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The two-phase 3D jet spatial instability tool (2PJIT) is a generalized Matlab-based software used to
predict the growth of instabilities in two-phase shear flows involving cylindrical jets. The software
solves the Linearized Navier–Stokes equation via the Chebyshev spectral method in both the liquid
and gas phase along with the interfacial constraints. For a given set of input frequencies, the software
outputs the corresponding wavenumbers, the associated eigen-vector/function, and the spatial growth
rate for radial, azimuthal, and axial disturbances.
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1. Motivation and significance

A ubiquitous hydrodynamic stability problem occurring in
arious gas–liquid flows involves two fluid streams moving at
ifferent velocities separated by a gas–liquid interface, Γ (t).
ome of the applications include falling liquid films over a ver-
ically oriented surface [1], waves on the water surface created
y winds [2], and liquid jet injection and atomization [3,4]. A
ommon approach used to study these problems is through linear
tability analysis (LSA). One of the early studies on instabilities
as done by [5] which has been extended over the years to
arying geometries and conditions [6].
While there has been a large number of LSA studies over

ecades, there have been relatively few open-source codes pub-
ished, which can be used to solve the underlying system of
quations. Of those large number of studies, only a very limited

∗ Corresponding author.
E-mail address: mtrujillo@wisc.edu (Mario F. Trujillo).

group considers three-dimensional instabilities in cylindrical ge-
ometries [7]. And out of this small group, there are no published
codes to the authors’ knowledge. The present work is aimed at
addressing this absence since flows under cylindrical geometries
play a central role in various applications involving the use of
liquid injection to create a spray or simply to disperse liquid [4].

The current tool solves the linearized Navier–Stokes equation
for two-phase, cylindrical coordinates involving spatially growing
disturbances, with interfacial constraints involving the continuity
of the velocity fields and the jump conditions. Both axisymmet-
ric and asymmetric modes of the disturbances are considered.
The resulting eigenvalue differential equation is solved using
the spectral method involving Chebyshev polynomials. For the
given set of input frequencies, this tool outputs the corresponding
unstable wavenumber and their spatial growth rates, along with
the perturbation velocity and pressure fields. The accuracy of
the solver is ensured by monitoring the residual errors of the

equations being solved.
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. Mathematical description of system

The following material provides a succinct description of the
ystem of equations solved in the code beginning with the gov-
rning equations 2.1, interfacial and boundary conditions 2.2, and
ormal mode representation 2.3, and spectral discretization 2.4.

.1. Governing equations

The governing equations are the Navier–Stokes, the continuity
quation for an incompressible flow, and the interfacial constraints
long with appropriate boundary conditions. Adopting a cylindri-
al geometry, the velocity and pressure fields are decomposed in
erms of their base flow and perturbed counterparts as follows
q(r, θ, z, t) = Uq(r) + u′q(r, θ, z, t)

=
[
0, 0,Uq

z (r)
]

+
[
u′q
r (r, θ, z, t), u′q

θ (r, θ, z, t), u′q
z (r, θ, z, t)

]
(1a)

pq(r, θ, z, t) = Pq(r) + p′q(r, θ, z, t). (1b)

here (r, θ, z, t) are the radial, azimuthal, axial, and temporal
oordinates respectively. Superscript q denotes fields or proper-
ies belonging to either the liquid or gas domain, i.e. q = L or
q = G, respectively. Furthermore, the base flow variables are
Uq
z (r) and Pq(r) and the corresponding perturbed flow components

are u′q
r (r, θ, z, t), u′q

θ (r, θ, z, t), u′q
z (r, θ, z, t), and p′q(r, θ, z, t). A

visual representation of the system to be solved along with a
representation of the instabilities and domain considered are
depicted in Fig. 1.

Substituting Eqs. (1) into the continuity and momentum equa-
tion and ignoring second order contributions from the perturbed
quantities yields

∇ · u′q
= 0 and (2a)

∂u′q

∂t
+ Uq

· ∇u′q
+ u′q

· ∇Uq
= −

1
ρq ∇p′q

+ νq
∇

2u′q. (2b)

here ρ and ν are the density and kinematic viscosity, respec-
ively. The governing equations are subsequently
on-dimensionalized by incorporating the undisturbed jet ra-
ius, R, the jet velocity, Ujet , and the advection time, R/Ujet . The
esulting Reynolds number is defined as Re = ρLUjetR/µL.

