ARTICLES

nature/methods

‘ '.) Check for updates ‘

https://doi.org/10.1038/541592-022-01408-3

Alevin-fry unlocks rapid, accurate and
memory-frugal quantification of single-cell
RNA-seq data

1, Mohsen Zakeri
2

Dongze He 2, Hirak Sarkar3, Charlotte Soneson*®, Avi Srivastava®?®

and Rob Patro

The rapid growth of high-throughput single-cell and single-nucleus RNA-sequencing (scRNA-seq and snRNA-seq) technologies
has produced a wealth of data over the past few years. The size, volume and distinctive characteristics of these data necessitate
the development of new computational methods to accurately and efficiently quantify sc/snRNA-seq data into count matrices
that constitute the input to downstream analyses. We introduce the alevin-fry framework for quantifying sc/snRNA-seq data.
In addition to being faster and more memory frugal than other accurate quantification approaches, alevin-fry ameliorates the
memory scalability and false-positive expression issues that are exhibited by other lightweight tools. We demonstrate how
alevin-fry can be effectively used to quantify sc/snRNA-seq data, and also how the spliced and unspliced molecule quantifica-
tion required as input for RNA velocity analyses can be seamlessly extracted from the same preprocessed data used to generate

normal gene expression count matrices.

(scRNA-seq) experiments have been growing rapidly in recent
years'. The data generated by various scRNA-seq technologies
have distinct characteristics preventing them from being processed
by the otherwise mature and widely used tools developed for bulk
RNA-seq data’*. While Cell Ranger exists as a commercial solution
for preprocessing data generated using popular 10x Genomics tech-
nologies, it is both computationally and memory intensive, and since
version 3, has been developed as a closed-source product, limiting
the transparency of the methods it implements. Further, it does not
have built-in support for technologies beyond those developed by 10x
Genomics. Therefore, to address the computational challenges that
arise in the processing of high-throughput scRNA-seq data, numer-
ous new approaches for efficient preprocessing have been developed.
Srivastava et al.” introduced alevin, which focused on improv-
ing the computational efficiency of tagged-end scRNA-seq
quantification and also introduced a new approach for resolv-
ing gene-multimapping unique molecular identifiers (UMIs).
Likewise, the raindrop tool® pairs a custom lightweight mapping
approach with a reduced index to count UMIs mapping to genes,
providing a fast-counting approach. Melsted et al.’” introduced
the kallisto|bustools pipeline for processing scRNA-seq data; the
approach focuses on modularity and speed, using pseudoalign-
ment’ to the transcriptome to produce intermediate BUS files® that
are subsequently manipulated using bustools commands.

Most recently, Kaminow et al.” introduced STARsolo, a prepro-
cessing method built directly atop the STAR aligner on which Cell
Ranger also relies. STARsolo focuses on being a fast and easy-to-use
solution for processing single-cell and single-nucleus RNA-seq
(snRNA-seq) data that can be tuned to mimic Cell Ranger, while
being much faster and more memory frugal. However, since it

Both the number and scale of single-cell RNA-sequencing

performs spliced alignment to the genome, STARsolo is more
memory and time-intensive than pseudoalignment to the tran-
scriptome (at least for sScRNA-seq data).

In this work, we present alevin-fry, a configurable framework
for the processing of tagged-end scRNA-seq and snRNA-seq data.
Alevin-fry has been designed as the successor to alevin. It sub-
sumes the core features of alevin, while also providing important
new capabilities and considerably improving the performance
profile, and we anticipate that new method development and fea-
ture additions will take place primarily in the alevin-fry codebase.
Alevin-fry can preprocess scRNA-seq data more quickly than the
next-fastest method, kallisto|bustools, while also vastly reducing the
considerable number of spuriously expressed genes predicted under
pseudoalignment-to-transcriptome approaches’. Simultaneously,
alevin-fry exhibits similar accuracy to STARsolo while processing
data appreciably faster and requiring less memory. In snRNA-seq
data processing, where intronic sequences are often included for
quantification, alevin-fry and STARsolo are both faster and use
less memory than kallisto|bustools. In fact, alevin-fry can process
snRNA-seq data with the same speed and memory efficiency with
which it processes scRNA-seq data, substantially outperforming
both STARsolo and kallisto|bustools. Alevin-fry is an accurate, com-
putationally efficient and easy-to-use tool that presents a unified
framework for preprocessing sc/snRNA-seq data for gene expression
or RNA velocity analysis, making it an appealing choice for process-
ing the diverse and growing array of experiments being performed.

Results

We demonstrate the performance and accuracy of alevin-fry in
a variety of different use cases, and compare its computational
resource usage as well as the quality of its results to those provided by

'Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland, College Park,
MD, USA. 2Department of Computer Science and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD,
USA. 3Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. “Friedrich Miescher Institute for Biomedical Research, Basel,
Switzerland. °SIB Swiss Institute of Bioinformatics, Basel, Switzerland. ®New York Genome Center, New York City, NY, USA. ®e-mail: rob@cs.umd.edu

316

NATURE METHODS | VOL 19 | MARCH 2022 | 316-322 | www.nature.com/naturemethods

mailto:rob@cs.umd.edu
http://orcid.org/0000-0001-8259-7434
http://orcid.org/0000-0002-9856-719X
http://orcid.org/0000-0001-9798-2079
http://orcid.org/0000-0001-8463-1675
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-022-01408-3&domain=pdf
http://www.nature.com/naturemethods

NATURE METHODS

ARTICLES

the other recently introduced tools STARsolo and kallisto|bustools.
We examine results on simulated data (‘Simulated data’), on a
scRNA-seq dataset where the effect of alignment pipelines has pre-
viously been explored (‘Analysis of a zebrafish pineal gland dataset’),
in the context of preparing count matrices for an RNA velocity
analysis (‘RNA velocity in a mouse pancreas experiment’), for the
processing of a snRNA-seq dataset (‘Processing of a mouse placenta
snRNA-seq dataset’) and finally we investigate the overall runtime
and peak memory usage characteristics on this broad array of
datasets (‘Speed and memory usage’).

Overview of alevin-fry. Alevin-fry is a configurable framework for
the processing of (sc/snRNA-seq) data (Fig. 1), supporting many
tagged-end sc/snRNA-seq protocols. After preparing a reference
with respect to which quantification should occur, it makes use of
salmon’ for barcode and UMI parsing and mapping of fragments to
the reference index. Accepting as input this mapping information,
alevin-fry generates a permit list for cellular barcodes that will be
quantified in subsequent steps. Using a multi-threaded approach,
it filters and collates the mapping records for permitted cellular
barcodes to produce a representation optimized for quantification.
During quantification, alevin-fry processes the mapping records
assigned to the permitted cellular barcodes in parallel, and applies
one of the available (user-specified) UMI resolution algorithms to
estimate a count for each gene in each quantified cell. This results
in a gene-by-cell count matrix that can be used for numerous
downstream analyses.

Simulated data. We first evaluated the different methods on data
from a non-parametric simulation first introduced by Kaminow
et al.’. Details about the simulation are provided in the ‘Simulated
data’ section. Table 1 displays the results of different methods as
evaluated under various metrics on the set intersection of the cells
quantified by all methods, where STARsolo was run to perform
Cell Ranger-like barcode filtering. Although Cell Ranger was not
included in this comparison, we expect it to perform very simi-
larly to STARsolo under default parameter settings, as reported
by Kaminow et al.’. The definitions of these metrics are given in
Supplementary Information. While no method vyields the best
performance universally, there are some clear trends that can be
observed. First, as noted by Kaminow et al’, the methods that
perform mapping (either pseudoalignment or pseudoalignment
with structural constraints) directly to the spliced transcriptome
alone performed worse than the other approaches—often consid-
erably—under most metrics (the sole exception being the mean
per-cell relative false-negative rate). Specifically, these approaches
exhibited a markedly reduced cell-level Spearman correlation with
the truth, as well as largely inflated relative false-positive expres-
sion (27-32%) and increased mean absolute relative deviations
(MARD). Among the two evaluated approaches that map only to
the spliced transcriptome, alevin-fry (in sketch mode) performed
better than kallisto|bustools. On the other hand, the methods that
map to expanded references, either the whole genome in the case of
STARsolo or the splici (spliced and intronic) reference (‘Simulated
data’ and Supplementary Information) in the case of alevin-fry,
all generally performed well under the various metrics. STARsolo
exhibited the highest cell-level Spearman correlation, as well as the
smallest relative false-positive and relative false-negative rate, while
alevin-fry exhibited the lowest MARD (both when run in sketch
mode and when using selective alignment).

To explore the false-positive expression estimates in more
detail, we plotted the frequency distribution of the number of cells
in which each gene appears, where genes are sorted in descend-
ing order, independently per method (Fig. 2a). We observed that
STARsolo and both variants of alevin-fry that make use of the
splici index followed a very similar frequency distribution, and

NATURE METHODS | VOL 19 | MARCH 2022 | 316-322 | www.nature.com/naturemethods

Table 1| The performance of the examined tools on the
simulated data. Each row lists a different quantification method
being evaluated

Method Mean MARD MARD Mean Mean
Spearman (drop (NA=0) rFPper rFN per
correlation NA) cell cell

STARsolo 0.997 0.031 0.002 0.001 0.005

kallisto|bustools 0.864 0.263 0.024 0.328 0.006

alevin-fry 0.883 0.226 0.020 0.273 0.006

(txome, sketch)

alevin-fry (splici, 0.988 0.026 0.002 0.0m 0.012

sketch)

alevin-fry (splici, 0.992 0.019 0.001 0.004 0.01

sla)

Among the variants of alevin-fry, txome stands for mapping against the spliced transcriptome
reference, splici stands for mapping against the splici reference and sketch (pseudoalignment
with structural constraints) and sla (selective-alignment) describe the mapping method. Each
column lists a metric. They are, from left to right, the mean cell-level Spearman correlation of
gene abundances, the MARD where NA values are dropped and treated as zero and the mean
relative false-positive and -negative expression per cell. Detailed definitions are in Supplementary
Information. All metrics are measured on the subset of genes and cells defined by all tested
methods, and are taken with respect to ground-truth abundances.

that this was distinct from the frequency distribution followed by
kallisto|bustools and alevin-fry when mapping only to the spliced
transcriptome. This suggests that mapping to the spliced transcrip-
tome alone not only results in hundreds of spuriously expressed
genes per cell, but also many of these genes themselves are inferred
to be expressed across hundreds of cells.

