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Both the number and scale of single-cell RNA-sequencing 
(scRNA-seq) experiments have been growing rapidly in recent 
years1. The data generated by various scRNA-seq technologies 

have distinct characteristics preventing them from being processed 
by the otherwise mature and widely used tools developed for bulk 
RNA-seq data2–4. While Cell Ranger exists as a commercial solution 
for preprocessing data generated using popular 10x Genomics tech-
nologies, it is both computationally and memory intensive, and since 
version 3, has been developed as a closed-source product, limiting 
the transparency of the methods it implements. Further, it does not 
have built-in support for technologies beyond those developed by 10x 
Genomics. Therefore, to address the computational challenges that 
arise in the processing of high-throughput scRNA-seq data, numer-
ous new approaches for efficient preprocessing have been developed.

Srivastava et al.5 introduced alevin, which focused on improv-
ing the computational efficiency of tagged-end scRNA-seq 
quantification and also introduced a new approach for resolv-
ing gene-multimapping unique molecular identifiers (UMIs). 
Likewise, the raindrop tool6 pairs a custom lightweight mapping 
approach with a reduced index to count UMIs mapping to genes, 
providing a fast-counting approach. Melsted et al.7 introduced 
the kallisto|bustools pipeline for processing scRNA-seq data; the 
approach focuses on modularity and speed, using pseudoalign-
ment3 to the transcriptome to produce intermediate BUS files8 that 
are subsequently manipulated using bustools commands.

Most recently, Kaminow et al.9 introduced STARsolo, a prepro-
cessing method built directly atop the STAR aligner on which Cell 
Ranger also relies. STARsolo focuses on being a fast and easy-to-use 
solution for processing single-cell and single-nucleus RNA-seq 
(snRNA-seq) data that can be tuned to mimic Cell Ranger, while 
being much faster and more memory frugal. However, since it 

performs spliced alignment to the genome, STARsolo is more 
memory and time-intensive than pseudoalignment to the tran-
scriptome (at least for scRNA-seq data).

In this work, we present alevin-fry, a configurable framework 
for the processing of tagged-end scRNA-seq and snRNA-seq data. 
Alevin-fry has been designed as the successor to alevin. It sub-
sumes the core features of alevin, while also providing important 
new capabilities and considerably improving the performance 
profile, and we anticipate that new method development and fea-
ture additions will take place primarily in the alevin-fry codebase. 
Alevin-fry can preprocess scRNA-seq data more quickly than the 
next-fastest method, kallisto|bustools, while also vastly reducing the 
considerable number of spuriously expressed genes predicted under 
pseudoalignment-to-transcriptome approaches9. Simultaneously, 
alevin-fry exhibits similar accuracy to STARsolo while processing 
data appreciably faster and requiring less memory. In snRNA-seq 
data processing, where intronic sequences are often included for 
quantification, alevin-fry and STARsolo are both faster and use 
less memory than kallisto|bustools. In fact, alevin-fry can process 
snRNA-seq data with the same speed and memory efficiency with 
which it processes scRNA-seq data, substantially outperforming 
both STARsolo and kallisto|bustools. Alevin-fry is an accurate, com-
putationally efficient and easy-to-use tool that presents a unified 
framework for preprocessing sc/snRNA-seq data for gene expression 
or RNA velocity analysis, making it an appealing choice for process-
ing the diverse and growing array of experiments being performed.

Results
We demonstrate the performance and accuracy of alevin-fry in 
a variety of different use cases, and compare its computational 
resource usage as well as the quality of its results to those provided by 
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the other recently introduced tools STARsolo and kallisto|bustools. 
We examine results on simulated data (‘Simulated data’), on a 
scRNA-seq dataset where the effect of alignment pipelines has pre-
viously been explored (‘Analysis of a zebrafish pineal gland dataset’),  
in the context of preparing count matrices for an RNA velocity 
analysis (‘RNA velocity in a mouse pancreas experiment’), for the 
processing of a snRNA-seq dataset (‘Processing of a mouse placenta 
snRNA-seq dataset’) and finally we investigate the overall runtime 
and peak memory usage characteristics on this broad array of  
datasets (‘Speed and memory usage’).

Overview of alevin-fry. Alevin-fry is a configurable framework for 
the processing of (sc/snRNA-seq) data (Fig. 1), supporting many 
tagged-end sc/snRNA-seq protocols. After preparing a reference 
with respect to which quantification should occur, it makes use of 
salmon4 for barcode and UMI parsing and mapping of fragments to 
the reference index. Accepting as input this mapping information, 
alevin-fry generates a permit list for cellular barcodes that will be 
quantified in subsequent steps. Using a multi-threaded approach, 
it filters and collates the mapping records for permitted cellular 
barcodes to produce a representation optimized for quantification. 
During quantification, alevin-fry processes the mapping records 
assigned to the permitted cellular barcodes in parallel, and applies 
one of the available (user-specified) UMI resolution algorithms to 
estimate a count for each gene in each quantified cell. This results 
in a gene-by-cell count matrix that can be used for numerous 
downstream analyses.

Simulated data. We first evaluated the different methods on data 
from a non-parametric simulation first introduced by Kaminow 
et al.9. Details about the simulation are provided in the ‘Simulated 
data’ section. Table 1 displays the results of different methods as 
evaluated under various metrics on the set intersection of the cells 
quantified by all methods, where STARsolo was run to perform 
Cell Ranger-like barcode filtering. Although Cell Ranger was not 
included in this comparison, we expect it to perform very simi-
larly to STARsolo under default parameter settings, as reported 
by Kaminow et al.9. The definitions of these metrics are given in 
Supplementary Information. While no method yields the best 
performance universally, there are some clear trends that can be 
observed. First, as noted by Kaminow et al.9, the methods that 
perform mapping (either pseudoalignment or pseudoalignment 
with structural constraints) directly to the spliced transcriptome 
alone performed worse than the other approaches—often consid-
erably—under most metrics (the sole exception being the mean 
per-cell relative false-negative rate). Specifically, these approaches 
exhibited a markedly reduced cell-level Spearman correlation with 
the truth, as well as largely inflated relative false-positive expres-
sion (27–32%) and increased mean absolute relative deviations 
(MARD). Among the two evaluated approaches that map only to 
the spliced transcriptome, alevin-fry (in sketch mode) performed 
better than kallisto|bustools. On the other hand, the methods that 
map to expanded references, either the whole genome in the case of 
STARsolo or the splici (spliced and intronic) reference (‘Simulated 
data’ and Supplementary Information) in the case of alevin-fry, 
all generally performed well under the various metrics. STARsolo 
exhibited the highest cell-level Spearman correlation, as well as the 
smallest relative false-positive and relative false-negative rate, while 
alevin-fry exhibited the lowest MARD (both when run in sketch 
mode and when using selective alignment).

To explore the false-positive expression estimates in more 
detail, we plotted the frequency distribution of the number of cells 
in which each gene appears, where genes are sorted in descend-
ing order, independently per method (Fig. 2a). We observed that 
STARsolo and both variants of alevin-fry that make use of the 
splici index followed a very similar frequency distribution, and 

that this was distinct from the frequency distribution followed by 
kallisto|bustools and alevin-fry when mapping only to the spliced 
transcriptome. This suggests that mapping to the spliced transcrip-
tome alone not only results in hundreds of spuriously expressed 
genes per cell, but also many of these genes themselves are inferred 
to be expressed across hundreds of cells.

Although there were differences under all metrics reported by 
the methods mapping to the expanded reference, the magnitude of 
these differences was generally small, and, in particular, was much 
smaller than the difference between any of these methods and those 
methods that map only to the spliced transcriptome. Moreover, we 
observed that, holding the other variables fixed, selective-alignment 
yielded a small but consistent accuracy improvement over pseudo-
alignment with structural constraints. Presumably, this resulted 
largely from the ability of selective-alignment to discard frag-
ments arising from outside the spliced or unspliced transcrip-
tome that would otherwise be spuriously assigned to some target. 
Nonetheless, we observed that pairing the expanded (splici) ref-
erence with an appropriate UMI resolution strategy that is aware 
of both spliced and unspliced gene variants allowed for the use of 
sketch mode (pseudoalignment with structural constraints) in a 
manner that corrected the high number of false-positive expression 
predictions that were otherwise observed when mapping only to 
the spliced transcriptome.