.2. Boundary and interfacial conditions

The boundary conditions for velocity and pressure at the liquid
enterline (r = 0) depend on whether the disturbance is axisym-
etric or asymmetric instabilities. These boundary conditions are
ombined with the far-field condition at r = H . Both sets are
iven by

At r = 0 (Axisymmetric):

u′

r = 0 ; u′

θ = 0 ;
∂u′

z

∂r
= 0 ;

∂p′

∂r
= 0. (3a)

At r = 0 (Asymmetric):
∂u′

r

∂r
= 0 ; u′

r +
∂u′

θ

∂θ
= 0 ; u′

z = 0 ; p′
= 0. (3b)

At r = H:

u′

r = 0 ; u′

θ = 0 ;
∂u′

z

∂r
= 0 ;

∂p′

∂r
= 0. (3c)

The second set of conditions are imposed at the gas–liquid
nterface and constitute the interfacial constraints given by

Continuity of velocities (r = R)
′(L)

= u′(G), (4a)

u′(L)
θ = u′(G)

θ , and (4b)

η
dU (L)

z

dr
+ u′(L)

z = η
dU (G)

z

dr
+ u′(G)

z . (4c)

Continuity of axial shear stress (r = R)

µG

(
η
d2U (G)

z

dr2
+

∂u′(G)
z

∂r
+

∂u′(G)
r

∂z

)
= µL

(
η
d2U (L)

z

dr2
+

∂u′(L)
z

∂r
+

∂u′(L)
r

∂z

)
.

(4d)

Continuity of azimuthal shear stress (r = R)

µG

(
∂u′(G)

θ

∂r
+

1
r

∂u′(G)
r

∂θ
−

u′(G)
θ

r

)
= µL

(
∂u′(L)

θ

∂r
+

1
r

∂u′(L)
r

∂θ
−

u′(L)
θ

r

)
.

(4e)

Jump in normal stress (r = R)(
−p′(G)

+ 2µG
∂u′(G)

r

∂r

)
−

(
−p′(L)

+ 2µL
∂u′(L)

r

∂r

)

= −γ

(
η

r2
+

1
r2

∂2η

∂θ2 +
∂2η

∂z2

)
, (4f)

where γ is the surface tension coefficient, µL and µG are the
dynamic viscosity of liquid and gas, respectively, and η is the in-
terfacial displacement with respect to the undisturbed jet radius,
R. The interfacial displacement obeys the following kinematic
condition

Kinematic condition:
Dη

Dt
= u′

r . (5)

2.3. Normal mode decomposition

To proceed with the calculation of perturbation growth rate,
a normal mode decomposition [7] of the flow fields is employed.
This implies that the perturbation fields are expressed as,[
u′

r , u
′

θ , u
′

z, p
′
]
(r, θ, z, t)

=
[
ûr (r), ûθ (r), ûz(r), p̂(r)

]
exp[i(kz + mθ − ωt)], (6)

where ûr , ûθ , ûz and p̂ are functions of the radial direction, k is
the complex wavenumber, ω is the frequency and m represents
the azimuthal wavenumber. The value of m takes the value 0 for
axisymmetric disturbances and 1 for asymmetric disturbances.
Spatial analysis is considered, where ω = ωR ∈ R and k =

(kR+ikI ) ∈ C. The complex part of the wavenumber, kI represents
the growth or decay of the disturbance as we move forward in
space, i.e. in z.

Substituting the normal mode representation (Eq. (6)) into
Eqs. (2), (3), and (4) transforms the governing equations, bound-
ary conditions and interfacial conditions, into ordinary differen-
tial equations. Further, the radial component of the perturbations,
wavenumber and frequency are non-dimensionalized resulting
in ũr (r), ũθ (r), ũz(r), p̃(r), k̃, and ω̃ respectively, using the liquid
density, ρL, jet velocity Ujet , and the jet radius R. The radial
coordinate corresponding to the either liquid or gas domains is
made to vary between [−1, 1] through the transformation from
the original radial coordinate (r) given by

r̃L = 2
r
R

− 1 for r ∈ [0, R] and

r̃G = 2
r − R

− 1 for r ∈ [R,H].
(7)
r r H − R
2
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Fig. 1. Schematic representation of the problem set-up with (a) axisymmetric perturbation and (b) asymmetric perturbation.