Although there were differences under all metrics reported by
the methods mapping to the expanded reference, the magnitude of
these differences was generally small, and, in particular, was much
smaller than the difference between any of these methods and those
methods that map only to the spliced transcriptome. Moreover, we
observed that, holding the other variables fixed, selective-alignment
yielded a small but consistent accuracy improvement over pseudo-
alignment with structural constraints. Presumably, this resulted
largely from the ability of selective-alignment to discard frag-
ments arising from outside the spliced or unspliced transcrip-
tome that would otherwise be spuriously assigned to some target.
Nonetheless, we observed that pairing the expanded (splici) ref-
erence with an appropriate UMI resolution strategy that is aware
of both spliced and unspliced gene variants allowed for the use of
sketch mode (pseudoalignment with structural constraints) in a
manner that corrected the high number of false-positive expression
predictions that were otherwise observed when mapping only to
the spliced transcriptome.

Analysis of a zebrafish pineal gland dataset. To explore the perfor-
mance of alevin-fry in an experimental sample where the alignment
pipeline has previously been shown to have an impact on down-
stream analysis, we reanalyzed an existing Danio rerio (zebrafish)
pineal gland dataset'*!".

Shainer and Stemmer'' demonstrated that for these data,
kallisto|bustools’s quantifications enable the FindClusters func-
tion of Seurat'’ to recover two distinct cone photoreceptor (cPhR)
clusters—the cPhR expressing the red cone opsin (red+ cells) and
the cPhR expressing parietopsin (PT+cells). Conversely, when
using the quantifications from Cell Ranger, the red+and PT+ cPhR
clusters are collapsed into a single cPhR cluster that expresses the
main marker genes for both cPhR clusters. Given that the red+and
PT+cells are two distinct types that represent mutually exclusive
neuronal fates of photoreceptors in this tissue, one would likely
view the separate clusters as an important biological signal.

317

http://www.nature.com/naturemethods

ARTICLES NATURE METHODS

Raw FASTAQ files
(various protocols)

Input

Processing

Cell x gene count matrix

Color key

salmon alevin
mapping
(selective-alignment | sketch)

salmon
index

Amb\guous ‘ \‘e\od\\\‘
Nal
«
. RAD file
= ; knee
o unfiltered | U
valid generate-permit-list nspliced . .
: Transcript targets expect il Single-nucleus
| - C—
: Intron targets Permit map
‘ collate | Spliced
roe J
reference constructor ._
Collated Single.,
. RAD file Gle-collmy.
gt JEBE 1B
Exon Intron cr-like N
cr-like-em

quant

Fig. 1| Overview of the alevin-fry pipeline (operating in USA quantification mode). The arrows highlight the flow of data through the pipeline, whose
output is a matrix specifying the expected counts of each of the considered splicing states of each gene in each quantified cell.

To further investigate the differences demonstrated in Shainer
and Stemmer'' under a different set of preprocessing tools, we pro-
cessed this data with STARsolo (with UMI resolution strategies
described in ‘Additional preprocessing and filtering details for a
zebrafish pineal gland experiment’), kallisto|bustools and alevin-fry
using unspliced, spliced and ambiguous (USA) mode and the splici
reference. To normalize across the cell filtering methods, we ran all
tools to produce unfiltered quantifications, then filtered the result-
ing count matrices using the DropletUtils'* R package. We also
evaluated the clustering results of all methods on only the subset of
cellular barcodes discovered by alevin-fry’s knee-finding method.

We first reproduced the analysis performed by Shainer and
Stemmer', including the additional methods considered in this
study. We estimated the high-quality cells using DropletUtils and
created Seurat objects on the filtered count matrices (details in
‘Additional preprocessing and filtering details for a zebrafish pineal
gland experiment’) to find cell clusters (Supplementary figures). As
previously reported!, we found that kallisto|bustools exhibited two
distinct cPhR clusters. Likewise, we found that STARsolo, using the
default IMM UMI resolution strategy, did not separate these cPhR
clusters (as expected, since the default STARsolo parameters are
designed to mimic Cell Ranger®). Alevin-fry, which was not con-
sidered in the original paper, yielded quantifications that resulted in
two separate cPhR clusters. In accordance with previous results'!, we
found that under the kallisto|bustools quantifications, coll14alb, a
collagen gene, was detected as the strongest differentially expressed
gene between the two cPhR clusters. This gene was not detected
at any appreciable level among any of the cells by STARsolo or
alevin-fry after the prescribed filtering was applied, despite the fact
that the alevin-fry quantifications still resulted in two cPhR clus-
ters. This led us to investigate the differences that might be causing
the clustering of the STARsolo counts to yield a single cPhR cluster
while both alevin-fry and kallisto|bustools counts yield two cPhR
clusters for these cells.

We investigated the effect of changing the default UMI resolu-
tion strategy applied by STARsolo. When using both the IMMDir
and exact UMI resolution strategies, the STARsolo counts yielded
two cPhR clusters. In this data, the UMI resolution strategy
seemed to be an important factor for the signal separating these
clusters to be detected by Seurat’s clustering algorithm. Notably,
even when distinct clusters were not found, the t-SNE embed-
ding computed from STARsolo counts placed subsets of the cPhRs

318

in different positions in the embedding, and the subsets at these
different positions expressed, disjointly, the marker genes for the
red+and PT+ cells; the clusters were just not separated by the clus-
tering algorithm, as shown in the Supplementary figures.

Next, we investigated the effect of filtering barcodes using the
emptyDrops function of DropletUtils, rather than the barcode
frequency inflection point (details in ‘Additional preprocess-
ing and filtering details for a zebrafish pineal gland experiment’).
When applying this filtering, none of the tested methods yielded
two cPhR clusters at either of the tested resolution parameters
(Supplementary figures.). Again, while Seurat did not separate
these red+and PT+ cells, an inspection of the placement of the cor-
responding cells in the respective t-SNE embeddings, and the genes
that they expressed, suggested that a signal distinguishing these cells
was present in all tested methods.

Additionally, we evaluated the clustering results for the differ-
ent quantification methods restricting the set of barcodes to those
selected by alevin-fry’s knee-distance filtering procedure (details
in ‘Additional preprocessing and filtering details for a zebrafish
pineal gland experiment’). Under this filtering approach, all of
the tested methods discovered two cPhR clusters at the 0.9 and
1.2 resolution parameters (Supplementary figures). This was true
even for STARsolos quantification results when using the 1IMM
UMI resolution strategy.

Taken together, these results indicate that the main factors in the
separation of these clusters during processing are a combination
of (1) the specific filtering parameters used to retain cell barcodes,
(2) the UMI deduplication strategy and (3) specific thresholds
selected for feature detection and filtering. These results are inves-
tigated further in the Supplementary Information. Overall, we
observed a general tendency for more strict filtering to clarify a sig-
nal between these clusters that can be detected by Seurat’s cluster-
ing algorithm. The signal itself, in terms of the biologically relevant
opnllwl " and parietopsin'® marker genes, was strong in the quanti-
fications produced by all of the tested methods, if explicitly sought
out. This suggests that the specific clustering algorithm used may
affect the ability to automatically separate these distinct clusters of
cells. We have not investigated this here, but it may be an interesting
direction for further work.

Finally, we explored the strong differentially expressed gene
marker signal of the colI4alb gene found between the two cPhR
clusters in the kallisto|bustools quantifications, which is absent

NATURE METHODS | VOL 19 | MARCH 2022 | 316-322 | www.nature.com/naturemethods

http://www.nature.com/naturemethods

NATURE METHODS ARTICLES

a c
€ Clusters Trophoblast
@ Endothelial
2 STARsolo . ’? « Decidual stroma
& === Kallistolbustools > Ny .. © Fetal mesenchyme
K%} 3 = Alevin-fry (splici, sketch) » CE WL § * Blood cells
® 107 @ Alevin-fry (txome, sketch) 25 4 = A
2 = Alevin-fry (splici, sla) " Fetal mesénchyme 4
3 . . Ws\lg 3 .
I\ o o - S L,
g 1) g y S
H = F :
< =1 bS Endothelial
2 10'
g 1 ="
= ecidat stroma
E
0
I —
0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 50 25 0 25
Gene rank by frequency t-SNE1
d e
60
mmmm Kallistolbustools Af-knee (sparse) mmmm Kallistolbustools Af-knee (sparse)
STARsolo Af-unfilt (dense) STARsolo Af-unfilt (dense)
Af-knee (dense) mmmm Af-unfilt (sparse) Af-knee (dense) mmmm Af-unfilt (sparse)
6,000 - o
@ 40 -
z 8
)
E 4,000 - g
=
£
g 20
=
2,000 -
& & ® S N @ & ® S D
QO & A N\ 2 Q & A X 2
@ &) N & @ & @) 3 &
\& & > & 8 R & > & 8
o N \ @ N o N N & g
3 & S S @ & N S @
& & & <« s & S & < A5
A S & ~ N RS

Fig. 2 | Comprehensive analysis of the performance pf alevin-fry on real and simulated datasets. a, The frequency distribution of the presence of genes
across all shared cells for STARsolo, kallisto|bustools and alevin-fry (including multiple index types for alevin-fry) on the simulated data. Different colored

lines represent the quantification methods. In the variants of alevin-fry, txome stands for transcriptome reference (that is, just indexing the annotated, spliced,
transcriptome), and sketch (pseudoalignment with structural constraints) and sla (selective-alignment) label the mapping method used to obtain the result.
Due to the similarity of the distributions, the line of STARsolo is occluded by the line of alevin-fry(splici, sla). b, A visualization of the velocity estimation
derived from alevin-fry counts in a UMAP-based embedding after assigning all ambiguous counts as spliced; the streamlines represent the direction of RNA
velocity estimated by scVelo. Points (cells) are colored according to the cell-type annotation. ¢, The t-SNE embedding plot of an alevin-fry processed mouse
placenta snRNA-seq dataset. The color of each nucleus represents the inferred cell-type annotation, which was learned from a reference dataset. d,e, The
timing (d) and peak memory (e) usage for all tools (run with 16 threads) on the different datasets evaluated in this paper. The x axes of d and e represent the

evaluated datasets. The y axis of d represents the runtime of each tool, measured in seconds. The y axis of e denotes the peak memory usage—measured
as the maximum resident set size (rss)—during the execution of each tool. Dashed horizontal lines in d denote 15, 30, 60 and 90 min, respectively. Dashed

horizontal lines in e denote 4, 8, 16 and 32 GB, respectively.

from the filtered counts of STARsolo and alevin-fry. To the best of
our knowledge, there is no immediate biological mechanism that
would lead this gene to be a differential marker between red+and
PT+cells. We performed a detailed, read-level analysis on the
expression of this gene to explore the causes of this quantification
difference. While this analysis was computationally intensive, and
therefore not feasible at scale across experiments or as a standard
part of preprocessing pipelines, it helped explain the mechanism at
work and why such differences might manifest.

