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Abstract

Motivation: Allelic expression analysis aids in detection of cis-regulatory mechanisms of genetic variation
which produce allelic imbalance (AI) in heterozygotes. Measuring AI in bulk data lacking time or spatial
resolution has the limitation that cell-type-specific (CTS), spatial-, or time-dependent AI signals may be
dampened or not detected.
Results: We introduce a statistical method airpart for identifying differential CTS AI from single-cell RNA-
sequencing (scRNA-seq) data, or other spatially- or time-resolved datasets. airpart outputs discrete
partitions of data, pointing to groups of genes and cells under common mechanisms of cis-genetic
regulation. In order to account for low counts in single-cell data, our method uses a Generalized Fused
Lasso with Binomial likelihood for partitioning groups of cells by AI signal, and a hierarchical Bayesian
model for AI statistical inference. In simulation, airpart accurately detected partitions of cell types by their
AI and had lower RMSE of allelic ratio estimates than existing methods. In real data, airpart identified DAI
patterns across cell states and could be used to define trends of AI signal over spatial or time axes.
Availability: The airpart package is available as an R/Bioconductor package at
https://bioconductor.org/packages/airpart.

1 Introduction

Measurement of allelic expression (AE) through RNA-sequencing
experiments can be used to detect genes for which genetic variation in
local cis-regulatory elements (CRE) affects cell, tissue, and organism
development. Allelic imbalance (AI), in which one allele is expressed
higher or lower than the other, may indicate local CRE where regulatory
function, e.g. binding of a transcription factor to its motif, is impacted
by genetic variation. AI could also reflect allelic differences in epigenetic
state, as in the case of imprinting where maternal or paternal inheritance
determines which allele is expressed higher, or genetic variation affecting
splicing or nonsense mediated decay. When allelic expression is quantified
in bulk tissue or in a manner lacking the necessary time or spatial resolution,

cell-type-specific (CTS) or contextual AI signals may be weakened. As
the catalog of accessible CRE and active transcription factors differs
across cell lineage, developmental time, and spatial location (Heinz et al.,
2015), single-cell, temporal and spatial transcriptomic datasets can help
to reveal the cell type, cell state, or spatial dependencies of genetic effects
(Andergassen et al., 2017; Wills et al., 2013; Combs and Fraser, 2018). For
example, it has been observed that allele imbalance changes dynamically
along embryo development stage (Larsson et al., 2019; Deng et al., 2014)
at HLA genes and other autoimmune loci (Gutierrez-Arcelus et al., 2020).

AE analysis cannot detect all variants detectable from expression
quantitative trait loci (eQTL) analysis, which examines the association of
total expression with genotype, as AE analysis is restricted to those genes
and individuals that harbor heterozygous exonic variants (Khansefid et al.,
2018). However, as total expression level can be affected by technical
artifacts (batch effects), environmental effects, or distal-regulation, the
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within-individual comparisons in AE analysis offers an advantage in
focusing on cis-regulatory effects, and may increase power (Vigorito
et al., 2021). Single-cell studies offer a unique opportunity to detect
extra cis-eQTLs that would not have been identified in bulk, and hence
a number of single-cell studies have been proposed to identify CTS cis-
eQTL (Van Der Wijst et al., 2018; Cuomo et al., 2021b,a). Perhaps due
to difficulties in obtaining single-cell AE with sufficient coverage, less
attention has been paid to single-cell AE analysis, though single-cell AE
analysis can be performed even within a single sample, while single-cell
eQTL requires a population of cells of different genotype. Recent SMART-
Seq2 and SMART-Seq3 experiments enable full length transcript coverage
from single cells at sufficient unique molecular depth to characterize
AE for over 10,000 genes. When applied to cells of F1 offspring from
crosses of different strains or species, AE data can be generated across
hundreds or thousands of cells (Picelli et al., 2014; Larsson et al., 2019;
Hagemann-Jensen et al., 2020).

Prior studies in single-cell AE have categorized genes by allelic state
(e.g. bi- or mono-allelic to one or the other allele), estimated allele-specific
burst kinetics (Jiang et al., 2017), and resolved multi-mapping reads to
genes and alleles in order to reduce spurious mono-allelic signal (Choi
et al., 2019). In this work, we do not address the problem of accurate
estimation of AE, assuming access to long reads uniquely assigned to
alleles as obtained with SMART-Seq or similar technologies (Tian et al.,
2020). Previous methods have been proposed to detect imprinted genes
from single-cell AE (Santoni et al., 2017), whereas we focus on detection
of CTS cis-genetic regulation resulting in a consistent imbalance within a
group of cells toward a particular allele regardless of parent-of-origin.
Furthermore, a recent regression-based method has been proposed to
leverage datasets with bulk AE and single-cell total expression of the same
tissue, to infer cell-type-specific AI (Fan et al., 2021). Here we examine
single-cell AE datasets, as well as other contextually-resolved AE data,
including spatial or time course AE. When the AI only exists in one or
more specific cell type(s) or the AI varies among cell types, we refer to this
phenomenon as differential allelic imbalance (DAI). As single-cell studies
providing sufficient coverage and read length for allelic quantification are
only now emerging, we are aware of only one related statistical method for
detecting DAI, scDALI (Heinen et al., 2022), which models allele-specific
chromatin accessibility using Gaussian Process regression.

Here we introduce airpart, an Allelic Imbalance R package for
PARTitioning groups of cells, leveraging methods for the Generalized
Fussed Lasso (Devriendt et al., 2021) and hierarchical Bayesian modeling,
to identify DAI across groups of cells or samples. Our AI models are
flexible in terms of the experimental design, and can be applied to group
cells or samples by cell type, spatial location or time points, as well as
allowing adjustment for covariates. The gene clustering and partitioning
of cell types by similar AI signal increases accuracy in the subsequent AE
estimation step, alleviating issues from low counts and small numbers of
cells for certain cell types or cell states.

