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Abstract

absence of ground truth.

Background: There has been rapid development of probabilistic models and inference methods for transcript
abundance estimation from RNA-seq data. These models aim to accurately estimate transcript-level abundances, to
account for different biases in the measurement process, and even to assess uncertainty in resulting estimates that
can be propagated to subsequent analyses. The assumed accuracy of the estimates inferred by such methods under-
pin gene expression based analysis routinely carried out in the lab. Although hyperparameter selection is known to
affect the distributions of inferred abundances (e.g. producing smooth versus sparse estimates), strategies for per-
forming model selection in experimental data have been addressed informally at best.

Results: We derive perplexity for evaluating abundance estimates on fragment sets directly. We adapt perplexity from
the analogous metric used to evaluate language and topic models and extend the metric to carefully account for cor-
ner cases unigue to RNA-seq. In experimental data, estimates with the best perplexity also best correlate with gPCR
measurements. In simulated data, perplexity is well behaved and concordant with genome-wide measurements
against ground truth and differential expression analysis. Furthermore, we demonstrate theoretically and experimen-
tally that perplexity can be computed for arbitrary transcript abundance estimation models.

Conclusions: Alongside the derivation and implementation of perplexity for transcript abundance estimation, our
study is the first to make possible model selection for transcript abundance estimation on experimental data in the
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Background

Due to its accuracy, reproducibility, simplicity and low
cost, RNA-seq has become one of the most popular
high-throughput sequencing assays in contemporary use,
and it has become the de facto method for the profiling
of gene and transcript expression in many different bio-
logical systems. While there are many uses for RNA-seq
that span the gamut from de novo transcriptome assem-
bly [1, 2] through meta-transcriptome profiling [3], one
of the most common uses is to interrogate the gene or
isoform-level expression of known (or newly-assembled)
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transcripts, often with the subsequent goal of performing
a differential analysis between conditions of interest.
Because of the popularity of gene and transcript
expression profiling using RNA-seq, considerable effort
has been expended in developing accurate, robust and
efficient computational methods for inferring transcript
abundance estimates from RNA-seq data. Some popular
approaches focus on counting the aligned RNA-seq reads
that overlap genes in different ways [4, 5]. However, these
approaches have no principled way to deal with reads
that align well to multiple loci (e.g. to different isoforms
of a gene, or between sequence-similar regions of related
genes), and this restricts their use primarily to gene-
level analysis, where they may still under-perform more
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sophisticated approaches that attempt to resolve frag-
ments of ambiguous origin [6].

Alternatively, many approaches offer the ability to esti-
mate transcript-level expression using RNA-seq data
(which can, if later desired by a user, be aggregated to
the gene-level). The majority of these approaches per-
form statistical inference over a probabilistic generative
model of the experiment based either on sufficient sta-
tistics of counts [7, 8] or the set of fragment alignments
themselves [9]. Moreover, in addition to methods focused
on deriving point estimates for transcript abundances,
there has been considerable development of probabilistic
Bayesian approaches for this inference problem [10-15],
as well as recent attempts at multi-sample probabilis-
tic models for simultaneous experiment-wide transcript
abundance estimation [16, 17]. Bayesian approaches can
sometimes offer more accurate or robust inference than
methods based strictly on maximum likelihood estima-
tion, but these Bayesian models invariably expose prior
distributions, with associated hyperparameters, upon
which the resulting inferences depend.

