

Photoactivated Carbon Dots for Inactivation of Foodborne Pathogens *Listeria* and *Salmonella*

Xiuli Dong,^a Ping Wang,^b Jasmine P. Darby,^a Yongan Tang,^c Christopher M. Overton,^b Sophia Kathariou,^d Ya-Ping Sun,^b DLiju Yang^a

^aDepartment of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA

ABSTRACT Foodborne pathogens have long been recognized as major challenges for the food industry and repeatedly implicated in food product recalls and outbreaks of foodborne diseases. This study demonstrated the application of a recently discovered class of visible-light-activated carbon-based nanoparticles, namely, carbon dots (CDots), for photodynamic inactivation of foodborne pathogens. The results demonstrated that CDots were highly effective in the photoinactivation of *Listeria monocytogenes* in suspensions and on stainless steel surfaces. However, it was much less effective for *Salmonella* cells, but treatments with higher CDot concentrations and longer times were still able to inactivate *Salmonella* cells. The mechanistic implications of the observed different antibacterial effects on the two types of cells were assessed, and the associated generation of intracellular reactive oxygen species (ROS), the resulting lipid peroxidation, and the leakage of nucleic acid and proteins from the treated cells were analyzed, with the results collectively suggesting CDots as a class of promising photodynamic inactivation agents for foodborne pathogens.

IMPORTANCE Foodborne infectious diseases have long been recognized as major challenges in public health. Contaminations of food processing facilities and equipment with foodborne pathogens occur often. There is a critical need for new tools/approaches to control the pathogens and prevent such contaminations in food processing facilities and other settings. This study reports a newly established antimicrobial nanomaterials platform, CDots coupled with visible/natural light, for effective and efficient inactivation of representative foodborne bacterial pathogens. The study will contribute to promoting the practical application of CDots as a new class of promising nanomaterial-based photodynamic inactivation agents for foodborne pathogens.

KEYWORDS carbon dots, foodborne pathogens, photoinactivation

oodborne pathogens such as *Listeria* and *Salmonella* have long been recognized as major challenges for the food industry and have been repeatedly implicated in food recalls and outbreaks of diseases (1–5). For example, *Listeria monocytogenes* can cause listeriosis, a severe invasive and life-threatening infection, with high risk in pregnant women, newborns, the elderly, and immunocompromised individuals (6, 7). It is among the leading causes of death by a foodborne pathogen in the United States, with case fatality rates from listeriosis as high as ~28%, the highest for all foodborne pathogens (8, 9). The organism contaminates food from a variety of environmental sources and food processing facilities. Some strains of *L. monocytogenes* have been known to persist in the food processing environment for impressively long periods of time, even more than 10 years (10, 11). The genus *Salmonella* comprises a diverse group of organisms,

Citation Dong X, Wang P, Darby JP, Tang Y, Overton CM, Kathariou S, Sun Y-P, Yang L. 2021. Photoactivated carbon dots for inactivation of foodborne pathogens *Listeria* and *Salmonella*. Appl Environ Microbiol 87:e01042-21. https://doi.org/10.1128/AEM.01042-21.

Editor Johanna Björkroth, University of Helsinki

Copyright © 2021 American Society for Microbiology. All Rights Reserved.

Address correspondence to Sophia Kathariou, skathar@ncsu.edu, Ya-Ping Sun, syaping@clemson.edu, or Liju Yang, lyang@nccu.edu.

Received 27 May 2021 Accepted 13 September 2021

Accepted manuscript posted online

22 September 2021

Published 10 November 2021

^bDepartment of Chemistry, Clemson University, Clemson, South Carolina, USA

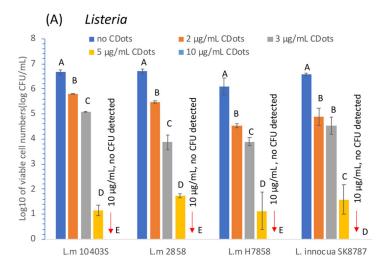
^cDepartment of Mathematics and Physics, North Carolina Central University, Durham, North Carolina, USA

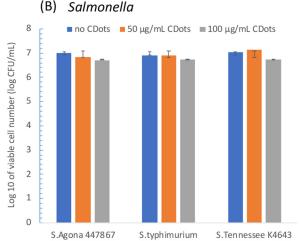
^dDepartment of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA

Downloaded from https://journals.asm.org/journal/aem on 10 January 2022 by 152.9.36.200

among which some strains have been recognized as major foodborne pathogens associated with fresh produce and other food products. Salmonella can also persistently colonize on surfaces and equipment used for processing meat and multiple other food commodities (12). Particular strains of Salmonella can persist for up to 10 years in food processing environments (13). There have been outbreaks associated with Salmonella strains persisting on food equipment and food contact surfaces (14, 15). They also display enhanced survival in nonhost environments, such as soil and water, and may undergo passage through a host into the environment and back into a new host (16).

To control such persistent pathogens and prevent foodborne infections and spread in the food processing ecosystem, new tools and approaches are needed. This study demonstrates the use of a new class of visible/natural-light-activated carbon nanomaterial, called carbon "quantum" dots or carbon dots (CDots) (17, 18), for the inactivation of these persistent foodborne pathogens. CDots are generally small carbon nanoparticles with various surface passivation, each with a carbon nanoparticle core (mostly <10 nm in diameter) and a thin shell of soft materials (organic or biological molecules) serving the surface passivation function (17, 18). Upon photoexcitation, there are rapid charge transfers and separation for the generation of electrons and holes, which are trapped in various surface defect sites (17, 19). These separated redox species on the dot surface, stabilized by the surface organic functionalization, must be lethal to microbes (20). The subsequent radiative recombinations of the redox pairs result in the emissive excited states, which are capable of producing classical reactive oxygen species (ROS) (17, 20, 21). We have demonstrated that CDots are potent antibacterial agents under visible/natural light against model Gram-positive and Gram-negative bacteria such as Bacillus subtilis and Escherichia coli (22), as well as multidrug-resistant (MDR) bacterial pathogens (20, 23). Mechanistically, the uniquely potent antimicrobial function of photoexcited CDots is attributed to the combined action of the highly lethal separated redox pairs and the classical ROS (20).


The optical properties and photoinduced redox characteristics of CDots make them more advantageous than classical photosensitizers and conventional semiconductor quantum dots (QDs) for antimicrobial use. Among the advantages are (i) very high optical absorptivities for ready activation by light over the entire visible spectrum, enabling the photoinactivation function under ambient light conditions, thus eliminating any exposure to hazardous UV irradiation; (ii) a special and uniquely potent inactivation mechanism for the observed superior performance; and (iii) being intrinsically nontoxic in vitro and in vivo and benign to humans in general living environments (24-28).