Our method helps to find subsets of genes sharing similar DAI signals,
and helps to generate hypotheses of CTS cis-regulatory mechanisms,
which can be further validated through experimentation assaying CRE
activity or accessibility in particular cell types. The method is available as
an R/Bioconductor (Huber et al., 2015) package with an accompanying
software vignette at https://bioconductor.org/packages/
airpart.

2 Methods

A summary of the airpart workflow is shown in Figure 1. airpart takes as
input two count matrices and a categorical variable: 1) the allelic counts
for the alternate (a1) and reference (a2) alleles across genes (rows) and
cells/samples (columns) and 2) the annotated cell types (or spatial location

or time point for bulk RNA-seq) in the same order as cells/samples in
count matrices. Annotation of cell type can either be provided as prior
information or generated by clustering cells by total count (all scRNA-seq
experiments analyzed here had prior annotation linking cells to their cell
type). The allelic counts could be generated using scBASE (Choi et al.,
2019), or the quantification pipeline outlined in Larsson et al. (2019) (e.g.,
for well-characterized diploid transcriptomes). Those inputs are used to
construct a SummarizedExperiment (Lawrence et al., 2013), and functions
are provided to determine genes and cells passing quality control (QC). We
define the observed allelic ratio as the count ratio of alternate allele reads
to the total reads. airpart clusters genes with similar AI pattern across cells
(see Supplementary Methods Section 1.1 for details). Clustering provides
two benefits: it stabilizes DAI detection and estimation in the case that
similar patterns occur across genes (e.g. genes under similar patterns of
CTS cis-genetic regulation), and it speeds up computational time by fitting
a partition model (described below) per cluster instead of per gene. In the
following methods, we consider one gene cluster at a time. For each gene
cluster, a Generalized Fused Lasso framework (Devriendt et al., 2021)
with Binomial likelihood is used to partition cell types, or a non-parametric
method is used. Each of these rely on a graph � where vertices represent
cell types and an edge indicates a pair of cell types that can be fused.
airpart does not further partition cells within cell types, these are taken as
fixed input of the method. DAI is declared if the partition has more than
one group of cell types. Given the partition, a hierarchical Bayesian model
is fit, which provides allelic ratio estimates and AI statistical inference.
airpart also includes a number of visualization functions for exploratory
data analysis, presentation of partitions and statistical inference on allelic
ratios. A summary of the notation used in the following section is provided
in Supplementary Table S1.

2.1 Distributional assumptions for allelic counts

In previous work, researchers often used a Binomial model (Castel et al.,
2020) or a Beta-Binomial model for the allelic counts (Skelly et al.,
2011; Castel et al., 2015; Edsgärd et al., 2016; Santoni et al., 2017;
Heinen et al., 2022; Choi et al., 2019; Zitovsky and Love, 2020), whereas
BSCET uses a linear regression for the CTS AI test (Fan et al., 2021).
For the datasets examined in the Results, either SMART-Seq2 single-cell
datasets, or spatially- or time-resolved bulk RNA-seq, we found that a
Binomial assumption was sufficient for grouping cell types or conditions
by AI, as many genes had minimal over-dispersion relative to a Binomial
model. However, one real dataset examined in Results exhibited over-
dispersion of allelic counts relative to a Binomial, and so non-parametric
methods were considered for the partition. When deriving per-gene allelic
ratio estimates within a cluster, we modeled allelic counts using a Beta-
Binomial generalized linear model. In summary, airpart offers Binomial
or non-parametric models for partitioning cell types, and Beta-Binomial
for deriving allelic ratio estimates.

2.2 Generalized Fused Lasso with Binomial likelihood

airpart leverages a Generalized Fussed Lasso (GFL) framework
(Devriendt et al., 2021) implemented in an R package smurf, for
partitioning cell types into groups of similar allelic ratio. For gene cluster
u, suppose there are G genes, I cells and K cell types. For gene g and cell
i, let Ygi indicate the observed allelic count for the alternative allele, mgi

indicate total count, rgi = Ygi/mgi indicate the observed allelic ratio,
xi indicate cell or sample state which could be cell types, discrete spatial
or time points, and ci indicate any additional covariates that may associate
with allelic ratios. We note that x and c are represented internally with
dummy variables. We assume the following distribution for the alternative
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Fig. 1. Overview of airpart framework. airpart takes as input allele-specific read counts, quantified upstream of our method. Known cell annotation or cell clusters derived from total counts
are also part of the input to airpart. Following QC steps, clustering is performed on genes based on their allelic signal over cells. Then during the modeling step, a partition of the cell groups
is generated as shown in heatmap, either by a Generalized Fused Lasso or a nonparametric method. Estimated coefficients of this gene cluster using GFL inform the prior of hierarchical
Bayesian model. Finally, airpart outputs estimates of allelic ratio for each gene and cell group, as well as s-value or adjusted p-value for AI and DAI test, respectively. Multiple visualizations
of input data, gene clustering, and fitted parameters are available as functions within airpart software.

allele count with the logit link function

Ygi|mgi ⇠ Bin(mgi, pi)

where pi indicates the true allelic ratio for cell i. We define zi = xT
i �+

cTi �, such that

pi =
1

1 + e�zi
.