Interestingly, the recommended best practices sug-
gested by the different Bayesian (or variational Bayesian)
approaches for selecting hyperparameters differ. Spe-
cifically, Nariai et al. [12] evaluate performance varying
the prior used in their variational Bayesian expectation
maximization (VBEM)-based method, and they conclude
that a small prior (i.e. @ < 1) leads to a sparse solution,
which, in turn, results in improved accuracy. On the
other hand, Hensman et al. [11] perform inference using
a prior of @ = 1read per transcript. They find that, doing
so, their method produces the most robust estimates (i.e.
with the highest concordance between related replicates)
that are also more accurate under different metrics that
they measure. Their conclusion is that methods adopting
a maximum likelihood model inferred using an expec-
tation maximization procedure tend to produce sparse
estimates close to the boundary of the parameter space
which leads to less robust estimation among related
samples. Unfortunately, regardless of how prior studies
have argued for a “better” prior, none provide an empiri-
cal or practical procedure for model selection. Rather,
they show that a value works well across a range of data
under some evaluation metric, and set this as the default
value for all inference tasks. Given the number of existing
methods that can make use of prior information (includ-
ing methods like those by Srivastava et al. [18] for single-
cell data, or those by Liu et al. [19] that use orthogonal
modalities of data to set priors), it becomes increasingly
important to develop methods that lets one robustly and
automatically select an appropriate prior (hyperparam-
eter) for these algorithms.
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To perform model (or hyperparameter) selection for
transcript abundance estimators, one must be able to
evaluate estimated abundances. However, evaluation
of abundance estimates remains a challenge for cur-
rent methods on experimental data where ground truth
is completely absent. Notably, evaluation of transcript
abundance estimators on experimental data have relied
on careful experiment design that enables comparisons
to complementary assays (e.g. correlation with qPCR)
or measurements (e.g. concordance with known mixing
proportions or spike-ins) [20]. Such evaluation proce-
dures vary from study-to-study, and are simply not pos-
sible when complementary experiments are not designed
or available. Thus, the natural question is then: can the
quality of transcript abundance estimates be meaning-
fully evaluated on the set of given fragments directly?

It may initially be unintuitive to think that the “good-
ness” of a transcript abundance estimate can be evalu-
ated in the absence of ground truth. However, in a related
line of research, likelihood-based metrics for assessing
the quality of de novo assemblies, where ground truth is
unavailable, have been explored. For example, Rahman
and Pachter [21] developed a method to compute the
likelihoods of assembled genomes; Li et al. [22] devel-
oped a likelihood-based score to evaluate transcriptome
assemblies; Smith-Unna et al. [23] developed a method
to assess the quality of assembled contigs in transcrip-
tomes; and Clark et al. [24] developed a method that is
applicable to both genome and metagenomic assemblies.
Furthermore, if we look to other unsupervised problem
settings where ground truth annotations are absent, met-
rics for measuring the “goodness” of estimated models
with latent parameters not only exist, but are regularly
used. For example, metrics such as the silhouette score
used to evaluate clustering algorithms come to mind [25].
In fact, evaluation of unsupervised probabilistic models,
especially language and topic models in natural language
processing, is commonplace [26, 27]. Specifically, per-
plexity, the inverse geometric mean per-word likelihood
of a held-out test set, has been ubiquitously used to com-
pare models [26].

In this work, we derive perplexity for transcript abun-
dance estimation with respect to held-out per-read like-
lihoods. As we shall see, the perplexity of a held-out
fragment set given an abundance estimate, computed
via a quantify-then-validate approach, is a theoretically
and experimentally motivated measure of the quality
of the given estimate. Notably, perplexity quantifies an
important biologically motivated intuition—that a good
abundance estimate ought to generalize and generate the
validation set, which is, in a sense, a form of a technical
replicate, with high probability.
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Perplexity can be used wherever the assessment
of the quality of abundance estimates is desired. For
example, perplexity can be used to compare different
transcript abundance estimation algorithms or, as sug-
gested above, to perform model selection to obtain the
most accurate estimates from a given algorithm. In this
work, we focus on experimentally assessing perplexity
with respect to the latter, model selection for the prior
used to estimate abundances with salmon [15]. In
salmon, the reads-per-transcript prior size is a hyper-
parameter that controls its preference for inferring
sparse or smooth abundance estimates. Notably, the
problem of model selection offers a succinct assess-
ment and immediately useful application of how per-
plexity can be computed to evaluate and compare the
quality of candidate transcript abundance estimates.

Contributions
Theoretically, we derive and motivate a notion of per-
plexity for transcript abundance estimation—a met-
ric for evaluating inferred estimates in the absence of
ground truth. Experimentally, we demonstrate that
perplexity for transcript abundance estimates is well
behaved, and establish empirical correspondence
between perplexity and other metrics that are more
commonly used to demonstrate the “goodness” of
transcript abundance estimates.

We summarize our experimental
below:

contributions

1 In experimental data from the Sequencing Quality
Control (SEQC) consortium [20], we show that tran-
script abundance estimates with the lowest perplex-
ity (lower is better) achieve the highest correlation
with complementary qPCR measurements of biologi-
cal replicates.

2 In simulated data, perplexity is concordant with
respect to three measurements against ground truth:
Spearman correlation with respect to expressed
transcripts, AUROC with respect to unexpressed
transcripts, and downstream differential transcript
expression analysis.