The final system of non-dimensional ODEs in the liquid domain
in the transformed coordinate (r̃L,G) are given by

(Continuity) 2
dũ(L)

r

dr̃L
+

2(
r̃L + 1

) ũ(L)
r + i

2m(
r̃L + 1

) ũ(L)
θ + ik̃ũ(L)

z = 0,

(8a)

(r-mom) − iω̃ũ(L)
r + ik̃Ũ (L)

z ũ(L)
r = −2

dp̃(L)

dr̃L
+

1
Re

[
4
d2ũ(L)

r

dr̃2L
+

4(
r̃L + 1

) dũ(L)
r

dr̃L

−

(
4
(
m2

+ 1
)(

r̃L + 1
)2 + k̃2

)
ũ(L)
r − i

8m(
r̃L + 1

)2 ũ(L)
θ

]
, (8b)

(θ-mom) − iω̃ũ(L)
θ + ik̃Ũ (L)

z ũ(L)
θ = −i

2m(
r̃L + 1

) p̃(L)+
1
Re

[
4
d2ũ(L)

θ

dr̃2L
+

4(
r̃L + 1

) dũ(L)
θ

dr̃L
−

(
4
(
m2

+ 1
)(

r̃L + 1
)2 + k̃2

)
ũ(L)

θ

+i
8m(

r̃L + 1
)2 ũ(L)

r

]
, and (8c)

(z-mom) − iω̃ũ(L)
z + 2

dŨ (L)
z

dr̃L
ũ(L)
r + ik̃Ũ (L)

z ũ(L)
z

= −ik̃p̃(L)

+
1
Re

[
4
d2ũ(L)

z

dr̃2L
+

4(
r̃L + 1

) dũ(L)
z

dr̃L
−

(
4m2(

r̃L + 1
)2 + k̃2

)
ũ(L)
z

]
.

(8d)

corresponding set of equations for the gas phase is also ob-
ained. The final interfacial constraints after the radial transfor-
ation are given by
(Continuity of velocities)

ũ(G)
r

]
r̃G=−1 =

[
ũ(L)
r

]
r̃L=+1. (9a)

ũ(G)
θ

]
=

[
ũ(L)

θ

]
. (9b)

[
2

(l − 1)
dŨ (G)

z

dr̃G
ũ(G)
r +

(
ik̃Ũ (G)

z − iω̃
)
ũ(G)
z

]
r̃G=−1

=

[
2
dŨ (L)

z

dr̃L
ũ(L)
r +

(
ik̃Ũ (L)

z − iω̃
)
ũ(L)
z

]
r̃L=+1

. (9c)

(Continuity of axial shear stress)

nµ

[(
4

(l − 1)2
d2Ũ (G)

z

dr̃2G
− k̃2Ũ (G)

z + k̃ω̃

)
ũ(G)
r

+
2

(l − 1)

(
ik̃Ũ (G)

z − iω̃
)dũ(G)

z

dr̃G

]
r̃G=−1

=

[(
4
d2Ũ (L)

z

dr̃2L
− k̃2Ũ (L)

z + k̃ω̃

)
ũ(L)
r + 2

(
ik̃Ũ (L)

z − iω̃
)dũ(L)

z

dr̃L

]
r̃L=+1

.