Analysis of a zebrafish pineal gland dataset. To explore the perfor-
mance of alevin-fry in an experimental sample where the alignment 
pipeline has previously been shown to have an impact on down-
stream analysis, we reanalyzed an existing Danio rerio (zebrafish) 
pineal gland dataset10,11.

Shainer and Stemmer11 demonstrated that for these data, 
kallisto|bustools’s quantifications enable the FindClusters func-
tion of Seurat12 to recover two distinct cone photoreceptor (cPhR) 
clusters—the cPhR expressing the red cone opsin (red+ cells) and 
the cPhR expressing parietopsin (PT+ cells). Conversely, when 
using the quantifications from Cell Ranger, the red+ and PT+ cPhR 
clusters are collapsed into a single cPhR cluster that expresses the 
main marker genes for both cPhR clusters. Given that the red+ and 
PT+ cells are two distinct types that represent mutually exclusive 
neuronal fates of photoreceptors in this tissue13, one would likely 
view the separate clusters as an important biological signal.

Table 1 | The performance of the examined tools on the 
simulated data. Each row lists a different quantification method 
being evaluated

Method Mean 
Spearman 
correlation

MARD 
(drop 
NA)

MARD 
(NA"="0)

Mean 
rFP per 
cell

Mean 
rFN per 
cell

STARsolo 0.997 0.031 0.002 0.001 0.005
kallisto|bustools 0.864 0.263 0.024 0.328 0.006
alevin-fry 
(txome, sketch)

0.883 0.226 0.020 0.273 0.006

alevin-fry (splici, 
sketch)

0.988 0.026 0.002 0.011 0.012

alevin-fry (splici, 
sla)

0.992 0.019 0.001 0.004 0.011

Among the variants of alevin-fry, txome stands for mapping against the spliced transcriptome 
reference, splici stands for mapping against the splici reference and sketch (pseudoalignment 
with structural constraints) and sla (selective-alignment) describe the mapping method. Each 
column lists a metric. They are, from left to right, the mean cell-level Spearman correlation of 
gene abundances, the MARD where NA values are dropped and treated as zero and the mean 
relative false-positive and -negative expression per cell. Detailed definitions are in Supplementary 
Information. All metrics are measured on the subset of genes and cells defined by all tested 
methods, and are taken with respect to ground-truth abundances.
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To further investigate the differences demonstrated in Shainer 
and Stemmer11 under a different set of preprocessing tools, we pro-
cessed this data with STARsolo (with UMI resolution strategies 
described in ‘Additional preprocessing and filtering details for a 
zebrafish pineal gland experiment’), kallisto|bustools and alevin-fry 
using unspliced, spliced and ambiguous (USA) mode and the splici 
reference. To normalize across the cell filtering methods, we ran all 
tools to produce unfiltered quantifications, then filtered the result-
ing count matrices using the DropletUtils14 R package. We also 
evaluated the clustering results of all methods on only the subset of 
cellular barcodes discovered by alevin-fry’s knee-finding method.

We first reproduced the analysis performed by Shainer and 
Stemmer11, including the additional methods considered in this 
study. We estimated the high-quality cells using DropletUtils and 
created Seurat objects on the filtered count matrices (details in 
‘Additional preprocessing and filtering details for a zebrafish pineal 
gland experiment’) to find cell clusters (Supplementary figures). As 
previously reported11, we found that kallisto|bustools exhibited two 
distinct cPhR clusters. Likewise, we found that STARsolo, using the 
default 1MM UMI resolution strategy, did not separate these cPhR 
clusters (as expected, since the default STARsolo parameters are 
designed to mimic Cell Ranger9). Alevin-fry, which was not con-
sidered in the original paper, yielded quantifications that resulted in 
two separate cPhR clusters. In accordance with previous results11, we 
found that under the kallisto|bustools quantifications, col14a1b, a 
collagen gene, was detected as the strongest differentially expressed 
gene between the two cPhR clusters. This gene was not detected 
at any appreciable level among any of the cells by STARsolo or 
alevin-fry after the prescribed filtering was applied, despite the fact 
that the alevin-fry quantifications still resulted in two cPhR clus-
ters. This led us to investigate the differences that might be causing 
the clustering of the STARsolo counts to yield a single cPhR cluster 
while both alevin-fry and kallisto|bustools counts yield two cPhR 
clusters for these cells.

We investigated the effect of changing the default UMI resolu-
tion strategy applied by STARsolo. When using both the 1MMDir 
and exact UMI resolution strategies, the STARsolo counts yielded 
two cPhR clusters. In this data, the UMI resolution strategy 
seemed to be an important factor for the signal separating these 
clusters to be detected by Seurat’s clustering algorithm. Notably, 
even when distinct clusters were not found, the t-SNE embed-
ding computed from STARsolo counts placed subsets of the cPhRs 

in different positions in the embedding, and the subsets at these 
different positions expressed, disjointly, the marker genes for the 
red+ and PT+ cells; the clusters were just not separated by the clus-
tering algorithm, as shown in the Supplementary figures.

Next, we investigated the effect of filtering barcodes using the 
emptyDrops function of DropletUtils, rather than the barcode 
frequency inflection point (details in ‘Additional preprocess-
ing and filtering details for a zebrafish pineal gland experiment’). 
When applying this filtering, none of the tested methods yielded 
two cPhR clusters at either of the tested resolution parameters 
(Supplementary figures.). Again, while Seurat did not separate 
these red+ and PT+ cells, an inspection of the placement of the cor-
responding cells in the respective t-SNE embeddings, and the genes 
that they expressed, suggested that a signal distinguishing these cells 
was present in all tested methods.

Additionally, we evaluated the clustering results for the differ-
ent quantification methods restricting the set of barcodes to those 
selected by alevin-fry’s knee-distance filtering procedure (details 
in ‘Additional preprocessing and filtering details for a zebrafish 
pineal gland experiment’). Under this filtering approach, all of 
the tested methods discovered two cPhR clusters at the 0.9 and 
1.2 resolution parameters (Supplementary figures). This was true 
even for STARsolo’s quantification results when using the 1MM 
UMI resolution strategy.

Taken together, these results indicate that the main factors in the 
separation of these clusters during processing are a combination 
of (1) the specific filtering parameters used to retain cell barcodes,  
(2) the UMI deduplication strategy and (3) specific thresholds 
selected for feature detection and filtering. These results are inves-
tigated further in the Supplementary Information. Overall, we 
observed a general tendency for more strict filtering to clarify a sig-
nal between these clusters that can be detected by Seurat’s cluster-
ing algorithm. The signal itself, in terms of the biologically relevant 
opn1lw1 15 and parietopsin16 marker genes, was strong in the quanti-
fications produced by all of the tested methods, if explicitly sought 
out. This suggests that the specific clustering algorithm used may 
affect the ability to automatically separate these distinct clusters of 
cells. We have not investigated this here, but it may be an interesting 
direction for further work.

Finally, we explored the strong differentially expressed gene 
marker signal of the col14a1b gene found between the two cPhR 
clusters in the kallisto|bustools quantifications, which is absent 

Raw FASTQ files
(various protocols)

Transcript targets

Intron targets

salmon alevin
mapping

(selective-alignment ∣ sketch)

RAD file

salmon
index

generate-permit-list

collate

Permit map

knee
unfilltered

valid
expect

force

Exon Intron

Collated
RAD file

quant

cr-like
cr-like-em
parsimony

parsimony-em

Input

Processing

Intermediate

Output

Color key

roe
reference constructor

Spliced

Unspliced

Ambiguous

Single-cell

Single-nucleus

RNA-velocity

Ductal
Ngn3 low EP

Ngn3 high EP

Pre-endocrine
Delta

Epsilon

Beta Alpha

Cell × gene count matrix

Fig. 1 | Overview of the alevin-fry pipeline (operating in USA quantification mode). The arrows highlight the flow of data through the pipeline, whose 
output is a matrix specifying the expected counts of each of the considered splicing states of each gene in each quantified cell.

NATURE METHODS | VOL 19 | MARCH 2022 | 316–322 | www.nature.com/naturemethods318

http://www.nature.com/naturemethods


ARTICLESNATURE METHODS

from the filtered counts of STARsolo and alevin-fry. To the best of 
our knowledge, there is no immediate biological mechanism that 
would lead this gene to be a differential marker between red+ and 
PT+ cells. We performed a detailed, read-level analysis on the 
expression of this gene to explore the causes of this quantification 
difference. While this analysis was computationally intensive, and 
therefore not feasible at scale across experiments or as a standard 
part of preprocessing pipelines, it helped explain the mechanism at 
work and why such differences might manifest.

