 
unidirectional [31] and the reverse reaction, the removal of H2AZ from 

chromatin, can be performed by the INO80 complex [26]. 
A dedicated chromatin remodeler has not yet been identified for 

every histone variant. For example, no available evidence exists for 
chaperones or chromatin remodelers specific for deposition or eviction 
of H2A.B or H2A.X [30]. A few mechanisms have been reported that are 
responsible for extraction of macroH2A from chromatin. For example, 
ATRX, another member of the SWI/SNF family of DNA-dependent 
ATPases, is involved in the elimination of macroH2A1 at telomeres 
and the α-globin locus in vivo [36]. The chaperone FACT removes 
macroH2A2 at transcribed chromatin in a process termed "pruning" [9]. 

Until recently, no dedicated mechanism of macroH2A or H2AW 
deposition had been identified [9,23]. Two recent reports demonstrate 
that DDM1 and LSH (see below) are the first chromatin remodelers 
identified that are involved in the deposition of H2A.W and macroH2A 
in the heterochromatin of plants and mammals, respectively. DDM1 and 
LSH are phylogenetically related and form, together with their human 
homolog HELicase Lymphoid Specific (HELLS), the DHL family of 
chromatin remodelers [37]. This review traces the discovery of these 
remodelers and reviews our current understanding of their mechanism 
and its functional implications. 

4. Discovery of DDM1 and LSH 

The discovery of DDM1 and LSH proceeded down two converging 
paths. DDM1 was first identified in a forward genetic screen conducted 
in 1990 using Arabidopsis. The rationale for the screen was a 1987 paper 
by Rattner and Lin [38] showing that chemically-induced DNA hypo
methylation led to a dramatic decondensation of centromeric hetero
chromatin in mitotic chromosomes of the mouse. If centromere function 
was altered, which seemed likely given the treated chromosomes’ 
grossly distorted structure, it was reasoned that mutations causing 
hypomethylation of centromeric DNA might prove useful to gain an 
understanding of this enigmatic region of the genome. At the time, it was 
known that Arabidopsis centromeres were composed of long tandem 
arrays of nucleosome-sized repeats, and that these repeats contained 
cytosine methylation as determined by differential digestion of restric
tion endonucleases whose cleavage was blocked by cytosine methyl
ation [39]. The screen, which was based on DNA blots, netted three 
“decrease in DNA methylation” or ddm mutations, including two alleles 
of the DDM1 gene [40]. Two surprising findings stood out from the 
outset: (i) DNA hypomethylation in ddm1 mutants primarily affected 
repetitive DNA sequences, and (ii) the hypomethylation persisted after 
reintroduction of the sequences into a wild-type DDM1 background by a 
genetic cross. These findings, published in 1993, suggested that DDM1 
did not encode a DNA methyltransferase, but the identity of DDM1 as a 
chromatin remodeler only became clear in 1999 after completion of a 
positional cloning effort [41]. In parallel to the screen just discussed, 
other ddm1 alleles were recovered in a screen for loss of transcriptional 
gene silencing, which was accompanied by a loss of DNA methylation 
[42]. Despite the absence of a clear mechanism for DDM1 at the time of 
its discovery, the various ddm1 alleles proved for the next two decades to 
be valuable tools to explore the maintenance of DNA methylation and its 
impact on transposons (see sections below). 

In contrast to DDM1, LSH/HELLS was cloned based on its similarity 
to the superfamily of SF2 helicases [27,28,43]. Degenerate primers were 
designed comprising the highly conserved helicase domain I, which 
contains an ATP binding site, and Domain II, including a short 4 aa 
motif, DExH. LSH/HELLS was cloned from T cell precursors and 
expression analysis by Northern blots suggested preferential expression 
in lymphocytes, hence the name "Lymphoid Specific Helicase" or 
"Helicase, Lymphoid Specific" [44,45]. Subsequently, a leukemia cell 
line served as an alternate source for the cloning of LSH/HELLS [46]. 