Without loss of generality, we will refer to the values ofxi as cell types.
The GFL in smurf is used to fit coefficients representing cell-type-specific
allelic ratios, where fusing two coefficients means the two cell types are
predicted to have the same allelic ratio. Given the graph � as shown in
Figure 1 in the Modeling panel, a complete graph (the default) can fuse
all pairwise cell types differences, or alternatively, a flexible graph can be
used with specific edges denoting the cell types that can be fused, e.g. an
adjacency graph. The specific edges of � would be provided a priori, for
example allowing fusing only among cell types on the same major branch
of a developmental trajectory. Suppose h, k 2 {1, . . . ,K} are any two
cell type vertexes that are connected in the graph, then the regularized
objective function for model is

O(�,�;x,m, r) = �

X

g,i

mgi[rgizi � log(1 + ezi )] + �||�(w)�||

where the second part is the regularization term of the GFL (Höfling et al.,
2010). Here �h and �k denote elements of full parameter vector � such
that (�0,�1, . . . ,�K) = � and �(w) is the matrix with dimensions
N� ⇥K where N� is the total number of edges in the graph �.

Estimation of coefficients relies on selection of optimal � and
specification of adaptive penalty weights for asymptotic consistency
(Devriendt et al., 2021). The standardized adaptive weights in smurf are

defined as wh,k = K�1
N�

q
nh+nk

N |�̂h � �̂k|
�1 to adjust for possible

level imbalances where nk represent number of cells in cell type k.
� is chosen according to the criterion of the lowest deviance (negative
of log likelihood) within one standard error of the minimum deviance
observed across a grid of � values, based on 5-fold cross-validation, which
encourages parsimony (more fusing of pairwise differences). When there

are less than 8 cell types represented in x, � is chosen by finding the
lowest deviance within half a standard error of the minimum, thus allowing
more non-zero pairwise differences to persist. In addition to the Binomial
likelihood (airpart.bin), a Gaussian likelihood (airpart.gau) is considered,
which assumes rgi ⇠ N(pi,�). The different likelihood models for GFL
were compared via simulation.

2.3 Pairwise Mann-Whitney-Wilcoxon Test

An alternative method is considered and available within airpart, relying
on a nonparametric test (airpart.np), both for increased speed and for cases
when the distributional assumptions of the above model do not fit the data.
We extend the Mann-Whitney-Wilcoxon (MWW) test to derive a partition
based on the p-values from pairwise comparisons across cell types.

For all pairs of cell types with edges in �, pairwise MWW tests are
performed for the allelic ratio distribution difference. A similarity score
matrix S[K,K] is constructed, with elements equal to the MWW test p-
values. Each element of this matrix is therefore related to the separability of
the ranked allelic ratios for the two cell types. This matrix is then binarized
into S

0 as follows: S0[h, k] = S[h,k]<q with the indicator function.
This binarization depends on a tuning parameter q and defines a network
adjacency matrix. For pairs not represented by edges in�, S0[h, k] is set to
0. Finally the adjacency matrix is used as a distance matrix for hierarchical
clustering.

To choose the tuning parameter q and find the cell types partition, a
model selection is performed based on the Bayesian Information Criterion
(BIC). The BIC scores a candidate model using both its performance on
the in-sample error and the complexity of the model. The best model is
chosen by minimizing a loss function defined below, along a range of q =

10v where default v sets are {�2,�1.8, . . . ,�0.4}. The loss function
is constructed based on the Gaussian special case of BIC that assumes
independent errors from a normal distribution, and that the derivative of
the log likelihood with respect to the true variance is zero (Hannan, 1982).
We have

q = argmin
q

⇥
N log(�̂2

e) +Kq log(N)
⇤
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where N is the total number of elements within this gene cluster (N =

G⇥ I), �̂2
e is an estimate of the error variance, and Kq is the number of

groups derived from constructing the adjacency matrix according to each
q threshold among the partition of K cell types. The estimate of the error
variance in this case is defined as �̂2

e = 1
N ⌃g,i(rgi � r̂gi)2, which is a

biased estimator for the true variance. In terms of partition group the loss
function is

q = argmin
q

2

4N log

0

@ 1

N

KqX

j=1

X

i2Grpj

(ri � r̂j)
2

1

A + Kq log(N)

3

5

where Grpj is a set of cells in group j, r̂j is the mean allelic ratio of all
elements within group j.

2.4 Hierarchical Bayesian modeling

In the airpart steps to estimate the partition of cell types within a gene
cluster, the true allelic ratio pi being modeled with the GFL is assumed not
to vary across genes within the cluster. However, the allelic ratio may vary
across genes within a cluster, though the clustering step brings together
genes with similar patterns of allelic ratio. To derive per-gene allelic ratio
estimates and credible intervals within a gene cluster, a Bayesian Beta-
Binomial generalized linear model (GLM) is used. This GLM can be fit
sharing prior information for all cells within a cell-type group defined by
the partition (“grouped”) or one cell type at a time, ignoring the partition
(“nogroup”). The case of ignoring the partition allows for estimation of
allelic ratios even if the input x is continuous-valued. Let �g indicate a
gene-specific dispersion parameter, then we assume the following model:

Ygi|mgi ⇠ BetaBin(mgi, p
0
gi,�g)

where p0gi = (1 + exp(�xT
gi�

0
g + cTi b�))�1, and �̂ is the maximum

a posteriori (MAP) estimate derived from apeglm (Zhu et al., 2018;
Zitovsky and Love, 2020) and used as offset in the model if covariates are
provided. The dispersion �g controls the variance of Ygi by Var(Ygi) =

mgip0gi(1� p0gi)
h
1 +

mgi�1
�g+1

i
.