We ran kallisto’ in bulk mode to isolate the reads that were
mapped to the constituent transcripts of coll4alb. We extracted
these reads and attempted to align them to the corresponding tran-
scripts. We found that they almost universally produced poor qual-
ity alignments, where the only long contiguous matches between the
read and the transcript were stretches of low-complexity sequence
close to the indexed k-mer length.

We ran BLAST" to query these reads against the National Center
for Biotechnology Information (NCBI) nucleotide database to inves-
tigate their potential origins. For reads we examined, the top BLAST
hits contained the pde6hb (phosphodiesterase 6H, cGMP-specific,
cone, gamma, paralog b) gene, which has biologically plausible

NATURE METHODS | VOL 19 | MARCH 2022 | 316-322 | www.nature.com/naturemethods

expression in this dataset. However, this gene does not appear in the
Ensembl 101 D. rerio annotation used in this section or the original
analysis''. Thus, in this case, both STARsolo and alevin-fry avoided
seemingly misattributing the large number of reads actually arising
from pde6hb to other genes in the annotation, while kallisto|bustools
attributed many of these reads to col14a1b, for which there does not
appear to be any evidence of expression.

The spurious expression of genes when quantifying with a
pseudoalignment-to-transcriptome based approach has been previ-
ouslyreportedbyKaminowetal.’,andhasbeenreportedtoresultinthe
estimated expression of biologically implausible genes'®. In this data-
set, it resulted in the expression of a gene that is detected as the stron-
gest marker between these clusters of interest under kallisto|bustools
quantifications, and that is almost certainly a spurious result that
derived from the use of pseudoalignment-to-transcriptome with no
filtering of mapping results. Generally, such occurrences may not be
particularly rare, and caution should be applied when interpreting
metrics such as total gene detection, or median gene or UMI count,
particularly among methods that use different fragment mapping
approaches, as larger values of such quantities may indicate reduced
precision and not just increased sensitivity.

319

http://www.nature.com/naturemethods

NATURE METHODS

ARTICLES

RNA velocity in a mouse pancreas experiment. The USA mode
of alevin-fry generates unspliced, spliced and ambiguous counts
for each gene in each cell. Those counts can be used to estimate
single-cell RNA velocity", which represents cellular transcriptional
kinetics of cells that are sequenced in scRNA-seq. In a Mus musculus
(mouse) pancreas dataset, the ratio of U:S:A is 0.125:0.806:0.069.
As RNA velocity estimation methods '**° most often take only
spliced and unspliced counts as the input, the ambiguous counts
need either to be discarded or to be apportioned toward spliced and
unspliced counts. We tested seven different strategies for handling
these ambiguous counts and observed that assigning the ambiguous
count differently led to distinct velocity and latent time estimates
(Supplementary Information). Here, we discuss the result of assign-
ing all ambiguous counts as spliced counts, since this coincides with
the reasonable prior belief that most reads in this type of experiment
should arise from spliced transcripts (see RNA velocity’ for details).
By doing so, the ratio of U to S is then 0.125 to 0.875. The stream-
lines in the velocity graph (Fig. 2b) portray the cycling nature of the
Ductal cells and endocrine progenitors, the cellular development
process of endocrine progenitors (indicated by the concentration
of the transcription factor Ngn3) and the differentiation process of
endocrine cells, which ends with Beta cells at the latest time point,
as described by Bergen et al.”.

Setting the corresponding RNA velocity-related flags for
STARsolo (--soloFeatures Gene Velocyto) and for kallisto|bustools
(--workflow lamanno), returns the counts required by the RNA
velocity pipelines. The resulting U:S:A ratio of STARsolo counts
was 0.122:0.834:0.044 and the resulting U:S ratio of kallisto|bustools
counts was 0.181:0.819 (kallisto|bustools does not report ambigu-
ous counts). Although the ratios were similar across the results of
all methods, the velocity and the latent time estimation were dis-
tinct. In the velocity graph produced by kallisto|bustools counts
(Supplementary figures), for example, the streamlines formed a
back-flow, and the arrows pointed from the differentiated cells
(Epsilon, Beta and Alpha cells) back toward the pre-endocrine cell
cluster, corresponding to the results reported in Soneson et al.”’.
The velocity graph derived from STARsolo counts, after assigning
ambiguous counts to spliced (Supplementary figures), avoided such
back-flow but did not reveal the cycling population of Ductal cells,
and some streamlines over the Beta cell cluster pointed in the oppo-
site direction against other streamlines over the same cell population.

Additionally, while the latent time assignments computed by
scVelo when using the alevin-fry (Supplementary figures) and
STARsolo (Supplementary figures) counts matched the streamlines
in their respective velocity graph and those provided in the scVelo
tutorial, the latent time assignment derived from the kallisto|bustools
counts were discordant with those of the other methods as well as
with the directions of velocity arrows leading from the Ductal cell
cluster and pre-endocrine cell cluster to the differentiated cells.
Specifically, when using kallisto|bustools counts, the latent time esti-
mated by scVelo (Supplementary figures) originated in the cluster
of Beta cells, and concorded with the velocity arrows leaving this
cluster, but ran opposite to the main flow from the Ductal, Ngn3 and
pre-endocrine clusters into the differentiated cell clusters.

In summary, comparing the velocity graphs generated by all three
methods on the endocrine pancreas dataset, the velocity stream-
lines and latent time assignments derived from alevin-fry counts
well delineated the cellular development process of pancreatic
endocrinogenesis, and those derived from STARsolo recapitulated
most of the expected biology, but differed in some details, while the
results derived from the kallisto|bustools counts recapitulated only
parts of the expected biology.

Processing of a mouse placenta snRNA-seq dataset. Like
scRNA-seq, snRNA-seq technology is increasingly used to explore

many types of biological questions, particularly in situations where

320

full-cell scRNA-seq would be difficult or dissociation unlikely
to succeed. In this section, we analyzed a snRNA-seq dataset
from the mouse placenta’. The details for processing the data-
set can be found in ‘Clustering analysis of snRNA-seq data’ and
Supplementary Information.

Among the 10,483 high-quality nuclei in the quantifications pro-
cessed by alevin-fry, a total of 17 clusters were found with a cluster-
ing resolution parameter of 0.6. To assign cell types for each cluster,
a preprocessed Seurat object (Supplementary Information) was used
as the reference for cell-type classification using Seurat’s anchor
transfer functionality. In this Seurat object, cells were classified
as belonging to five major cell types: blood cells, decidual stroma,
endothelial, fetal mesenchyme and trophoblast. Those cell types
correspond to the basic structure of the placenta, which consists of
the maternal decidua, the junctional zone and the labyrinth zone’>*.

By transferring the cell-type annotations from the reference
Seurat object to the alevin-fry result, all five clusters were detected
and the t-SNE embedding of the alevin-fry counts was similar to that
of the reference object (Fig. 2c). This process was also performed for
the result of STARsolo (Supplementary Figs.) and kallisto|bustools
(Supplementary Figs.), and the five essential cell types were also
detected. In conclusion, all three methods were able to retain the
most relevant biological signals captured in the snRNA-seq experi-
ment, and subsequently produced similar cell-type assignments and
t-SNE embeddings.

Subsequently, the 7,027 nuclei that were assigned as trophoblast
in the alevin-fry result were selected to analyze refined trophoblast
subclusters. As some cell types had only a few corresponding nuclei,
we set the clustering resolution very high (at 2.5) to detect the
detailed clustering assignments; 27 clusters were found. Referring
to anchors from the reference result? that defined 13 cell types, 12
of them (all but SynTII precursor) were assigned to these 27 clusters.
After applying the same procedure, the 6,837 trophoblast nuclei
assigned under the kallisto|bustools counts resulted in the discovery
of 11 cell types (all but SynTII precursor and SynTI precursor) and
the 6,631 trophoblast nuclei assigned under the STARsolo counts
resulted in ten cell types being found, all but SynTI precursor, LaTP
and JZP1. The reference labels not assigned across methods gener-
ally had low barcode counts in the reference dataset. Just as with the
cluster analysis explored in the section ‘Analysis of a zebrafish pineal
gland dataset), the ‘absence’ of a cluster depends on the details of the
filtering approach, intermediate processing and clustering param-
eters, and so the lack of a distinct cluster annotated via reference
transfer does not necessarily indicate that the relevant biological
signal was not present in the counts produced by a method.

In summary, all tools demonstrated robust recapitulation of the
major expected biological signals from this snRNA-seq experiment,
with alevin-fry recovering slightly more known cell types when sub-
clustering trophoblast nuclei.

Speed and memory usage. Finally, we assessed the speed and
memory requirements of the three tools tested in this paper across
the datasets explored in the previous sections as well as using the
PBMCI10k dataset** with the latest 10x reference annotation. We
exclude Cell Ranger from this analysis, as it has previously been
demonstrated that STARsolo can produce results that are almost
identical to those of Cell Ranger, but that it is much faster and
requires less RAM” (‘Details of time and memory benchmarking’).
Among the methods tested, alevin-fry, when using sketch mode,
was the fastest (Fig. 2d). When processing scRNA-seq data and
indexing only the spliced transcriptome, kallisto|bustools was the
second-fastest tool. When both alevin-fry and kallisto|bustools
are configured to use the spliced transcriptome alone as the map-
ping target, alevin-fry exhibited the lowest memory usage, fol-
lowed by kallisto|bustools. The speed of STARsolo matched that of
kallisto|bustools as the number of threads was increased (often at

NATURE METHODS | VOL 19 | MARCH 2022 | 316-322 | www.nature.com/naturemethods

http://www.nature.com/naturemethods

NATURE METHODS

ARTICLES

around 16 to 20 threads depending on the specific details of the hard-
ware configuration being used), but by virtue of aligning against the
entire genome it consumed more memory when performing a stan-
dard (spliced) scRNA-seq analysis. As expected, when alevin-fry
was configured to use the splici reference rather than just the spliced
transcriptome, there was a moderate increase in the memory usage
(for example, to roughly 10GB in dense mode and roughly 6.5GB
in sparse mode for the most recent 10x Genomics annotation of
the Homo sapiens (human) transcriptome). The runtime saw little
effect when mapping against the splici reference compared to the
spliced transcriptome, and there also appeared to be only a small
difference in the mapping speed of alevin-fry when using the sparse
rather than the dense index. Thus, while mapping against the splici
reference required more memory, it had only a small effect on the
runtime and yielded markedly more accurate counts, as it avoided
the pitfalls of pseudoalignment-to-transcriptome described by
Kaminow et al.’.

