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Abstract

Expansion of an initial population of T cells is essential for cellular immunotherapy. In Chronic
Lymphocytic Leukemia (CLL), expansion is often complicated by lack of T cell proliferation, as
these cells frequently show signs of exhaustion. This report seeks to identify specific biomarkers or
measures of cell function that capture the proliferative potential of a starting population of cells.
Mixed CD4+/CD8+ T cells from healthy donors and individuals previously treated for CLL were
characterized on the basis of proliferative potential and in vitro cellular functions. Single-factor
analysis found little correlation between the number of populations doublings reached during
expansion and either Rai stage (a clinical measure of CLL spread) or PD-1 expression. However,
inclusion of in vitro IL-2 secretion and the propensity of cells to align onto micropatterned features of
activating proteins as factors identified three distinct groups of donors. Notably, these group
assignments provided an elegant separation of donors with regards to proliferative potential.
Furthermore, these groups exhibited different motility characteristics, suggesting a mechanism that
underlies changes in proliferative potential. This study describes a new set of functional readouts that
augment surface marker panels to better predict expansion outcomes and clinical prognosis.

1 Introduction

T cells have emerged as a compelling agent in the treatment of diseases ranging from cancer to
autoimmunity. However, clinical use of T cells as a therapy relies on the production of cells of
sufficient quantity and quality from a small starting population; the inability of an individual’s cells
to carry out this expansion would make a cellular approach inappropriate for both therapy and
participation in clinical trials [1]. This poses a particular challenge as disease state often dampens
immune function and response including expansion. As a key example, T cells from individuals with
Chronic Lymphocytic Leukemia (CLL) show defects in expansion and subsequent function [2; 3; 4;
5; 6], which resembles exhaustion and is associated with lower remission of CLL than Acute
Lymphoblastic Leukemia through autologous CAR-T cell therapy [7; 8]. CLL is also associated with
higher levels of key exhaustion markers such as PD-1, TIM-3, LAG-3, CTLA-4, TIGIT and CD160
[6;9; 10; 11], as well as deficits in cell function such as migration and formation of immune synapse
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structures [12; 13; 14]. However, a clear understanding of how biomarkers are associated with
cellular function, disease progression, and potential treatment remains elusive. Using a machine
learning approach, this report seeks to develop a framework for combining molecular biomarkers,
measures of cell function, and other inputs to characterize T cells from individuals with CLL,
ultimately in an effort to improve production of cells for cellular immunotherapy.

2 Materials and Methods

2.1 Cell Culture

Mixed CD4+/CD8+ populations of primary human T cells were isolated from peripheral blood
lymphocyte fractions (Leukopaks, New York Blood Center) by negative selection (Rosette-Sep kit,
Stem Cell Technology) and density centrifugation (Ficoll-Paque PLUS, GE). Mixed CD4+/CD8+ T
cells from individuals who were previously treated for CLL were purified using identical selection
techniques. Clinical biomarkers were collected over the course of treatment. In particular, Rai stage,
a standardized measure of CLL spread, was determined during patient care from blood tests (cell
counts) and physical exams (tissue enlargement). For all experiments, cells were cultured in RPMI
1640 supplemented with 10% fetal bovine serum, 10 mM HEPES, 2 mM L-glutamine, 50 U/mL
penicillin, 50 pg/mL streptomycin, and 50 uM B-mercaptoethanol (Sigma or Life Technologies,
unless otherwise noted). T cell populations were analyzed for PD-1 expression by flow cytometry
using a-PD-1 (PE-Cy7, clone EH12.2H7, Biolegend).

2.2 Design and fabrication of microscopy chambers

Conical-well, open-bottom wells were used to improve the efficiency of microscopy-based cell
function analysis. Individual wells had a cylindrical well geometry of 5 mm in internal diameter and
4.5 mm depth, but with a 45° conical bottom ending with a 1-mm diameter opening at the bottom of
the structure. Multiple wells in a 2 x 4 rectangular array were arranged into chambers following the
layout and center-to-center distance of standard 96-well plates. Chambers were fabricated out of
polypropylene by injection molding (Protolabs). For use in microscopy, chambers were affixed onto
test surfaces using transfer tape (3M) that was laser cut to provide correct overall dimensions and
provide holes for the 1-mm openings.