We ran kallisto3 in bulk mode to isolate the reads that were 
mapped to the constituent transcripts of col14a1b. We extracted 
these reads and attempted to align them to the corresponding tran-
scripts. We found that they almost universally produced poor qual-
ity alignments, where the only long contiguous matches between the 
read and the transcript were stretches of low-complexity sequence 
close to the indexed k-mer length.

We ran BLAST17 to query these reads against the National Center 
for Biotechnology Information (NCBI) nucleotide database to inves-
tigate their potential origins. For reads we examined, the top BLAST 
hits contained the pde6hb (phosphodiesterase 6H, cGMP-specific, 
cone, gamma, paralog b) gene, which has biologically plausible 

expression in this dataset. However, this gene does not appear in the 
Ensembl 101 D. rerio annotation used in this section or the original 
analysis11. Thus, in this case, both STARsolo and alevin-fry avoided 
seemingly misattributing the large number of reads actually arising 
from pde6hb to other genes in the annotation, while kallisto|bustools 
attributed many of these reads to col14a1b, for which there does not 
appear to be any evidence of expression.

The spurious expression of genes when quantifying with a 
pseudoalignment-to-transcriptome based approach has been previ-
ously reported by Kaminow et al.9, and has been reported to result in the 
estimated expression of biologically implausible genes18. In this data-
set, it resulted in the expression of a gene that is detected as the stron-
gest marker between these clusters of interest under kallisto|bustools 
quantifications, and that is almost certainly a spurious result that 
derived from the use of pseudoalignment-to-transcriptome with no 
filtering of mapping results. Generally, such occurrences may not be 
particularly rare, and caution should be applied when interpreting 
metrics such as total gene detection, or median gene or UMI count, 
particularly among methods that use different fragment mapping 
approaches, as larger values of such quantities may indicate reduced 
precision and not just increased sensitivity.
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RNA velocity in a mouse pancreas experiment. The USA mode 
of alevin-fry generates unspliced, spliced and ambiguous counts 
for each gene in each cell. Those counts can be used to estimate 
single-cell RNA velocity19, which represents cellular transcriptional 
kinetics of cells that are sequenced in scRNA-seq. In a Mus musculus 
(mouse) pancreas dataset, the ratio of U:S:A is 0.125:0.806:0.069. 
As RNA velocity estimation methods 19,20 most often take only 
spliced and unspliced counts as the input, the ambiguous counts 
need either to be discarded or to be apportioned toward spliced and 
unspliced counts. We tested seven different strategies for handling 
these ambiguous counts and observed that assigning the ambiguous 
count differently led to distinct velocity and latent time estimates 
(Supplementary Information). Here, we discuss the result of assign-
ing all ambiguous counts as spliced counts, since this coincides with 
the reasonable prior belief that most reads in this type of experiment 
should arise from spliced transcripts (see ‘RNA velocity’ for details). 
By doing so, the ratio of U to S is then 0.125 to 0.875. The stream-
lines in the velocity graph (Fig. 2b) portray the cycling nature of the 
Ductal cells and endocrine progenitors, the cellular development 
process of endocrine progenitors (indicated by the concentration 
of the transcription factor Ngn3) and the differentiation process of 
endocrine cells, which ends with Beta cells at the latest time point, 
as described by Bergen et al.20.

Setting the corresponding RNA velocity-related flags for 
STARsolo (--soloFeatures Gene Velocyto) and for kallisto|bustools 
(--workflow lamanno), returns the counts required by the RNA 
velocity pipelines. The resulting U:S:A ratio of STARsolo counts 
was 0.122:0.834:0.044 and the resulting U:S ratio of kallisto|bustools 
counts was 0.181:0.819 (kallisto|bustools does not report ambigu-
ous counts). Although the ratios were similar across the results of 
all methods, the velocity and the latent time estimation were dis-
tinct. In the velocity graph produced by kallisto|bustools counts 
(Supplementary figures), for example, the streamlines formed a 
back-flow, and the arrows pointed from the differentiated cells 
(Epsilon, Beta and Alpha cells) back toward the pre-endocrine cell 
cluster, corresponding to the results reported in Soneson et al.21. 
The velocity graph derived from STARsolo counts, after assigning 
ambiguous counts to spliced (Supplementary figures), avoided such 
back-flow but did not reveal the cycling population of Ductal cells, 
and some streamlines over the Beta cell cluster pointed in the oppo-
site direction against other streamlines over the same cell population.

Additionally, while the latent time assignments computed by 
scVelo when using the alevin-fry (Supplementary figures) and 
STARsolo (Supplementary figures) counts matched the streamlines 
in their respective velocity graph and those provided in the scVelo 
tutorial, the latent time assignment derived from the kallisto|bustools 
counts were discordant with those of the other methods as well as 
with the directions of velocity arrows leading from the Ductal cell 
cluster and pre-endocrine cell cluster to the differentiated cells. 
Specifically, when using kallisto|bustools counts, the latent time esti-
mated by scVelo (Supplementary figures) originated in the cluster 
of Beta cells, and concorded with the velocity arrows leaving this 
cluster, but ran opposite to the main flow from the Ductal, Ngn3 and 
pre-endocrine clusters into the differentiated cell clusters.

In summary, comparing the velocity graphs generated by all three 
methods on the endocrine pancreas dataset, the velocity stream-
lines and latent time assignments derived from alevin-fry counts 
well delineated the cellular development process of pancreatic 
endocrinogenesis, and those derived from STARsolo recapitulated 
most of the expected biology, but differed in some details, while the 
results derived from the kallisto|bustools counts recapitulated only 
parts of the expected biology.

Processing of a mouse placenta snRNA-seq dataset. Like 
scRNA-seq, snRNA-seq technology is increasingly used to explore 
many types of biological questions, particularly in situations where 

full-cell scRNA-seq would be difficult or dissociation unlikely 
to succeed. In this section, we analyzed a snRNA-seq dataset 
from the mouse placenta22. The details for processing the data-
set can be found in ‘Clustering analysis of snRNA-seq data’ and 
Supplementary Information.

Among the 10,483 high-quality nuclei in the quantifications pro-
cessed by alevin-fry, a total of 17 clusters were found with a cluster-
ing resolution parameter of 0.6. To assign cell types for each cluster, 
a preprocessed Seurat object (Supplementary Information) was used 
as the reference for cell-type classification using Seurat’s anchor 
transfer functionality. In this Seurat object, cells were classified 
as belonging to five major cell types: blood cells, decidual stroma, 
endothelial, fetal mesenchyme and trophoblast. Those cell types 
correspond to the basic structure of the placenta, which consists of 
the maternal decidua, the junctional zone and the labyrinth zone22,23.

By transferring the cell-type annotations from the reference 
Seurat object to the alevin-fry result, all five clusters were detected 
and the t-SNE embedding of the alevin-fry counts was similar to that 
of the reference object (Fig. 2c). This process was also performed for 
the result of STARsolo (Supplementary Figs.) and kallisto|bustools 
(Supplementary Figs.), and the five essential cell types were also 
detected. In conclusion, all three methods were able to retain the 
most relevant biological signals captured in the snRNA-seq experi-
ment, and subsequently produced similar cell-type assignments and 
t-SNE embeddings.

Subsequently, the 7,027 nuclei that were assigned as trophoblast 
in the alevin-fry result were selected to analyze refined trophoblast 
subclusters. As some cell types had only a few corresponding nuclei, 
we set the clustering resolution very high (at 2.5) to detect the 
detailed clustering assignments; 27 clusters were found. Referring 
to anchors from the reference result22 that defined 13 cell types, 12 
of them (all but SynTII precursor) were assigned to these 27 clusters. 
After applying the same procedure, the 6,837 trophoblast nuclei 
assigned under the kallisto|bustools counts resulted in the discovery 
of 11 cell types (all but SynTII precursor and SynTI precursor) and 
the 6,631 trophoblast nuclei assigned under the STARsolo counts 
resulted in ten cell types being found, all but SynTI precursor, LaTP 
and JZP1. The reference labels not assigned across methods gener-
ally had low barcode counts in the reference dataset. Just as with the 
cluster analysis explored in the section ‘Analysis of a zebrafish pineal 
gland dataset’, the ‘absence’ of a cluster depends on the details of the 
filtering approach, intermediate processing and clustering param-
eters, and so the lack of a distinct cluster annotated via reference 
transfer does not necessarily indicate that the relevant biological 
signal was not present in the counts produced by a method.