3 In a proof-of-concept style experiment, we demon-
strate that perplexity can be computed for almost any
transcript abundance estimation model.

Evidenced by these results, we propose perplexity as
the first and, to our knowledge, only theoretically and
experimentally justified metric for model selection for
transcript abundance estimation in experimental data
where ground truth is entirely absent.
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Preliminaries: (Approximate) Likelihood

for transcript abundance estimation

Before deriving perplexity for transcript abundance esti-
mation, we shall briefly recall and define the necessary
objects that pertain to the likelihood of the probabilistic
model that underpins transcript abundance estimation
(asin [9, 15]).

The transcript abundance estimation problem, or
quantification, from short RNA-seq fragments (a term
used to refer, generically, to either single reads or read
pairs), is the problem of assigning each fragment f; of an
input fragment-set F = {fi, .../} to its transcript of ori-
gin. For this work, we shall only consider quantification
with respect to a given reference transcriptome whereby
a quantifier maps each input fragment f; to a transcript in
an input set of reference transcripts 7 = {t1, .., tm}.

Given the sequence of an input fragment, said fragment
may align to more than one transcript, ¢;, in the reference
transcriptome 7. Here, the de facto method for deter-
mining transcript of origin for fragments that multi-map
to more than one transcript is to view the true fragment
to transcript assignment as a latent variable, and to infer
the latent variable’s expected value by performing infer-
ence in the underlying probabilistic model.

Assuming an appropriate normalization of alignment
scores, we write the probability of observing a fragment,
J;» given that it originates from (or aligns to) transcript ;
to be P(f; | t;). The probability that a molecule in a sam-
ple that is selected for sequencing is the transcript ¢; is
then P(¢; | ), a multinomial over 7. Marginalizing over
all possible alignments, the likelihood of observing the
fragment set F given model parameters 6 is,

N M

PEFE10)=]]D_P16)- P to). (1)

]

In this work, we shall work with the range-factorized
equivalence class approximation of the likelihood that
has proven to be effective and is efficient to compute [28].
Here, sets of fragments in F that map to the same set of
transcripts, and have similar conditional probabilities of
arising from these transcripts, are said to belong to the
equivalence class F7 (indexed by g). Instead of working
with alignment probabilities P(f; | ;) of each fragment,
fragments in an equivalence class F7 are approximated
to have the same conditional probability P(f; | F4,t;)
for mapping to each transcript #. Let C be the set of
equivalence classes induced by F and €2(F9) be the set
of transcripts to which f € F; map. The range-factor-
ized equivalence class approximation of the likelihood
P(F |0)is,
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Here, the approximate likelihood can be computed over
the number of unique equivalence classes, which is con-
siderably smaller than the number of all possible align-
ments for all fragments.

Methods

We propose a subtle but instructive change in the usual
computational protocol for evaluating transcript abun-
dance estimates. We propose a quantify-then-validate
approach which evaluates the quality of transcript abun-
dance estimates directly on read-sets, analogous to
train-then-test approaches for evaluating probabilistic
predictors common in natural language processing (NLP)
and other fields [29, Ch. 1.3]. Instead of quantifying all
available fragments and then performing evaluation with
respect to complementary measurements downstream,
the quantify-then-validate approach validates and evalu-
ates the quality of a given abundance estimate directly
on a set of held-out validation fragments withheld from
inference.

We derive and adapt from NLP, the notion of perplex-
ity for transcript abundance estimation for this quantify-
then-validate approach [26, 27]. Perplexity is computed
given only an abundance estimate, and a held-out valida-
tion set of fragments as input. Thus, perplexity evaluates
the quality of abundance estimates on fragments directly
and can evaluate estimates from experimental data in
the absence of ground truth. Most importantly, evaluat-
ing perplexity with the quantify-then-validate approach
enables quantitative, evidence-based, cross-validated
selection of hyperparameters for transcript abundance
estimation methods that use them.

Perplexity for transcript abundance estimation quanti-
fies the intuition that an abundance estimate for a given
sample ought, with high probability, explain and gener-
ate the set of fragments of a technical replicate. The key
observation is that the likelihood P(F | 0) is simply a
value that can be computed for any fragment set 7 and
any abundance estimate 6 (model parameters), irrespec-
tive of whether 6 is inferred from F. It is the context and
application of the likelihood, P(F | 8), that yield seman-
tic meaning.