In primary cells, LSH is preferentially expressed in thymus, bone 
marrow, activated lymphocytes and testis, and it displays high expres
sion in a number of cancer or leukemic cell lines [45–47]. Despite its 
preferential expression in lymphoid tissue, LSH also has non-immune 
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functions as newborns with a deletion of LSH die within hours after birth 
[47,48]. Since loss of LSH reduces DNA methylation levels (see below), 
the early death phenotype might be due to defects in the neuronal res
piratory control, resembling the defects described for DNA methyl
transferase DNMT1-mutant mice with DNA hypomethylation in neural 
tissue [49]. 

5. Investigation of how DDM1 and LSH affect the maintenance of 
DNA methylation 

In flowering plants, cytosine methylation is found in three different 
nucleotide sequence contexts and there are specific DNA methyl
transferases responsible for each [50]. For example, CpG methylation is 
maintained by METHYLTRANSFERASE1 (MET1), while CpHpG 
methylation (where H = A, C, or T) is deposited by the plant-specific 
CHROMOMETHYLASE 3 (CMT3). Plants also have cytosine methyl
ation at asymmetric sites, CpHpH, which is modified by CHROMOME
THYLASE 2 (CMT2) and directed by an RNA-dependent DNA 
methylation (RdDM) pathway [51–53]. Loss of DDM1 reduces both CpG 
and CpHpG methylation in Arabidopsis, rice and maize [52, 54–58] and 
primarily affects repetitive DNA sequences. This specificity was 
explained, in light of the subsequent discovery that DDM1 was a SF2 
remodeler, by the hypothesis that the protein acted at the replication 
fork to mobilize nucleosomes and provide greater access of DNA 
methyltransferases to their substrate [41]. Evidence in support of this 
accessibility mechanism came from genetic studies showing that loss of 
H1 linker histones, and therefore reduced chromatin compaction, sup
pressed the hypomethylation phenotype of ddm1 mutations [59]. This 
hypothesis is further strengthened by the retention of methylation on 
linker DNA, but not nucleosomal DNA, in Arabidopsis strains combining 
histone h1 and ddm1 mutations [60]. 

Because the loss of DDM1 is not lethal in Arabidopsis, the ddm1 
mutants were used to study the long-term consequences of depletion in 
DNA methylation. Inbred ddm1 mutants show developmental abnor
malities due to the accumulation of second-site mutations and epige
netic defects [54, 56, 61–63]. The latter are associated with either 
inappropriate loss, or ectopic gain, of cytosine methylation. Insight into 
the triggers for cytosine methylation came from study of successive 
generations of wild-type plants derived from backcrossed ddm1 mutants, 
showing that de novo methylation in CpHpH contexts is directed by the 
RdDM pathway [64]. In this case, de novo methylation was deposited 
primarily on TE fragments often present in proximity of genes. Mutants 
deficient in DDM1 were also the foundation of epigenetic recombinant 
inbred lines, which have been used to study the potential impact of DNA 
methylation on TE and gene expression [65–67]. Hence, ddm1 mutants 
have facilitated the exploration of the impact of DNA methylation on TE 
in adaptation [68]. 

Mammalian cells, in contrast to plants, have cytosine methylation 
predominantly in the context of CpG sequences [69,70]. The DNA 
methyltransferases DNMT3A and DNMT3B are involved in the de novo 
establishment of DNA methylation patterns that are generated during 
embryogenesis, germ cell development and upon differentiation of 
embryonic stem (ES) cells [70,71]. Once established, methylation pat
terns are maintained at the replication fork via the ‘maintenance’ ac
tivity of DNA methyltransferase 1 (DNMT1), which prefers 
hemi-methylated DNA as a target [70]. 

Based on its similarity to DDM1 and the discovery that DDM1 is 
required for maintenance of cytosine DNA methylation patterns [40,41], 
LSH-deficient tissues and embryonic stem (ES) cells derived from 
knock-out mice were probed for DNA methylation. Genomic DNA 
derived from LSH-depleted embryos showed a 40-60% decrease of DNA 
methylation compared to wild-type embryos using diverse techniques, 
such as DNA blot analysis, thin-layer chromatography, and MeDIP 
(methylated DNA-immunoprecipitation) analysis [72-75]. Using bisul
fite sequencing to determine methylation maps with single base reso
lution, it was found that methylation levels in the absence of LSH were 

about 55% in murine embryonic fibroblasts (MEFs) compared to 85% in 
wild-type MEFs [76]. The level of methylation in LSH knockout MEFs 
resembles the degree of genomic methylation in undifferentiated murine 
ES cells [76]. 