In summary, all tools demonstrated robust recapitulation of the 
major expected biological signals from this snRNA-seq experiment, 
with alevin-fry recovering slightly more known cell types when sub-
clustering trophoblast nuclei.

Speed and memory usage. Finally, we assessed the speed and 
memory requirements of the three tools tested in this paper across 
the datasets explored in the previous sections as well as using the 
PBMC10k dataset24 with the latest 10x reference annotation. We 
exclude Cell Ranger from this analysis, as it has previously been 
demonstrated that STARsolo can produce results that are almost 
identical to those of Cell Ranger, but that it is much faster and 
requires less RAM9 (‘Details of time and memory benchmarking’).

Among the methods tested, alevin-fry, when using sketch mode, 
was the fastest (Fig. 2d). When processing scRNA-seq data and 
indexing only the spliced transcriptome, kallisto|bustools was the 
second-fastest tool. When both alevin-fry and kallisto|bustools 
are configured to use the spliced transcriptome alone as the map-
ping target, alevin-fry exhibited the lowest memory usage, fol-
lowed by kallisto|bustools. The speed of STARsolo matched that of 
kallisto|bustools as the number of threads was increased (often at 
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around 16 to 20 threads depending on the specific details of the hard-
ware configuration being used), but by virtue of aligning against the 
entire genome it consumed more memory when performing a stan-
dard (spliced) scRNA-seq analysis. As expected, when alevin-fry 
was configured to use the splici reference rather than just the spliced 
transcriptome, there was a moderate increase in the memory usage 
(for example, to roughly 10 GB in dense mode and roughly 6.5 GB 
in sparse mode for the most recent 10x Genomics annotation of 
the Homo sapiens (human) transcriptome). The runtime saw little 
effect when mapping against the splici reference compared to the 
spliced transcriptome, and there also appeared to be only a small 
difference in the mapping speed of alevin-fry when using the sparse 
rather than the dense index. Thus, while mapping against the splici 
reference required more memory, it had only a small effect on the 
runtime and yielded markedly more accurate counts, as it avoided 
the pitfalls of pseudoalignment-to-transcriptome described by 
Kaminow et al.9.

When processing snRNA-seq data, alevin-fry was the fast-
est and most memory-frugal method (Fig. 2d,e). Since STARsolo 
and alevin-fry indices already contained the relevant intronic 
sequence, their index size did not grow when processing 
snRNA-seq samples or preparing RNA velocity inputs. However, 
when processing snRNA-seq data, there was a notable perfor-
mance inversion between STARsolo and kallisto|bustools. The size 
of the kallisto|bustools index grew much larger than those of the 
other tools, and the speed decreased substantially. Thus, depend-
ing on the specific organism and annotation complexity, when 
processing snRNA-seq samples, STARsolo was the second-fastest 
and second-most memory-frugal tool (even when using its dense 
suffix array index). On the dataset examined here, compared to 
alevin-fry (sparse, unfiltered), STARsolo took roughly 2.6 times 
as long and used roughly 6.3 times as much memory while 
kallisto|bustools took roughly 4.1 times as long and used roughly 
13.1 times as much memory.

In summary, in the configuration tested here, alevin-fry was 
the fastest method, on average completing in under half the time 
required by the next-fastest method. It also exhibited tightly con-
trolled peak memory requirements, with processing using the 
sparse index completing in less than 8 GB of memory for all the 
different organisms and datasets processed in this paper. Among 
STARsolo and kallisto|bustools, which method was faster or which 
required less memory depended on the specific type of data being 
processed and the details of the reference being used.

Discussion
We have introduced alevin-fry as an accurate, computationally effi-
cient and lightweight framework for the processing of both sc and 
snRNA-seq data. Compared to both STARsolo and kallisto|bustools, 
alevin-fry is consistently the fastest of these tools and can process 
datasets, on average, in less than half the time taken by the other 
tools. At the same time, when taking advantage of its (already 
constructed) sparse index, alevin-fry can process both sc and 
snRNA-seq data using less than 8 GB of RAM. The splici reference, 
which we propose to use for all types of quantification covered here, 
allows the application of a fast-mapping method (pseudoalignment3 
with structural constraints) while largely avoiding the estimation of 
spurious gene expression that is observed when such approaches are 
applied only to the spliced transcriptome9. This allows alevin-fry 
to quantify expression with considerably increased precision com-
pared to other lightweight tools, while using appreciably less mem-
ory than STARsolo.

Moreover, coupling the splici reference with a UMI reso-
lution method that is aware of the splicing status of different 
indexed targets, we introduce USA mode quantification. This 
unifies scRNA-seq, snRNA-seq and RNA velocity preprocess-
ing using alevin-fry. At the same time, alevin-fry is highly  

configurable, providing flexibility to users at many stages of the 
preprocessing pipeline. For example, at the expense of a higher 
runtime (although not substantially increased peak memory 
usage), even more precise quantifications can be obtained by 
performing selective-alignment25 instead of pseudoalignment3 
with structural constraints. Similarly, multiple options are pro-
vided for barcode (that is, cell) permit-list generation and UMI 
resolution. Alevin-fry can also be used for processing other types 
of experiment, such as spatial scRNA-seq data and feature bar-
coded scRNA-seq data, and we are maintaining a growing suite 
of tutorials at https://combine-lab.github.io/alevin-fry-tutorials. 
As new sc/snRNA-seq technologies are rapidly and continually 
developed, improving methods used to analyze the resulting 
data will require ongoing benchmarking of methods to iden-
tify the strengths of existing techniques and areas for improve-
ment in future approaches. For example, a recent study by You 
et al.26 evaluated many different pipelines for the preprocessing of 
UMI-based scRNA-seq data. Concordant with the current paper, 
You et al.26 found alevin-fry’s performance to be excellent, both 
computationally and in terms of the accuracy and robustness of 
the resulting counts. However, they report that alevin-fry—at least 
when using pseudoalignment with structural constraints—and 
kallisto|bustools demonstrate a left skew in the count distribution 
of pseudogenes and therefore may underestimate the abundance 
of transcripts labeled with this biotype. Studies such as these will 
help guide improvements to existing tools and the development of 
improved methods. Similarly, broad evaluations should be carried 
out for the quantification of snRNA-seq data and the evaluation of 
spliced and unspliced count estimates for purposes such as RNA 
velocity inference. Likewise, in addition to evaluating tools across 
various experimental samples, it will be useful for future stud-
ies to incorporate simulated data into their analysis9. However, 
the current paucity of sequence-level simulators for UMI and 
droplet-based technologies27 makes the extensive use of simulated 
data challenging.

While alevin-fry provides an efficient and flexible framework 
for processing many types of sc/snRNA-seq data, some current 
implementation limitations, and benchmarking studies such as 
that performed by You et al.26, motivate future work. For example, 
the existing mapping and UMI resolution algorithms are likely 
not well-suited to long-read scRNA-seq data, although we want to 
support such protocols in the future. Additionally, it will be use-
ful to investigate what other reference sequences can be incorpo-
rated into the index, and what modifications to the mapping and 
UMI-assignment algorithms can be made, to further improve quan-
tification accuracy and robustness, specifically among challenging 
transcript biotypes such as pseudogenes. Finally, we believe there 
is likely room to improve UMI resolution methodologies further: 
to infer more accurate cell-level molecule counts by, for example, 
modeling biases in the data, accounting for the likelihood with 
which different complex UMI and gene-mapping scenarios may 
arise, and by sharing information across similar cells in a sample or 
even across distinct data modalities.

We believe that alevin-fry strikes a remarkable balance between 
the often-competing criteria of accuracy, performance and flexibil-
ity, and that these characteristics make it an appealing choice for 
preprocessing the rapidly growing collection of high-throughput sc/
snRNA-seq data.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41592-022-01408-3.
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Methods
Alevin-fry is a configurable framework for the processing of sc/snRNA-seq data.  
It makes use of salmon4 for basic barcode and UMI parsing and the mapping of the 
reads to the constructed reference index. The output of salmon, when configured 
to produce output for alevin-fry, is a RAD (reduced alignment data) format file, 
which is a chunk-based, binary file optimized for machine parsing, that encodes 
the relevant information necessary for subsequent (postmapping) processing of 
the data (Supplementary Information). Alevin-fry consumes the salmon output 
directory—containing the RAD file and other relevant meta-information about the 
sample—and processes the data in a number of steps. The main processing steps 
correspond to permit-list generation, RAD file collation and finally, quantification 
of the collated RAD file. We describe the options provided by alevin-fry and 
further details of these specific steps below.