2.3 Surface micropatterning

Micropatterned surfaces were created by microcontact printing (20, 21). Briefly, glass coverslips
were patterned with 2-um diameter circular features of activating proteins, spaced in square arrays at
a center-to-center distance of 15 um. Microcontact printing was carried out by coating
topographically-defined, polydimethylsiloxane stamps with a mixture of a-CD3 (clone OKT3, Bio X
Cell) and a-CD28 (clone 9.3, Bio X Cell) antibodies. The strength of TCR/CD3 activating signal was
modulated by changing the amount of a-CD3 in the stamping solutions, which contained a-CD28 at
15 pg/ml, a-CD3 at a specified concentration (5, 3, 1.5, or 1 pg/ml), and an inert antibody (chicken
a-goat IgG, Life Technologies) for a total concentration to 20 pg/ml. The strength of a-CD3 signal
was expressed as percent of antibody solution associated with OKT3 (e.g., 15 pg/ml a-CD28 + 3
pg/ml a-CD3 + 2 pg/ml a-gt was denoted as 15% OKT3). A microscopy chamber was then adhered
onto the coverslips, aligning the wells with the patterned regions. Finally, open areas of the coverslip
were coated with 2 pg/ml of [CAM-1 (ICAM-1/Fc chimera protein, R&D Systems).

2.4 Expansion

This is a provisional file, not the final typeset article
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Assays of cell expansion were carried out as previously described [15; 16]. Briefly, mixed
CD4+/CD8+ populations of 1 x 10°T cells were stimulated with Human T-Activator CD3/CD28
Dynabeads (ThermoFisher) at a bead to cell ratio of 3:1 on day 0 of an expansion process. On day 3
and every second day after that, the number of T cells was counted, and additional media added to
reduce cell concentration to 5 x 10° cells/ml. Proliferative capacity was quantified as the maximum
number of doublings achieved over the expansion, after which cell number decreased; the expansion
process was terminated at that point.

2.5 Microscopy-based assays of cell function

Cell alignment, motility, and IL-2 secretion assays were carried out by seeding 1 x 10* T cells in a 50
ul volume into prepared microscopy chambers attached to micropatterned coverslips or other
experimental surface. Cell culture was carried out under standard conditions (37° C, humidified
environment, 5% CO2 environment).

Cell alignment and IL-2 secretion were measured 6 hours after seeding. IL-2 secretion was measured
using a surface capture method [17; 18]. Briefly, cells were incubated with a bi-reactive antibody,
which binds to the T cell surface and presents a site for IL-2 capture. Secreted IL-2 is captured over
the course of the 6-hour incubation, and then detected using an APC-labeled a-IL2 antibody. Cells
were fixed with 4% paraformaldehyde. Amplification of the IL-2 signal was provided by incubation
with a tertiary, biotinylated a-APC antibody followed by streptavidin-AF647. Interference reflection
microscopy provided an outline of each cell, which was used to determine the fraction of cells that
had aligned with an activating pattern. Fluorescence imaging allowed cell-by-cell measurement of
surface-captured IL-2, which was collected for cells aligned to the patterns.

Cell motion was recorded by live-cell microscopy in the first hour after seeding using a stage top
incubator (Tokai). Images were collected at 30 second intervals over the 60 minute observation
period. Only T cells with fully formed lamellipodia were considered for motility analysis. Velocity
was defined as average velocity before cells stopped on an activation feature. A stop was defined as a
cessation of overall motion for longer than 3 mins, thus not including encounters where cells crossed
a feature without halting. For a subset of experiments, T cells were stained with a-PD1 BB515 (clone
EH12.1, Becton Dickinson) prior to seeding.

2.6 Statistics and analysis

Analysis of donor cells was carried out in the R and MATLAB software environments. To identify
the smallest set of factors that can account for the majority of variance in the donor data set (Table
S1), Factor Analysis of Mixed Data (FAMD) was carried out using the “FactoMineR” and
“factoextra” libraries in R. Sex and IgVH were treated as categorical factors. Rai stage, represented
by the integer associated with the analysis (0 — 4) was rank transformed and then treated as a
numerical factor, noting that increasing Rai stage corresponds to greater CLL spread. Missing data
was imputed by Multiple Imputation by Chained Equations (MICE) using the “mice” library in R.
Numerical data was normalized (mean = 0, standard deviation of 1) prior to analysis by FAMD. Once
variables to be included for clustering were identified, data was analyzed by k-medoids using the
“cluster” library in R. Resampling analysis was carried out using the R “boot” library. MATLAB was
used to reconcile cluster assignments between runs.

Quantitative comparisons between multiple conditions were carried out using two-tailed ANOVA
methods. When validated by ANOVA (0=0.05), comparison of data between multiple conditions was

3
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carried out using Tukey’s honest significance test methods. As specified in the figure captions, data
was alternatively analyzed using Kruskal-Wallis test by ranks (0=0.05). These tests, including
permutation analysis when specified, were carried out using the MATLAB software environment.