LSH-depleted ES cells exhibit a greatly impaired capacity of de novo 
DNA methylation upon differentiation [77–79]. In contrast, the main
tenance of methylation pattern of an episomal vector was largely un
affected. Further, the preservation of DNA methylation at most 
examined imprinted genes was unaltered in the absence of LSH [77,80]. 
These findings led to the hypothesis that LSH promotes de novo 
methylation rather than maintenance methylation, for example, by 
facilitating the association of DNMT3B with target chromatin [77–79, 
81]. Alternatively, LSH could also facilitate DNMT1 recruitment through 
UHFR1, an accessory factor that targets DNMT1 to the replication fork 
[82,83]. Recent reports indicate that LSH depletion also reduces 
hydroxycytosine methylation (5hmC), an oxidative product of methyl
ated cytosine generated by TET proteins [84–86]. This effect may be 
mediated by LSH interaction with TET2 or through regulation of TET2 
mRNA [84,86] or possibly as a consequence of reduced cytosine 
methylation, which is a pre-requisite of 5hmC. 

In ES cells, DNA methylation is thought to follow gene repression and 
to lock in gene silencing. LSH-depleted ES cells show impaired or 
delayed repression of stem cell genes – a phenomenon which is associ
ated with reduced CpG methylation levels [77,78]. A reporter gene can 
be silenced upon recruitment of LSH [87,88] and some cancer cells show 
LSH-mediated silencing of selected genes associated with DNA methyl
ation [89–92]. However, most protein-genes show normal expression in 
LSH-depleted MEFs, despite reduced CpG methylation, indicating 
possibly redundancy of silencing pathways in differentiated cells [74, 
76]. An exception are subclasses of repetitive elements that are 
de-repressed in LSH-depleted cells [72,76,93,94]. These repetitive se
quences, such as endogenous retroviral elements, typically undergo de 
novo DNA methylation during early mammalian embryogenesis [95]. 
However, in LSH-depleted ES cells these sequences show impaired de 
novo CpG methylation. This effect depends on the ATP binding site of 
LSH [79,96], indicating that the protein’s DNA translocase activity is 
essential to facilitate methylation of these repetitive sequences. 

In conclusion, DHL remodelers impact DNA methylation through 
pathways that remain incompletely understood. Yet several findings 
suggest that the control of DNA methylation is not the ancestral or pri
mary function of DHL remodelers. DDM1 and LSH orthologs exist in 
species that are devoid of DNA methylation, such as budding yeast [97]. 
In other species, these orthologs can be deleted without altering DNA 
methylation, as is the case in the fungus Neurospora crassa [98]. More
over, recent evidence provides an explanation for this apparent 
disconnect between DHL remodelers and DNA methylation by demon
strating that DDM1 and LSH act directly on histone variant deposition 
and likely impact DNA methylation primarily through indirect 
mechanisms. 

6. Deposition of histone variants by DDM1 and LSH into 
chromatin 

While the ATP binding site is critical for DDM1 and LSH function in 
vivo, these remodelers do not contain any of the HSA, HSS, chromo- or 
bromo domains characteristic of other SWI/SNF2 subfamily members 
[79] and they belong to the same subfamily as ISWI [99]. Recombinant 
LSH and DDM1 support nucleosome sliding activity in vitro [100,101]. 
However, it remained unclear if this activity occurs in vivo and how DHL 
remodelers contribute to heterochromatin formation and repression of 
retroviral elements. Thus, the primary molecular function of DHL 
remodelers remained unknown until recently. 

The impact of ddm1 on chromatin accessibility at transposons sug
gested that this remodeler expels the linker histone H1 to maintain ac
cess to DNA methyltransferases [59,60,102]. However, it was later 
shown that DDM1 does not bind to H1 and does not impact its deposition 
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explaining the widespread impact of the loss of DHL remodelers on 
transposon silencing. 