Constructing a reference index. The alevin-fry workflow quantifies sc/snRNA-seq 
data based on a reference index created by salmon. Here, we discuss two types of 
reference sequence that can be used to construct such an index, and describe the 
relative advantages and disadvantages of these options. Regardless of the reference 
over which one decides to build an index, salmon makes use of the pufferfish28 
index, and a dense or sparse index variant can be constructed.

First, at least for the processing of scRNA-seq (not snRNA-seq) data, one might 
consider building a reference index over the spliced transcriptome. The main benefits 
of this approach are that it is simple, and the resulting index tends to be very small. 
For example, when using the spliced transcriptome extracted from the latest 10x 
Genomics version of GRCh38, the (dense) reference index is only roughly 700 MB, 
and the entire mapping and quantification procedure can be performed in roughly 
3 GB of RAM.

However, while the frugal resource use of an index restricted to only the 
spliced transcriptome is appealing, it comes with potential drawbacks. The most 
important drawback, perhaps, is that it results in substantial false-positive rates 
(that is, spuriously detected genes)9. One likely mechanism is that in typical 
scRNA-seq experiments, some fraction of reads (in cases, up to roughly 25%) 
derive from intronic or intergenic sequences rather than from exons9. When 
these true sequences of origin are absent from the index, reads deriving from 
them may sometimes be spuriously assigned to a spliced transcript that shares 
some local sequence similarity with the true locus of origin. The degree to which 
such spurious assignment occurs also depends on the specifics of the algorithm 
used for mapping; for example, the problem is most pronounced when using 
pseudoalignment3 followed by pseudoalignment with structural constraints,  
and is somewhat (but not fully) mitigated when using selective-alignment9.

One alternative is to map to the genome directly, as is done by Cell Ranger 
and STARsolo. This allows consideration of all genomic loci when determining 
the appropriate mapping location for a read, and results in the elimination of 
the false positives that are induced by forcing reads to map only against the 
annotated transcriptome. While building such an index is mostly comprehensive, 
the associated costs are that the index is inevitably larger and the common 
alignment approaches for scRNA-seq data (both Cell Ranger and STARsolo are 
based on STAR29 as their underlying aligner) require considerably more RAM 
during alignment. Further, these approaches require solving the spliced (rather 
than contiguous) alignment problem; while good solutions (such as STAR and 
HISAT230) exist, this problem is more computationally intensive and lightweight 
approaches such as quasi-mapping31 and pseudoalignment3 have not yet been 
adapted to the problem of spliced mapping.

We propose here an alternative middle ground, which is to align against a 
reference that indexes both the spliced transcriptome and the set of (collapsed) 
intron sequences that are likely to generate reads in a typical sc/snRNA-seq 
experiment. We use a reference preparation algorithm to produce what we refer 
to as a splici (spliced + intronic) reference, representing a slight modification 
of references previously used for RNA velocity preprocessing7,21. Further details 
explaining how this reference is constructed are provided in the Supplementary 
Information, and we have developed an R package, named roe, to automate this 
construction process. Unlike the spliced transcriptome alone, this index contains 
the intronic sequences that are likely to give rise to a non-trivial fraction of reads 
in a scRNA-seq experiment, and including these sequences allows one to properly 
resolve read origin and avoid the spurious mapping associated with mapping 
against the spliced transcriptome alone, similar to what is accomplished by decoy 
sequences in bulk RNA-seq quantification25 (although different in execution, as 
the quantification method itself, and not just the mapping algorithm, is aware 
of these sequences). On the other hand, by indexing the spliced transcriptome 
and introns (with flanking sequence) directly, this reference does not require 
spliced alignment and is therefore amenable to both fast contiguous alignment 
algorithms such as selective-alignment25 as well as lightweight approaches such 
as pseudoalignment3. Throughout this paper, we append the mitochondrial genes 
to the splici reference (Supplementary Table 1). We also set the flank length as 
the read length minus five, although the quantification results appear very robust 
to the specific flank length chosen (Supplementary Information). While the size 
of this reference is considerably larger than the spliced transcriptome alone, it is 
still smaller than the genome. For the index used by alevin-fry, a dense index for 
a recent human reference constructed in such a manner requires roughly 10 GB 

of RAM for mapping, while the sparse index requires only around 6.5 GB. We 
demonstrate below how mapping against this index addresses the shortcomings 
of mapping against just the spliced transcriptome, while retaining modest 
memory requirements.

Fragment mapping. As with constructing a reference against which to map reads, 
multiple choices can be made as to exactly how fragments should be mapped to the 
reference. In alevin-fry there are two main options available, selective-alignment25 
and pseudoalignment3 with structural constraints. The mapping of reads is 
performed using the salmon alevin command with the --rad or --sketch flags, 
which instructs the program to produce a RAD file and other auxiliary files for 
subsequent processing with alevin-fry, rather than to quantify the data directly 
with alevin5. Broadly, among the two mapping approaches, selective-alignment 
is more accurate but more computationally intensive. Fragments are mapped 
against the index using maximal exact matches between reads and indexed unitigs 
(uniMEMs) as seeds, which are then chained to determine a putative mapping 
score. Low-scoring putative mappings are discarded, and high-scoring mappings 
are validated using alignment scoring via dynamic programming, based on the 
banded, parallel implementation of minimap2 (ref. 32). All best-scoring alignments 
that are above a user-defined threshold are reported as valid alignments for the 
fragment. The explicit alignment scoring avoids the reporting of mappings where 
the locus with the best set of seed matches is not the locus with the best alignment. 
Likewise, the discarding of alignments below the user-defined threshold ensures 
that fragments arising from some other origin that have no high-quality alignment 
in the indexed reference will not be reported and processed as valid mappings.

On the other hand, pseudoalignment with structural constraints, exposed 
via the --sketch flag, is very fast, but it does not validate mapping locations 
via alignment scoring. This approach first uses a custom implementation of 
pseudoalignment3 to determine which k-mers from the fragment match different 
targets. Subsequently, the implied mappings are subjected to filtering by structural 
constraints requiring that the matches supporting the pseudoalignment are in a 
consistent orientation, are co-linear with respect to the read and the reference, 
and that the stretch (maximum distance between any pair of k-mers comprising 
the mapping) is not too large. While using a splici reference largely eliminates the 
problem of false-positive expression that has previously been reported9 when using 
pseudoalignment-to-transcriptome approaches, enabling accurate quantification 
using this rapid approach, there are still some false-positive mappings that can only 
be properly eliminated with alignment scoring (that is, using selective-alignment).

Permit-list generation. After the reads have been mapped to the target index, 
either using selective-alignment or pseudoalignment with structural constraints, 
the resulting RAD file is inspected to determine the set of cellular barcodes that 
should be used for quantification. In scRNA-seq experiments, cell capture is 
imperfect and thus some fraction of barcodes may correspond to droplets that 
failed to properly capture a cell14. In this case, the fragments associated with these 
barcodes usually exhibit many fewer distinct UMIs mapped to target sequences in 
the index than barcodes corresponding to properly captured cells. Likewise, errors 
that occur during PCR amplification and sequencing can ‘corrupt’ the sequence 
of a cellular barcode, so that the barcode observed in the sequenced fragment 
is different from that which was originally attached to the underlying molecule 
before sequencing.

Alevin-fry’s generate-permit-list command works to determine the set of 
cellular barcodes that will eventually be quantified, as well as to perform correction 
of likely corrupted barcodes to the ‘true’ barcode from which they derived. It 
exposes a number of different strategies to determine the set of cellular barcodes 
that should be quantified. The currently supported strategies are --force-cells, 
--expect-cells, --knee-distance, --unfiltered-pl and --valid-bc. A description of all 
available methods is provided in the alevin-fry documentation (https://alevin-fry.
readthedocs.io/en/latest/generate_permit_list.html). Here we briefly describe the 
--knee-distance and --unfiltered-pl strategy, since they are likely to be the most 
commonly selected by users of alevin-fry. This step is also used to apply orientation 
filtering to the mapped records. So, for example, in protocols where all fragments 
are expected to map to the reference in the forward orientation, fragments 
(and their associated barcodes) are only considered valid if at least one forward 
strand mapping exists. Finally, while alevin-fry does keep track of the number 
of unmapped reads corresponding to each barcode for quality control reporting 
purposes, only the mapped reads displaying each barcode are considered for the 
purposes of generating the permit list.