2.7 Study approval

All experiments were performed in accordance with protocols approved by either the Dana-Farber
Cancer Institute or Columbia University. Clinical information was provided from patient records
from the Dana-Farber Cancer Institute. Informed consent was obtained for each patient on an
ongoing research protocol approved by the Dana-Farber Cancer Institute Institutional Review Board
(no. 99-224).

3 Results

3.1 CLL T cells show reduced proliferative capacity

As a measure of cell suitability for production, we compared ex vivo expansion of T cells from
individuals being treated for CLL to those from healthy counterparts. Mixed CD4+/CD8+
populations of T cells were activated using Dynabeads (a-CD3+a-CD28) then expanded in media
supplemented with serum but without additional cytokines. Cells from healthy donors entered a
phase of rapid growth, after which expansion decreased and cells came to rest (Fig. 1A). Cells from
CLL patients was often less robust, manifested as a shorter period of rapid growth and/or slower rate
of doubling, and; three examples illustrating strong (similar to healthy donors), moderate, and
minimal growth are shown in Fig, 1A. Towards a systematic understanding of this variability, we
examined a larger set of donors (Table S1) seeking to identify parameters that can be associated with
different degrees of expansion. This report uses the maximum number of doublings reached during
growth, illustrated in each profile of Fig. 1A by an open symbol, as an indicative measure of
proliferative potential during expansion. We first examined Rai stage, a clinical designation based on
disease progression [19]. Cells from healthy donors exhibited 5.5 + 0.4 (mean + s.d., n=5) doublings.
Cells from CLL patients showed a wider range, with no dependence on Rai stage (P <0.72,
permutation on Kruskal-Wallis test). We next considered the percentage of cells in the starting
population expressing the checkpoint inhibitor PD-1 [20]. An overall negative correlation was
observed between maximum doublings and PD-1 expression (Fig. 1C), but with a dip in doublings
for intermediate values of PD-1 expression. Analysis of maximum doublings as a function of sex and
IgVH mutation status showed no significant effect of the individual parameters (P < 0.43 and P <
0.29, respectively, two-tailed t-test). Recognizing that cellular functions are central to disease
progression, we next turned to more complex measures of cell state.

3.2 Cell sensitivity to micropatterned, activating signals is dependent on PD-1 expression

CLL impacts cellular-level functions of T cells, including motility, migration, and activation [13; 21].
In this section, we seek to characterize such functions under well-defined conditions, potentially
leading to a new quantifier that can be used to determine cell state. These assays typically require
observation of live cells, and have been complicated by both the limited number of cells available
from diagnostic samples and large, unobservable dead volumes associated with microscopy systems.
To address the microscopy-associated limitation, we introduced the use of conical wells to collect
cells into a small region of observation. The chambers are based on 96-well plates, with each well
concentrating cells that would settle onto the 5-mm diameter bottom surface to a 1-mm diameter
observation area (Fig. 2A). By concentrating cells onto the observation area, the number of cells
needed for an experiment was reduced by a factor of 20, facilitating experiments with smaller
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diagnostic samples and/or testing of more parameters from a single sample. Here, these chambers
were used in conjunction with a second experimental system, protein-micropatterned surfaces for
measuring response of living cells (Fig. 2A). Microcontact printing [17; 18; 22; 23; 24; 25] was used
to create arrays of 2-um diameter, circular features containing antibodies to CD3 and CD28 which
provide activation and costimulatory signals, respectively. The intervening regions were coated with
ICAM-1. This approach was used previously [18] to investigate sensitivity of T cells to localized
CD3 activation, assayed by measuring the percentage of cells that stopped on and aligned with the
features as a function of a-CD3 concentration. Repeating that approach here, primary human T cells
from healthy donors aligned with micropatterned features of OKT3 (a-CD3) and 9.3 (a-CD28) as
shown in Fig. 2A. The amount of CD3 activating signal was controlled by specifying the
concentration of OKT3 in the printing solution, as detailed in Materials and Methods. The percentage
of cells that aligned with the patterns increased as OKT3 concentration increased. Cells from CLL
donors similarly showed increasing alignment with higher concentrations of a-CD3, but also
exhibited a dependency on PD-1 expression (Fig. 2B). For this analysis, cells with PD-1 expression
levels within the 95% confidence interval of healthy donors were designated as “PD-1 low”, while
those above this confidence interval were notated as “PD-1 high”. At each OKT3 concentration, cells
from the ‘low’ group showed lower alignment with features than the corresponding cells from
healthy donors. Surprisingly, this deficit in cell response was lost for cells from the ‘high’ PD-1
group, illustrating the complex relationship between maximum doublings and PD-1 expression
suggested in Fig. 1C. Notably, these experiments were made practical by the improvement in cell
utilization provided by the conical chamber system. Subsequent experiments, facing similar
limitations in cell availability, were carried out at an OKT3 concentration of 15% (see Materials and
Methods), corresponding to the greatest difference between cells of the healthy and PD-1 low donors.
Cell proliferative potential is plotted as a function of pattern alignment at this standardized
concentration of 15% OKT3 in Fig, 2C. While lower levels of alignment were associated with
decreased proliferative potential, the number of doublings reached by cells exhibiting higher
alignment varied across the range of observed values; the distribution of maximum doublings for
alignment above 60% was not statistically different than those below this cutoff (P < 0.61,
permutation of Kruskal-Wallis test, 1 x 10° random permutations). Finally, IL-2 secretion by cells
adherent to these micropatterned surfaces was measured using a previously-described surface capture
method [17; 18]. Like pattern alignment and other biomarkers, no clear correlation between
maximum doublings and IL-2 secretion alone was observed. Given these results, we next pursued a
multi-factor approach towards characterizing cell proliferative potential.