(9d)

(Continuity of azimuthal shear stress)

nµ

[
1

(l − 1)
dũ(G)

θ

dr̃G
+

1(
r̃G(l − 1) + l + 1

) imũ(G)
r

−
1(

r̃G(l − 1) + l + 1
) ũ(G)

θ

]
r̃G=−1

=

[
dũ(L)

θ

dr̃L
+

1(
r̃L + 1

) imũ(L)
r −

1(
r̃L + 1

) ũ(L)
θ

]
r̃L=+1

. (9e)

(Jump in normal stress)[
−p̃(G) +

4nµ

Re(l − 1)
dũ(G)

r

dr̃G

]
r̃G=−1

−

[
−p̃(L) +

4
Re

dũ(L)
r

dr̃L

]
r̃L=+1

=
1

2We

⎡⎢⎢⎢⎢⎣(−1 + m2
+ k̃2)

ũ(G)
z − ũ(L)

z(
dŨ (L)

z
dr̃L

⏐⏐⏐⏐
r̃L=+1

−
1

(l−1)
dŨ (G)

z
dr̃G

⏐⏐⏐⏐
r̃G=−1

)
⎤⎥⎥⎥⎥⎦,

(9f)

where nµ = µG/µL is the viscosity ratio, l = H/R is the ratio of
gas domain extent to the liquid jet radius, and We = ρ U2 R/γ is
r̃G=−1 r̃L=+1 L jet

3
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he Weber number. Similarly, the boundary conditions in Eqs. (3)
re transformed using Eq. (7).

.4. Spectral representation

The system given by Eqs. (8) and (9) along with the gas-
hase counterpart and boundary conditions are discretized using
hebyshev spectral method [8], where the radial components
f the velocity and pressure fields are expressed in terms of
hebyshev polynomials given by

˜
(L,G)
r =

NL,G+1∑
j=1

a(L,G)r,j−1Tj−1
(
r̃L,G
)
, ũ(L,G)

θ =

NL,G+1∑
j=1

a(L,G)θ,j−1Tj−1
(
r̃L,G
)
,

(10a)

ũ(L,G)
z =

NL,G+1∑
j=1

a(L,G)z,j−1Tj−1
(
r̃L,G
)
, and p̃(L,G) =

NL,G∑
j=1

a(L,G)p,j−1Tj−1
(
r̃L,G
)
,

(10b)

where Tj−1 in Eqs. (10) are the Chebyshev polynomials and aj−1
are the corresponding coefficients in the Chebyshev expansion.

The liquid and gas domains shown in Fig. 1 are divided into NL
and NG number of Gauss–Lobatto (G–L) points, respectively. G–L
points are projections of equidistant points on a unit semicircle
on the x-axis. Hence, G–L points agglomerate near the interface
and the boundaries. This leads to a better resolution of the in-
terface by considering less number of G–L points compared to
equidistant points. The liquid and gas phase governing equations
along with the boundary and interfacial conditions are solved at
the G–L points. The system of equations obtained by solving the
equations at each G–L point can be represented in matrix form as
a non-linear eigenvalue problem in k̃, which is expressed as

k̃2C2 · a + k̃C1 · a + C0 · a = 0. (11)

Here k̃ is the eigenvalue, a=

[
a(L)r , a(L)θ , a(L)z , a(L)p , a(G)r , a(G)θ , a(G)z , a(G)p

]T
is the eigenvector involving coefficients of Chebyshev expansion
given by Eqs. (10) and (C0, C1, C2) are the coefficient matrices.
The non-linear eigenvalue problem is linearized using Matrix
Companion method [9] as[

−C1 −C0
I 0

]
·

[
k̃a
a

]
− k̃

[
C2 0
0 I

]
·

[
k̃a
a

]
= 0. (12)

The eigenvalues of the discretized system (Eq. (12)) are de-
termined using the QZ-routine in Matlab under the LAPACK li-
brary [10]. From the eigenvalues obtained from the QZ algorithm,
the spurious eigenvalues are eliminated. The spurious eigenval-
ues are identified by noting that they become random and do not
converge with increasing grid resolution.