Knee-distance permit-list generation. The knee-distance filtering implemented 
in alevin-fry is a modified implementation of the strategy that is provided in 
the UMI-tools33 software. It is an iterative knee-finding strategy that attempts to 
automatically determine the number of barcodes corresponding to high-quality 
cells by examining the frequency histogram of observed barcodes. Briefly, this 
method first counts the number of reads associated with each barcode, and then 
sorts the barcodes in descending order by their associated read count. It then 
constructs the cumulative distribution function (CDF) from this sorted list of 
frequencies. Finally, it applies an iterative algorithm to attempt to determine the 
optimal number of barcodes to include by looking for a ‘knee’ in the CDF graph. 
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The algorithm considers each barcode in the CDF where its x coordinate is this 
barcode’s rank divided by the total number of barcodes (that is, its normalized 
rank) and the y coordinate is the (normalized) cumulative frequency achieved 
at this barcode. It then computes the distance of this barcode from the baseline 
(defined by the start and end of the CDF). The initial knee is predicted as the 
point that has the maximum distance from this baseline. The algorithm is iterative, 
because experiments with many low-quality barcodes may predict too many 
valid barcodes using this method. Thus, the algorithm is run repeatedly, each 
time considering a prefix of the CDF from index 0 through the previous knee’s 
index times five. Once two subsequent iterations of the algorithm return the same 
knee point, the algorithm terminates. Once the set of ‘permitted’ barcodes has 
been determined by this method, the reads that have barcodes not in this set are 
corrected against it by checking whether they are in one edit distance of some 
barcode in the list; if so, they are attributed to that barcode.

Correcting to an unfiltered permit list. Some technologies, such as 10x Chromium, 
provide a set of specific known and experiment-independent barcodes that will be 
a superset of the barcodes that should be observed in any given sample. This list of 
‘possible’ barcodes can be treated as a set of barcodes against which the observed 
barcodes can be corrected. The --unfiltered-pl option accepts as an argument a 
list of possible barcodes for the sample. When using this argument, the user may 
also pass the --min-reads argument to determine the minimum frequency with 
which a barcode must be seen to be retained. The algorithm used in this mode 
passes over the input records (mapped reads) and counts how many times each of 
the barcodes in the unfiltered permit list occurs exactly. Any barcode occurring 
at least min-reads times will be considered as a present cell. Subsequently, all 
barcodes that did not match a present cell will be searched (at an edit distance 
of up to 1) against the barcodes determined to correspond to present cells. If an 
initially non-matching barcode has a unique neighbor among the barcodes for 
present cells, it will be corrected to that barcode, but if it has no 1-edit neighbor, 
or if it has two or more 1-edit neighbors among that list (that is, its correction 
would be ambiguous), then the record is discarded. Of course, unfiltered 
count matrices constructed in this manner will contain many barcodes not 
corresponding to properly captured cells, and should be subjected to subsequent 
filtering before analysis.

In all cases, the result of the generate-permit-list step of alevin-fry is the 
creation of a correction map that specifies which barcodes are to be quantified, 
and how barcodes are to be corrected against this quantified set, as well as a census 
of the number of observed and valid fragments corresponding to each corrected 
barcode. The census information is used in the subsequent collation step to enable 
an efficient partitioning strategy for collating the records by corrected barcodes.

Collation of RAD files. Once the permit list and correction map have been 
generated, the initial RAD file must be collated by the corrected cellular barcodes: 
this is done using alevin-fry’s collate command. In this phase, all fragments to be 
quantified are grouped together such that those sharing the same barcodes appear 
contiguously in the file. This step of processing serves an analogous purpose as 
the sorting of BUS8 files as done in kallisto|bustools7. However, there are a few 
technical differences that relate to the way in which alevin-fry processes the 
collated RAD files and to the way in which RAD files are structured differently 
from BUS files.

First, the collate command, unlike sorting, does not induce a total order on 
the resulting records. Specifically, while records that pass filtering and have the 
same corrected barcode are guaranteed to occur contiguously in the resulting 
collated file, there is no specific or meaningful order between the segments of the 
file corresponding to individual corrected barcodes. Further, in the set of records 
corresponding to a corrected barcode, there is no ordering or collation among the 
UMIs. This is due, in part, to the fact that all records sharing the same corrected 
barcode will be present in the memory at the same time during the quantification 
phase, as well as the fact that certain UMI resolution strategies apply edit-distance 
collapsing for which UMI collation is insufficient. This means that, in the general 
case, collation can potentially be implemented in a more computationally efficient 
manner than sorting, although in practice multi-threaded sorting of fixed-sized 
records is very efficient. Eliminating the requirement of having sorted records 
also means that the collated records corresponding to each barcode can appear 
at whichever location in the collated output file is desired. This admits extra 
flexibility in how collation is performed. Specifically, corrected barcodes are 
assigned to roughly appear in order of descending frequency in the output collated 
RAD file. This means that the largest (and potentially slowest to process) cells 
will appear near the beginning of the collated RAD file. Since quantification itself 
is multi-threaded, this allows more efficient pipelining of quantification among 
multiple threads. Since threading granularity happens at the level of individual 
cells (that is, the records for the same cell will never be quantified by multiple 
threads at the same time), placing the largest cells early in the quantification phase 
means that one is unlikely to encounter a situation where large and complex cells 
are encountered late in processing, and many threads remain work starved while 
processing for the large cell completes.

The collation strategy implemented in alevin-fry is a two-pass approach. 
First, each corrected barcode is assigned a bucket index; the input RAD file is 

parsed (in parallel by many worker threads) and each record is written to the 
bucket it is assigned based on its corrected barcode. This ensures that all records 
sharing the same corrected barcode are routed to the same bucket. Further, the 
bucket sizes are limited by a user-defined maximum record count to ensure that 
individual buckets can be fully loaded into memory while retaining an overall 
small memory profile. In a second pass, each bucket is read into memory and its 
records are locally collated. This is done by constructing an in-memory hash map 
mapping each corrected barcode in this bucket to the vector of records sharing 
this barcode. Subsequently, each locally collated chunk is appended to the output 
collated RAD file (and optionally compressed if the user passes the --compress 
flag). In the resulting RAD file, the number of chunks is equal to the number of 
cells to be quantified (that is, the number of corrected barcodes) and all of the 
records sharing the same corrected barcode appear consecutively in the file.

Quantification. With the collated RAD file prepared, alevin-fry is able to quantify 
the count for each gene in each cell separately and in parallel via the quant 
command. As with the mapping and permit-list generation phase, a number 
of different UMI resolution strategies are implemented in alevin-fry. Here, we 
briefly describe those strategies—cr-like and cr-like-em—that currently support 
the USA quantification mode that is used throughout this paper. All results 
presented in this paper were computed using the cr-like UMI resolution strategy. 
As opposed to splice unaware quantification (which alevin-fry also supports), 
the USA quantification mode produces a count for each splicing status of each 
gene in each quantified cell. Additional resolution strategies are described in the 
Supplementary Information.

The quantification for each cell is carried out independently and in parallel, so 
we explain the procedure, without loss of generality, for the records corresponding 
to an individual cell. First, read records are collated (in memory) by their 
corresponding UMI. For each UMI, the set of transcripts to which the read maps 
are projected onto the corresponding set of genes. This process is aided by the 
use of a three-element transcript to gene map. Each entry in the map contains the 
name of an individual target sequence from the splici reference, the corresponding 
gene to which this target belongs, and a splicing status, recorded as ‘S’ if the target 
derives from a spliced transcript and ‘U’ if it derives from intronic (unspliced) 
sequence. Each gene is assigned a pair of globally unique identifiers, one 
corresponding to all ‘spliced’ variants of the gene and the other to the ‘unspliced’ 
(intronic) sequences for the gene. The gene-level identifiers corresponding to a 
given record are sorted and deduplicated. All records corresponding to the current 
UMI are iterated in the same fashion, and a count is kept of how many times the 
UMI is associated with a read that maps to each gene identifier (with ‘spliced’ and 
‘unspliced’ identifiers treated as distinct).