When processing snRNA-seq data, alevin-fry was the fast-
est and most memory-frugal method (Fig. 2d,e). Since STARsolo
and alevin-fry indices already contained the relevant intronic
sequence, their index size did not grow when processing
snRNA-seq samples or preparing RNA velocity inputs. However,
when processing snRNA-seq data, there was a notable perfor-
mance inversion between STARsolo and kallisto|bustools. The size
of the kallisto|bustools index grew much larger than those of the
other tools, and the speed decreased substantially. Thus, depend-
ing on the specific organism and annotation complexity, when
processing snRNA-seq samples, STARsolo was the second-fastest
and second-most memory-frugal tool (even when using its dense
suffix array index). On the dataset examined here, compared to
alevin-fry (sparse, unfiltered), STARsolo took roughly 2.6 times
as long and used roughly 6.3 times as much memory while
kallisto|bustools took roughly 4.1 times as long and used roughly
13.1 times as much memory.

In summary, in the configuration tested here, alevin-fry was
the fastest method, on average completing in under half the time
required by the next-fastest method. It also exhibited tightly con-
trolled peak memory requirements, with processing using the
sparse index completing in less than 8 GB of memory for all the
different organisms and datasets processed in this paper. Among
STARsolo and kallisto|bustools, which method was faster or which
required less memory depended on the specific type of data being
processed and the details of the reference being used.

Discussion

We have introduced alevin-fry as an accurate, computationally effi-
cient and lightweight framework for the processing of both sc and
snRNA-seq data. Compared to both STARsolo and kallisto|bustools,
alevin-fry is consistently the fastest of these tools and can process
datasets, on average, in less than half the time taken by the other
tools. At the same time, when taking advantage of its (already
constructed) sparse index, alevin-fry can process both sc and
snRNA-seq data using less than 8 GB of RAM. The splici reference,
which we propose to use for all types of quantification covered here,
allows the application of a fast-mapping method (pseudoalignment’
with structural constraints) while largely avoiding the estimation of
spurious gene expression that is observed when such approaches are
applied only to the spliced transcriptome’. This allows alevin-fry
to quantify expression with considerably increased precision com-
pared to other lightweight tools, while using appreciably less mem-
ory than STARsolo.

Moreover, coupling the splici reference with a UMI reso-
lution method that is aware of the splicing status of different
indexed targets, we introduce USA mode quantification. This
unifies scRNA-seq, snRNA-seq and RNA velocity preprocess-
ing using alevin-fry. At the same time, alevin-fry is highly

NATURE METHODS | VOL 19 | MARCH 2022 | 316-322 | www.nature.com/naturemethods

configurable, providing flexibility to users at many stages of the
preprocessing pipeline. For example, at the expense of a higher
runtime (although not substantially increased peak memory
usage), even more precise quantifications can be obtained by
performing selective-alignment® instead of pseudoalignment’
with structural constraints. Similarly, multiple options are pro-
vided for barcode (that is, cell) permit-list generation and UMI
resolution. Alevin-fry can also be used for processing other types
of experiment, such as spatial scRNA-seq data and feature bar-
coded scRNA-seq data, and we are maintaining a growing suite
of tutorials at https://combine-lab.github.io/alevin-fry-tutorials.
As new sc/snRNA-seq technologies are rapidly and continually
developed, improving methods used to analyze the resulting
data will require ongoing benchmarking of methods to iden-
tify the strengths of existing techniques and areas for improve-
ment in future approaches. For example, a recent study by You
et al.” evaluated many different pipelines for the preprocessing of
UMI-based scRNA-seq data. Concordant with the current paper,
You et al.’* found alevin-fry’s performance to be excellent, both
computationally and in terms of the accuracy and robustness of
the resulting counts. However, they report that alevin-fry—at least
when using pseudoalignment with structural constraints—and
kallisto|bustools demonstrate a left skew in the count distribution
of pseudogenes and therefore may underestimate the abundance
of transcripts labeled with this biotype. Studies such as these will
help guide improvements to existing tools and the development of
improved methods. Similarly, broad evaluations should be carried
out for the quantification of snRNA-seq data and the evaluation of
spliced and unspliced count estimates for purposes such as RNA
velocity inference. Likewise, in addition to evaluating tools across
various experimental samples, it will be useful for future stud-
ies to incorporate simulated data into their analysis’. However,
the current paucity of sequence-level simulators for UMI and
droplet-based technologies”” makes the extensive use of simulated
data challenging.

While alevin-fry provides an efficient and flexible framework
for processing many types of sc/snRNA-seq data, some current
implementation limitations, and benchmarking studies such as
that performed by You et al.**, motivate future work. For example,
the existing mapping and UMI resolution algorithms are likely
not well-suited to long-read scRNA-seq data, although we want to
support such protocols in the future. Additionally, it will be use-
ful to investigate what other reference sequences can be incorpo-
rated into the index, and what modifications to the mapping and
UMI-assignment algorithms can be made, to further improve quan-
tification accuracy and robustness, specifically among challenging
transcript biotypes such as pseudogenes. Finally, we believe there
is likely room to improve UMI resolution methodologies further:
to infer more accurate cell-level molecule counts by, for example,
modeling biases in the data, accounting for the likelihood with
which different complex UMI and gene-mapping scenarios may
arise, and by sharing information across similar cells in a sample or
even across distinct data modalities.

We believe that alevin-fry strikes a remarkable balance between
the often-competing criteria of accuracy, performance and flexibil-
ity, and that these characteristics make it an appealing choice for
preprocessing the rapidly growing collection of high-throughput sc/
snRNA-seq data.

Online content

Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
$41592-022-01408-3.

321

https://combine-lab.github.io/alevin-fry-tutorials
https://doi.org/10.1038/s41592-022-01408-3
https://doi.org/10.1038/s41592-022-01408-3
http://www.nature.com/naturemethods

ARTICLES

NATURE METHODS

Received: 9 July 2021; Accepted: 27 January 2022;
Published online: 11 March 2022

References

1.

2.

Svensson, V., da Veiga Beltrame, E. & Pachter, L. A curated database reveals
trends in single-cell transcriptomics. Database 2020, baaa073 (2020).

Li, B., Ruotti, V,, Stewart, R. M., Thomson, J. A. & Dewey, C. N. RNA-seq
gene expression estimation with read mapping uncertainty. Bioinformatics 26,
493-500 (2010).

Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic
RNA-seq quantification. Nat. Biotechnol. 34, 525-527 (2016).

Patro, R., Duggal, G., Love, M. I, Irizarry, R. A. & Kingsford, C. Salmon
provides fast and bias-aware quantification of transcript expression.

Nat. Methods 14, 417-419 (2017).

Srivastava, A., Malik, L., Smith, T., Sudbery, I. & Patro, R. Alevin efficiently
estimates accurate gene abundances from dscRNA-seq data. Genome Biol. 20,
65 (2019).

Niebler, S., Miiller, A., Hankeln, T. & Schmidt, B. RainDrop: rapid activation
matrix computation for droplet-based single-cell RNA-seq reads. BMC
Bioinformatics 21, 274 (2020).

Melsted, P. et al. Modular, efficient and constant-memory single-cell RNA-seq
preprocessing. Nat. Biotechnol. 39, 813-818 (2021).

Melsted, P., Ntranos, V. & Pachter, L. The barcode, UMI, set format and
BUStools. Bioinformatics 35, 4472-4473 (2019).

Kaminow, B., Yunusov, D. & Dobin. A. STARsolo: accurate, fast and versatile
mapping/quantification of single-cell and single-nucleus RNA-seq data.
Preprint at bioRxiv https://doi.org/10.1101/2021.05.05.442755 (2021).

. Shainer, I. et al. Agouti-related protein 2 is a new player in the teleost stress

response system. Curr. Biol. 29, 2009-2019.e7 (2019).

. Shainer, I. & Stemmer, M. Choice of preprocessing pipeline influences

clustering quality of scRNA-seq datasets. BMC Genomics 22, 661 (2021).

. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184,

3573-3587.€29 (2021).

. Cau, E,, Ronsin, B, Bessiére, L. & Blader, P. A notch-mediated, temporal

asymmetry in BMP pathway activation promotes photoreceptor subtype
diversification. PLoS Biol. 17, €2006250 (2019).

. Lun, A. T. L. et al. EmptyDrops: distinguishing cells from empty droplets in

droplet-based single-cell RNA sequencing data. Genome Biol. 20, 63 (2019).

322

—_

5

16.

18.

19.

20.

2

—

22.

23.

24.

25.

26.

27.

. Crespo, C., Soroldoni, D. & Knust, E. A novel transgenic zebrafish line for
red opsin expression in outer segments of photoreceptor cells. Dev. Dyn. 247,
951-959 (2018).

Wada, S. et al. Color opponency with a single kind of bistable

opsin in the zebrafish pineal organ. Proc. Natl Acad. Sci. USA 115,
11310-11315 (2018).

. Altschul, S. E, Gish, W.,, Miller, W., Myers, E. W. & Lipman, D. J. Basic local
alignment search tool. J. Mol. Biol. 215, 403-410 (1990).

Briining, R. S., Tombor, L., Schulz, M. H., Dimmeler, S. & John, D.
Comparative analysis of common alignment tools for single-cell RNA
sequencing. GigaScience 11, giac001 (2022).

La Manno, G. et al. RNA velocity of single cells. Nature 560,

494-498 (2018).

Bergen, V., Lange, M., Peidli, S., Wolf, E. A. & Theis, E. J. Generalizing RNA
velocity to transient cell states through dynamical modeling. Nat. Biotechnol.
38, 1408-1414 (2020).

. Soneson, C., Srivastava, A., Patro, R. & Stadler, M. B. Preprocessing choices
affect RNA velocity results for droplet scRNA-seq data. PLoS Comput. Biol.
17, €1008585 (2021).

Marsh, B. & Blelloch, R. Single nuclei RNA-seq of mouse placental labyrinth
development. eLife https://doi.org/10.7554/elife.60266 (2020).

Woods, L., Perez-Garcia, V. & Hemberger, M. Regulation of placental
development and its impact on fetal growth—new insights from mouse
models. Front. Endocrinol. https://doi.org/10.3389/fendo.2018.00570 (2018).
10k Peripheral Blood Mononuclear Cells (PBMCs) from a Healthy Donor (v3
Chemistry) (10x Genomics, 2018); https://support.10xgenomics.com/
single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3

Srivastava, A. et al. Alignment and mapping methodology influence transcript
abundance estimation. Genome Biol. 21, 239 (2020).