This study validates and demonstrates CDots' photoinactivation function under visible light toward the common persistent foodborne pathogens, including 4 strains of drug-resistant Listeria and 3 strains of Salmonella spp. that were isolated from different foodborne outbreaks.

RESULTS AND DISCUSSION

Effects of photoexcited CDots on Listeria and Salmonella cells in suspensions.

Figure 1A and B show the results of viable cell reductions in the 4 individually tested Listeria strains and 3 individually tested Salmonella strains, upon treatment with different concentrations of CDots from 2 to 10 μ g/ml for 1 h under visible-light illumination with a 60-W-equivalent daylight LED. For the tested Listeria strains, L. monocytogenes 10403S is one of the three primary pathogenic strains that are commonly used by researchers in studying the pathogenesis of L. monocytogenes. It belongs to serotype 1/2a and is streptomycin resistant. L. monocytogenes 2858 and L. monocytogenes H7858 are isolates from different foodborne outbreaks, belonging to serotypes 1/2b and 4b, respectively. Listeria innocua UAM003-1A is nonpathogenic but is streptomycin and tetracycline resistant. It can serve as an important reservoir for resistance determinants that can transfer to L. monocytogenes (29) and can be particularly concerning if there is transmission of antibiotic resistance to a pathogen of major human health significance. As shown in Fig. 1A, CDot treatments were effective for inactivating cells of

FIG 1 (A) Log₁₀ viable-cell numbers of 4 individually tested Listeria strains upon treatment with concentrations of CDots ranging from 2 to 10 μ g/ml for 1 h under visible-light illumination from a 60-W daylight equivalent LED. (B) Viable-cell numbers of 3 individually tested strains of Salmonella cells upon treatment with CDots at 50 and 100 µg/ml for 1 h under the same light condition. Statistical analysis was performed within each cell line. Different letters on columns indicate significant differences between the results (P < 0.05); columns with the same letter showed no significant difference between the results (A). No significant difference was found in the results of the 3 Salmonella lines tested (B).

all 4 Listeria strains, with the viable-cell numbers being reduced by the treatments in a CDot dose-dependent manner. With 2 μ g/ml CDot treatment under light for 1 h, all 4 strains had significant reductions in viable cells compared to the samples without CDot treatment, ranging from an \sim 0.9-log reduction in *L. monocytogenes* 10403S to \sim 1.3-, \sim 1.5-, and \sim 1.7-log reductions in *L. monocytogenes* 2858 and H7858 and *L.* innocua, respectively. When the CDot concentration was increased to 3 μ g/ml, the viable-cell reductions became more substantial for 3 strains but not for L. innocua. However, at a higher CDot concentration, 5 μ g/ml, there were significantly greater viable-cell reductions in all 4 strains, reaching approximately a 5-log reduction in all strains. The treatment with 10 μ g/ml CDots was able to completely inactivate all cells in the samples, achieving >6-log viable-cell reductions in all tested strains. Figure 1B shows the viable-cell numbers for 3 strains of Salmonella cells after the CDot treatment under a 60-W-equivalent daylight LED for 1 h. Unlike Listeria cells, all 3 Salmonella strains were not affected by the CDot treatment, even with a 10×-higher concentration of CDots than that used in the treatment of Listeria cells.

The results indicated that CDot treatment under visible light was highly effective for inactivating L. monocytogenes cells but was not effective for Salmonella cells. This observation seemed to agree with other observations suggesting that Gram-positive bacteria are more sensitive to many different dye photosensitizers, whereas Gram-negative bacteria are more resistant (30). However, the different effects of CDot treatment on Listeria and Salmonella may not be due simply to the known structural differences between Gram-positive and Gram-negative bacterial cells, as it was found previously that CDots could effectively inactivate E. coli, another Gram-negative bacterium, both in suspension and on agar plates (22). There must be more factors contributing to the observed different effects of CDots on the two bacterial types, such as the properties of the CDots used in the treatments and the microenvironments and interactions between CDots and bacterial cells. While significant progress has been made in the mechanistic understanding of CDots' photoinactivation of bacteria, more details on the mechanisms are yet to be explored and revealed. Specifically, regarding the different effects of the CDot treatment on Listeria and Salmonella, experimental comparisons were performed on the generation of intracellular ROS, lipid peroxidation, and the leaking of nucleic acids and proteins from the treated cells. The results are presented below.

Sublethal injury of cells by CDot treatment. In the experiments with L. monocytogenes 10403S as a representative strain, it was noticed that a significant portion of

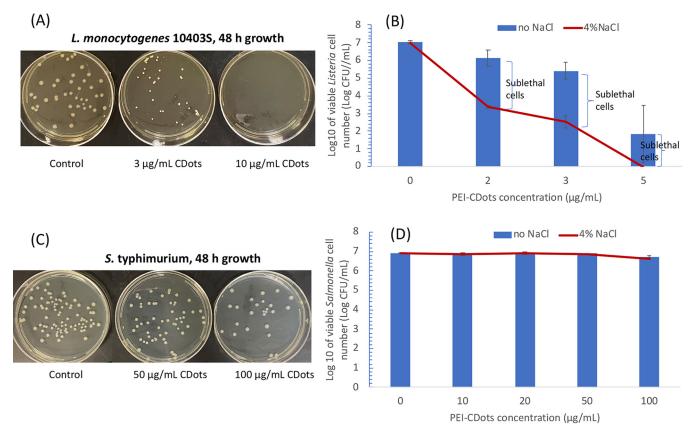
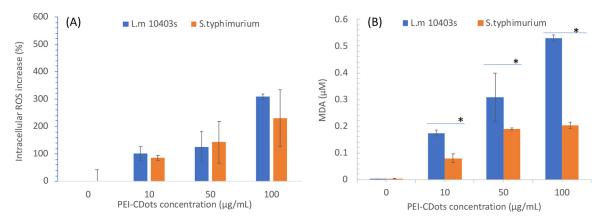



FIG 2 (A) Colonies formed by untreated and CDot-treated L. monocytogenes 10403S cells on BHI agar plates; (B) log₁₀ CFU/ml of L. monocytogenes 10403S obtained with colonies formed on BHI agar and BHI agar containing 4% NaCl. (C) Colonies formed by untreated and CDot-treated S. Typhimurium cells on LB agar plates; (D) log₁₀ CFU/ml of S. Typhimurium obtained by the colonies formed on the LB agar and the LB agar containing 4% NaCl, showing no differences.