After all occurrences of the UMI are observed, the UMI is assigned to the gene 
with the largest frequency. If there is no unique gene with the highest frequency 
of occurrence, then the UMI is discarded if the cr-like resolution strategy is being 
used. On the other hand, if the cr-like-em resolution strategy is being used, a 
gene-level equivalence class is formed from all gene identifiers having the highest 
frequency of mapping for this UMI. Each identifier in the label of the equivalence 
class comprises a gene and a splicing status. The status is ‘U’ if only the unspliced 
identifier of this gene is among the most frequent mapping targets for this UMI, 
it is ‘S’ if only the spliced identifier is among the most frequent, and if both the 
unspliced and spliced identifiers of this gene are among the most frequent mapping 
targets for this UMI then the status is ‘A’ (ambiguous). The UMI is attributed to this 
equivalence class, and an expectation maximization algorithm, such as that used in 
alevin5, is subsequently used to probabilistically allocate counts to specific gene and 
splicing status pairs in the resulting count vector for this cell.

Under both of these resolution strategies, the resulting count matrix contains 
a count not just for each gene in each cell, but the count is further distributed over 
each gene’s splicing status (confidently assigned to spliced molecules from the 
gene, confidently assigned to unspliced molecules from the gene or ambiguous 
in splicing status). Depending on the type of data analysis being performed, 
this count matrix can then be used to directly extract the counts of interest. For 
example, if performing a ‘standard’ single-cell gene expression analysis, one can 
extract the spliced and ambiguous counts for each gene in each cell and sum them 
to produce the equivalent of a standard count matrix. If performing quantification 
on a snRNA-seq sample, the counts from all splicing categories can be summed to 
produce the total UMI count attributed to each gene. For a RNA velocity analysis, 
the spliced and unspliced counts can be separated into distinct matrices and 
provided to a downstream RNA velocity computation tool19,20.

These resolution strategies thus provide a convenient solution for 
quantification of gene expression in a variety of different single-cell settings. The 
same processing approach can be used for the quantification of gene expression 
in single-cell experiments, in single-nucleus experiments or even to provide the 
input for RNA velocity analysis. At the same time, explicitly accounting for the 
unexpected origin of reads (for example, from intronic sequence in single-cell 
experiments) can also greatly mitigate spurious detection of genes exhibited by 
methods that restrict mapping or alignment to only the spliced transcriptome. This 
is possible as these resolution strategies implemented by alevin-fry are designed to 
infer both the gene and splicing status of the underlying fragments, but leave the 
determination of how to combine or aggregate UMIs arising from different splicing 
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statuses to downstream analysis. We provide the function loadFry in the fishpond34 
R package for flexibly processing alevin-fry’s result.

Finally, a number of additional and even more sophisticated resolution 
methods (namely parsimony and parsimony-em) are present in alevin-fry but not 
yet exposed under USA mode. These implement variants on the original UMI 
resolution algorithm introduced by Srivastava et al.5 that applies a parsimony 
condition to approximately determine the minimal set of transcripts that could give 
rise to the observed set of UMIs. These alternative methods are further described 
in the Supplementary Information. We are currently working on adapting these 
algorithms so that they can also be meaningfully applied in alevin-fry’s USA mode.

Additional preprocessing and !ltering details for a zebra!sh pineal gland 
experiment. Di!erent UMI resolution modes of STARsolo. In the section ‘Analysis 
of a zebra"sh pineal gland dataset’, we explored the e%ect of making use of 
di%erent UMI resolution modes that are exposed by STARsolo. Here, we brie$y 
enumerate the modes we evaluated, and summarize their behavior. !e default 
UMI resolution approach of STARsolo is 1MM. !is applies an iterative collapse 
of barcodes mapping to the same gene and separated by a single mismatch; this 
approach is designed to replicate the behavior of Cell Ranger. !e second UMI 
resolution strategy we evaluated is labeled by STARsolo as 1MMDir. !is strategy is 
based on the directional algorithm introduced by Smith et al.33. It builds a directed 
graph that takes into account both the mismatch distance between barcodes 
mapping to the same gene, as well as the relative frequency of these barcodes, 
and then applies a greedy algorithm to resolve the vertices in the graph into a set 
of inferred, distinct UMIs in the original sample before PCR ampli"cation and 
sequencing. Finally, we evaluated the exact UMI deduplication strategy, which 
only deduplicates UMIs that map to the same gene and that have identical UMI 
sequences. While the "rst of these strategies is designed to replicate the behavior 
of Cell Ranger, the last two are not available in Cell Ranger, and therefore are not 
considered by Shainer and Stemmer11.

Cell and feature filtering to reproduce Shainer and Stemmer. To estimate the 
high-confidence cells from empty droplets, the barcodeRank function of 
DropletUtils14 was applied on the count matrices with a lower bound set to 500 
to determine the inflection point on the UMI count of barcodes. Barcodes that 
have a UMI count below the inflection point were regarded as empty droplets, and 
were filtered from the count matrices. The filtered count matrices were then used 
to create a Seurat object using the CreateSeuratObject function with thresholds 
min.cells = 3 and min.feature = 200. These thresholds were used throughout the 
subsequent analyses for the zebrafish dataset.

Cell and feature filtering using emptyDrops. The emptyDrops function in the 
DropletUtils14 R package implements a procedure explicitly designed to model the 
ambient background distribution of expression and select, with some user-selected 
false discovery rate (FDR), the barcodes corresponding to high-quality cells. To 
select cells under this filtering scheme, we filtered the barcodes using emptyDrops 
with the default parameter setting. Using these cells, we created a Seurat object 
using the CreateSeuratObject with min.cells = 3 and min.feature = 200. Given this 
Seurat object, the subsequent filtering, clustering and marker detection procedures 
applied were the same as above, replicating the procedure of the Shainer and 
Stemmer11 analysis.

Cell and feature filtering using alevin-fry knee filtering. To apply cell barcode 
filtering using the knee-distance approach of alevin-fry, we first quantified the 
data with alevin-fry, using the knee-distance method to determine the permit list. 
Subsequently, the unfiltered count matrices for each method were subset to include 
only the barcodes appearing in this permit list. This filtering strategy is more 
conservative than those examined above (that is, fewer cells passed filtering). Using 
these cells, we created a Seurat object using the CreateSeuratObject with min.
cells = 3 and min.feature = 200. Given this Seurat object, the subsequent filtering, 
clustering and marker detection procedures applied were the same as above, 
replicating the procedure of the Shainer and Stemmer11 analysis.

Simulated data. To compare the performance of different tools in terms of 
quantification accuracy, we selected a non-parametric simulation, which was 
introduced by Kaminow et al.9. This simulation is seeded with the PBMC5k 
experiment35. We used the simulated data in which reads derive from across the 
genome at realistic rates (that is, from introns, spliced transcripts and intergenic 
sequences), but without the simulated gene-level multimapping. While this 
simulation does not tie to any parametric model, and therefore is likely to produce 
realistic mapping statistics, it is important to recall the caveat that simulated data 
often fail to recapitulate at least some important aspects of experimental data25. 
This suggests that the performance on simulated data likely represents, in some 
sense, the upper bound of accuracy achievable by these methods on experimental 
data, and the degradation in performance of different methods may vary as the 
complexity of the data increases. Nonetheless, analyzing the accuracy of these tools 
under various metrics on this simulated data provides an important perspective 
on some potential strengths and shortcomings of different methods in a situation 
where the ground-truth counts are known.

RNA velocity. With the development of scRNA-seq technologies, RNA velocity 
analysis has become increasingly popular. Velocyto19 defines single-cell RNA 
velocity as the time derivative of the gene expression state, which is determined 
by the ratio of the spliced and unspliced molecule counts of each individual 
gene. By modeling transcriptional dynamics, RNA velocity can reveal cellular 
differentiation dynamics and developmental lineages present in a given single-cell 
experiment. scVelo20 further enhances RNA velocity computation by eliminating 
the steady-state assumption made by Velocyto, and applying an expectation 
maximization method to solve the differentiation dynamics according to a series of 
master equations. The accurate and robust estimation of RNA velocity remains an 
active and exciting area of research.

To explore preprocessing for RNA velocity analysis, we make use of a mouse 
pancreatic endocrinogenesis dataset introduced by Bastidas-Ponce et al.36 and used 
as an example dataset in the scVelo python package. This experiment is obtained 
with the 10x Genomics Chromium Single Cell 3′ Reagent Kit v2 and the read 
length is 151 nucleotides. To use the cell state annotation information provided 
in the scVelo example dataset, only the 3,696 cells that are included in the scVelo 
example dataset are included in our analysis. The quantified cells are all from stage 
E15.5. The processing was performed on raw FASTQ files retrieved from the Gene 
Expression Omnibus under accession number GSM3852755.