Given a fragment set, F, over which one seeks to infer and
evaluate abundance estimates, the quantify-then-validate
procedure is as follows. First, partition the input set into a
quantified set, F, and a validation set, F. Second, quan-
tify and infer abundance estimates (model parameters) 6
given the quantified set F. Third, validate and compute the
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perplexity, PP(F,0)—the inverse geometric mean held-
out per-read likelihood of observing the validation set, F
—given model parameters 6 and the validation set F. The
lower the perplexity, the better the parameters ¢ describe
the held-out fragments F, and the better the abundance
estimate parameterized by 6 ought to be. In fact, if we
believe that the generative model is truly descriptive of the
distributions that arise from the underlying biological and
technical phenomena, perplexity is, in expectation, mini-
mized when the “true” latent parameters are inferred.

Formally, given an abundance estimate 6, and a validation
fragment-set F = {fl, .. fN} the perplexity for transcript
abundance estimation is:

PP(F,0) = exp {—i log P(F | 6) }

N (3)
=expq —= ZlogP(f | 0) ¢,
] 1
with per-fragment likelihood,
A M A
P(i10)=> Pti|0) P | t). (4)

i=1

Crucially, the probability P(f | 0) of observing each held
out fragment given 6 is computed and marginalized over
the product of two terms, P(f | ;) that depends only on
the validation set of held-out fragments, and P(¢; | 6) that
depends only on the given abundance estimate.

One particular application of the perplexity metric,
which we explore here, is to select the best abundance
estimate out of many candidate estimates arising from dif-
ferent hyperparameter settings for quantifiers. Thus, in
this work, we use the range-factorized equivalence class
approximation for perplexity (as in Eq. 2) throughout [28].
Given the range-factorized equivalence classes, C, induced
by the validation set, F, (where_ N%i is the number of frag-
ments in an equivalence class F1eC) the approximation
is:

~ 1 ~ N~
PP(F,0) ~ exp -< > NT-log P(fi | F9,0) ¢,

FaeC
(5)
with approximate per-fragment likelihood,
PGIFLO = 3 PGIO)-PGIFLw. o

4EQ(FT)

We use salmon’s selective-alignment based probabil-
istic model for conditional probabilities P(f; | 749, t;)
and effective lengths of transcripts, since the model



Fan et al. Algorithms for Molecular Biology (2022) 17:6

and equivalence class approximation salmon uses has
proven to be a fast and effective way to approximate
the full likelihood [17, 28]. For the scope of this work,
salmon’s format for storing range-factorized equiva-
lence classes conveniently contains all relevant informa-
tion and values to compute perplexity with vastly smaller
space requirements than would be required to store per-
fragment alignment probabilities P(f; | ;).

“Impossible” fragments given parameter estimates 0

We now address a perplexity-related issue that is unique
to evaluating transcript abundance estimates—that
an observed event in the validation set may be deemed
“impossible” given model parameters 6. The marginal
probability, P(f; | 8), for observing a fragment f; in the
validation set given some abundance estimate, 6, may
actually be zero, even if said validation fragment aligns
to the reference transcriptome. This occurs exactly when
all transcripts, ¢;, to which the validation fragment f,
map are deemed unexpressed by 6 (i.e. P(¢; | 6) = 0 for
all such transcripts). Here, we say that f; is an impossi-
ble fragment given 6, and that 6 calls f; impossible. When
impossible fragments are observed in the validation set,
perplexity is not a meaningful measurement.

To illustrate how impossible fragments come to be,
consider the toy example in which all fragments in a
quantified set that align to transcripts A, B, or C only
ambiguously map to {4, B}, or to {A, C}. That is, no such
fragments uniquely map—a phenomenon observed
rather frequently for groups of similar isoforms expressed
at low to moderate levels. Now, suppose that an abun-
dance estimation model assigns all such fragments to
transcript A and produces an estimate 6. The quantifier
may be satisfying a prior that prefers sparsity; or prefers
to do so because transcript A is considerably shorter than
transcripts B and C, which gives it a higher conditional
probability under a length normalized model. In this
case, the marginal probability, P(fj | 0), of observing a
validation fragment f; that maps to {B, C} is exactly zero
given the parameters 6.