Shrinkage estimation is performed separately on the dispersion
parameter and coefficients representing cell type allelic ratios. We first
describe shrinkage on the dispersion parameter. We assume the logarithm
of the dispersion estimate �̂g follows a Normal distribution,

log(�̂g)|�g ⇠ N(log(�g), D)

where D, the sampling variance, is assumed equal across all genes in
the cluster. We estimate this sampling variance with D̂ = 1

G

P
g se2g

where seg is the estimated standard error of the logarithm of the dispersion
estimate log(�̂g). Both log(�̂g) and seg are estimated using the apeglm
(Zhu et al., 2018) software. Although the dispersion parameter is estimated
per gene, the gene-wise models are linked by global hyper-parameters
which are estimated from the entire gene cluster at once. The specification
of a cluster-specific prior is used a simple means of sharing information
between genes. We assume that the dispersion parameter log(�g) follows
a Normal distribution

log(�g) ⇠ N(log(�0), A).

log(�0) is estimated from the gene-wise MLEs, \log(�0) =
1
G

P
g log(�̂g), and the variance is estimated with Â = max(s2log � �

D̂, 0)where s2log � = 1
G�1

P
g(log(�̂g)� \log(�0))2. In order to obtain

the relative weighting of the gene-wise and global variance estimators,
B = D

A+D is defined as a parameter to shrink dispersion estimates
towards a middle value (roughly following Efron and Morris (1975)).

Applying B̂ = D̂
Â+D̂

, the final estimate for dispersion used in fitting
coefficients is:

log(�̂post
g ) = (1� B̂) log(�g) + B̂ log(�0)

A Cauchy distribution is used as the prior for �g , the coefficients
representing cell type allelic ratios. Shrinkage estimation is performed
one group at a time, where a group is defined by the cell types within a
partition from the first step or alternatively, ignoring groupings, meaning
each cell type, temporal and spatial location is estimated by itself. Without
loss of generality, we describe the grouped case. Let µ define the center of
the prior distribution for �g , which will be a vector of length J if there are
J cell type groups in this gene cluster. The GFL estimates �̂ are used as µ̂
across the multiple genes within a cluster (or weighted means are used if
nonparametric methods are used for defining the partition in the previous
step). For the estimation of per gene ratios, we assume the coefficients
follow a Cauchy distribution,

�g ⇠ Cauchy(µ,S)

where S is scaling parameter estimated as part of the apeglm method
(Zhu et al., 2018), and µ̂ is plugged in as the center of the prior distribution.
Maximum posterior estimates and credible intervals are estimated from a
Beta-Binomial likelihood using apeglm.

2.5 Inference

To assess allelic imbalance across each cell type and each gene within a
cluster, s-values (Stephens, 2017) were calculated and provided, where
thresholding on this value provides control of the aggregate false sign
rate (the rate of incorrect signs of estimates within the reported set). For
deriving inference of DAI calling, a likelihood ratio test was performed
to compare a full model with a cell group indicator to a reduced model
with an intercept only, whose test statistics approximates a �2 random
variable with Kq � 1 degree of freedom. We note that while the credible
intervals, s-values and p-values calculated in this step reflect uncertainty
in estimation of the allelic ratio based on number of cells and the range
of the counts, as we fix the gene clustering and cell type partition from
previous steps, uncertainty from those upstream steps is not propagated to
the inference provided by the hierarchical model.

2.6 Simulation setup

In order to assess airpart’s performance, partitioning of cell types by
allelic ratio, and its accuracy of estimates of the allelic ratio itself, we
performed three sets of simulation tests and compared to another statistical
method for detecting heterogeneity of allelic ratio in scATAC-seq, scDALI
(Heinen et al., 2022). Various settings were summarized in Supplementary
Table S2. The allelic counts were simulated from a Beta-Binomial (BB)
distribution with constant dispersion parameter � for all genes, so we
ignore the index g here. The total counts were drawn from a Negative
Binomial (NB) distribution. Half of the total counts had a mean count of
2 while half of the total counts had a higher mean count, ranging across
different simulations among values of cnt 2 {5, 10, 20}. In each case,
the NB dispersion was set to ↵ = 5 (dispersion ↵ defined such that
Var(Y ) = µ + ↵µ2). As airpart combines allelic counts from multiple
genes when finding the partition of cell types, having lower and higher total
counts for each gene is equivalent to a dataset with a mix of low and high
count genes within a gene cluster. The mean counts and BB dispersion
values (� = 20) were chosen based on estimated parameters over real
SMART-Seq2 scRNA-seq datasets (Larsson et al., 2019), as shown in
Figure S1(A). However, we observed that in earlier datasets, such as Deng
et al. (2014), as shown in Figure S1(B), the allelic counts generated lower
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� estimates (more variance). Thus we also assessed simulations using
� = 3 to evaluate method robustness when the data was substantially
overdispersed relative to a Binomial model (the model used by the GFL
in airpart). As airpart relies on cells being annotated upstream of its
modeling steps, we additionally assessed modeling performance if the
cells were incorrectly annotated (incorrect t(i)where t is the group) during
clustering of sub-populations of cells by their total count. We constructed
two scenarios to evaluate the robustness of partitioning and of allelic ratio
estimation to cell annotation errors. In one scenario, we manually flipped
cell type labels to induce a fixed and uniform misclassification rate across
all cell types. The misclassification rates ( 1I

P
iI {t(i) 6=xi}) were set

to {0%, 5%, 10%} in this case. In the other, we clustered cells by log
scaled total count with the specified cluster number of 10, allowing for
random and heterogeneous misclassification rates across true cell type, as
shown in Figure S2. The misclassification rate was approximately equal
to 5% using Gaussian Mixture Model (GMM) method implemented in
mclust (Scrucca et al., 2016) with the high mean total count cnt = 7

for a subset of genes, and approximately equal to 10% using k-means
implemented in scran (Lun et al., 2016) and cnt = 10 for a subset of
genes. The two different clustering methods and varying the high total
count parameter were used to help tune the misclassification rate to the
desired level; additionally GMM clustering tended to give more uniform
misclassification rate across clusters, while k-means clustering was more
likely to give heterogeneous misclassification rates, e.g. entire cell-types
mis-labeled.