colonies formed on brain heart infusion (BHI) agar by the CDot-treated Listeria cells were not visible at 24 h of incubation but could be seen at 48 h of incubation and were much smaller than those formed by the control cells (Fig. 2A), suggesting that some cells were sublethally injured during the treatment with CDots at low concentrations. Sublethal injury is defined as a consequence of exposure to a chemical or physical process that damages but does not kill a microorganism. It is not surprising to observe sublethally injured Listeria cells during treatment, as there have been a number of reports on the observation of sublethally injured Listeria cells by various food preservation strategies and antibacterial strategies (31, 32), especially in the investigation of novel antibacterial applications (32). Since selective agars are usually unable to support the growth of sublethally injured cells, yet nonselective nutrient agars are able to support the recovery of the injured cells, the portion of sublethally injured cells can be estimated or determined by plating the treated samples on nonselective and selective agars to quantify the difference (32). It can also be determined by plating the treated Listeria samples on nonselective BHI agar and BHI agar containing 4% NaCl, where the injured cells are not capable of repairing damage and surviving (31). Figure 2B shows the viable numbers of L. monocytogenes 10403S cells calculated based on colonies formed on BHI agar and BHI agar containing 4% NaCl after the samples were treated with polyethylenimine (PEI)-CDots at different concentrations under visible light for 1 h, as the maximum noninhibitory NaCl concentration for native cells was determined to be 4% in control tests. The differences in the viable cell numbers from the two types of agars for the same CDot-treated samples indicated the portion of sublethally injured cells. There were approximately 2.76, 2.87, and 1.83 log of sublethally injured Listeria cells after the treatment with 2, 3, and 5 μ g/ml PEI-CDots under visible light for 1 h, whereas the untreated control samples gave the same number of CFU on

FIG 3 (A) Increases in intracellular ROS levels; (B) detection of the lipid peroxidation product MDA in *L. monocytogenes* 10403S and *S.* Typhimurium cells treated with various concentrations of CDots for 1 h under visible light, along with control cells without CDot treatment. *, P < 0.05.

BHI agar and BHI agar containing 4% NaCl. However, when the CDot concentration was sufficiently high (e.g., 10 μ g/ml under our test conditions), no colonies were formed on both types of agar, suggesting that all treated cells were completely inactivated or nonculturable. Therefore, in the determination of the antibacterial effect of the CDot treatment using nonselective agar, described in the section above, the sublethally injured cells were not included; thus, there was no overestimation of the antibacterial effects.

On the other hand, in the experiments with *Salmonella enterica* serovar Typhimurium as a representative strain, there was no morphological difference in the colonies of CDottreated and untreated *Salmonella* cells (Fig. 2C) and also no difference in the viable cell number of *Salmonella* cells counted on LB agar and LB agar containing 4% NaCl (Fig. 2D), indicating that the treatment with PEI-CDots did not inactivate or sublethally injure *Salmonella* cells, even with the $100\times$ -higher concentration of CDots used than in the treatment of *Listeria* cells. Such observations led to the subsequent experimental investigations on other consequences to the cells due to the different effects of the CDot treatment on *Listeria* and *Salmonella*.

CDots induced intracellular ROS generation and lipid peroxidation in Listeria and Salmonella cells. As demonstrated in our earlier studies, the photoactivated antimicrobial function of CDots can be attributed to the combined actions of the initially photogenerated separated electron-hole redox pairs in CDots and the classical ROS produced by the emissive excited states (19, 20, 33). To further examine the responses of Listeria and Salmonella cells to the CDot treatment, the levels of intracellular ROS in the two types of cells upon the same CDot treatments were determined using L. monocytogenes 10403S and S. Typhimurium (Fig. 3A). Surprisingly, at all tested CDot concentrations, the intracellular ROS levels in the two types of cells increased by similar magnitudes. Upon treatment with 10 μ g/ml CDots, the intracellular ROS levels in both L. monocytogenes and S. Typhimurium cells increased 100%, with the level of ROS in the cells without CDots as the baseline. Further increases in ROS levels were observed at higher CDot concentrations used in the treatments, reaching \sim 300% with the CDot concentration of 100 μ g/ml. However, the outcomes with respect to the inactivation were very different between the two types of cells. At 10 μ g/ml CDots, for example, all L. monocytogenes cells were completely inactivated, yet S. Typhimurium cells survived. The latter could apparently survive the very high level of intracellular ROS (~300%) when treated with CDots at 100 μ g/ml (Fig. 1B).

In general, the ROS species generated strongly interact with various cell components and cause severe damage to the cell (34–36). Both intracellular and extracellular ROS are able to disrupt cell membranes (37, 38), and the membrane damage is often associated with lipid peroxidation (39). Lipid peroxidation is a process in which lipids' carbon-carbon double bonds are attacked by free radicals and nonradical oxidizing

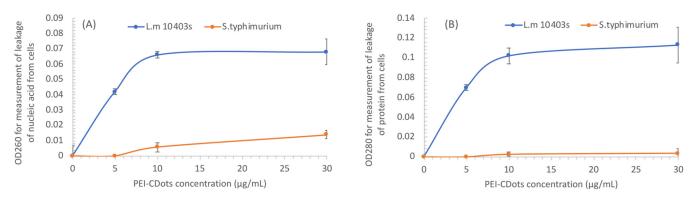


FIG 4 Measured OD of the cell supernatants for detecting the leakage of (A) nucleic acid and (B) proteins from L. monocytogenes 10403S and S. Typhimurium cells treated with various concentrations of CDots under visible light for 1 h.

species (40-42). To determine the potential damage caused by the generated ROS, the lipid peroxidation in L. monocytogenes and S. Typhimurium cells after CDot treatments was examined. The secondary product of lipid peroxidation, malondialdehyde (MDA), is commonly used as an indicator for the lipid peroxidation due to its ability to react with thiobarbituric acid (TBA) to form red fluorescent adducts for easy detection and quantification (43, 44). In this study, the measurement of lipid peroxidation was performed using the thiobarbituric acid reactive substances assay (TBARS). The reaction of TBA with MDA forms MDA-TBA adducts that can be detected colorimetrically at 532 nm or fluorimetrically at 532 nm excitation for 553 nm emission. Figure 3B shows the levels of MDA in the tested L. monocytogenes 10403S and S. Typhimurium cells treated with 10, 50, and 100 μ g/ml of PEI-CDots for 1 h with visible light illumination. For all three tested CDot concentrations, MDA levels in CDot-treated L. monocytogenes and S. Typhimurium cells increased significantly from those in their respective untreated cells. Between the two types of cells, the MDA levels in L. monocytogenes cells were significantly higher than those in S. Typhimurium cells for the same treatment, nearly doubled the MDA level in S. Typhimurium cells. The results suggested that L. monocytogenes cells were more susceptible to the ROS generated in the CDot treatment, leading to a high level of lipid peroxidation in the cell membrane, and S. Typhimurium cells were more tolerant of the generated ROS, with much less lipid peroxidation in cell membranes.