The output from the software tool is the eigenvalue k̃ ∈ C and
the corresponding eigenvector a ∈ C for a given input frequency
ω̃R. From Eq. (12), we get one set of values of k̃ by writing the
equation as A · f − k̃B · f where f is [k̃a; a]. Hence, there is
only one k̃ but the eigenvectors will be repeated. The first half of
eigenvector fwill be k̃ times the second half. We use only one half
of the eigenvector to obtain perturbed quantities. The real part of
the eigenvalue k̃R represents the most unstable wavenumber of
the disturbance and the negative part of the complex eigenvalue,
−k̃I , represents the corresponding spatial growth rate. The per-
turbed quantities (ũ(L,G)

r , ũ(L,G)
θ , ũ(L,G)

z , p̃(L,G)) are obtained using the
eigenvectors a and substituting them in Eq. (10). These quanti-
ties are converted to dimensional form to obtain the perturbed
quantities (û(L,G)

r , û(L,G)
θ , û(L,G)

z , p̂(L,G)) in Eq. (6). Hence, for a given
input perturbation frequency, the corresponding most unstable
wavenumber, its spatial growth rate, and the perturbation flow
fields can be determined.

2.5. Base flow field

The base flow field employed is a steady-state field on which
the perturbations are imposed. It automatically satisfies con-
tinuity and the momentum equations. This base flow has the
following form [11]

UL = −U∗

L erf
(
r − R

δL

)
+ U∗

G r ∈ [0, R], (13a)

UG = −U∗

Gerf
(
r − R
δG

)
+ U∗

G r ∈ [R,H], (13b)

where the shear layer thicknesses in both liquid and gas are
given respectively by δL and δG. A relation between U∗

L and U∗

G is
obtained by the continuity of shear stress at the interface, which
is given by

U∗

G =
Ujet(

1 +
µG
µL

δL
δG

) and U∗

L = Ujet − U∗

G . (14)

3. Software architecture

3.1. Software framework

The current code is implemented in MatLab-v2017a and com-
patible with higher versions. Overall the code is divided into
three main scripts along with a validation script,
Validation_Lin_Gordillo.m, which could be run separately
to check the validation plots presented in Section 4. The three
scripts are given below:

▶ twoPJIT.m is the main script. It outputs the dispersion plots
and the perturbation field for the most unstable mode by
calling the Cylindrical_3D_solution.m and pertur-
bation.m, respectively.

▶ Cylindrical_3D_solution.m discretizes and solves the
system of governing equations along with boundary and
interfacial conditions.

▶ perturbation.m calls the Cylindrical_3D_solution.m
function to solve the problem at the most unstable mode
and then calculates the corresponding perturbation flow
fields.

3.1.1. Input parameters
Input parameters involve fluid and jet properties, the number

of G–L points, and the input frequency. This is given in Table 1.

3.1.2. Solution of governing equations
From the given input parameters above, the base flow field is

calculated using Eqs. (13) and the coefficient matrices ((C0, C1, C2))
are obtained. The linearized eigenvalue equation, given by Eq. (12)
is solved using the QZ-algorithm to obtain the eigenvalues and
eigenvectors. As mentioned in Section 2.4, the spurious eigenval-
ues are eliminated and the most unstable eigenvalue is chosen
from the set of legitimate eigenvalues, and the corresponding
eigenvector is determined. The residual error for the solution is
monitored to guarantee that the results are accurate.

3.1.3. Post processing and output
The displayed results consist of the growth rate, wavenumber,

and residual error for each input frequency. Additionally, the
dispersion curves and perturbation flow fields are plotted. Details
of these plots are included in Table 2. Also the frequency (ω),
wavenumber (kR), and growth rate (−kI ) corresponding to the
most unstable mode will be displayed in the output.
4
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Table 1
Input parameters entered in the code twoPJIT.m.

Properties of the jet

Velocity of the liquid jet, Ujet in m/s
Radius of the jet, R in m
Gas domain length, H in m
Densities of liquid (ρL) and gas (ρG) in kg/m3

Kinematic viscosities of liquid (νL) and gas (νG) in m2/s
Surface tension coefficient (γ ) in N/m
Shear layer thicknesses in liquid (δL) and gas (δG) in m

Mode of disturbance Axisymmetric (m = 0) and Asymmetric (m = 1)

Input frequencies Non-dimensional frequency (ω̃R)

Number of G–L points Number of points in liquid (NL)
Number of points in gas (NG)

Fig. 2. Dispersion plot validated with [12] for axisymmetric mode with the
following properties: ρG/ρL = 0.0013, µG/µL = 0.018, Re = 1000, and We

400.