3.3 Clustering analysis reveals three groups of donors.

In this section, an unsupervised clustering approach was used to identify patterns in biomarker
expression within the populations of T cells isolated from CLL donors. Factors for this analysis
included pattern alignment, IL-2 secretion, Rai stage, PD-1 expression, age at time of diagnosis, sex,
and IgVH mutation status. Before clustering, Factor Analysis of Mixed Data (FAMD, Fig. 3A) was
used to identify which factors have the largest impact of explaining data variance. Dimensions 1 and
2 together comprised over 50% of data variability (37.3% and 19.4%, respectively, Fig. 3A). As
such, we examined the contributions of the seven input factors to combined Dim1+Dim2. Pattern
alignment, IL-2 secretion, and PD-1 expression each contributed over 14.3%, a cutoff representing
equal contributions from all factors (Fig. 3B), and were thus identified as the factors to be used in k-
medoids clustering analysis. A cluster number of three was selected using the silhouette method (Fig.
S1), leading to group assignments shown in Fig. 3C. Most strikingly, the groups stratify maximum
doublings (Fig. 3D): Group 2 is significantly lower than Group 1 (P < 0.05), while Group 3 is lower
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than both Healthy and Group 1 cells (P <0.05 and P < 0.005, respectively). These assignments thus
provide a single parameter that describes cell expansion potential without the complex relationships
observed for individual factors (Figs. 1B&C, 2C). These group assignments also provided insight
into the three factors that were used in clustering — PD-1, pattern alignment, and IL-2 secretion (Fig.
3E). Intriguingly, clustering provided more distinct stratification of pattern alignment than max
doublings (four comparisons that were significant at a = 0.05, compared to three), but alignment
showed a different order of response with Group 2 being higher than the others. A similarly altered
order was observed for PD-1 expression. Finally, IL-2 secretion showed an ordering that was similar
to max doublings, suggesting a connection with between doublings and cytokine secretion, but fewer
comparisons were significant at a = 0.05.

It is noted that the clustering and data imputation algorithms used here incorporate randomization.
Consequently, the stability of these analyses was tested through two types of resampling. The first is
bootstrapping, in which 500 data sets were generated by random selection with replacement and then
analyzed using the methods applied to the original data set. The frequency at which each donor was
assigned to a given Group is listed in Table S2, showing that the groups reported in our full data set
(Table S1) are stable; only one donor (D59) was assigned to a group different from the bootstrapped
data. Data was then analyzed by subsampling, in which 500 data sets representing 90% of the
original were generated by random sampling without replacement. As shown in Table S1, these
assignments followed the original analysis, indicating that those conclusions are not sensitive to the
number of individual donors. Finally, bootstrapping was conducted on parameter of variance
explained by Dim1 + Dim2 in the FAMD analysis. Analysis of 500 bootstrap sets determined a 95%
confidence interval of 53.3 — 71.0%, placing it above the 50% criteria.