Leakages of nucleic acid and protein from CDot-treated Listeria and Salmonella cells. To further examine the membrane damage in L. monocytogenes and S. Typhimurium cells, the leakages of nucleic acid and protein from the CDot-treated cells were compared. Figure 4 shows the leakages of nucleic acid and protein from L. monocytogenes 10403S and S. Typhimurium bacteria that were treated with 0, 5, 10, and 30 μ g/ml PEI-CDots and visible light for 1 h. After the treatment, the samples were centrifuged at $12,000 \times q$ for 2 min, and the supernatants were used for optical density (OD) measurement. OD at 260 nm was used to detect leakage of nucleic acid from the bacterial cells (Fig. 4A), and OD at 280 nm was used to detect the leakage of proteins (Fig. 4B). The samples before treatment (at time zero) were used as blanks. Obviously, the leakages of nucleic acid and protein from L. monocytogenes cells increased with the increasing concentration of CDots used in the treatments. The treatment with 10 μ q/ml CDots resulted in a saturated level of leakages of nucleic acid and protein from L. monocytogenes, while there were no obvious leakage of nucleic acid and protein from S. Typhimurium cells with the same treatment. These results again suggested that the CDot treatment caused severe damage in the membranes of Listeria cells but did not cause detectable damage in membranes of Salmonella cells, consistent with the detected lipid peroxidation levels in the two types of cells, although the total detected ROS levels in both bacteria were similar during the CDot treatments.

CDots photoinactivate Listeria and Salmonella cells dried on surfaces. Salmonella and Listeria can survive for impressively long periods of time on dry abiotic surfaces in

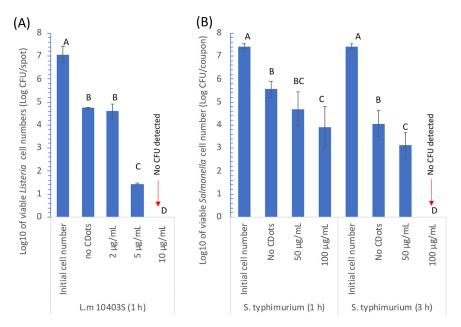


FIG 5 Log₁₀ of viable cell numbers of L. monocytogenes 10403S cells (A) and S. Typhimurium cells (B) in the initial samples and recovered from the samples dried on stainless steel surfaces after treatments with various concentrations of CDots under visible light for 1 h (for Listeria) or 1 h and 3 h (for Salmonella). Statistical analyses were performed separately for L. monocytogenes, S. Typhimurium at 1 h, and S. Typhimurium at 3 h. Different letters on columns indicate significant differences between the results (P < 0.05); columns with the same letter(s) have no significant difference.

the absence of nutrients and growth, with the cells from such surfaces exhibiting increased tolerance to various inactivation strategies (16, 45-51). Cells persisting on dry abiotic surfaces may serve as inocula upon subsequent dispersal or when conditions become permissive of growth. Therefore, it is of great interest to examine whether the photoinactivation by CDots is applicable to cells dried on abiotic surfaces.

Figure 5A shows the effect of PEI-CDots on L. monocytogenes cells dried on stainless steel surfaces. Aliquots of 10 μ l L. monocytogenes 10403S cells were placed on stainless steel coupons. After a 15-min air-drying process, 60 μ l of CDot solutions of different concentrations were applied, followed by the illumination with visible light from a 60-W-equivalent daylight LED for 1 h. While there could be cells that died naturally in the samples without CDots, it was clear that the treatment with 10 μ g/ml CDots under visible light was effective at killing all of the cells on the surfaces, similar to what was observed in the sample suspensions described above.

Figure 5B shows the results for S. Typhimurium cells from a similar experiment but with a longer drying time. Aliquots of 10 μ l S. Typhimurium cells were applied dropwise to stainless steel coupons. After a 40-min air-drying step, 60 μ l of CDot solutions at different concentrations was applied and then illuminated with visible light for 1 h and 3 h. Besides the cells that died naturally, Salmonella cells were inactivated to a limited extent by the 1-h treatment at a CDot concentration 10 times that used for Listeria cells. However, with a longer treatment time of 3 h and a higher CDot concentration of 100 μ g/ml, the treatments were able to inactivate all of the S. Typhimurium cells on the stainless steel surfaces.

The results indicated that CDot photoinactivation was more effective on Listeria cells and much less effective on Salmonella cells, both dried on stainless steel surfaces, similar to what was observed in suspensions. Nevertheless, the inactivation of Salmonella cells by CDot treatment is possible, but it requires higher CDot concentrations and longer treatment times than the inactivation of Listeria cells. Overall, the study focused on informative assessment and validation on the ability of CDots to effectively inactivate foodborne bacterial pathogens in suspension and on dried

TABLE 1 Bacterial strains tested

Strain	Description
L. monocytogenes 10403S	Serotype 1/2a; commonly used by the majority of investigators in the USA studying the pathogenesis of L. monocytogenes; streptomycin-resistant isolate of parental strain 10403. Strain 10403 was first isolated by D. C. Edman in 1968 from a human skin lesion obtained from Montana State University (55).
L. monocytogenes 2858	Serotype 1/2b; implicated in a 2011 multistate outbreak of listeriosis via whole cantaloupe; tetracycline resistant (56)
L. monocytogenes H7858	Serotype 4b; isolated from a multistate outbreak of 1998-1999 in the USA; Quat, crystal violet, and cadmium resistant (57)
L. innocua UAM003-1A)	L. innocua is nonpathogenic but can serve as a reservoir for resistance determinants that can be transferred to L. monocytogenes. Isolated in May 2017 using the ISO method, which involved culturing the feces of a black bear (Ursus americanus) captured in California. Streptomycin and tetracycline resistant (58).
Salmonella Agona strain 447867	Isolate from a 2008 rice and wheat puff cereal outbreak (15)
Salmonella Tennessee strain K4643	Clinical isolate from a 2006-2007 peanut outbreak (59)
Salmonella Typhimurium	Originally purchased from Carolina Biological Supply Co. (Burlington, NC)

stainless steel surfaces. In practical settings in food processing facilities, however, the ecology of Salmonella and Listeria is complex and remains poorly understood, including that in samples or on surfaces containing soluble solids or food residues. Under those conditions, the CDots with light can in principle still inactivate the pathogens, but the effectiveness and efficiency may be challenged by the interferences associated with the presence of the solids or food residues. Further investigations to address these special challenges are required.