In the first set of simulations, the adjusted Rand index (ARI 2

[�1, 1]) was used to assess airpart’s accuracy of the cell type partitions
with respect to the true partition by allelic ratio. The number of genes
within a gene cluster was varied across g 2 {5, 10, 20}. ARI of 1
means a perfect partition, and an ARI of 0 is no better than random
guessing. Each cell type was simulated to have 40 cells, and 10 cell
types were simulated (400 cells in total) with true allelic ratio given
by {0.95, 0.9, 0.85, 0.85, 0.7, 0.7, 0.65, 0.6, 0.5, 0.5}, thus with a true
partition of seven groups of unique allelic ratios. The whole simulation
was repeated 200 times for each combination of simulation parameters:
high total count (cnt), number of genes (n), and dispersion value (�).

In the second set of simulations aiming for evaluating allelic ratio
estimation accuracy, 400 genes were simulated such that all have the
same pattern of DAI. The number of cells per cell type was varied
from 40 to 100. RMSE was used to evaluate performance. Here, we
additionally assessed the effect of using the partition to aid in estimation
accuracy, by comparing performance with and without this cell type
grouping step. The version of the estimation method without the grouping
step was denoted as airpart.nogroup. We defined a simulation parameter
d 2 {0.05, 0.1, 0.2, 0.3}, and at each d, allelic ratios according to
{0.3, 0.3, 0.3 + d, 0.3 + d, 0.3 + 2d, 0.3 + 2d, 0.3 + d, 0.3 + d} were
simulated following a U-shaped pattern, where d controled the extent of
the rise and fall in allelic ratio. For this simulation, the cell type indicator
x was provided as a matrix with one-hot encoding to airpart and scDALI.
We used scDALI with a radial basis function (RBF) kernel to allow for
cells with similar x value to have similar fitted allelic ratio, which in this
case allows for estimation of CTS allelic ratios.

Lastly, in the third set of simulations for significance testing of DAI,
genes were simulated without DAI (all 6 cell types with 0.5 ratio) and with
DAI {0.5, 0.5, 0.6, 0.6, 0.7, 0.7} with 40 and 100 cells per cell type. For
airpart, a likelihood ratio test was performed to compare a full model with
a cell type indicator to a reduced model with an intercept only. scDALI was
run withscDALI-Het to calculate score test statistics. We adjusted allelic
heterogeneity p-values for both methods using the Benjamini-Hochberg
(BH) (Benjamini and Hochberg, 1995) procedure with a cutoff of 0.05.

2.7 Allelic datasets

We applied airpart to 2 single-cell RNA-seq datasets: Larsson et al. (2019),
Deng et al. (2014); and 2 bulk RNA-seq datasets: Gutierrez-Arcelus et al.
(2020), Combs and Fraser (2018). From those datasets, Larsson et al.
(2019) contains 224 mouse embryo stem cells (C57BL/6 × CAST/EiJ) and
188 mouse embryo fibroblasts (CAST/EiJ × C57BL/6J) grouped across
states of cell cycle (G1, S, G2M), as identified by the authors. Deng et al.
(2014) includes 286 pre-implantation mouse embryo cells composed of 10
cell types from an F1 cross of female CAST/EiJ and male C57BL/6J(B6)
mice. Cells were sampled along a time course from the zygote and early
2-cell stages through the late blastocyst stage of development. Maternal
allelic ratios were estimated for the two scRNA-seq datasets.

Gutierrez-Arcelus et al. (2020) stimulated memory CD4+ T cells from
24 genotyped individuals of European ancestry with anti-CD3/CD28 beads
and characterized the dynamics of AI events at 0, 2, 4, 8, 12, 24, 48 and
72 hours after stimulation. Combs and Fraser (2018) performed RNA-seq
of five hybrid Drosophila melanogaster × Drosophila simulans embryos
sliced along their anterior-posterior axis to identify genes with spatially
varying allelic imbalance. Results applying airpart and scDALI to Combs
and Fraser (2018) dataset are provided as Supplementary Results. The
cell population annotations for all datasets were provided with the data.
These annotations were used as known cell types/states/spatial position for
analysis. The number of cells in Table 1 represents the size of each dataset
after preprocessing (see Section 1.2 for details).

Table 1. Single-cell (sc) and bulk RNA-seq datasets used for evaluation.

Source Observations States/ Tissue type
Contexts

Larsson et al. (sc) 367 4 Mouse F1 embryos
Deng et al. (sc) 228 10 Mouse F1 embryos
Gutierrez-Arcelus et al. 1991 8 Mem. CD4+ T cells
Combs et al. 1262 19 Fly F1 embryos

1 time point replicates from 24 donors;
2 slices from 5 embryos.

To assess whether gene clusters with specific differential allelic
imbalance pattern detected by airpart were enriched for functional
categories or were correlated with enhancer activity, we performed
downstream functional analysis. Gene Ontology (GO) term (The Gene
Ontology Consortium, 2020) enrichment was calculated using the goseq
package (Young et al., 2010) with the UCSC mm9 gene lengths database.
(Larsson et al., 2019) also provided H3K27ac ChIP-seq samples for one
of the parental lines (B6) for mESC and fibroblasts. H3K27ac peaks were
selected with fold enrichment > 15. ChIP-seq was only available for the
B6 strain, so we assessed whether the genes with allelic imbalance toward
one allele were more closely associated with enhancer activity in that cell
type compared to the other cell type using a Fisher’s exact test.