3.4 Cell motility varies between groups and PD-1 expression

A notable result presented above is that pattern alignment is a major contributor to Dim1 + Dim2
(Fig. 3B), and is also stratified by the cluster assignments (Fig. 3E). To understand the cellular
processes underlying pattern alignment, we examined the motion of cells following contact with a
micropatterned surface (Movie S1), collecting three complementary measures of cell motion from
these trajectories. The first was motility speed, which reflects exploration of the ICAM-1-presenting
surfaces. No significant variation in speed was observed across CLL and healthy donors (Fig. 4A).
The next two measures focused on cells as they encountered and came to a stop (defined as a halt in
long-range movement for at least three minutes) on activating features of a-CD3+a-CD28; these cells
represent the ones that aligned with the pattern. The number of features a cell encountered before
stopping provides insight into the sensitivity of cells to activation. Cells from Group 1 moved over
more features than cells from Group 2, Group 3, and also healthy donors (Fig. 4B) suggesting lower
sensitivity to activation. As a complementary readout, the time from the beginning of the trajectory to
stopping on an a-CD3+a-CD28 feature was also measured. Cells in Group 3 showed the longest
trajectory duration. These results collectively suggest that proliferative potential is associated with
different patterns of cell motility and sensitivity to activation. Specifically, longer periods of motion
before coming to a stop are associated with lower maximum doublings, as illustrated for D76.
However, this relationship is complex, since Group 1 showed lower sensitivity to activation with
regards to the number of features crossed before stopping. Finally, cell motility was compared as a
function of PD-1 expression by labeling cells for PD-1 prior to use in migration assays. Separating
cells in this manner revealed that PD-1- cells from D66 (Group 1) moved faster than their PD-1+
counterparts (Fig. 4E), and also cells from healthy donors, regardless of PD-1 expression (P < 0.005).
The number of features experienced before stopping for cells from D66 was greater than for healthy
donors, regardless of PD-1 expression (P < 0.05), in keeping with Fig. 4B. These differences are
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further reflected in a longer time to stop for PD-1+ cells from D66 compared to their PD-1
counterparts (Fig. 4F). A similar increase in migration speed for PD-1- cells vs. PD-1+ counterparts
was observed for D57 (Group 2), but these differences were not significant compared to healthy
donors. No effect of PD-1 expression on migration was observed for D76 (Group 3).

4 Discussion

Cancer, like many afflictions, is multifaceted and diverse requiring specification of treatment course
around the disease state and individual. This extends into surprising facets of the tools used for
therapy. For example, we recently demonstrated that replacing the mechanically stiff plastic beads
that are routinely used to activate T cells with a softer material can enhance subsequent expansion,
providing more cells from an initial starting population and rescuing production of cells from
individuals with CLL [15]. Intriguingly, the stiffness of the material that produced optimal growth of
cells varied between CLL donors. Through this study, we seek a framework for describing and
understanding the differences in proliferative potential observed between CLL patients.

Initial attempts to use single factors such as Rai stage (as T cell expansion capabilities decrease with
disease progression [26]) and PD-1 expression (which is elevated in exhausted T cells [2]) to capture
variability in cell proliferation had modest success (Fig. 1B&C). As such, we expanded the set of
parameters to include measures of cell function, specifically cytokine secretion and the ability to
align with micropatterned features on an activated surface. Individually, these measures provided
limited new insight. We subsequently turned to multi-factor machine learning approaches, which
have had success in classification of various tumor models [27; 28; 29; 30]. Unsupervised clustering
based on PD-1, alignment, and IL-2 provided a compelling approach for categorizing cells from CLL
patients into three groups, which differed with respect to proliferative potential, an independent factor
that was not included in the analysis but is important to cell production. Designing future studies
around this clustering approach may provide a streamlined method for understanding cell exhaustion
and developing tools for improving cell expansion.

Pattern alignment emerged as a key factor describing T cell response. In FAMD analysis, alignment
contributed to Dim1 + Dim2 to an extent almost equal to PD-1 expression (Fig. 3B). Moreover, of
the six potential pairwise comparisons possible between Groups and Healthy donors, four of these
were statistically significant for pattern alignment. By comparison, PD-1 and IL-2 secretion showed
fewer significant comparisons, suggesting that alignment provides the greatest stratification between
groups. However, pattern alignment is a complex process, involving adhesion to a micropatterned
surface, motion across that surface, interaction with multiple activating features, and finally (in the
window of our assay) cessation of motility. Most prominently, cells from Group 1 passed over more
features before stopping that the other groups and healthy donors (Fig. 4B). Compared to uniformly
coated surfaces, these micropatterned features more accurately capture the physiological process of T
cells encountering and even competing for a limited number of conjugate cells [24; 25]. As described
in the Results section, a simple interpretation of this is that passing over multiple patterns reflects the
sensitivity of cells to activation, or the need to integrate multiple encounters before cessation of
motion, which is associated with TCR-induced actin polymerization, through proteins such as
Wiskott-Aldrich syndrome protein (WASP), overcoming polarization of cytoskeletal dynamics and
tension [31]. However, another interpretation is that moving over multiple features can reflect
persistence of cell motion, with a stop being more likely to happen at the same phase of motion as a
change of direction. Maiuri and colleagues elegantly demonstrated that persistence and cell speed are
correlated [32], developing a model in which actin flow maintains polarization [33].
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Correspondingly, the increase in features passed over by cells in Group 1 is associated with faster
motion, but only for PD-1- cells (D66, Fig. 4D). PD-1 expression, even in the absence of ligand on
the underlying surface, reduced cell speed while not affecting the number of features passed over,
suggesting a further complexity in how processes are balanced in cell migration. Intriguingly, Group
1 showed lower pattern alignment than healthy donors (potentially reflecting increased motion
persistence) but strong proliferative potential. Perhaps counterintuitively, it is possible that
modulating cell alignment by increasing migration speed could lead to improved cell activation and
production for immunotherapy. A clearer understanding of how cytoskeletal polarization and
dynamics interact is needed to more fully realize this potential.