Conclusions. This study demonstrated the application of visible-light-activated CDots for the inactivation of the common foodborne pathogenic bacteria L. monocytogenes and S. Typhimurium in suspensions and dried on stainless steel surfaces. The results show that the photoinactivation by CDots is more effective with L. monocytogenes cells than with S. Typhimurium cells, despite similarly elevated intracellular ROS levels in both cell types. However, the lipid peroxidation induced by the generated ROS in L. monocytogenes is higher than that in S. Typhimurium cells. Furthermore, the leakage of nucleic acid and proteins from CDot-treated Listeria cells suggests damage to the cell membrane, whereas no similar leakage of cellular contents was found for the treated Salmonella cells. The antibacterial performance of the CDots at relatively low concentrations coupled with visible-light illumination for the quantitative inactivation of Listeria cells in suspension and on dried surfaces is comparable to or better than that of many widely investigated antibacterial agents. The CDot treatment is also able to inactivate Salmonella cells on dried stainless steel surfaces, though further investigations on performance improvements and the associated mechanistic understanding concerning Salmonella and Gram-negative bacteria in general are needed and will prove rewarding.

MATERIALS AND METHODS

Bacterial pathogens and preparation. Bacterial strains used in this study are listed in Table 1. L. monocytogenes strains 10403S, 2858, and H7858, L. innocua SKB787 (also called UAM003-1A), and S. enterica serovar Agona strain 447867 and serovar Tennessee strain K4643 were in collections in one of our laboratories (S.K.). S. Typhimurium, originally sourced from Carolina Biological Supply Co. (Burlington, NC), was kindly provided by Daniel Williams in the Department of Biology at North Carolina Central University. The other two Salmonella strains were isolated from outbreaks of foodborne illness. All of the Listeria strains are drug resistant. The antimicrobial susceptibility of the strains was determined using the standard agar dilution method. More information on each strain is provided in Table 1.

For our experiments, Listeria cultures were grown in 15 ml brain heart infusion (BHI) broth (Oxoid, UK) by inoculating the broth with a single colony from BHI agar plates, and incubated overnight at 37°C with constant agitation at 225 rpm in an Excella E24 incubator shaker (New Brunswick Scientific). Bacterial cultures were centrifuged at 12,000 imes g (Beckman Coulter Life Sciences, Indianapolis, IN, USA) for 8 min and washed twice using phosphate-buffered saline (PBS). The pellet was then resuspended in PBS and prepared for further experiments, Salmonella strains were cultured in Luria-Bertani (LB) broth. and the cells were harvested and processed using the same protocol.

The actual cell numbers in the cultures were determined using the traditional surface plating

Downloaded from https://journals.asm.org/journal/aem on 10 January 2022 by 152.9.36.200

method. Briefly, cell suspensions were 1:10 serial diluted with PBS, and aliquots of 100 μ l of appropriate dilutions were surface plated on BHI agar plates for Listeria strains or LB agar plates for Salmonella strains, and the plates were then incubated at 37°C overnight. The colonies were counted, and the cell concentration was calculated as CFU per milliliter in the cell suspensions.

Sublethally injured cells were able to grow into colonies on BHI or LB agar plates but were not able to grow into colonies on BHI or LB agar containing 4% NaCl, while the growth of healthy cells was not affected on the BHI or LB agar containing 4% NaCl. Therefore, to determine the portion of sublethally injured cells in a CDot-treated sample, the sample was surface plated on both BHI agar and BHI agar containing 4% NaCl (for Listeria strains) or both LB agar and LB agar containing 4% NaCl (for Salmonella strains). The difference in viable cell numbers obtained between BHI agar and BHI agar with 4% NaCl, or between LB agar and LB agar with 4% NaCl, was the portion of sublethally injured cells of Listeria or Salmonella, respectively, in the CDot-treated sample.

CDots. PEI-CDots were prepared by the surface functionalization of preprocessed and selected small carbon nanoparticles with oligomeric polyethylenimine (PEI; average molecular weight, \sim 600). Briefly, the small carbon nanoparticles were harvested from the commercially acquired carbon nanopowders (US Research Nanomaterials, Inc.) in procedures similar to those reported previously (52, 53). In a typical experiment, a sample of carbon nanopowder (2 g) was refluxed in concentrated nitric acid (8 M, 200 ml) for 48 h. The reaction mixture was cooled to room temperature and centrifuged at 1,000 q to discard the supernatant. The residue was redispersed in deionized water, dialyzed in membrane tubing (molecular weight cutoff, \sim 500) against fresh water for 48 h, and then centrifuged at 1,000 imes g to retain the supernatant. Upon the removal of water, the small carbon nanoparticles were recovered and used in the functionalization reaction for PEI-CDots. The thermally induced functionalization reaction protocol and conditions were the same as those reported previously (52, 53). The resulting PEI-CDots were characterized by using nuclear magnetic resonance (NMR), microscopy, and optical spectroscopy techniques, results of which were consistent with those for similarly prepared samples reported previously. According to atomic force microscopy (AFM) and transmission electron microscopy (TEM) results, the PEI-CDots were on the order of 5 nm in average diameter (54). The dot samples were stored in the dark at room temperature and used for the antimicrobial experiments.

CDot treatments of bacterial cells in suspension. The treatments of cells with PEI-CDots were performed in 96-well plates, and the treatments were performed with each individual strain. Aliquot of 100 μ l of bacterial cell suspensions were placed in the wells, and 100 μ l PEI-CDots at various concentrations were added to reach the desired final concentrations of PEI-CDots in the wells. The bacterial cell concentration in each well was around 106 to 107 CFU/ml. The control samples were bacterial suspensions with PBS. The samples for each treatment were prepared in triplicate. The plates were placed on an orbital shaker (BT Lab Systems) at 350 rpm and exposed to visible light from a commercial daylight LED lamp (Cree; 60-W equivalent, omnidirectional, 815 lumens) placed \sim 10 cm away from the surface of the plate, for 1 h or otherwise-stated times. For all CDot treatment experiments, at least three independent tests were performed.

Determination of the CDots' photoinactivation effect. After treatment, the viable-cell numbers in the treated and the control samples were determined using the traditional plating method described above. The photoinactivation effect of PEI-CDots on the pathogen strains was evaluated by the logarithmic reduction in the viable-cell number in the treated samples compared to the control samples.