As an example, we randomly withhold varying per-
centages of fragments from one sample (SRR1265495)
as validation sets and use all remaining fragments to
estimate transcript abundances with salmon’s default
model (ie. the VBEM model using prior size of 0.01
reads-per-transcript). Figure 1 shows that at all par-
titioned percentages, impossible fragments in the
validation set are prevalent with respect to estimated
abundances. In fact, due to the prevalence of impossible
reads, perplexity as written in Eq. 5 is undefined (or infi-
nite) for all estimates and all validation sets in the experi-
ments below. An important observation in both the toy
and experimental examples is that there likely exist better

Page 5 0of 23

Validation set size vs. # of impossible reads (SRR1265495)
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Fig. 1 Number of fragments called impossible versus withheld
validation fragment set size for sample SRR1265495. All remaining
fragments are used to estimate abundances using salmon’s

VBEM model using default parameters (i.e. using a prior size of 0.01
reads-per-transcript)

abundance estimates that would call fewer fragments
impossible, while still assigning high likelihood to the rest
of the (possible) fragments. For example, an abundance
estimate that reserves even some small probability mass
to transcript B in the toy example would not call the vali-
dation fragments in question impossible.

Why perplexities need to be smoothed

The problem with impossible fragments is not only that
they exist. The problem is that, for a fixed validation frag-
ment set, perplexity deems an abundance estimate that
calls even one fragment impossible equally as bad as an
abundance estimate that calls all fragments impossible.
Here, both estimates would have unbounded perplex-
ity since the validation set has zero likelihood given each
estimate. However, the former ought be preferred over
the latter.

Other fields that have adopted and used perplexity (e.g.
natural language processing) usually sidestep the issue of
impossible events entirely both by construction and pre-
processing, working only with smoothed probabilistic
models in which no event has probability zero, or remov-
ing rare words from input language corpora. However,
neither strategy is available nor appropriate for evaluat-
ing transcript abundance estimates. It is neither reason-
able nor useful to amend and modify each of the many
modern quantifiers to produce smooth outputs (outputs
in which no transcript has truly zero abundance), and
fragments and transcripts cannot be pre-processed away
since the set of expressed transcripts cannot be identi-
fied a priori. One may also be tempted to simply remove
impossible fragments from a validation set, F, before
computing a perplexity or hold out fragments—but this
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(1) Partition input
fragment set into
quantified and
validation set.

Quantified set

(2) Infer candidate abundance estimates
from quantified set

(3) Smooth abundance estimate
to account for “impossible” reads
in the validation set

=)

0 0
(5) Smoothed perplexity
evaluates abundance

estimate on held-out

~ (4) Compute mapping
a probabilities for
- validation fragments

Validation
set

DD *

validation fragments directly.

PP(F,0)

Fig. 2 Overview of the quantify-then-validate approach using smoothed perplexity to evaluate the quality of abundance estimates directly on
fragment sets in the absence of ground truth. (1) An input fragment set is first partitioned into a quantified and a validation set. (2) Abundance
estimates for different candidate models (e.g. for explored hyperparameters as part of model selection) are inferred from the quantified fragment
set only. (3) To account for “impossible” fragments and avoid shrinkage to unbounded perplexities, given abundance estimates are smoothed (see
Sect. 3.2). (4) Mapping probabilities to the reference transcriptome are computed for fragments in the validation set. (5) Smoothed perplexity is
computed given each input abundance estimate and the held-out validation fragment set to evaluate and perform model selection—the lower
the perplexity, the better an abundance estimate describes the held-out set of validation fragments

also is not a valid strategy. This is because two different
abundance estimates 6 and 6’ may call different validation
fragments in F impossible, and comparisons of likeli-
hoods P(F" | ') and P(F | 6) are only meaningful if the
validation sets are the same (i.e. 7 = F’). Furthermore,
there is no straightforward strategy to sample and hold-
out validation fragments so that no fragments are impos-
sible. This is because most validation fragments cannot
be determined to be impossible prior to abundance esti-
mation, and any non-uniform sampling strategy would
alter the underlying distributions that estimators aim to
infer. To compare estimates that may call different valida-
tion fragments impossible, the proposed perplexity met-
ric (as in Eq. 5) must be smoothed. Strategies that smooth
perplexities ought penalize estimates that call fragments
impossible. That is, impossible fragments under such
smoothing strategies ought result in a penalty and over-
come the shrinkage of P(F | 0) to zero. Below, we detail
two such smoothing strategies for computing perplexi-
ties: (a) Laplacian smoothed perplexity and (b) Good-
Turing smoothed perplexity.