You, Y. et al. Benchmarking UMI-based single-cell RNA-seq preprocessing
workflows. Genome Biol. 22, 339 (2021).

Sarkar, H., Srivastava, A. & Patro, R. Minnow: a principled framework for
rapid simulation of dscRNA-seq data at the read level. Bioinformatics 35,
i136-1144 (2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

pul

blished maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2022

NATURE METHODS | VOL 19 | MARCH 2022 | 316-322 | www.nature.com/naturemethods

NATURE METHO

TICLES

Methods

Alevin-fry is a configurable framework for the processing of sc/snRNA-seq data.

It makes use of salmon for basic barcode and UMI parsing and the mapping of the
reads to the constructed reference index. The output of salmon, when configured
to produce output for alevin-fry, is a RAD (reduced alignment data) format file,
which is a chunk-based, binary file optimized for machine parsing, that encodes
the relevant information necessary for subsequent (postmapping) processing of
the data (Supplementary Information). Alevin-fry consumes the salmon output
directory—containing the RAD file and other relevant meta-information about the
sample—and processes the data in a number of steps. The main processing steps
correspond to permit-list generation, RAD file collation and finally, quantification
of the collated RAD file. We describe the options provided by alevin-fry and
further details of these specific steps below.

Constructing a reference index. The alevin-fry workflow quantifies sc/snRNA-seq
data based on a reference index created by salmon. Here, we discuss two types of
reference sequence that can be used to construct such an index, and describe the
relative advantages and disadvantages of these options. Regardless of the reference
over which one decides to build an index, salmon makes use of the pufferfish*
index, and a dense or sparse index variant can be constructed.

First, at least for the processing of scRNA-seq (not snRNA-seq) data, one might
consider building a reference index over the spliced transcriptome. The main benefits
of this approach are that it is simple, and the resulting index tends to be very small.
For example, when using the spliced transcriptome extracted from the latest 10x
Genomics version of GRCh38, the (dense) reference index is only roughly 700 MB,
and the entire mapping and quantification procedure can be performed in roughly
3GB of RAM.

However, while the frugal resource use of an index restricted to only the
spliced transcriptome is appealing, it comes with potential drawbacks. The most
important drawback, perhaps, is that it results in substantial false-positive rates
(that is, spuriously detected genes)’. One likely mechanism is that in typical
scRNA-seq experiments, some fraction of reads (in cases, up to roughly 25%)
derive from intronic or intergenic sequences rather than from exons’. When
these true sequences of origin are absent from the index, reads deriving from
them may sometimes be spuriously assigned to a spliced transcript that shares
some local sequence similarity with the true locus of origin. The degree to which
such spurious assignment occurs also depends on the specifics of the algorithm
used for mapping; for example, the problem is most pronounced when using
pseudoalignment’ followed by pseudoalignment with structural constraints,
and is somewhat (but not fully) mitigated when using selective-alignment’.

One alternative is to map to the genome directly, as is done by Cell Ranger
and STARsolo. This allows consideration of all genomic loci when determining
the appropriate mapping location for a read, and results in the elimination of
the false positives that are induced by forcing reads to map only against the
annotated transcriptome. While building such an index is mostly comprehensive,
the associated costs are that the index is inevitably larger and the common
alignment approaches for scRNA-seq data (both Cell Ranger and STARsolo are
based on STAR” as their underlying aligner) require considerably more RAM
during alignment. Further, these approaches require solving the spliced (rather
than contiguous) alignment problem; while good solutions (such as STAR and
HISAT2") exist, this problem is more computationally intensive and lightweight
approaches such as quasi-mapping’ and pseudoalignment® have not yet been
adapted to the problem of spliced mapping.

‘We propose here an alternative middle ground, which is to align against a
reference that indexes both the spliced transcriptome and the set of (collapsed)
intron sequences that are likely to generate reads in a typical sc/snRNA-seq
experiment. We use a reference preparation algorithm to produce what we refer
to as a splici (spliced + intronic) reference, representing a slight modification
of references previously used for RNA velocity preprocessing””'. Further details
explaining how this reference is constructed are provided in the Supplementary
Information, and we have developed an R package, named roe, to automate this
construction process. Unlike the spliced transcriptome alone, this index contains
the intronic sequences that are likely to give rise to a non-trivial fraction of reads
in a scRNA-seq experiment, and including these sequences allows one to properly
resolve read origin and avoid the spurious mapping associated with mapping
against the spliced transcriptome alone, similar to what is accomplished by decoy
sequences in bulk RNA-seq quantification” (although different in execution, as
the quantification method itself, and not just the mapping algorithm, is aware
of these sequences). On the other hand, by indexing the spliced transcriptome
and introns (with flanking sequence) directly, this reference does not require
spliced alignment and is therefore amenable to both fast contiguous alignment
algorithms such as selective-alignment* as well as lightweight approaches such
as pseudoalignment’. Throughout this paper, we append the mitochondrial genes
to the splici reference (Supplementary Table 1). We also set the flank length as
the read length minus five, although the quantification results appear very robust
to the specific flank length chosen (Supplementary Information). While the size
of this reference is considerably larger than the spliced transcriptome alone, it is
still smaller than the genome. For the index used by alevin-fry, a dense index for
a recent human reference constructed in such a manner requires roughly 10 GB

NATURE METHODS | www.nature.com/naturemethods

of RAM for mapping, while the sparse index requires only around 6.5 GB. We
demonstrate below how mapping against this index addresses the shortcomings
of mapping against just the spliced transcriptome, while retaining modest
memory requirements.

Fragment mapping. As with constructing a reference against which to map reads,
multiple choices can be made as to exactly how fragments should be mapped to the
reference. In alevin-fry there are two main options available, selective-alignment
and pseudoalignment’ with structural constraints. The mapping of reads is
performed using the salmon alevin command with the --rad or --sketch flags,
which instructs the program to produce a RAD file and other auxiliary files for
subsequent processing with alevin-fry, rather than to quantify the data directly
with alevin®. Broadly, among the two mapping approaches, selective-alignment
is more accurate but more computationally intensive. Fragments are mapped
against the index using maximal exact matches between reads and indexed unitigs
(uniMEMs) as seeds, which are then chained to determine a putative mapping
score. Low-scoring putative mappings are discarded, and high-scoring mappings
are validated using alignment scoring via dynamic programming, based on the
banded, parallel implementation of minimap2 (ref. **). All best-scoring alignments
that are above a user-defined threshold are reported as valid alignments for the
fragment. The explicit alignment scoring avoids the reporting of mappings where
the locus with the best set of seed matches is not the locus with the best alignment.
Likewise, the discarding of alignments below the user-defined threshold ensures
that fragments arising from some other origin that have no high-quality alignment
in the indexed reference will not be reported and processed as valid mappings.

On the other hand, pseudoalignment with structural constraints, exposed
via the --sketch flag, is very fast, but it does not validate mapping locations
via alignment scoring. This approach first uses a custom implementation of
pseudoalignment’ to determine which k-mers from the fragment match different
targets. Subsequently, the implied mappings are subjected to filtering by structural
constraints requiring that the matches supporting the pseudoalignment are in a
consistent orientation, are co-linear with respect to the read and the reference,
and that the stretch (maximum distance between any pair of k-mers comprising
the mapping) is not too large. While using a splici reference largely eliminates the
problem of false-positive expression that has previously been reported’ when using
pseudoalignment-to-transcriptome approaches, enabling accurate quantification
using this rapid approach, there are still some false-positive mappings that can only
be properly eliminated with alignment scoring (that is, using selective-alignment).

Permit-list generation. After the reads have been mapped to the target index,
either using selective-alignment or pseudoalignment with structural constraints,
the resulting RAD file is inspected to determine the set of cellular barcodes that
should be used for quantification. In scRNA-seq experiments, cell capture is
imperfect and thus some fraction of barcodes may correspond to droplets that
failed to properly capture a cell". In this case, the fragments associated with these
barcodes usually exhibit many fewer distinct UMIs mapped to target sequences in
the index than barcodes corresponding to properly captured cells. Likewise, errors
that occur during PCR amplification and sequencing can ‘corrupt’ the sequence
of a cellular barcode, so that the barcode observed in the sequenced fragment

is different from that which was originally attached to the underlying molecule
before sequencing.

Alevin-fry’s generate-permit-list command works to determine the set of
cellular barcodes that will eventually be quantified, as well as to perform correction
of likely corrupted barcodes to the ‘true’ barcode from which they derived. It
exposes a number of different strategies to determine the set of cellular barcodes
that should be quantified. The currently supported strategies are --force-cells,
--expect-cells, --knee-distance, --unfiltered-pl and --valid-bc. A description of all
available methods is provided in the alevin-fry documentation (https://alevin-fry.
readthedocs.io/en/latest/generate_permit_list.html). Here we briefly describe the
--knee-distance and --unfiltered-pl strategy, since they are likely to be the most
commonly selected by users of alevin-fry. This step is also used to apply orientation
filtering to the mapped records. So, for example, in protocols where all fragments
are expected to map to the reference in the forward orientation, fragments
(and their associated barcodes) are only considered valid if at least one forward
strand mapping exists. Finally, while alevin-fry does keep track of the number
of unmapped reads corresponding to each barcode for quality control reporting
purposes, only the mapped reads displaying each barcode are considered for the
purposes of generating the permit list.

Knee-distance permit-list generation. The knee-distance filtering implemented

in alevin-fry is a modified implementation of the strategy that is provided in

the UMI-tools™ software. It is an iterative knee-finding strategy that attempts to
automatically determine the number of barcodes corresponding to high-quality
cells by examining the frequency histogram of observed barcodes. Briefly, this
method first counts the number of reads associated with each barcode, and then
sorts the barcodes in descending order by their associated read count. It then
constructs the cumulative distribution function (CDF) from this sorted list of
frequencies. Finally, it applies an iterative algorithm to attempt to determine the
optimal number of barcodes to include by looking for a ‘knee’ in the CDF graph.

TICLES NATURE METHO

The algorithm considers each barcode in the CDF where its x coordinate is this
barcode’s rank divided by the total number of barcodes (that is, its normalized
rank) and the y coordinate is the (normalized) cumulative frequency achieved

at this barcode. It then computes the distance of this barcode from the baseline
(defined by the start and end of the CDF). The initial knee is predicted as the
point that has the maximum distance from this baseline. The algorithm is iterative,
because experiments with many low-quality barcodes may predict too many
valid barcodes using this method. Thus, the algorithm is run repeatedly, each
time considering a prefix of the CDF from index 0 through the previous knee’s
index times five. Once two subsequent iterations of the algorithm return the same
knee point, the algorithm terminates. Once the set of ‘permitted’ barcodes has
been determined by this method, the reads that have barcodes not in this set are
corrected against it by checking whether they are in one edit distance of some
barcode in the list; if so, they are attributed to that barcode.