Depletion of DDM1 also has a strong impact on gene and transgene 
expression in plants [42, 128–130]. This effect might be explained by 
the presence of transposon-derived cis-acting elements that generate 
cryptic transcription start sites (TSS) that interfere with initiation of 
transcription at bona fide TSS [130]. The mechanism that prevents this 
spurious transcription has not yet been determined but the large impact 
on transcription likely explains the many facets of the phenotype of 
ddm1 mutants. Similarly, mutation of LSH might affect globally tran
scription causing multiple defects including the ICF4 syndrome, a 
multi-organ disease with increased childhood lethality [131–133]. ICF is 
an acronym for immune deficiency, centromeric instability and facial 
anomalies. Mice with a deletion of LSH die perinatally and display 
multiple organ defects including stem cell defects and germ cell defects 
[47, 48, 73, 89, 134–136]. Some of the phenotypes in the LSH knockout 
mouse resemble the ICF disease; for example, reduced neural progenitor 
expansion in the absence of LSH may contribute to neural malfunction 
and mental retardation seen in ICF patients and abnormal Hox gene 
expression may be responsible for facial anomalies and congenital de
fects [137,138]. The immune deficiency defect in the absence of LSH is, 
at least in part, due to a defect in class switch recombination, a process 
that is required for the generation of immunoglobulin isotypes [139]. 
Upon LSH depletion B cell development and switch recombination ef
ficiency are impaired resulting in a severe decrease of immunoglobulin 
production, one of the hallmark characteristics of ICF patients [139]. 
There is only a partial overlap in the phenotypes comparing macroH2A 
knockout mice [140] to LSH knockout mice, including reduced growth, 
reproductive problems in the C57BL/6 background and increased peri
natal lethality (about 30% in macroH2A KO and 100% in LSH KO). This 
result may suggest that LSH has additional roles beyond macroH2A 
deposition. On the other hand, some phenotypes are not as overt and 
have been only recently described; for example, macroH2A depletion 
leads to a defect in B cell development and neurological defects 
[141–143]. 

LSH-depleted cells and ddm1 mutants display signs of spontaneous 
DNA damage and genomic instability [136, 139, 144–147]. DDM1 also 
protects against telomere truncation [148]. It has been noted that LSH 
plays a role in DNA repair and that it promotes joining of broken DNA 
ends, but a precise mechanism remains unknown [83,139,147,149]. A 
recent study suggests that LSH or DDM1 depletion induces susceptibility 
to replication fork stalling and degradation of nascent DNA that leads to 
double-stranded DNA breaks [150,151]. The protection of stalled 
replication forks by LSH depends on its chromatin remodeling activity 
and is mediated by macroH2A deposition [151]. Deficiency of mac
roH2A has been previously found to confer susceptibility to replication 
stress [152]. The altered chromatin environment at the replication fork 
in LSH-depleted cells leads to an imbalance of histone modifications that 
are critical for recruitment of DNA repair factors [151]. Thus, 
LSH-depleted cells accumulate 53BP1 at the cost of BRCA1 resulting in 
impaired RAD51 loading and instability of stalled replication forks 
[151]. This pathway may contribute to the increased DNA damage and 
genomic instability that occurs in ICF4 cells. Controlling DNA repair 
may be an ancestral function of DHL remodelers because the fungus 
Neurospora DDM1/LSH ortholog MUS-30 is important for base excision 
repair pathway and interacts with RAD51-dependent homologous 
recombination [98]. Additional evidence in support of this hypothesis 
comes from budding yeast and the observation that mutation of its 
DDM1/LSH ortholog (IRC5/YFR038W) dramatically increases the 
numbers of spontaneous Rad52 DNA repair foci [153]. 