We schematically illustrate how a smoothed perplex-
ity measure, using the proposed quantify-then-validate
protocol, can be computed to evaluate the quality of tran-
script abundance estimates in Fig. 2.

Laplacian smoothed perplexity

We define Laplacian smoothed perplexity given abun-
dance estimate 6 to be the perplexity evaluated with the
smoothed distribution Pg(¢; | ) in place of P(t; | 6).
The Laplacian smoothing scheme smooths input abun-
dance estimates by redistributing a small constant prob-
ability mass across the reference transcriptome. Let
P(t; | 6) = n; and M be the number of transcripts in the
reference. The smoothed distribution parameterized by
is defined to be:

ni + B

Pp(ti | 0) = L

(7)
Laplacian smoothed perplexity is flexible and easy to
implement but requires the user to set a value (preferably
small e.g. 1 x 1078) for the smoothing parameter 8.! At
the cost of not being parameter-free, Laplacian smoothed
perplexity allows the user to tune the degree to which
impossible reads are penalized. The smaller the value of
B, the smaller larger the penalty an estimate incurs for
each validation fragment it calls impossible

! This is equivalent to adding, for each transcript f; in the reference,
B- Z/M C//Ej reads-per-nucleotide to the expected fragments per-transcript
counts ¢; then re-normalizing to obtain TPMs, given effective transcript
lengths 7; (as defined in salmon [15)).



Fan et al. Algorithms for Molecular Biology (2022) 17:6

Good-Turing smoothed perplexity—an adaptive,
“parameter-free” strategy

The major drawback of Laplacian smoothed perplexity
is that it depends on a reasonable a priori selection of a
value for the smoothing parameter 8. One further con-
cern is that Laplacian smoothed perplexity is not adaptive
and does not account for the amount of evidence from
which an input estimate is derived, i.e. the read-depth or
the number of quantified reads in a sample. For a fixed
value of B, the Laplacian smoothed perplexity smooths
probabilities inferred from a million fragments equally as
much as probabilities inferred from a trillion fragments.
However, for the latter estimate that is inferred from
much more data, it is more sensible to smooth and redis-
tribute less probability mass.

For example while varying one of salmon’s hyperpa-
rameters, Laplacian smoothed perplexities suggest the
existence of a locally optimal behavior when computed
with a wide range of values for 8 (see Fig. 16). However,
the locally optimal behavior can no longer be observed
if Laplacian smoothed perplexities are computed with
B=1x107°.

A better, adaptive, smoothing strategy would directly
estimate the probability of observing fragments from
transcripts that are not expressed. Abstractly, the prob-
lem to be solved is to estimate the probabilities of observ-
ing unobserved events. Here, we turn to the Simple
Good-Turing (SGT) method [30] that has been applied
in a wide range of areas, including estimating the prob-
abilities of unseen sequences in computational linguis-
tics [30], as well as for the detection of empty droplets in
droplet-based single-cell RNA sequencing protocols [31].

Below, we define the Good-Turing smoothed perplexity
measure, where smoothed probabilities are derived from
SGT smoothed fragment per-transcript counts.

Given frequencies over a population—i.e. the num-
ber of reads originating from each trancsript—the SGT
method estimates:

1 the total probability mass that ought be assigned
to unseen events—the “expression” of unexpressed
transcripts, and

2 the appropriate adjustments for probabilities of
observed events—the adjusted probabilities for
expressed transcripts.

It is not immediately obvious how to implement SGT
smoothing for the purpose of smoothing transcript abun-
dance estimates. One issue is that the SGT estimator
expects as input, integer-valued frequencies of observed
events, while input abundance estimates for comput-
ing perplexity are real-valued estimated frequencies of
per-transcript counts. For the purposes of smoothing
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Fig. 3 Frequencies-of-frequencies follow log-linear distribution for
SEQC sample A1

and computing perplexity, we round the estimated num-
ber of fragments per-transcript, ¢;, to the nearest inte-
ger and treat these as raw frequencies of events for SGT
smoothing.

The SGT method also requires that input frequencies-
of-frequencies (i.e. the number of transcripts that have
the same fragments per-transcript) to be log-linear.
Empirically, we show in Fig. 3 that rounded input abun-
dance estimates do, indeed, follow a log-linear distribu-
tion. The confirmed log-linear relationship demonstrates
the rounding step to be a reasonable approximation.