Correcting to an unfiltered permit list. Some technologies, such as 10x Chromium,
provide a set of specific known and experiment-independent barcodes that will be
a superset of the barcodes that should be observed in any given sample. This list of
‘possible’ barcodes can be treated as a set of barcodes against which the observed
barcodes can be corrected. The --unfiltered-pl option accepts as an argument a
list of possible barcodes for the sample. When using this argument, the user may
also pass the --min-reads argument to determine the minimum frequency with
which a barcode must be seen to be retained. The algorithm used in this mode
passes over the input records (mapped reads) and counts how many times each of
the barcodes in the unfiltered permit list occurs exactly. Any barcode occurring

at least min-reads times will be considered as a present cell. Subsequently, all
barcodes that did not match a present cell will be searched (at an edit distance

of up to 1) against the barcodes determined to correspond to present cells. If an
initially non-matching barcode has a unique neighbor among the barcodes for
present cells, it will be corrected to that barcode, but if it has no 1-edit neighbor,
or if it has two or more 1-edit neighbors among that list (that is, its correction
would be ambiguous), then the record is discarded. Of course, unfiltered

count matrices constructed in this manner will contain many barcodes not
corresponding to properly captured cells, and should be subjected to subsequent
filtering before analysis.

In all cases, the result of the generate-permit-list step of alevin-fry is the
creation of a correction map that specifies which barcodes are to be quantified,
and how barcodes are to be corrected against this quantified set, as well as a census
of the number of observed and valid fragments corresponding to each corrected
barcode. The census information is used in the subsequent collation step to enable
an efficient partitioning strategy for collating the records by corrected barcodes.

Collation of RAD files. Once the permit list and correction map have been
generated, the initial RAD file must be collated by the corrected cellular barcodes:
this is done using alevin-fry’s collate command. In this phase, all fragments to be
quantified are grouped together such that those sharing the same barcodes appear
contiguously in the file. This step of processing serves an analogous purpose as
the sorting of BUS" files as done in kallisto|bustools’. However, there are a few
technical differences that relate to the way in which alevin-fry processes the
collated RAD files and to the way in which RAD files are structured differently
from BUS files.

First, the collate command, unlike sorting, does not induce a total order on
the resulting records. Specifically, while records that pass filtering and have the
same corrected barcode are guaranteed to occur contiguously in the resulting
collated file, there is no specific or meaningful order between the segments of the
file corresponding to individual corrected barcodes. Further, in the set of records
corresponding to a corrected barcode, there is no ordering or collation among the
UMIs. This is due, in part, to the fact that all records sharing the same corrected
barcode will be present in the memory at the same time during the quantification
phase, as well as the fact that certain UMI resolution strategies apply edit-distance
collapsing for which UMI collation is insufficient. This means that, in the general
case, collation can potentially be implemented in a more computationally efficient
manner than sorting, although in practice multi-threaded sorting of fixed-sized
records is very efficient. Eliminating the requirement of having sorted records
also means that the collated records corresponding to each barcode can appear
at whichever location in the collated output file is desired. This admits extra
flexibility in how collation is performed. Specifically, corrected barcodes are
assigned to roughly appear in order of descending frequency in the output collated
RAD file. This means that the largest (and potentially slowest to process) cells
will appear near the beginning of the collated RAD file. Since quantification itself
is multi-threaded, this allows more efficient pipelining of quantification among
multiple threads. Since threading granularity happens at the level of individual
cells (that is, the records for the same cell will never be quantified by multiple
threads at the same time), placing the largest cells early in the quantification phase
means that one is unlikely to encounter a situation where large and complex cells
are encountered late in processing, and many threads remain work starved while
processing for the large cell completes.

The collation strategy implemented in alevin-fry is a two-pass approach.
First, each corrected barcode is assigned a bucket index; the input RAD file is

parsed (in parallel by many worker threads) and each record is written to the
bucket it is assigned based on its corrected barcode. This ensures that all records
sharing the same corrected barcode are routed to the same bucket. Further, the
bucket sizes are limited by a user-defined maximum record count to ensure that
individual buckets can be fully loaded into memory while retaining an overall
small memory profile. In a second pass, each bucket is read into memory and its
records are locally collated. This is done by constructing an in-memory hash map
mapping each corrected barcode in this bucket to the vector of records sharing
this barcode. Subsequently, each locally collated chunk is appended to the output
collated RAD file (and optionally compressed if the user passes the --compress
flag). In the resulting RAD file, the number of chunks is equal to the number of
cells to be quantified (that is, the number of corrected barcodes) and all of the
records sharing the same corrected barcode appear consecutively in the file.

Quantification. With the collated RAD file prepared, alevin-fry is able to quantify
the count for each gene in each cell separately and in parallel via the quant
command. As with the mapping and permit-list generation phase, a number

of different UMI resolution strategies are implemented in alevin-fry. Here, we
briefly describe those strategies—cr-like and cr-like-em—that currently support
the USA quantification mode that is used throughout this paper. All results
presented in this paper were computed using the cr-like UMI resolution strategy.
As opposed to splice unaware quantification (which alevin-fry also supports),
the USA quantification mode produces a count for each splicing status of each
gene in each quantified cell. Additional resolution strategies are described in the
Supplementary Information.

The quantification for each cell is carried out independently and in parallel, so
we explain the procedure, without loss of generality, for the records corresponding
to an individual cell. First, read records are collated (in memory) by their
corresponding UMI. For each UM, the set of transcripts to which the read maps
are projected onto the corresponding set of genes. This process is aided by the
use of a three-element transcript to gene map. Each entry in the map contains the
name of an individual target sequence from the splici reference, the corresponding
gene to which this target belongs, and a splicing status, recorded as ‘S’ if the target
derives from a spliced transcript and ‘U’ if it derives from intronic (unspliced)
sequence. Each gene is assigned a pair of globally unique identifiers, one
corresponding to all ‘spliced’ variants of the gene and the other to the ‘unspliced’
(intronic) sequences for the gene. The gene-level identifiers corresponding to a
given record are sorted and deduplicated. All records corresponding to the current
UMI are iterated in the same fashion, and a count is kept of how many times the
UMI is associated with a read that maps to each gene identifier (with ‘spliced’ and
‘unspliced” identifiers treated as distinct).

After all occurrences of the UMI are observed, the UMI is assigned to the gene
with the largest frequency. If there is no unique gene with the highest frequency
of occurrence, then the UMI is discarded if the cr-like resolution strategy is being
used. On the other hand, if the cr-like-em resolution strategy is being used, a
gene-level equivalence class is formed from all gene identifiers having the highest
frequency of mapping for this UMI. Each identifier in the label of the equivalence
class comprises a gene and a splicing status. The status is ‘U’ if only the unspliced
identifier of this gene is among the most frequent mapping targets for this UMI,
itis ‘S’ if only the spliced identifier is among the most frequent, and if both the
unspliced and spliced identifiers of this gene are among the most frequent mapping
targets for this UMI then the status is ‘A’ (ambiguous). The UMI is attributed to this
equivalence class, and an expectation maximization algorithm, such as that used in
alevin’, is subsequently used to probabilistically allocate counts to specific gene and
splicing status pairs in the resulting count vector for this cell.

Under both of these resolution strategies, the resulting count matrix contains
a count not just for each gene in each cell, but the count is further distributed over
each gene’s splicing status (confidently assigned to spliced molecules from the
gene, confidently assigned to unspliced molecules from the gene or ambiguous
in splicing status). Depending on the type of data analysis being performed,
this count matrix can then be used to directly extract the counts of interest. For
example, if performing a ‘standard’ single-cell gene expression analysis, one can
extract the spliced and ambiguous counts for each gene in each cell and sum them
to produce the equivalent of a standard count matrix. If performing quantification
on a snRNA-seq sample, the counts from all splicing categories can be summed to
produce the total UMI count attributed to each gene. For a RNA velocity analysis,
the spliced and unspliced counts can be separated into distinct matrices and
provided to a downstream RNA velocity computation tool .

These resolution strategies thus provide a convenient solution for
quantification of gene expression in a variety of different single-cell settings. The
same processing approach can be used for the quantification of gene expression
in single-cell experiments, in single-nucleus experiments or even to provide the
input for RNA velocity analysis. At the same time, explicitly accounting for the
unexpected origin of reads (for example, from intronic sequence in single-cell
experiments) can also greatly mitigate spurious detection of genes exhibited by
methods that restrict mapping or alignment to only the spliced transcriptome. This
is possible as these resolution strategies implemented by alevin-fry are designed to
infer both the gene and splicing status of the underlying fragments, but leave the
determination of how to combine or aggregate UMIs arising from different splicing

NATURE METHODS | www.nature.com/naturemethods

NATURE METHODS

ARTICLES

statuses to downstream analysis. We provide the function loadFry in the fishpond*
R package for flexibly processing alevin-fry’s result.

Finally, a number of additional and even more sophisticated resolution
methods (namely parsimony and parsimony-em) are present in alevin-fry but not
yet exposed under USA mode. These implement variants on the original UMI
resolution algorithm introduced by Srivastava et al.” that applies a parsimony
condition to approximately determine the minimal set of transcripts that could give
rise to the observed set of UMIs. These alternative methods are further described
in the Supplementary Information. We are currently working on adapting these
algorithms so that they can also be meaningfully applied in alevin-fry’s USA mode.

Additional preprocessing and filtering details for a zebrafish pineal gland
experiment. Different UMI resolution modes of STARsolo. In the section ‘Analysis
of a zebrafish pineal gland dataset, we explored the effect of making use of
different UMI resolution modes that are exposed by STARsolo. Here, we briefly
enumerate the modes we evaluated, and summarize their behavior. The default
UMI resolution approach of STARsolo is IMM. This applies an iterative collapse
of barcodes mapping to the same gene and separated by a single mismatch; this
approach is designed to replicate the behavior of Cell Ranger. The second UMI
resolution strategy we evaluated is labeled by STARsolo as IMMDir. This strategy is
based on the directional algorithm introduced by Smith et al.”. It builds a directed
graph that takes into account both the mismatch distance between barcodes
mapping to the same gene, as well as the relative frequency of these barcodes,

and then applies a greedy algorithm to resolve the vertices in the graph into a set
of inferred, distinct UMIs in the original sample before PCR amplification and
sequencing. Finally, we evaluated the exact UMI deduplication strategy, which
only deduplicates UMIs that map to the same gene and that have identical UMI
sequences. While the first of these strategies is designed to replicate the behavior
of Cell Ranger, the last two are not available in Cell Ranger, and therefore are not
considered by Shainer and Stemmer'’.