5 Figure Captions

Figure 1. T cells from CLL patients show deficits in expansion. (A) Timecourse of expansion for
cells from three individuals, including a control condition of cells from a healthy donor, a CLL
patient with cells showing moderate deficit in expansion (D57), and one with minimal proliferative
potential (D2). The maximum number of doublings reached over an experiment (indicated by the
open symbols) was used as a single, characteristic measure of expansion. (B) Maximum doublings
for cells as a function of Rai stage (not including healthy donors) were compared by permutation
analysis applied to Kruskal Wallis test, indicating no significant difference (P <0.72; 1 x 10°
permutation samples). Data are mean + s.d.. The donors included in panel A are indicated in this
figure. (C) Maximum doublings as a function of percentage of cells that were PD-1+. Data are
presented as means, and when included, error bars indicate standard deviations over technical
replicates for that donor. The symbols in panel C correspond to Rai stage indicated in panel B.

Figure 2. Measurement of cell function from limited samples. (A) Microcontact printing was used
to pattern isolated features containing activating antibodies to CD3 and CD28, allowing microscopy-
based analysis of cell function. These micropatterned surfaces were attached under custom-made,
open-bottomed conical chambers, which provide a 20-fold improvement in cell utilization. Cell-
substrate contact areas were determined by interference reflection microscopy (grey), which allowed
determination of alignment with activating features of a-CD3 + a-CD28 (red). (B) Alignment of T
cells to the activating features was dependent on both the concentration of a-CD3 antibody (OKT3)
and PD-1 expression. Data are mean =+ s.d. from 3 — 14 donors for each condition. An OKT3
concentration of 15% was selected as a standard condition for subsequent experiments (C) Maximum
doublings as a function of Pattern Alignment. Data are means, and when included error bars indicate
standard deviations over technical replicates for that donor. The symbols in panel C correspond to
Rai stage as indicated in Fig. 1B.

Figure 3. Clustering analysis of cells from CLL patients revealed three Groups that describe
proliferative potential. (A) Scree plot indicating the percentage of explained variance associated
with each Dimension of a seven-factor FAMD analysis. Subsequent analysis focused on Dim1 +
Dim2, which explains over 50% of variance. (B) Contribution of each factor to Dim1 + Dim2. The
red line indicates 14.3%, a threshold representing equal contribution by each factor. (C) Analysis by
k-medoids clustering using factors with contributions above the threshold indicated in panel B
produced three Groups, which are coded in this FAMD plot showing Dim1 and Dim2. The labeled
donors are examined in more detail in Figure 4. (D) Maximum doublings varied as a function of
Group assignment. (E) PD-1, Alignment, and IL-2 secretion as a function of Group assignment. In all
panels, data are mean £ s.d.. * P <0.05, ** P <0.005, *** P <(0.0005, **** P <0.0001, using
ANOVA and Tukey tests. All comparisons that were significant at o = 0.05 are indicated in this
figure. Open symbols represent conditions for which missing data was imputed.
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Figure 4. Cell motility varies between Groups. (A-C) Live-cell microscopy over the first 60
minutes of cell-substrate interaction reveal different behaviors in motility. Cell centroid position was
tracked and analyzed for average speed (panel A), the number of patterns that a cell crossed before
coming to a halt (panel B), and time until such a halt (panel C). Donors included in this analysis are
labeled in the FAMD plots of Figure 3. (D-F) Prelabeling of cells with an a-PD-1 antibody allowed
separate analysis of PD-1+ and PD-1- cells in the same experiment. In all panels, each symbol
indicates an individual trajectory. The red, blue, and green numbers below the x axes indicate the
Group assignments established in Fig. 3. Data are mean =+ s.d. of all cells tracked in 1 — 2 independent
experiments. * P <0.05, ** P <0.005, *** P <0.0005 compared in panels A - C to healthy donors
and in panels D — F between PD-1 positive and negative cells for that donor. Additional comparisons
are detailed in the main text.
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Figure 1. T cells from CLL patients show deficits in expansion. (A) Timecourse of
expansion for cells from three individuals, including a control condition of cells from a healthy
donor, a CLL patient with cells showing moderate deficit in expansion (D57), and one with
minimal proliferative potential (D2). The maximum number of doublings reached over an
experiment (indicated by the open symbols) was used as a single, characteristic measure of
expansion. (B) Maximum doublings for cells as a function of Rai stage (not including healthy
donors) were compared by permutation analysis applied to Kruskal Wallis test, indicating no
significant difference ( P < 0.72; 1 x 108 permutation samples). Data are mean + s.d.. The
donors included in panel A are indicated in this figure. (C) Maximum doublings as a function of
percentage of cells that were PD-1+. Data are presented as means, and when included, error
bars indicate standard deviations over technical replicates for that donor. The symbols in panel