3 Results

3.1 Simulation

We evaluated airpart across a variety of simulation datasets, and in
comparison to a newly developed method for detecting heterogeneous
allelic imbalance, scDALI (Heinen et al., 2022). The simulated total counts
distribution mimicked real scRNA-seq counts distribution (Figure S1C),
and airpart clustered together genes for which the allelic ratio trend was
similar (Figure S1D). On the simulated dataset with 10 cell types of
different allelic ratio, as described in Section 2.6, the GFL with Binomial
likelihood tended to have higher ARI than other variants when the number
of genes within a gene cluster (G) was small (Figure 2A). The higher
ARI indicates that a method was more accurate at partitioning the cell
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types according to their true underlying allelic ratio. In addition, the
GFL with Binomial likelihood had highest tolerance against uniform
cell type misclassfication errors (Figure S3). This aligned with previous
work showing that modeling the allelic ratio using count distributions can
increase power (Sun, 2012). The heterogeneous misclassification rate of
⇠ 10% in some cases led to all cells of one cell type being misclassified,
which further could result in the grouping step not achieving perfect
recovery of the partitions (Figure S4). As all approaches could reach
similar accuracy whenGwas larger than 25, we compared the computation
time at that setting. The nonparametric method was around 10 times
faster than airpart.bin (Figure S5) and took 40s when G = 500. We
noticed that airpart.np could become overly sensitive to differences in
allelic ratio when G was very large (� 350), such that when cell type
annotation was misclassified, this resulted in a decrease in ARI in particular
relative to the GFL with Binomial likelihood which maintained perfect ARI
(Figure S3). To consider robustness of airpart with respect to measurement
error of an underlying expected allelic rate, we simulated counts with
higher dispersion (� = 3). In these simulations, the ARI of all methods
was generally lower especially for smaller number of genes, where the
nonparametric approach outperformed the GFL alternatives (Figure S6).

We compared the allelic ratio estimation accuracy of airpart with or
without grouping step to scDALI across different scales of DAI. airpart.bin
had smaller RMSE than scDALI for allelic difference � 0.2 while
performing comparably for allelic difference of 0.1, and slightly worse
for allelic difference of 0.05 (Figure 2B). In this simulation, we assessed
one gene at a time, so airpart did not benefit from aggregating signal
across multiple genes. All three variants of airpart with partition step
(Binomial likelihood, Gaussian likelihood, and non-parametric approach)
showed distinct decreasing RMSE with increasing allelic ratio difference,
while airpart.nogroup (without cell type partitioning) and scDALI had
relatively constant RMSE. airpart variants with partition step benefited
in this simulation from its approach toward discrete groupings of cell
types, as the simulated data consisted of eight cell types falling in three
groups by their true allelic ratio; as the allelic ratio increased, the correct
partition was easier to identify, which led to the decrease in RMSE for those
three method variants. In order to understand why scDALI tended to have
slightly larger RMSE than airpart.nogroup, we examined the estimates
themselves over the cell type variable (x); scDALI’s estimates tended
to shrink towards 0.5 at the extremes on this simulation (Figure 2C). In
the simulations with misclassified cells, scDALI had higher RMSE with
increasing misclassification rate, while sharing information across cell
types helped the airpart approaches to be less affected by the insertion
of misclassified cells (Figure S7). From this simulation, we inferred that
when the true model is one of discrete allelic ratios shared across a partition
of the cell types, grouping cell types with similar allelic ratio increases
observation size and may therefore aid in estimation.

We performed simulation with more cells per cell type (n = 100

compared to n = 40 in previous simulations) to confirm that estimates
would have reduced error with more observations. Both airpart and
scDALI had lower RMSE when n = 100 (Figure S8A). airpart.bin
additionally had better performance relative to scDALI for DAI = 0.1,
compared to the n = 40 simulation. When considering credible interval
coverage, airpart.nogroup had the highest empirical coverage (the average
number of times the credible intervals contained the true value) almost
always achieving 95%, although other airpart variants and scDALI
performed as well when DAI > 0.1 (Figure S8B,C). Again note that
airpart partitioned cell type group per gene under this set up, so it didn’t
benefit borrowing information from other genes with similar allelic pattern.

In the simulation assessing the rate of DAI calling when n = 40,
airpart.nogroup and scDALI both had the highest specificity of around
97% compared to other airpart variants (airpart.bin had 93.75%). But all
methods had similar sensitivity of around 98.00% (Supplementary Table

S3). Forn = 100, airpart.bin had the highest specificity of 98.25%, likely
due to its increasing accuracy in determining the partition of cell types
(Supplementary Table S4). scDALI and other variants’ specificity did not
change substantially as n increased to 100, but all methods had 100% TPR
at this sample size. aipart.gau and airpart.np had lower specificity in this
global test of DAI (89.5% and 88.0% at n = 40, and 85.25% and 88.25%
atn = 100), which was expected as these variants often detected too many
groups in the partition analysis for less overdispersed data, with lower ARI
relative to airpart.bin (Figure 2A). Overall, airpart.bin, airpart.nogroup,
and scDALI recovered most DAI while not falsely calling too many genes
as DAI. We expect airpart would have improved performance when adding
a gene clustering step, such that it can borrow information about cell type
partitioning and allelic ratio estimation across genes.

In summary, we recognize that airpart and scDALI have subtly
different inference goals, with airpart predominantly focused on
characterizing the allelic ratio patterns that result from discrete groups of
cell types sharing a common regulatory context (for example, expression of
transcription factors and accessibility of CRE). On the other hand scDALI
is more suitable for detecting various types of heterogeneous AI including
continuous gradients of AI in cells across measured or inferred dimensions.