Table 2
Output plots.

Dispersion plots

Non-dimensional plots:
Growth rate, −k̃I vs Frequency, ω̃R

Growth rate, −k̃I vs Wavenumber, k̃R
Dimensional plots:
Growth rate, −kI in m−1 vs Frequency, ωR in rad/s
Growth rate, −kI in m−1 vs Wavenumber, kR in m−1

Perturbation fields

|ûr | in m/s vs r in m
|ûθ | in m/s vs r in m
|ûz | in m/s vs r in m
|p̂| in N/m2 vs r in m

3.2. Software functionalities

The current code involves the following major functionalities:

▶ 3D, two-phase cylindrical jets with viscosity and surface
tension forces are considered.

▶ The code can handle both asymmetric and axisymmetric
modes.

▶ Shear layer thickness in both phases can be varied inde-
pendently. This is important because in most cases the vis-
cosity of both the fluids differs drastically and this leads
to a significant change in the shear layer thickness of both
phases.

▶ The code explicitly gives the most unstable mode for a given
set of input frequencies.

▶ The number of G–L points in liquid and gas domains can be
varied independently.

Fig. 3. Dispersion plot validated with [7], with ρG/ρL = 0.0012 and µG/µL =

0.018, for both axisymmetric and asymmetric modes for two different Reynolds
and Weber numbers (a) Re = 1010, We = 450 and (b) Re = 3367, We = 5000.

4. Validation

The code is validated against predictions published in [12], as
shown in Fig. 2, in which a quadratic profile was used for the base
velocity with an axisymmetric disturbance. For this validation
exercise the present code was changed from its original error
function to the quadratic profile. Another validation case involves
both axisymmetric and asymmetric modes considered by [7]. In
5
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Fig. 4. Dispersion plots for axisymmetric modes (m = 0): (a) spatial growth rate versus wavenumber and (b) spatial growth rate versus frequency.

Fig. 5. Perturbation flow field (a) radial component, (b) azimuthal component, (c) axial component and (d) pressure. Note that the value of azimuthal components
is very low. This is because of the axisymmetric (m = 0) mode where the azimuthal dependence is negligible.

his work, base velocity is constant in the liquid phase, and in
he gaseous phase, it is treated by an error function profile. Since
hese cases involve different base velocity profiles, a separate
atlab script, Validation_Lin_Gordillo.m, is provided in
rder to reproduce the results. The results are shown in Fig. 3.
rom the comparisons (Figs. 2 and 3), it can be stated that good
greement with published data is achieved with the 2PJIT tool.

. Illustrative example

The example considered is a two-phase cylindrical flow with
iesel–air conditions as shown in Table 3. The radius R and

velocity of the liquid jet
(
Ujet
)
considered for the analysis are

45 µm and 200 m/s, respectively. The boundary layer thicknesses
are δL = R/5 and δG = R, respectively, where Eq. (13) is used to
described the base flow profile.

In the execution of twoPJIT.m the following information is
entered:

▶ The first prompt involves the mode of instability (axisym-
metric or asymmetric). For axisymmetric mode, the value
will be 0 and for asymmetric mode the value will be 1. In
the current example axisymmetric mode is considered.
( )

6
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(

Table 3
Fluid properties for the Diesel–Air example.
Phase ρ (kg/m3) µ/ρ (m2/s) γ (N/m)

Liquid 666.7 6.947 × 10−7
0.02

Gas 50 3.76 × 10−7

Fig. 6. 3D plot of the disturbed jet corresponding to the highest growth rate:
(a) axisymmetric perturbation and (b) asymmetric perturbation.

▶ The second prompt requests values of non-dimensional fre-
quencies (ω̃R). This is entered using ‘linspace’ or ‘logspace’
function. A single value of (ω̃R) also can be given as input. In
the current example linspace(0, 15, 40) is given as the input
ω̃R.

▶ The third prompt is for the number of G–L points to be
considered in the liquid domain. The default value is 40.

▶ The fourth prompt is for the number of G–L points to be
considered in the gas domain. The default value is 70.