Determination of ROS generation and lipid peroxidation in CDot-treated cells. The fluorescence probe 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) was used to quantify the generation of intracellular ROS in Listeria and Salmonella strains upon treatment with PEI-CDots. After treatment with CDots at 0, 10, 50, and 100 μ g/ml, the cells were washed twice, and the supernatants were removed and then resuspended in 0.85% NaCl. The cells were split between two tubes. The dve H2DCFDA in 0.85% NaCl solution was added to one of the tubes, while the tube without dye received the same volume of 0.85% NaCl and was used as a blank for ROS calculation. At the staining step, cells were kept in the dark for 30 min. After staining, the cells were centrifuged, and the supernatants both with and without dye were removed. The cells were then washed once with 0.85% NaCl and resuspended in 0.85% NaCl. The fluorescence intensity (excitation/emission, 485 nm/528 nm) of the samples were read using a SpectraMax M5 multidetection reader with the software SoftMax Pro5.4.5 (Molecular Devices Corp., CA). For each CDot-treated sample, the fluorescence reading of the sample with dye minus the reading of the well without dye was used for the calculation of ROS generation. The percent ROS increase in the CDot-treated samples compared to the controls (with CDot treatment) is presented.

To quantify the lipid peroxidation in cell membrane by CDot treatments, the concentration of MDA (43, 44) as an indicator of lipid peroxidation was measured using the TBARS assay kit (Cell Biolabs) following the manufacturer's instructions. Briefly, aliquots of 100 μ l cell suspension (approximately 10⁸ CFU/ml) loaded in the wells of 96-well plates and added with 100 μ l of PEI-CDots at the desired concentrations. The plate was exposed to visible light for 1 h. After the treatment, each sample was centrifuged at $9,000 \times q$ (Beckman Coulter Life Sciences, Indianapolis, IN, USA) for 7 min. The cells were washed once with PBS, and the pellets were resuspended in 200 μ l PBS. Aliquot of 2 μ l of 100 \times butylated hydroxytoluene (BHT) was added to each sample to prevent further oxidation. Then, 100 μ l of each treated sample, control, and MDA standard (from the kit) was transferred to 1.5-ml microcentrifuge tubes, an aliquot of 100 μ l of SDS lysis solution was added, and all samples were mixed thoroughly and incubated at room temperature for 5 min. Then, to each of these treated samples, controls, and MDA standards, 250 μ l of TBA reagent was added, and tubes were incubated at 95°C for 50 min. After the incubation, the samples were allowed to cool to room temperature by placing them in an ice bath for 5 min. Then, all of the samples were centrifuged at 1,000 \times g for 15 min. A 200- μ l aliquot of the supernatant of each sample was loaded in the wells of a 96-well plate for absorbance measurement at 532 nm using the SpectraMax M5 microplate reader. The absorbances at 532 nm in the treated and control samples were compared to the standard curve, which was obtained separately using the MDA standard provided with the TBARS assay kit.

Determination of nucleic acid and protein leakage from CDot-treated cells. The leakage assay was used to test if CDot treatments could affect cell permeability and cause leakage of intracellular components, such as nucleic acid and protein. L. monocytogenes 10403S and S. Typhimurium cells were treated with 0, 5, 10, and 30 μ g/ml PEl-CDots in 96-well plates under light for 1 h. The cells were then centrifuged (12,000 \times q, 2 min), and the supernatants were used for OD measurement. Absorbance at 260 nm was used to detect the leakage of nucleic acid from the bacterial cells, while OD at 280 nm was used to detect the leakage of proteins. The samples before light treatment (time zero) were used as

CDot treatments of bacterial cells on stainless steel surfaces. The stainless steel coupons (discs 0.5 in. in diameter) were purchased from Biosurface Technologies Corp. (Bozeman, MT) and sterilized with 70% alcohol before use. Aliquots of 10 μ l of *L. monocytogenes* 10403S or *S.* Typhimurium cells in PBS were spread on the coupons and air dried for 15 min in a biosafety hood. CDots (60 µl) at various concentrations were placed onto the dry cell spots, which were exposed to a 60-W-equivalent daylight LED for 1 or 3 h. The cells were then eluted from the coupons by vigorously vortexing in 3 ml PBS in a tube, followed by serial dilutions in PBS and plating on BHI or LB agar plates to determine the viable cell numbers, in CFU per milliliter, in the samples.

Statistical analyses. The test results were statistically analyzed using the SAS system 9.2 (SAS Institute Inc., Cary, NC, USA) with the general linear model (GLM), with P values of < 0.05 being considered statistically significant.

ACKNOWLEDGMENTS

Financial support from USDA grant 2019-67018-29689 and NSF grants 1701399, 1701424, and 1855905 is gratefully acknowledged.

REFERENCES

- 1. Carpentier B, Cerf O. 2011. Persistence of Listeria monocytogenes in food industry equipment and premises. Int J Food Microbiol 145:1-8. https:// doi.org/10.1016/j.ijfoodmicro.2011.01.005.
- 2. Galie S, Garcia-Gutierrez C, Miguelez EM, Villar CJ, Lombo F. 2018. Biofilms in the food industry: health aspects and control methods. Front Microbiol 9:898. https://doi.org/10.3389/fmicb.2018.00898.
- 3. Gandhi M, Chikindas ML. 2007. Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1-15. https://doi.org/10.1016/j .iifoodmicro.2006.07.008.
- 4. Rodriguez-Lopez P, Rodriguez-Herrera JJ, Vazguez-Sanchez D, Lopez Cabo M. 2018. Current knowledge on Listeria monocytogenes biofilms in food-related environments: incidence, resistance to biocides, ecology and biocontrol. Foods 7:85. https://doi.org/10.3390/foods7060085.
- 5. Zhao J. 2016. Biofilm formation of foodborne pathogens and their control in food processing facilities. J Food Microbiol Saf Hyg 1:1-3.
- 6. Radoshevich L. Cossart P. 2018. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 16: 32-46. https://doi.org/10.1038/nrmicro.2017.126.
- 7. Vazquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Dominguez-Bernal G. Goebel W. Gonzalez-Zorn B. Wehland J. Kreft J. 2001. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14: 584-640. https://doi.org/10.1128/CMR.14.3.584-640.2001.
- 8. de Noordhout CM, Devleesschauwer B, Angulo FJ, Verbeke G, Haagsma J, Kirk M, Havelaar A, Speybroeck N. 2014. The global burden of listeriosis: a systematic review and meta-analysis. Lancet Infect Dis 14:1073-1082. https://doi.org/10.1016/S1473-3099(14)70870-9.
- 9. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV. 1999. Food-related illness and death in the United States. Emerg Infect Dis 5:607-625. https://doi.org/10.3201/eid0505.990502.
- 10. Kathariou S. 2002. Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J Food Prot 65:1811-1829. https://doi.org/10 .4315/0362-028x-65.11.1811.
- 11. Tompkin RB. 2002. Control of Listeria monocytogenes in the food-processing environment. J Food Prot 65:709–725. https://doi.org/10.4315/ 0362-028x-65.4.709.
- 12. McKee SR, Townsend JC, Bilgili SF. 2008. Use of a scald additive to reduce levels of Salmonella typhimurium during poultry processing. Poult Sci 87: 1672-1677. https://doi.org/10.3382/ps.2008-00061.
- 13. Nesse LL, Nordby K, Heir E, Bergsjoe B, Vardund T, Nygaard H, Holstad G. 2003. Molecular analyses of Salmonella enterica isolates from fish feed