The SGT method estimates the adjusted frequencies
r* for each event observed r times. These adjusted fre-
quencies are then used to compute per-event (or per-
transcript) probabilities. Let ¢; be the rounded number of
fragments per-transcript ¢;. Let the frequency of frequen-
ciesn, = |{t; | ¢; = r}|. And let there be n total reads.
The SGT method computes and outputs,

S(nr+1)),

1 the adjusted frequencies, r* = (r + I)W’

2 and the total probability, Py = %L, for observing any
transcript with ¢; = 0.

Here, S(n,) computes a smoothed frequency of frequen-
cies. Frequencies of frequencies 7, have to be smoothed
because #n, for many large r are zero in observed data.
The precise details for computing the smoothed S(#,) are
described in [30]. In brief, SGT smooths #, by fitting a fit-
ted log-linear function on r against #, and reading off val-
ues of n, for “large” r.

Good-Turing smoothed perplexity is perplexity com-
puted with the smoothed per-transcript distribution
P(t; | 0) in place of P(¢t; | 8). Here, the smoothed per-
transcript distribution is derived from adjusted frequen-
cies r* and Py.
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For each “expressed” transcript ¢; with count, ¢; =,
greater than zero, the SGT smoothed probability is pro-
portional to the transcript’s adjusted frequency normal-
ized by its effective length, with P(¢; | ) r*/fi. The
smoothed probabilities for expressed transcripts are nor-
malized so that they sum to (1 — Py).

For each “unexpressed” transcripts with ¢; =0, the
SGT smoothed probability is proportional to the tran-
script’s effective length, and is derived from distribut-
ing the probability mass Py uniformly over the effective
lengths of all unexpressed transcripts in the reference.
Here, the smoothed per-transcript distribution is defined
P(ti | 0) x Ppl;. The smoothed probabilities for unex-
pressed transcripts are normalized so that they sum to P.

For all following sections we shall use perplexity to
mean Good-Turing smoothed perplexity unless stated
otherwise.

Model selection using perplexity in practice

Arguably, one of the most useful outcomes of being able
to evaluate the quality of abundance estimates in the
absence of ground truth is the ability to perform model
selection for transcript abundance estimation in experi-
mental data. For those familiar with train-then-test
experimental protocols for model selection in machine
learning or NLP, model selection for transcript abun-
dance estimation vis-a-vis our proposed quantify-
then-validate approach is analogous and identical in
abstraction. However, since, to our knowledge, this work
is the first to propose a quantify-then-validate approach
for transcript abundance estimation, we shall briefly
detail how perplexity ought to be used in practice.

Let us consider model selection via fivefold cross-vali-
dation using perplexity given some fragment set F. First,
F is randomly partitioned into five equal sized, mutually
exclusive validation sets, {Fi,... ,.7-'5}—an quantified
sets are subsequently defined, F; = F — F;. Now, sup-
pose we desire to choose between L model configurations
(e.g. from L hyperparameter settings). Then for each ¢-
th candidate model, we produce a transcript abundance
estimate from each i-th quantified set, 61@). To select the
best out of the L candidate models, one simply selects the
model that minimizes the average perplexity over the five
folds, 1 >, PP(F;,6")).

One additional practical consideration should also be
noted. Given any pair of quantification and validation
sets F and F, a validation fragment, ﬁ € F, can be nec-
essarily impossible. A necessarily impossible validation
fragment is one that maps to a set of transcripts to which
no fragments in the quantified set F also map. Such a
fragment will always be called impossible given any abun-
dance estimate deriving from the quantified set F, since
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no fragments in F provide any evidence that transcripts
to which f; map are expressed.

It is of limited meaning to evaluate estimates with
respect to necessarily impossible fragments. For the pur-
poses of this work, we shall consider the penalization of
an abundance estimate only with respect to impossible
fragments that are recoverable—in other words, frag-
ments that could be assigned non-zero probability given
a better abundance estimate inferable from F. As such,
we remove necessarily impossible validation fragments
from F, given F, prior to computing perplexity when-
ever fragment sets are partitioned into validation and
quantified fragment sets.