Following the preprocessing steps adopted by scVelo, we downloaded the 
prebuilt mouse mm10 v2.1.0 reference from 10x Genomics. To obtain the 
appropriate input for RNA velocity analysis with alevin-fry, we made use of USA 
mode quantification, kallisto|bustools was run via the kb_python tool with the 
--workflow lamanno option, which results in the generation of two separate output 
matrices corresponding to the spliced and the unspliced counts and STARsolo was 
run with the --soloFeatures Gene Velocyto option.

Depending on the RNA velocity method being used, ambiguous counts (which 
are output separately by STARsolo and alevin-fry) should either be provided 
explicitly, or allocated among the spliced and unspliced counts (or discarded 
entirely). We tested seven different strategies to process the ambiguous counts, 
which are for each gene in each individual cell, (1) discarding the ambiguous 
count, (2) regarding the ambiguous count as spliced, (3) regarding the ambiguous 
count as unspliced, (4) evenly distributing the ambiguous count to spliced and 
unspliced, (5) dividing the ambiguous count by the ratio of confidently spliced 
count to the confidently unspliced count, (6) dividing the ambiguous count by the 
ratio of not-unspliced (spliced and ambiguous) to unspliced and (7) dividing the 
ambiguous counts by the ratio of spliced to not-spliced (unspliced and ambiguous). 
We discuss the results of approach (2) in ‘RNA velocity in a mouse pancreas 
experiment’, and provide all other results in the Supplementary Information.

ScVelo v0.2.3 is used to analyze RNA velocity under a Python v3.8.5 
environment. Cells whose cell barcode is in the scVelo example dataset are kept for 
further analysis. The predefined cell type and uniform manifold approximation 
and projection (UMAP) representation of each cell are obtained from the scVelo 
example dataset. The count matrices generated by all three methods are processed 
as described in Bergen et al.20. Specifically, the count matrices are median 
normalized, only the top 2,000 variable genes are kept, the first- and second-order 
moments of the normalized spliced and unspliced counts of each gene are 
calculated, and the reaction rates and latent variables are recovered. RNA velocity 
is estimated using the dynamical mode, and the directional flow of the estimated 
velocity is visualized in the predefined UMAP37 embedding.

Clustering analysis of snRNA-seq data. To evaluate the process of quantifying 
an snRNA-seq dataset using these preprocessing tools, we performed a cell-type 
clustering analysis for the E14.5 samples from a snRNA-seq mouse placenta 
dataset22 using Seurat v4.0.1 (ref. 12) under an R v4.0.5 environment. The nuclei 
were captured with the Chromium Single Cell 3′ Reagent V3 Kit from 10x 
Genomics, and the read length is 150 nucleotides. These raw reads were accessed 
from the Gene Expression Omnibus under accession code GSM4609872. When 
analyzing single-nucleus RNA-seq data, we sum the USA counts returned 
by alevin-fry to get the overall count of each gene in each cell. Likewise, 
kallisto|bustools is run via the kb_python tool with the --workflow nucleus option 
specified, and STARsolo is run with the --soloFeatures GeneFull option.

To compare the results from different quantification tools in the snRNA-seq 
setting under a consistent and robust barcode filtering approach, we implemented 
the emptyDrops_CR functionality of STARsolo in R. The emptyDrops_CR 
filtering method is, itself, reverse engineered from the hybrid filtering strategy 
of Cell Ranger, which combines filtering based on various thresholds with the 
statistical testing method introduced by Lun et al.14. This functionality is now 
included in the DropletUtils R package as the emptyDropsCellRanger function. 
This method can help to avoid the large number of relatively low-quality barcodes 
that we observed to pass the filtering of emptyDrops in snRNA-seq data. The 
hybrid method makes use of specific thresholds to control the size of the 
candidate pool of high-quality cells. We applied this function to remove putative 
empty droplets from the results of all tools under the same setting, which is the 
default setting in STARsolo. Only barcodes (cells) with FDR-adjusted P values 
less than 0.01 of arising from non-empty droplets, with mitochondrial count 
percentage less than 0.25% and with 500–4,000 expressed genes, were kept for 
further clustering analysis.
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After filtering empty droplets, the RNA counts of each nucleus were 
log-normalized. Next, the top 2,000 variable genes were selected and their gene 
counts were scaled and used in the following steps. Then, principal component 
analysis was conducted with these variable genes, and a subset of significant 
principal components was selected using the JackStraw algorithm implemented 
in Seurat. Using these significant principal components, t-SNE dimensionality 
reduction38 was performed, the nearest neighbor graph was constructed and 
clustering was performed. To assign a cell type to each cluster, the R object 
provided by Marsh and Blelloch22 was used as the reference to transfer the 
cell-type annotation from the reference samples to the query object according to 
the anchor genes determined by the significant principal components using the 
FindTransferAnchors function of Seurat (Supplementary Information).

The nuclei assigned as trophoblast were then selected to explore the trophoblast 
subclusters. Similar to the previous procedure, clusters were found using a subset 
of significant principal components determined by a JackStraw plot, and cell types 
were learned from the trophoblast R object provided as a supplementary file of 
Marsh and Blelloch22.

Details of time and memory benchmarking. All experiments were conducted 
on a server with an Intel Xeon CPU (E5-2699 v4) with 44 cores and clocked at 
2.20 GHz, 512 GB of memory and eight (non-RAID) 3.6 TB Toshiba MG03ACA4 
HDDs. Samples were processed using a Nextflow39 workflow. All tools tested here 
provide multi-threaded capabilities and were run with 16 threads. Experiments 
were run using STARsolo v2.7.9a, salmon v1.5.1, alevin-fry v0.4.0, kb_python 
v0.26.0 (with kallisto v0.46.2 and bustools v0.40.0). STARsolo was run with the 
--soloFeatures Gene option to process single-cell samples, with the --soloFeatures 
GeneFull option to process single-nucleus samples and with the --soloFeatures 
Gene Velocyto option to process samples for RNA velocity analysis. STARsolo 
offers the ability to use either a dense or sampled suffix array index. Here, all tests 
were run using the dense suffix array, which provides the fastest runtime but 
which also requires more memory. If memory is at a greater premium, users can 
instead choose to use the sparse index, which reduces the index size by a factor 
of roughly two but requires roughly 1.7 times as long for processing on average9. 
Kallisto|bustools was run using the kb_python wrapper with --workflow standard 
used for single-cell samples, --workflow nucleus used for single-nucleus samples 
and --workflow lamanno used to process samples for RNA velocity analysis. 
Alevin-fry was run in USA mode on all samples using the --cr-like UMI resolution 
method and the appropriate counts were extracted from the resulting count matrix 
depending on the sample type. Alevin-fry was tested with both the sparse and 
dense index as well as using both the unfiltered permit list and filtering of barcodes 
before quantification using the knee-distance method.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data analyzed in this paper are publicly available. The mouse pancreas dataset, the 
mouse placenta dataset and the zebrafish pineal dataset analyzed during the current 
study are available on NCBI Gene Expression Omnibus, under accession number 
GSM3852755, GSM4609872 and GSM3511193, respectively. The PBMC5k and 
PBMC10k dataset are available from 10x Genomics at https://support.10xgenomics.
com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3 and https://support. 
10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3, 
respectively. The description of the references that were used for mapping the 
sequencing reads from each dataset can be found in Supplementary Table 1.

Code availability
Alevin-fry is written in Rust (https://www.rust-lang.org), and is available under 
the BSD 3-Clause license, as a free and open-source tool at https://github.com/
COMBINE-lab/alevin-fry. The specific version used in this work40 has been 
uploaded to zenodo at https://doi.org/10.5281/zenodo.5799568. The generation 
of RAD files is implemented as part of the alevin command of the salmon tool, 
available at https://github.com/COMBINE-lab/salmon. Both tools are also 
available through bioconda41,42. The roe R package has been developed for the 
construction of splici reference sequences, and it is available at https://github.com/
COMBINE-lab/roe as free and open-source software under the BSD 3-Clause 
license. Useful scripts and functions for simplifying reference preparation and 
quantification as well as utilities for reading alevin-fry output in Python and R 
are available at https://github.com/COMBINE-lab/usefulaf. Support for reading 
alevin-fry output (including USA mode output) has been integrated into the 
fishpond package available at https://github.com/mikelove/fishpond as well as 
through Bioconductor43. The scripts used to perform the analyses in this paper are 
available at https://github.com/COMBINE-lab/alevin-fry-paper-scripts.
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