Fig. 2. Performance comparison of airpart variants and scDALI on simulation datasets. A)
Boxplot of partition accuracy among 3 variants of airpart. y axis is adjusted Rand index
among 200 iterations. cnt: the higher mean count, n: number of genes within a gene cluster.
B) Boxplot of RMSE per gene for estimation of the allelic ratio for n = 40 cells among
400 iterations. Each gene has an underlying U-shape pattern described in the Section 2.6.
C) Boxplot demonstrating airpart without cell type grouping step and scDALI performance
on each cell type at DAI = 0.2. The red dots represent the simulated allelic ratios.

3.2 Mouse ES cells and fibroblasts

For assessing airpart on real allelic datasets, we first examined two single-
cell RNA-seq datasets consisting of mouse embryo cells (Larsson et al.,
2019; Deng et al., 2014). Both datasets were mouse F1 non-reciprocal
crosses in which we observed clusters with allelic imbalance towards
the maternal allele, likely from imprinting in mature cells or genome
activation for early cell stages. A complete graph was applied to both
datasets, allowing any developmental time point coefficients to be fused
with another. In both cases, airpart partitioned the cell stages as expected
according to developmental time, e.g. consecutive and related time periods
being fused together, such as early, mid, and late-blastocyst.
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airpart was first applied to the Larsson et al. (2019) dataset consisting
of four cell states including three cell cycle states of primary mouse
fibroblast (G1, S, G2M) and mouse embryonic stem cells (mESC). After
QC filtering, 2,481 genes remained and five gene clusters were detected.
Four of the five clusters, comprising 412 genes in total, showed evidence of
DAI by their airpart partitions (Figure S9A,Table S5). One cluster of 128
genes partitioned the cell states such that all cell cycles of fibroblast were
grouped together and apart from the mESC (Figure 3A and Figure S9C).
In this cluster, the fibroblast group had mean estimated allelic ratio around
0.45 and the mESC had allelic imbalance with a ratio of around 0.70 toward
the maternal allele. We estimated the allelic imbalance in both mESC and
fibroblast and calculated 95% credible intervals (Figure 3B). With an s-
value threshold of 0.005 (Section 2.4), all 128 genes demonstrated AI in
mESCs and 85 genes out of 128 demonstrated AI in fibroblasts, which
was roughly consistent with credible intervals not overlapping an allelic
ratio of 0.5. To check whether this cluster had any functional association
with stem cell maintenance, gene set enrichment analysis was performed.
The most significant Gene Ontology (GO) term was “response to leukemia
inhibitory factor (LIF)” (GO:1990823, odds ratio = 4.90, adj. p = 0.136

(BH)), where Lif is a cytokine involved in embryonic stem cell self-renewal
(Hirai et al., 2011).

To assess whether the 128 gene cluster with DAI had an association
with enhancer activity, an enrichment analysis was performed using
H3K27ac peaks exclusively measured in the B6 strain in both cell types.
While the enhancer activity signal was therefore not an allelic signal, we
hypothesized that genes which favor the B6 (maternal) allele in mESC
may tend to overlap with H3K27ac peaks in B6 in mESC. For the 128
gene cluster with DAI toward maternal allele in mESC, we found that
genes in the cluster were more often associated with enhancer activity in
mESC compared to fibroblast (significance assessed by Fisher’s exact test
p = 0.0002).

airpart was additionally applied to the Deng et al. (2014) dataset
consisting of 228 pre-implantation mouse embryo cells passing our QC
steps, from an F1 cross of CAST/EiJ⇥C57BL/6J mice. Ten cell types were
annotated from the zygote and early 2-cell stages through the late blastocyst
stage of development. Allelic ratio was defined as maternal (CAST / (B6
+ CAST)) and 4,679 genes passed our gene QC steps. All genes revealed
DAI patterns as expected due to genome activation from zygote onward to
the blastocyst stages. In order to focus on DAI after zygote or early 2-cell
stages, we performed clustering of genes and partitioning of cell stages
with those cell stages removed. 13 out of 16 gene clusters, consisting
of 3,019 genes in total, showed DAI pattern after removing these cell
stages (Table S6). One gene cluster showed a decreasing allelic ratio
pattern along developmental time. We demonstrated benefits of airpart
modeling, estimating each gene’s allelic ratio leveraging the gene cluster’s
GFL coefficients as a prior mean (Figure 3C). The corresponding violin
plot of allelic ratios is shown in Figure S9C. The estimated allelic ratio
around 0.3 in early/mid/late blast stage was an exception (for most gene
clusters, blastocyst cells showed near to balanced allelic expression). This
cluster of 65 genes had significant enrichment for GO terms such as “cell
development” (GO:0006139, odds ratio = 2.02, adj. p= 0.0017 (BH)) and
“cell differentiation” (GO:0030154, odds ratio = 1.29, adj. p = 0.0233

(BH)).

3.3 Dynamic allelic imbalance during T cell activation

We applied airpart to an RNA-seq dataset of stimulated memory CD4+ T
cells of 8 discrete time points (Gutierrez-Arcelus et al., 2020). To do so,
we created a graph � with edges only between consecutive time points,
restricting the fusion of coefficients in the GFL. Among the 43 most
temporal-varying genes as described in Supplementary Section 1.2, most
of them were enriched within autoimmune loci, as reported by the original

Fig. 3. Evaluation of airpart on scRNA-seq and time course RNA-seq experiments. A)
Violin plot of estimated allelic ratio on Larsson’s dataset with n indicating the number
of cells. Color represents different partition groups. B) Forest plot for Larsson’s dataset,
showing top 40 genes with smallest s-value. Dotted line denotes allelic ratio = 0.5 C) Step
plot and heatmap of results for Deng’s dataset. This gene cluster partitioned cell types into
5 groups denoted by color in the step plot. D-G) Selected genes displaying airpart fitted
model on Gutierrez-Arcelus’s data: (D) decreasing trend, (E) increasing trend, (F) up-down
pattern, and (G) down-up pattern.