- factories and fish feed ingredients. Appl Environ Microbiol 69:1075-1081. https://doi.org/10.1128/AEM.69.2.1075-1081.2003.
- 14. Nicolay N, Thornton L, Cotter S, Garvey P, Bannon O, McKeown P, Cormican M, Fisher I, Little C, Boxall N, De Pinna E, Peters TM, Cowden J, Salmon R, Mason B, Irvine N, Rooney P, O'Flanagan D. 2011. Salmonella enterica serovar Agona European outbreak associated with a food company. Epidemiol Infect 139:1272-1280. https://doi.org/10.1017/S0950268810002360.
- 15. Russo ET, Biggerstaff G, Hoekstra RM, Meyer S, Patel N, Miller B, Quick R, Salmonella Agona Outbreak Investigation Team. 2013. A recurrent, multistate outbreak of salmonella serotype agona infections associated with dry, unsweetened cereal consumption, United States, 2008. J Food Prot 76:227-230. https://doi.org/10.4315/0362-028X.JFP-12-209.
- 16. Winfield MD, Groisman EA. 2003. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl Environ Microbiol 69: 3687-3694. https://doi.org/10.1128/AEM.69.7.3687-3694.2003.
- 17. Sun Y-P. 9 November 2010. Fluorescent carbon nanoparticles. US patent 7829772B2.
- 18. Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie S-Y. 2006. Quantum-sized carbon particles for bright and colorful photoluminescence. J Am Chem Soc 128:7756-7757. https://doi.org/10.1021/ ia062677d.
- 19. Sun Y-P. 2020. Carbon dots—exploring carbon at zero-dimension. Springer, New York, NY.
- 20. Dong XL, Ge L, Abu Rabe DI, Mohammed OO, Wang P, Tang YG, Kathariou S, Yang LJ, Sun YP. 2020. Photoexcited state properties and antibacterial activities of carbon dots relevant to mechanistic features and implications. Carbon 170:137–145. https://doi.org/10.1016/j.carbon .2020.08.025.
- 21. Dong XL, Liang WX, Meziani MJ, Sun YP, Yang LJ. 2020. Carbon dots as potent antimicrobial agents. Theranostics 10:671–686. https://doi.org/10 .7150/thno.39863.
- 22. Meziani MJ, Dong X, Zhu L, Jones LP, LeCroy GE, Yang F, Wang S, Wang P, Zhao Y, Yang L, Tripp RA, Sun Y-P. 2016. Visible-light-activated bactericidal function of carbon "quantum" dots. ACS Appl Mater Interfaces 8: 10761-10766. https://doi.org/10.1021/acsami.6b01765.
- 23. Abu Rabe D, Mohammed O, Dong X, Patel A, Overton C, Tang Y, Kathariou S, Sun Y, Yang L. 2020. Carbon dots for highly effective photodynamic inactivation of multidrug-resistant bacteria. Mat Adv https://doi .org/10.1039/d0ma00078g.

Downloaded from https://journals.asm.org/journal/aem on 10 January 2022 by 152.9.36.200

- 24. LeCroy GE, Yang ST, Yang F, Liu YM, Fernando KAS, Bunker CE, Hu Y, Luo PG, Sun YP. 2016. Functionalized carbon nanoparticles: syntheses and applications in optical bioimaging and energy conversion. Coord Chem Rev 320-321:66-81. https://doi.org/10.1016/j.ccr.2016.02.017.
- 25. Liu J-H, Wang Y, Yan G-H, Yang F, Gao H, Huang Y, Wang H, Wang P, Yang L, Tang Y, Teisl LR, Sun Y-P. 2019. Systematic toxicity evaluations of high-performance carbon "quantum" dots. J Nanosci Nanotechnol 19:2130–2137. https://doi.org/10.1166/jnn.2019.15807.
- 26. Luo PJG, Yang F, Yang ST, Sonkar SK, Yang LJ, Broglie JJ, Liu Y, Sun YP. 2014. Carbon-based quantum dots for fluorescence imaging of cells and tissues. Rsc Adv 4:10791-10807. https://doi.org/10.1039/c3ra47683a.
- 27. Namdari P, Negahdari B, Eatemadi A. 2017. Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother 87:209–222. https://doi.org/10.1016/j.biopha.2016
- 28. Wang Y, Anilkumar P, Cao L, Liu JH, Luo PG, Tackett KN, 2nd, Sahu S, Wang P, Wang X, Sun YP. 2011. Carbon dots of different composition and surface functionalization: cytotoxicity issues relevant to fluorescence cell imaging. Exp Biol Med (Maywood) 236:1231–1238. https://doi.org/10.1258/ebm.2011 .011132.
- 29. Katharios-Lanwermeyer S, Rakic-Martinez M, Elhanafi D, Ratani S, Tiedje JM, Kathariou S. 2012. Coselection of cadmium and benzalkonium chloride resistance in conjugative transfers from nonpathogenic Listeria spp. to other listeriae. Appl Environ Microbiol 78:7549-7556. https://doi.org/ 10.1128/AEM.02245-12.
- 30. Huang LY, Xuan Y, Koide Y, Zhiyentayev T, Tanaka M, Hamblin MR. 2012. Type I and type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria. Lasers Surg Med 44:490-499. https://doi.org/10.1002/lsm.22045.
- 31. Garcia D, Gomez N, Manas P, Condon S, Raso J, Pagan R. 2005. Occurrence of sublethal injury after pulsed electric fields depending on the micro-organism, the treatment medium pH and the intensity of the treatment investigated. J Appl Microbiol 99:94–104. https://doi.org/10.1111/j.1365 -2672.2005.02611.x.
- 32. Verheyen D, Baka M, Van Impe JFM. 2019. Sublethal injury caused to Listeria monocytogenes by natural plant extracts: case study on grape seed extract and garlic extract. Appl Sci Basel 9:2731. https://doi.org/10.3390/
- 33. Wang X, Cao L, Yang ST, Lu FS, Meziani MJ, Tian LL, Sun KW, Bloodgood MA, Sun YP. 2010. Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Ed Engl 49:5310-5314. https://doi .org/10.1002/anie.201000982.
- 34. Marnett LJ. 2000. Oxyradicals and DNA damage. Carcinogenesis 21: 361-370. https://doi.org/10.1093/carcin/21.3.361.
- 35. Stadtman ER, Levine RL. 2000. Protein oxidation. Ann N Y Acad Sci 899: 191-208. https://doi.org/10.1111/j.1749-6632.2000.tb06187.x.
- 36. Yla-Herttuala S. 1999. Oxidized LDL and atherogenesis. Ann N Y Acad Sci 874:134-137. https://doi.org/10.1111/j.1749-6632.1999.tb09231.x.
- 37. Wang L, He H, Yu Y, Sun L, Liu S, Zhang C, He L. 2014. Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli. J Inorg Biochem 135:45-53. https://doi.org/10.1016/j.jinorgbio.2014
- 38. Slavin YN, Asnis J, Häfeli UO, Bach H. 2017. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:65. https://doi.org/10.1186/s12951-017-0308-z.
- 39. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee Y-S, Jeong DH, Cho M-H. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine (Lond) 3:95-101. https://doi .org/10.1016/j.nano.2006.12.001.
- 40. Yin H, Xu L, Porter NA. 2011. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111:5944-5972. https://doi.org/10.1021/cr200084z.
- 41. Girotti AW. 1998. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 39:1529-1542. https://doi.org/10 .1016/S0022-2275(20)32182-9.
- 42. Kanner J, German JB, Kinsella JE. 1987. Initiation of lipid peroxidation in biological systems. Crit Rev Food Sci Nutr 25:317–364. https://doi.org/10 .1080/10408398709527457.
- 43. Esterbauer H, Cheeseman KH. 1990. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407-421. https://doi.org/10.1016/0076-6879(90)86134-h.