C correspond to Rai stage indicated in panel B.
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Figure 2. Measurement of cell function from limited samples. (A) Microcontact printing was
used to pattern isolated features containing activating antibodies to CD3 and CD28, allowing
microscopy-based analysis of cell function. These micropatterned surfaces were attached under
custom-made, open-bottomed conical chambers, which provide a 20-fold improvement in cell
utilization. Cell-substrate contact areas were determined by interference reflection microscopy
(grey), which allowed determination of alignment with activating features of a-CD3 + a-CD28
(red). (B) Alignment of T cells to the activating features was dependent on both the
concentration of a-CD3 antibody (OKT3) and PD-1 expression. Data are mean * s.d. from 3 —
14 donors for each condition. An OKT3 concentration of 15% was selected as a standard
condition for subsequent experiments (C) Maximum doublings as a function of Pattern
Alignment. Data are means, and when included error bars indicate standard deviations over
technical replicates for that donor. The symbols in panel C correspond to Rai stage as indicated
in Fig. 1B.
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Figure 3. Clustering analysis of cells from CLL patients revealed three Groups that
describe proliferative potential. (A) Scree plot indicating the percentage of explained variance
associated with each Dimension of a seven-factor FAMD analysis. Subsequent analysis
focused on Dim1 + Dim2, which explains over 50% of variance. (B) Contribution of each factor
to Dim1 + Dim2. The red line indicates 14.3%, a threshold representing equal contribution by
each factor. (C) Analysis by k-medoids clustering using factors with contributions above the
threshold indicated in panel B produced three Groups, which are coded in this FAMD plot
showing Dim1 and Dim2. The labeled donors are examined in more detail in Figure 4. (D)
Maximum doublings varied as a function of Group assignment. (E) PD-1, Alignment, and IL-2
secretion as a function of Group assignment. In all panels, data are mean £ s.d.. * P <0.05, ** P
< 0.005, *** P < 0.0005, *** P < 0.0001, using ANOVA and Tukey tests. All comparisons that
were significant at a = 0.05 are indicated in this figure. Open symbols represent conditions for

which missing data was imputed.
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Figure 4. Cell motility varies between Groups. (A-C) Live-cell microscopy over the first 60
minutes of cell-substrate interaction reveal different behaviors in motility. Cell centroid position
was tracked and analyzed for average speed (panel A), the number of patterns that a cell
crossed before coming to a halt (panel B), and time until such a halt (panel C). Donors included
in this analysis are labeled in the FAMD plots of Figure 3. (D-F) Prelabeling of cells with an a-
PD-1 antibody allowed separate analysis of PD-1+ and PD-1- cells in the same experiment. In
all panels, each symbol indicates an individual trajectory. The red, blue, and green numbers
below the x axes indicate the Group assignments established in Fig. 3. Data are mean + s.d. of
all cells tracked in 1 — 2 independent experiments. * P < 0.05, ** P < 0.005, *** P < 0.0005
compared in panels A - C to healthy donors and in panels D — F between PD-1 positive and