study authors. Examples include F11R, a ligand for integrin alpha-L/beta-
2 involved in memory T-cell and HLA-DQB1, a member of the human
leukocyte antigen (HLA) complex. We ignored the allelic complexity of
the HLA genes in this analysis and grouped the alleles together into two,
based upon the SNP with the largest total count. We chose to reduce to
diploid allelic counts in each individual based on a single SNP since HLA
typing and across-donor inference of more than two alleles was out of the
scope of this study. This approach was used for method demonstration
only. airpart partitioning of the time series by allelic ratio revealed 4 types
of patterns (decreasing, increasing, up-peak and down-peak) as shown in
Figure 3 (D, E, F, G) respectively (step-plots for all 40 genes provided
in Figure S12). As in the original study, we also observed the dominant
allele could switch over the time course, or bi-allelically expressed genes
could switch to dominant by one or the other allele. While the original
paper used logistic regression with polynomial terms for time within each
individual, we recovered similar DAI trends for many autoimmune genes,
such as GNLY and DDX11. Overall, airpart successfully captured the DAI
patterns seen across T cell activation.

In summary, when applied to scRNA-seq and bulk RNA-seq datasets,
airpart was able to identify relevant partitions of cell types or samples,
with gene clusters significantly enriched for biologically meaningful gene
sets and cell-type-specific enhancer activity. Results applying airpart and
scDALI to a dataset of spatial transcriptomic fly cross embryos Combs and
Fraser (2018) are provided in Supplementary Section 2.1, where airpart
with basis matrix was used to estimate smooth fitted ratios for genes with
spatially-varying allelic imbalance induced by continuous gradients of
regulatory proteins.

4 Discussion

An understanding of how individual genes may be regulated across
context or condition helps to elucidate molecular mechanisms underlying
complex phenotypes or diseases. Context-specific AE enables isolation
of cis-acting genetic regulation of transcription, and the study of AE
is a good complement to differential gene expression studies, where a
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multitude of factors may influence differences in total expression across
condition. Single-cell RNA-seq of F1 crosses enables measurement of
context-specific AE, where the cell type or cell stage can be taken as the
context that influences cis-genetic regulation. Spatially resolved or time
course allelic datasets offer another such example. Context-specific or
conditional allele specific expression datasets can detect allelic imbalance
with fewer samples than context-specific quantitative trait locus (QTL)
studies (Findley et al., 2021), although measurement of allele specific
expression in a sample requires presence of heterozygous variation in the
transcribed region, which may not occur for all transcripts or for all genes
depending on the population under study. With the advent of large-scale
systematic assays for interrogating variants and regulatory elements, such
as CRISPR-Cas9 and massively parallel reporter assays (MPRA), there
are now increasing opportunities to re-use context-specific allelic datasets
which can help point to the key cell types or cell states for validation.

To assist with analysis of such datasets, we developed airpart, a
statistical framework for identifying genes and cell types or cell stages
with similar DAI signal. airpart provides discrete grouping of cell types,
providing interpretability to the fitted models. The groups provided by
the partition step can help to generate hypotheses of CTS cis-regulatory
mechanisms. For example, cell types within the same group may share a
common mechanism of cis-regulation, such as a common set of expressed
transcription factors and active regulatory elements harboring genetic
variation. Taken together, our simulation results suggest that airpart.bin
(using a Binomial likelihood) had good performance across a variety of
number of cells and genes, including when cells are misclassified, and can
be used for accurate cell type grouping when the counts are not highly
overdispersed, as was observed in more recent SMART-Seq datasets.
When the aim is allelic ratio estimation or overall DAI hypothesis testing,
airpart.np or airpart.nogroup may be preferred for faster computation
time and comparable accuracy to airpart.bin. As scRNA-seq data often
have low counts for some genes of interest, and as the experiments used
for allelic expression in single cell (SMART-Seq2 or SMART-Seq3) often
have a relatively small total number of cells, we simulated I = 400 cells
(40 cells per cell type ⇥ 10 cell types) to be comparable, and employed
gene clustering and a partitioning of cell types in order to increase power.
Aside from using clustering to detect meaningful subsets of genes by allelic
imbalance, it is also possible to provide pathways or other gene sets known
a priori for airpart to partition. In this way, airpart stabilizes gene-level
estimation by borrowing information about the similarity of cell types from
other genes that have similar AE patterns.

airpart can be applied to a variety of problems, as it leverages a
GFL framework (Devriendt et al., 2021) where a graph specifying the
connectivity of the cell types is provided, helpful for scenarios such as
time course experiments or for prohibiting fusing across different cell
lineages. Another point of flexibility is airpart’s use of a design matrix
within the generalized linear model (Eq. 2.2) wherein additional covariates
can be provided that may also have effects on the allelic ratio. This
was used here in the analysis of the time course RNA-seq dataset to
adjust for individual effects, and may be helpful for multi-individual
single-cell sequencing studies. Furthermore, airpart.nogroup can accept
a design matrix representing natural cubic splines (Hastie, 1992). airpart
therefore offers fast estimation of smooth functions of the allelic ratio over
a continuous variable, making use of a hierarchical model to stabilize the
over-dispersion parameter (Supplementary Section 2.1). Though airpart
predominantly focuses on characterizing the allelic ratio patterns that result
from discrete groups of cell types under shared regulatory contexts, airpart
can in this way be used to model continuous gradients of cis-regulatory
effects on cells or samples.

5 Availability

airpart is implemented as an R/Bioconductor package available at:
https://bioconductor.org/packages/airpart. All of the
R code and data used in this paper for evaluating methods on simulated
and real RNA-seq datasets are available at the following repository:
https://github.com/Wancen/airpartpaper.
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