- 44. Pryor WA. 1989. On the detection of lipid hydroperoxides in biological samples. Free Radic Biol Med 7:177-178. https://doi.org/10.1016/0891 -5849(89)90010-5.
- 45. Finn S, Condell O, McClure P, Amezguita A, Fanning S. 2013. Mechanisms of survival, responses and sources of Salmonella in low-moisture environments. Front Microbiol 4:331. https://doi.org/10.3389/fmicb.2013.00331.
- 46. Gruzdev N, Pinto R, Sela S. 2011. Effect of desiccation on tolerance of salmonella enterica to multiple stresses. Appl Environ Microbiol 77:1667–1673. https://doi.org/10.1128/AEM.02156-10.
- 47. Hiramatsu R, Matsumoto M, Sakae K, Miyazaki Y. 2005. Ability of Shiga toxinproducing Escherichia coli and Salmonella spp. to survive in a desiccation model system and in dry foods. Appl Environ Microbiol 71:6657–6663. https://doi.org/10.1128/AEM.71.11.6657-6663.2005.
- 48. Hokunan H, Koyama K, Hasegawa M, Kawamura S, Koseki S. 2016. Survival kinetics of Salmonella enterica and enterohemorrhagic Escherichia coli on a plastic surface at low relative humidity and on low-water activity Foods. J Food Prot 79:1680-1692. https://doi.org/10.4315/0362-028X.JFP -16-081.
- 49. Pan Y, Breidt F, Jr, Kathariou S. 2006. Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated food processing environment. Appl Environ Microbiol 72:7711-7717. https://doi.org/10.1128/ AEM.01065-06.
- 50. Pan YW, Breidt F, Kathariou S. 2009. Competition of Listeria monocytogenes serotype 1/2a and 4b strains in mixed-culture biofilms. Appl Environ Microbiol 75:5846-5852. https://doi.org/10.1128/AEM.00816-09.
- 51. White AP, Gibson DL, Kim W, Kay WW, Surette MG. 2006. Thin aggregative fimbriae and cellulose enhance long-term survival and persistence of Salmonella. J Bacteriol 188:3219–3227. https://doi.org/10.1128/JB.188.9 .3219-3227.2006.
- 52. LeCroy GE, Sonkar SK, Yang F, Veca LM, Wang P, Tackett KN, II, Yu JJ, Vasile E, Qian HJ, Liu YM, Luo P, Sun YP. 2014. Toward structurally defined carbon dots as ultracompact fluorescent probes. Acs Nano 8:4522–4529. https://doi.org/10.1021/nn406628s.
- 53. Yang F, LeCroy GE, Wang P, Liang WX, Chen JJ, Fernando KAS, Bunker CE, Qian HJ, Sun YP. 2016. Functionalization of carbon nanoparticles and defunctionalization—toward structural and mechanistic elucidation of carbon "quantum" dots. J Phys Chem C 120:25604-25611. https://doi .org/10.1021/acs.jpcc.6b08171.
- 54. Hu Y, Al Awak MM, Yang F, Yan SJ, Xiong QW, Wang P, Tang YG, Yang LJ, LeCroy GE, Hou XF, Bunker CE, Xu LX, Tomlinson N, Sun YP. 2016. Photoexcited state properties of carbon dots from thermally induced functionalization of carbon nanoparticles. J Mater Chem C Mater 4:10554–10561. https://doi.org/10.1039/C6TC03666J.
- 55. Becavin C, Bouchier C, Lechat P, Archambaud C, Creno S, Gouin E, Wu ZF, Kuhbacher A, Brisse S, Pucciarelli MG, Garcia-del Portillo F, Hain T, Portnoy DA, Chakraborty T, Lecuit M, Pizarro-Cerda J, Moszer I, Bierne H, Cossart P. 2014. Comparison of widely used Listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic differences underlying variations in pathogenicity. mBio 5:e00969-14. https://doi.org/10.1128/mBio.00969-14.
- 56. Price R, Jayeola V, Niedermeyer J, Parsons C, Kathariou S. 2018. The Listeria monocytogenes key virulence determinants hly and prfA are involved in biofilm formation and aggregation but not colonization of fresh produce. Pathogens 7:18. https://doi.org/10.3390/pathogens7010018.
- 57. Nelson KE, Fouts DE, Mongodin EF, Ravel J, DeBoy RT, Kolonay JF, Rasko DA, Angiuoli SV, Gill SR, Paulsen IT, Peterson J, White O, Nelson WC, Nierman W, Beanan MJ, Brinkac LM, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Haft DH, Selengut J, Van Aken S, Khouri H, Fedorova N, Forberger H, Tran B, Kathariou S, Wonderling LD, Uhlich GA, Bayles DO, Luchansky JB, Fraser CM. 2004. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res 32:2386-2395. https://doi.org/10.1093/nar/gkh562.
- 58. Parsons C, Chen Y, Niedermeyer J, Hernandez K, Kathariou S. 2019. Draft genome sequence of multidrug-resistant Listeria innocua strain UAM003-1A, isolated from a wild black bear (Ursus americanus). Microbiol Resour Announc 8:e01281-19. https://doi.org/10.1128/MRA.01281-19.
- 59. CDC. 2007. Multistate outbreak of Salmonella Tennessee infections linked to peanut butter (final update). https://www.cdc.gov/salmonella/2007/ peanut-butter-3-7-2007.html.