ICF syndromes can be caused by mutations in either Dnmt3b, 
ZBTB24, CDCA7 or LSH/HELLS [131–133]. The transcription factor 
ZBTB24 can regulate CDCA7 gene expression and may also participate in 
recruitment of DNMT3B to specific loci [154–156]. CDCA7 may pro
mote association of LSH/HELLS with chromatin or act as co-factor in 
chromatin remodeling [101,157]. Thus ZBTB24, CDCA7 and 

LSH/HELLS may share common pathways [147, 158–160]. LSH/HELLS 
has been shown to promote association of DNMT3B with chromatin 
targets and control DNA methylation [77–79, 81, 87]. All ICF patients 
share some DNA hypomethylation defects at pericentromeric repeats 
[158,159]. The relation between LSH/HELLS mediated macroH2A 
deposition and DNA methylation and the role of macroH2A in DNMT3B 
mutant cells is not yet understood. It has been suggested that DNA 
hypomethylation can induce reorganization of heterochromatic mac
roH2A [161]. A reduction of macroH2A deposition has been found in 
LSH/HELLS mutant cells but has not been examined as yet in other ICF 
models [108]. The precise molecular pathways underlying these com
plex diseases remain largely unknown. 

8. Conclusion and outlook 

Now that it has become clear that the effect of the mutants of DHL 
remodelers on DNA methylation was indirect, the discovery of the 
deposition of H2A variants to heterochromatin by DHL remodelers 
opens new and exciting avenues of research. One set of questions and 
experimental priorities will focus on understanding the mechanisms 
through which DHL remodelers act. For instance, what unique features 
distinguish DDM1 and LSH from other chromatin remodelers from the 
same clade, which also contains ISWI and less-studied remodelers? LSH 
exchanges replicative H2A to macroH2A, but whether DDM1 catalyzes 
such an exchange is unknown. Exchange of H2A to H2A.Z in yeast in
volves a protein complex with the catalytic subunit SWR1. Yet, no bona 
fide LSH complex or DDM1 complex has yet been identified, and it is 
unclear whether LSH and DDM1 co-operate with other factors in vivo. 
Such factors might help explain the targeting of DHL remodeler activ
ities. LSH and DDM1 do not affect all regions of heterochromatin, and it 
will be important to elucidate how LSH or DDM1 are recruited to 
chromatin and why only certain genomic locations are affected. Since 
residual levels of macroH2A and H2A.W remain in the absence of LSH 
and DDM1, respectively, other as yet unidentified mechanisms must be 
able to deposit these variants in heterochromatin. We predict that 
different remodelers deposit macroH2A and H2A.W preferentially to 
distinct elements or locations within repressed domains of chromatin. 

Answering the mechanistic questions just posed will also bring us 
closer to an understanding how DHL remodelers fulfill their larger roles 
in management of the genome. For example, how does DDM1 suppresses 
transposition? It is currently assumed that this suppression is the 
consequence of silencing transposase and other genes from transposons, 
but the impact of DDM1 on chromatin could directly prevent trans
position. Recent work suggested that H2A.Z is a positive factor for 
transposon integration [162], so it is possible that H2A.W acts in an 
opposite manner. The complexity of the ICF4 syndrome in humans, even 
as manifested at the cellular level, and the diverse DNA repair and 
recombination defects exhibited by LSH-deficient mice and murine cell 
lines underscore how integral DHL remodelers are to the maintenance of 
genome stability. 

Indeed, as discussed above, work in the fungi Neurospora and 
budding yeast suggest that the ancestral role of DHL remodelers may lie 
in DNA repair and replication pathways [98,153]. Our knowledge of 
these proteins, however, comes primarily from their participation in the 
establishment or maintenance of two very distinct chromatin features, 
namely histone variants and DNA methylation (see Fig. 2). It remains 
unclear if these functions represent evolution of distinct novel activities 
or an expansion of an ancestral function, and whether the process of 
macroH2A/H2AW deposition and DNA methylation are linked or 
represent independent events. At least it is clear that these convergent 
functions of DHL remodelers were acquired independently during evo
lution by an ancestral remodeler dedicated to the deposition of an H2A 
variant present in LECA because orthologs of DHL remodelers exist in 
organisms with no heterochromatin-specialized H2A variants. Func
tional studies of these orthologs are expected to reveal conserved ele
ments of the mechanisms of action of DHL remodelers, which will be 
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essential to understand their functional diversification in flowering 
plants and mammals. 
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with nucleosomes containing these variants are targeted 
for silent chromatin formation, reinforced by through a 
feed-forward cycle (lower left) involving the acquisition 
and maintenance of additional chromatin-level marks (e.g., 
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addition, DHL remodelers appear to facilitate (lower right) 
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