negative cells for that donor. Additional comparisons are detailed in the main text.
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Supplementary Figure S1. Determination of cluster number. Plot of sum of squared error as a
function of k-medoid cluster number. Elbow analysis was used to identify an optimal cluster number
of 3.
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Patient PD-1 Pattern Max
No Age IgVH (%) Rai | Sex | Alignment (%) IL-2 Doublings | Group
D2 59 MUT 35.20 4 M 75 10.75 3.28 2
D44 81 UNMUT* 74.88 1 M 75%* 11.26* 6.20 2
D46 71 MUT* 33.04 | 4 F 84 30.79 2.00 2
D47 71 MUT 56.59 | 4 F 60 11.26 2
D48 56 UNMUT 45.59 1 M 71 14.62 2
D54 63 UNMUT 26.03 4 F 45 110.09 5.39 1
D55 88 UNMUT 48.36 3 M 74 42.61 3.56 2
D57 84 MUT 3738 | 4 M 80 14.79 4.46 2
D58 52 UNMUT 36.56 | 3 F 49 46.33 4.50 3
D59 45 MUT 8.29 3 F 13 110.81%* 1
D62 42 UNMUT 43.50 4 M 79 36.74 4.02 2
D65 69 UNMUT 39.67 | 2 M 32 3.79 3
D66 52 MUT 24.70 0 F 57 62.33 6.09 1
D68 83 MUT 12.85 3 M 76 90.53 6.30 1
D69 48 MUT* 30.87 2 M 79 46.33* 5.63 2
D74 59 MUT* 21.19 1 F 58 66.98 5.88 1
D75 76 UNMUT 32.09 0 F 28 27.11 1.20 3
D76 57 MUT 29.35 2 F 17 14.48 3.48 3
D77 47 MUT 8.89 0 M 52 110.81 6.20 1
D78 69 MUT 30.07 1 F 21 2591 3.34 3
H3 5.45
H4 34 19.00 F 94 283.4 4.98
H6 49 20.18 F 85 119.69 5.76
H8 5.42
H9 49 50.70 M 86 65.63 5.91

Supplementary Table S1. Cells from healthy (H3 — H9) and CLL (D2 — D78) donors were analyzed
on the basis of factors arising from clinical presentation (Age at diagnosis, IgVH mutation, percent
PD-1 positive expression, Rai stage, and Sex) and outputs of cell function (Pattern Alignment, IL.-2
secretion, and Maximum Doublings). Analysis by k-medoids clustering identified three Groups,
indicated in the right-most column. * indicates imputed data.



Patient | Assigned Bootstrap 90% Subsample
No Group Fraction of assignments Fraction of assignments
Group Group
Max 1 2 3 Max 1 2 3

D2 2 2 0.03 | 0.97 | 0.01 2 0.00 | 1.00 | 0.00
D44 2 2 0.04 | 0.87 | 0.09 2 0.00 | 0.98 | 0.02
D46 2 2 0.06 | 0.94 | 0.01 2 0.00 | 1.00 | 0.00
D47 2 2 0.03 | 0.91 | 0.06 2 0.00 | 1.00 | 0.00
D48 2 2 0.01 | 0.97 | 0.02 2 0.00 | 1.00 | 0.00
D54 1 1 0.95 | 0.01 | 0.04 1 1.00 | 0.00 | 0.00
D55 2 2 0.05 | 0.94 | 0.01 2 0.00 | 1.00 | 0.00
D57 2 2 0.03 | 0.97 | 0.00 2 0.00 | 1.00 | 0.00
D58 3 3 0.38 | 0.20 | 0.42 3 0.34 | 0.03 | 0.64
D59 1 3 0.40 | 0.01 | 0.59 1 0.52 | 0.00 | 0.48
D62 2 2 0.05 | 0.94 | 0.01 2 0.00 | 1.00 | 0.00
D65 3 3 0.04 | 0.04 | 0.91 3 0.00 | 0.00 | 1.00
D66 1 1 0.84 | 0.06 | 0.10 1 0.94 | 0.00 | 0.06
D68 1 1 0.94 | 0.01 | 0.05 1 1.00 | 0.00 | 0.00
D69 2 2 0.32 | 0.67 | 0.01 2 0.31 | 0.69 | 0.00
D74 1 1 0.92 | 0.02 | 0.06 1 0.99 | 0.00 | 0.01
D75 3 3 0.05 | 0.01 | 0.93 3 0.00 | 0.00 | 1.00
D76 3 3 0.04 | 0.01 | 0.95 3 0.00 | 0.00 | 1.00
D77 1 1 0.94 | 0.01 | 0.05 1 1.00 | 0.00 | 0.00
D78 3 3 0.06 | 0.01 | 0.94 3 0.00 | 0.00 | 1.00

Supplementary Table S2. Analysis of clustering stability. The data set presented in Table S1 was
reanalyzed using bootstraping (sampling with replacement) and subsampling (random selection of
90% of samples, without replacement) methods, n = 500 data sets for each analysis. Data marked as
imputed in Table S1 was reimputed for each resampled data set. Each data set was then analyzed by
k-medoids clustering. The fraction of outcomes resulting in assignment to each indicated group is
listed in this table. The group with the highest fraction of assignments is listed in the Group Max

column.
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Supplementary Movie S1. Motility of T cells on micropatterned surfaces. Surfaces containing
micropatterned features of a-CD3 + a-CD28 (red) were produced by microcontact printing.
Migration of primary human T cells (green, brightfield) was tracked over a 60-minute period. Blue
arrows illustrate cells that have stopped migrating.