For each value of ω̃R entered, the code predicts the growth rate
-k̃I ) and wavenumber (k̃R). It also provides the residual error for
the linearized eigenvalue problem in Eq. (12), by considering the
L2 norm as given by Eq. (15). Subsequently, an option is presented
to the user for choosing between the non-dimensional dispersion
plots or dimensional dispersion plots. The dimensional dispersion
plots obtained for the given example are shown in Fig. 4.

Residual Error =

[−C1 −C0
]

·

[
k̃a
]

− k̃
[
C2 0

]
·

[
k̃a
]

Table 4
Convergence of eigenvalues with NG (NL = 40)

NG Eigenvalue (k̃)

40 4.3083 + i0.055539
50 4.3085 + i0.05542
60 4.3084 + i0.055428
70 4.3085 + i0.055424

Table 5
Convergence of eigenvalues with NL (NG = 70)

NL Eigenvalue (k̃)

10 4.3085 + i0.055416
20 4.3085 + i0.055424
30 4.3085 + i0.055424
40 4.3085 + i0.055424

(15)

The point with the highest growth rate in a given dispersion
curve is the most unstable mode. The frequency, wavenumber,
and the growth rate of the most unstable mode are displayed on
the screen, which in this case are 18.803×106 rad/s, 95743 m−1,
and 1232 m−1, respectively.

The convergence of eigenvalues (k̃) are tabulated in Tables 4
and 5. It can be observed that the k̃ converges when the number
of G–L points are 70 in gas (Table 4) and 40 in liquid (Table 5)
respectively. Since the height of the gas domain (H − R) is
greater than the liquid jet radius (R), more G–L points would be
required in the gas domain compared to the liquid domain for
convergence.

The perturbed flow field is obtained directly from the eigen-
vector, f, corresponding to the most unstable eigenvalue. As de-
scribed previously in Section 2.4, this eigenvector is a solution of
A·f− k̃B·f; thus, for any arbitrary constant, c , cf is also a solution
to the generalized eigenvalue problem. To avoid this ambiguity,
f is fixed by imposing that the radial velocity at the interface is
set to a fixed value corresponding to 1% of the injection velocity,
Ujet . This change has the added benefit that as the numerical
resolution is changed, the associated eigenvectors are anchored
to a specific value. Thus, numerically convergence can also be
checked with respect to this eigenvector. The perturbation flow
fields

(
|ûr |, |ûθ |, |ûz |, |p̂|

)
are plotted with respect to the radial

position, r , as shown in Fig. 5. To provide a 3D visualization
of the jet surface with the perturbations corresponding to the
highest growth rate, an image is included in Fig. 6. For the sake of
comparison, an asymmetric disturbance (m = 1) is also shown.
In both images, the growth of the instability is observed as a
function of the axial coordinate, z.

6. Impact

The 2PJIT tool fills a gap in the existing literature by pro-
viding a software tool for the analysis of hydrodynamic insta-
bilities in 3D cylindrical jets. These types of jets generally char-
acterize the injection of liquids in various applications, includ-
ing liquid cooling of microelectronics, fuel injection, agricultural
sprays, post-combustion after-treatment strategies, among var-
ious heat transfer applications. The 2PJIT predicts the growth
of instabilities of these jets and thus provides information on
how the critical hydrodynamic breakup process of the liquid
eventually leads to droplet creation and spray formation. Other
alternatives in predicting the growth of instabilities are offered by
highly-resolved computational fluid dynamics simulations, which
are orders of magnitude more computationally expensive than
2PJIT. However, since there are no open-source codes available
to the author’s knowledge, which considers a general two-phase
cylindrical geometry, the 2PJIT tool helps fill this need.
I 0 a 0 I a

7
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. Conclusions

The main objective of the 3D, two-phase jet instability tool
2PJIT) is to provide a generalized tool to analyze the spatial
tability of normal modes observed in two-phase shear flows
nvolving cylindrical coordinates. As opposed to various works in
he literature, in the present tool viscosity is considered in both
hases as well as surface tension. Using this tool, the unstable
erturbation modes, their frequency, wavenumber, and growth
ate can be predicted for arbitrary jet conditions.
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