Cell and feature filtering to reproduce Shainer and Stemmer. To estimate the
high-confidence cells from empty droplets, the barcodeRank function of
DropletUtils'* was applied on the count matrices with a lower bound set to 500

to determine the inflection point on the UMI count of barcodes. Barcodes that
have a UMI count below the inflection point were regarded as empty droplets, and
were filtered from the count matrices. The filtered count matrices were then used
to create a Seurat object using the CreateSeuratObject function with thresholds
min.cells =3 and min.feature =200. These thresholds were used throughout the
subsequent analyses for the zebrafish dataset.

Cell and feature filtering using emptyDrops. The emptyDrops function in the
DropletUtils' R package implements a procedure explicitly designed to model the
ambient background distribution of expression and select, with some user-selected
false discovery rate (FDR), the barcodes corresponding to high-quality cells. To
select cells under this filtering scheme, we filtered the barcodes using emptyDrops
with the default parameter setting. Using these cells, we created a Seurat object
using the CreateSeuratObject with min.cells =3 and min.feature =200. Given this
Seurat object, the subsequent filtering, clustering and marker detection procedures
applied were the same as above, replicating the procedure of the Shainer and
Stemmer' analysis.

Cell and feature filtering using alevin-fry knee filtering. To apply cell barcode
filtering using the knee-distance approach of alevin-fry, we first quantified the

data with alevin-fry, using the knee-distance method to determine the permit list.
Subsequently, the unfiltered count matrices for each method were subset to include
only the barcodes appearing in this permit list. This filtering strategy is more
conservative than those examined above (that is, fewer cells passed filtering). Using
these cells, we created a Seurat object using the CreateSeuratObject with min.

cells =3 and min.feature =200. Given this Seurat object, the subsequent filtering,
clustering and marker detection procedures applied were the same as above,
replicating the procedure of the Shainer and Stemmer'" analysis.

Simulated data. To compare the performance of different tools in terms of
quantification accuracy, we selected a non-parametric simulation, which was
introduced by Kaminow et al.”. This simulation is seeded with the PBMC5k
experiment”. We used the simulated data in which reads derive from across the
genome at realistic rates (that is, from introns, spliced transcripts and intergenic
sequences), but without the simulated gene-level multimapping. While this
simulation does not tie to any parametric model, and therefore is likely to produce
realistic mapping statistics, it is important to recall the caveat that simulated data
often fail to recapitulate at least some important aspects of experimental data®.
This suggests that the performance on simulated data likely represents, in some
sense, the upper bound of accuracy achievable by these methods on experimental
data, and the degradation in performance of different methods may vary as the
complexity of the data increases. Nonetheless, analyzing the accuracy of these tools
under various metrics on this simulated data provides an important perspective
on some potential strengths and shortcomings of different methods in a situation
where the ground-truth counts are known.

NATURE METHODS | www.nature.com/naturemethods

RNA velocity. With the development of scRNA-seq technologies, RNA velocity
analysis has become increasingly popular. Velocyto" defines single-cell RNA
velocity as the time derivative of the gene expression state, which is determined
by the ratio of the spliced and unspliced molecule counts of each individual

gene. By modeling transcriptional dynamics, RNA velocity can reveal cellular
differentiation dynamics and developmental lineages present in a given single-cell
experiment. scVelo® further enhances RNA velocity computation by eliminating
the steady-state assumption made by Velocyto, and applying an expectation
maximization method to solve the differentiation dynamics according to a series of
master equations. The accurate and robust estimation of RNA velocity remains an
active and exciting area of research.

To explore preprocessing for RNA velocity analysis, we make use of a mouse
pancreatic endocrinogenesis dataset introduced by Bastidas-Ponce et al.** and used
as an example dataset in the scVelo python package. This experiment is obtained
with the 10x Genomics Chromium Single Cell 3’ Reagent Kit v2 and the read
length is 151 nucleotides. To use the cell state annotation information provided
in the scVelo example dataset, only the 3,696 cells that are included in the scVelo
example dataset are included in our analysis. The quantified cells are all from stage
E15.5. The processing was performed on raw FASTQ files retrieved from the Gene
Expression Omnibus under accession number GSM3852755.

Following the preprocessing steps adopted by scVelo, we downloaded the
prebuilt mouse mm10 v2.1.0 reference from 10x Genomics. To obtain the
appropriate input for RNA velocity analysis with alevin-fry, we made use of USA
mode quantification, kallisto|bustools was run via the kb_python tool with the
--workflow lamanno option, which results in the generation of two separate output
matrices corresponding to the spliced and the unspliced counts and STARsolo was
run with the --soloFeatures Gene Velocyto option.

Depending on the RNA velocity method being used, ambiguous counts (which
are output separately by STARsolo and alevin-fry) should either be provided
explicitly, or allocated among the spliced and unspliced counts (or discarded
entirely). We tested seven different strategies to process the ambiguous counts,
which are for each gene in each individual cell, (1) discarding the ambiguous
count, (2) regarding the ambiguous count as spliced, (3) regarding the ambiguous
count as unspliced, (4) evenly distributing the ambiguous count to spliced and
unspliced, (5) dividing the ambiguous count by the ratio of confidently spliced
count to the confidently unspliced count, (6) dividing the ambiguous count by the
ratio of not-unspliced (spliced and ambiguous) to unspliced and (7) dividing the
ambiguous counts by the ratio of spliced to not-spliced (unspliced and ambiguous).
We discuss the results of approach (2) in ‘RNA velocity in a mouse pancreas
experiment, and provide all other results in the Supplementary Information.

ScVelo v0.2.3 is used to analyze RNA velocity under a Python v3.8.5
environment. Cells whose cell barcode is in the scVelo example dataset are kept for
further analysis. The predefined cell type and uniform manifold approximation
and projection (UMAP) representation of each cell are obtained from the scVelo
example dataset. The count matrices generated by all three methods are processed
as described in Bergen et al.”’. Specifically, the count matrices are median
normalized, only the top 2,000 variable genes are kept, the first- and second-order
moments of the normalized spliced and unspliced counts of each gene are
calculated, and the reaction rates and latent variables are recovered. RNA velocity
is estimated using the dynamical mode, and the directional flow of the estimated
velocity is visualized in the predefined UMAP? embedding.

Clustering analysis of snRNA-seq data. To evaluate the process of quantifying
an snRNA-seq dataset using these preprocessing tools, we performed a cell-type
clustering analysis for the E14.5 samples from a snRNA-seq mouse placenta
dataset”” using Seurat v4.0.1 (ref. *) under an R v4.0.5 environment. The nuclei
were captured with the Chromium Single Cell 3’ Reagent V3 Kit from 10x
Genomics, and the read length is 150 nucleotides. These raw reads were accessed
from the Gene Expression Omnibus under accession code GSM4609872. When
analyzing single-nucleus RNA-seq data, we sum the USA counts returned

by alevin-fry to get the overall count of each gene in each cell. Likewise,
kallisto|bustools is run via the kb_python tool with the --workflow nucleus option
specified, and STARSsolo is run with the --soloFeatures GeneFull option.

To compare the results from different quantification tools in the snRNA-seq
setting under a consistent and robust barcode filtering approach, we implemented
the emptyDrops_CR functionality of STARsolo in R. The emptyDrops_CR
filtering method is, itself, reverse engineered from the hybrid filtering strategy
of Cell Ranger, which combines filtering based on various thresholds with the
statistical testing method introduced by Lun et al."*. This functionality is now
included in the DropletUtils R package as the emptyDropsCellRanger function.
This method can help to avoid the large number of relatively low-quality barcodes
that we observed to pass the filtering of emptyDrops in snRNA-seq data. The
hybrid method makes use of specific thresholds to control the size of the
candidate pool of high-quality cells. We applied this function to remove putative
empty droplets from the results of all tools under the same setting, which is the
default setting in STARsolo. Only barcodes (cells) with FDR-adjusted P values
less than 0.01 of arising from non-empty droplets, with mitochondrial count
percentage less than 0.25% and with 500-4,000 expressed genes, were kept for
further clustering analysis.

ARTICLES

NATURE METHODS

After filtering empty droplets, the RNA counts of each nucleus were
log-normalized. Next, the top 2,000 variable genes were selected and their gene
counts were scaled and used in the following steps. Then, principal component
analysis was conducted with these variable genes, and a subset of significant
principal components was selected using the JackStraw algorithm implemented
in Seurat. Using these significant principal components, t-SNE dimensionality
reduction® was performed, the nearest neighbor graph was constructed and
clustering was performed. To assign a cell type to each cluster, the R object
provided by Marsh and Blelloch® was used as the reference to transfer the
cell-type annotation from the reference samples to the query object according to
the anchor genes determined by the significant principal components using the
FindTransfer Anchors function of Seurat (Supplementary Information).

The nuclei assigned as trophoblast were then selected to explore the trophoblast
subclusters. Similar to the previous procedure, clusters were found using a subset
of significant principal components determined by a JackStraw plot, and cell types
were learned from the trophoblast R object provided as a supplementary file of
Marsh and Blelloch™.

Details of time and memory benchmarking. All experiments were conducted

on a server with an Intel Xeon CPU (E5-2699 v4) with 44 cores and clocked at
2.20 GHz, 512 GB of memory and eight (non-RAID) 3.6 TB Toshiba MG03ACA4
HDDs. Samples were processed using a Nextflow™ workflow. All tools tested here
provide multi-threaded capabilities and were run with 16 threads. Experiments
were run using STARsolo v2.7.9a, salmon v1.5.1, alevin-fry v0.4.0, kb_python
v0.26.0 (with kallisto v0.46.2 and bustools v0.40.0). STARsolo was run with the
--soloFeatures Gene option to process single-cell samples, with the --soloFeatures
GeneFull option to process single-nucleus samples and with the --soloFeatures
Gene Velocyto option to process samples for RNA velocity analysis. STARsolo
offers the ability to use either a dense or sampled suffix array index. Here, all tests
were run using the dense suffix array, which provides the fastest runtime but
which also requires more memory. If memory is at a greater premium, users can
instead choose to use the sparse index, which reduces the index size by a factor

of roughly two but requires roughly 1.7 times as long for processing on average’.
Kallisto|bustools was run using the kb_python wrapper with --workflow standard
used for single-cell samples, --workflow nucleus used for single-nucleus samples
and --workflow lamanno used to process samples for RNA velocity analysis.
Alevin-fry was run in USA mode on all samples using the --cr-like UMI resolution
method and the appropriate counts were extracted from the resulting count matrix
depending on the sample type. Alevin-fry was tested with both the sparse and
dense index as well as using both the unfiltered permit list and filtering of barcodes
before quantification using the knee-distance method.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All data analyzed in this paper are publicly available. The mouse pancreas dataset, the
mouse placenta dataset and the zebrafish pineal dataset analyzed during the current
study are available on NCBI Gene Expression Omnibus, under accession number
GSM 3852755, GSM4609872 and GSM3511193, respectively. The PBMC5k and
PBMC10k dataset are available from 10x Genomics at https://support.10xgenomics.
com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3 and https://support.
10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3,
respectively. The description of the references that were used for mapping the
sequencing reads from each dataset can be found in Supplementary Table 1.

Code availability

Alevin-fry is written in Rust (https://www.rust-lang.org), and is available under
the BSD 3-Clause license, as a free and open-source tool at https://github.com/
COMBINE-lab/alevin-fry. The specific version used in this work" has been
uploaded to zenodo at https://doi.org/10.5281/zenodo.5799568. The generation
of RAD files is implemented as part of the alevin command of the salmon tool,
available at https://github.com/COMBINE-lab/salmon. Both tools are also
available through bioconda*"**. The roe R package has been developed for the
construction of splici reference sequences, and it is available at https://github.com/
COMBINE-lab/roe as free and open-source software under the BSD 3-Clause
license. Useful scripts and functions for simplifying reference preparation and
quantification as well as utilities for reading alevin-fry output in Python and R

are available at https://github.com/COMBINE-lab/usefulaf. Support for reading
alevin-fry output (including USA mode output) has been integrated into the
fishpond package available at https://github.com/mikelove/fishpond as well as
through Bioconductor®. The scripts used to perform the analyses in this paper are
available at https://github.com/COMBINE-lab/alevin-fry-paper-scripts.

References

28. Almodaresi, E, Sarkar, H., Srivastava, A. & Patro, R. A space and
time-efficient index for the compacted colored de Bruijn graph.
Bioinformatics 34, 1169-i177 (2018).

29. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29,
15-21 (2013).

30. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based

genome alignment and genotyping with HISAT2 and HISAT-genotype.
Nat. Biotechnol. 37, 907-915 (2019).

. Srivastava, A., Sarkar, H., Gupta, N. & Patro, R. RapMap: a rapid, sensitive
and accurate tool for mapping RNA-seq reads to transcriptomes.
Bioinformatics 32, i192-i200 (2016).

32. Li. H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics

34, 3094-3100 (2018).

33. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in
unique molecular identifiers to improve quantification accuracy. Genome Res.
27, 491-499 (2017).

34. Zhu, A, Srivastava, A., Ibrahim, J. G., Patro, R. & Love, M. I. Non-parametric
expression analysis using inferential replicate counts. Nucleic Acids Res. 47,
el05-e105 (2019).

35. 5k Peripheral Blood Mononuclear Cells (PBMCs) from a Healthy Donor (v3
Chemistry) (10x Genomics, 2019): https://support.10xgenomics.com/
single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3

36. Bastidas-Ponce, A. et al. Massive single-cell mRNA profiling reveals a detailed
roadmap for pancreatic endocrinogenesis. Development https://doi.
org/10.1242/dev.173849 (2019).

37. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using
UMAP. Nat. Biotechnol. 37, 38-44 (2019).

38. van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579-2605 (2008).

39. Di Tommaso, P. et al. Nextflow enables reproducible computational
workflows. Nat. Biotechnol. 35, 316-319 (2017).

40. He, D. et al. Alevin-fry v0.4.0 for manuscript "Alevin-fry unlocks rapid,
accurate, and memory-frugal quantification of single-cell RNA-seq data".
Zenodo https://doi.org/10.5281/zenodo.5806834 (2021).

. Griining, B. et al. Bioconda: sustainable and comprehensive software
distribution for the life sciences. Nat. Methods 15, 475-476 (2018).

42. He, D. et al. Additional data for manuscript "Alevin-fry unlocks rapid,
accurate, and memory-frugal quantification of single-cell RNA-seq data"
[Data set]. Zenodo https://doi.org/10.5281/zenodo.5799568 (2021).

43. Gentleman, R. C. et al. Bioconductor: open software development
for computational biology and bioinformatics. Genome biology 5(10),

1-16 (2004).

3

—

4

o

Acknowledgements

This work is supported by the National Institute of Health under grant award numbers
ROIHG009937 to R.P. and K99CA267677 to A.S., and the National Science Foundation
under grant award numbers CCF-1750472 to R.P. and CNS-1763680 to R.P. Also, this
project has been made possible in part by grant number CZIF2020-004893 from the
Chan Zuckerberg Initiative Foundation to R.P. The funders had no role in the design of
the method, data analysis, decision to publish or preparation of the manuscript.

Author contributions

All authors conceptualized the method. D.H., A.S., R.P, M.Z. and H.S. implemented the
software. M.Z. and R.P. benchmarked the tools. D.H., R.P. and C.S. analyzed the results.
All authors wrote and approved the manuscript.

Competing interests
R.P. is a cofounder of Ocean Genomics, Inc. The other authors declare no
competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41592-022-01408-3.

Correspondence and requests for materials should be addressed to Rob Patro.

Peer review information Nature Methods thanks Davis McCarthy, David van Dijk and
Matthew Ritchie for their contribution to the peer review of this work. Lin Tang was
the primary editor on this article and managed its editorial process and peer review in
collaboration with the rest of the editorial team. Peer reviewer reports are available.

Reprints and permissions information is available at www.nature.com/reprints.

NATURE METHODS | www.nature.com/naturemethods

natureresearch

Last updated by author(s): Dec 28, 2021

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed
|:| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

D The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name, describe more complex techniques in the Methods section.

[] A description of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

D A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX X X XX X XX &

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection For samples SRR11993485, SRR11993486, SRR11993487 and SRR11993488, fastg-dump v2.8.2 was used for data collection.

Data analysis Rust (v1.55.0), Alevin-fry (v0.4.0), Salmon (v1.5.1), Kallisto (v0.46.2), Bustools (v0.40.0),kb_python (v0.26.0), STAR (v2.7.9a), Cell Ranger
(v5.0.1), Nextflow (v21.04.1.5556), fastg-dump (v2.8.2), Gffread (v0.9.6), R (v4.1.1), Python (v3.8.3 and v3.8.5).
R packages: Seurat (v4.0.2), DropletUtils (v1.13.2), ggplot2 (v3.3.5), SingleCellExperiment (v1.14.1), pheatmap (v1.0.12), reticulate (v1.20).
Python packages: Numpy (v1.19.1 and v1.20), Pandas (v1.1.1 and v1.20), Scanpy (v1.6.0 and v1.7.1), Anndata (v0.7.5), Scipy (v1.5.4 and
v1.6.1), scvelo (v0.2.3), Seaborn (v0.11.1), Matplotlib (v3.3.3), pytimeparse (v1.1.8), Json(v2.0.9), Kneed(v0.7.0).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All data used in this paper are publicly available.
The mouse pancreatic endocrinogenesis scRNA-seq dataset used for generating Figure 3, 5, 6, and S7.1-S7.5 is available in the GEO repository, under accession
number GSM3852755 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3852755).

=
Q
=
c
=
@
—
@
(%]
)
Q
=
a
>
—
D)
e
o
=
S
Q@
%)
c
3
3
Q
=
<

The mouse placenta snRNA-seq dataset used for generating Figure 4, 5, 6, and $9.1-59.4 is available in the GEO repository, under accession number GSM4609872
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4609872).

The Danio rerio pineal dataset used for generating Figure 5, 6, S5.1-55.6 and S6.2-56.4 is available in the GEO repository, under accession number GSM3511193
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3511193).

The PBMC5k dataset used for generating Figure 2 is available at https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_v3.

The human PBMC10k dataset used for generating Figure 5 and 6 is available at 10x Genomics website (https://support.10xgenomics.com/single-cell-gene-
expression/datasets/3.0.0/pbmc_10k_v3).

The mouse mm10v2.1.0 reference sequence file and gene annotation file are available at http://cf.10xgenomics.com/supp/cell-exp/refdata-cellranger-
mm10-2.1.0.tar.gz.

The mouse mm10 2020-A reference sequence file and gene annotation file are available at https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-mm10-2020-
A.tar.gz.

The human 2020A reference sequence file and gene annotation file are available at https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-2020-A.tar.gz.
The human CR3 reference sequence file and gene annotation file are available at https://cf.10xgenomics.com/supp/cell-exp/refdata-cellranger-GRCh38-3.0.0.tar.gz.
The Danio rerio reference sequence file is available at ftp://ftp.ensembl.org/pub/release-101/fasta/danio_rerio/dna/
Danio_rerio.GRCz11.dna_sm.primary_assembly.fa.gz.

The Danio rerio 101 gene annotation file is available at ftp://ftp.ensembl.org/pub/release-101/gtf/danio_rerio/Danio_rerio.GRCz11.101.gtf.gz.

The cellranger v2 barcode permit list is downloaded from https://raw.githubusercontent.com/10XGenomics/cellranger/master/lib/python/cellranger/
barcodes/737K-august-2016.txt -o Stmp_dir/737K-august-2016.txt.

The cellranger V3 barcode permit list is downloaded from https://raw.githubusercontent.com/10XGenomics/cellranger/master/lib/python/cellranger/barcodes/
translation/3M-february-2018.txt.gz.

The mitochondrial sequences used in the analyses can be downloaded from 10.5281/zenodo.5799568.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
[X] Life sciences [] Behavioural & social sciences [| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No data were collected in this study. All datasets analyzed in this study were publicly available and can be downloaded from GEO.
Data exclusions No data were excluded.

Replication Not applicable for this study since new data were not collected.

Randomization Not applicable for this study since new data were not collected.

Blinding Not applicable for this study since new data were not collected.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IZI D ChIP-seq
Eukaryotic cell lines IZI D Flow cytometry
Palaeontology and archaeology IZI D MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data

XXXNXNXXNX s
OoOooogo

Dual use research of concern

=
Q
=
c
=
@
—
@
(%]
)
Q
=
a
>
—
D)
e
o
=
=
S
Q@
%)
c
3
Q
=
<