Data

Sequencing Quality Control (SEQC) project data

We downloaded Illumina HiSeq 2000 sequenced data
consisting of 1004100 nucleotide paired-end reads from
the Sequencing Quality Control (SEQC) project [20].
SEQC samples are labeled by four different conditions
{A,B, C,D}, with condition A being Universal Human
Reference RNA and B being Human Brain Reference
RNA from the MAQC consortium [32], with additional
spike-ins of synthetic RNA from the External RNA
Control Consortium (ERCC) [33]. Conditions C and D
are generated by mixing A and B in 3:1 and 1:3 ratios,
respectively.

In this work, we analyze the first four replicates from
each condition sequenced at the Beijing Genomics Insti-
tute (BGI)—one of three official SEQC sequencing cent-
ers. For each sample, we aggregate fragments sequenced
by all lanes from the flowcell with the lexicographically
smallest identifier.” Quantitative PCR (qPCR) data of
technical replicates for each sample in each condition are
downloaded via the segc BioConductor package.

Simulated lung transcript expression data

We simulated read-sets based on 10 sequenced healthy
lung samples, with Sequence Read Archive accession
number SRR1265{495-504} [34]. Transcript abun-
dance estimates inferred by Salmon using the --useEM
flag for each sample are used as ground truth abundances
for read simulation (expressed in transcripts per million
(TPM) and expected read-per-transcript counts). Then,
transcript abundances in samples SRR1265{495-
4991, for 10% of transcripts expressed in at least one of
the five samples, are artificially up or down regulated by
a constant factor (2.0x) to simulate differential transcript
expression. We treat the resulting read-per-transcript

2 Scripts to download and aggregate SEQC data are available at github.com/
thejasonfan/SEQC-data.


http://github.com/thejasonfan/SEQC-data
http://github.com/thejasonfan/SEQC-data
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counts as ground truth, and generate for each sample a
fragments set of 1004100 nucleotide paired-end reads
using Polyester at a uniform error rate of 0.001 with no
sequence specific bias [35].

Evaluation and experiments
The purpose of the experiments in this work are two-
fold. First, to establish the relationship and correspond-
ence between perplexity and commonly used measures
of goodness or accuracy in transcript abundance estima-
tion. And second, to demonstrate how model and hyper-
parameter selection can be performed using perplexity.
In particular, we perform and evaluate hyperparameter
selection for salmon with respect to the prior size in the
variational Bayesian expectation maximization (VBEM)
model used for inference [15]. The user-selected prior
size for the VBEM model in salmon encodes the prior
belief in the number of reads-per-transcript expected
for any inferred abundance estimate. This hyperparam-
eter controls salmon’s preference for inferring sparse or
smooth estimates—the smaller the prior size, the sparser
an estimate salmon will prefer. As discussed above,
prior studies on Bayesian models have not necessarily
agreed on how sparse or smooth a good estimate ought
to be [11, 12]—the experiments in this work aim to pro-
vide a quantitative framework to settle this disagreement.
We perform all experiments according to the proposed
quantify-then-validate procedure and report results with
respect to various metrics over a fivefold cross-validation
protocol. We use the Ensembl human reference tran-
scriptome GRCh37 (release 100) for all abundance esti-
mation and analysis [36].

Evaluation versus parallel SEQC gPCR measurements

We analyze the relationship between perplexity and
accurate abundance estimation in experimental data
from the SEQC consortium. In SEQC data, we evaluate
accuracy of abundances estimated by salmon by com-
paring estimates to qPCR gene expression data on bio-
logical replicates, a coarse proxy to ground truth. We
evaluate the Spearman correlation between gene expres-
sions of qPCR probed genes in SEQC replicates versus
the corresponding abundance estimates. Gene expression
from estimated transcript expression is aggregated via
txImport [6] with transcript-to-gene annotations from
EnsDb.Hsapiens.v86 [37]. From gene expression
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data, Ensembl genes are mapped to corresponding Entrez
IDs via biomaRt [38], and 897 genes are found to have
a corresponding qPCR measurement in downloaded
SEQC data. Expressions for genes with repeated entries
in SEQC qPCR data are averaged.

Evaluation versus ground truth on simulated data

In simulated data, since ground truth abundances are
available, we compare estimated TPMs (computed by
salmon) against ground truth TPMs under two metrics.

First, we consider the Spearman correlation with
respect to known expressed transcripts (i.e. transcripts
with non-zero expression in ground truth abundances).
We choose to evaluate Spearman correlation with
respect to ground truth non-zero TPMs because of the
presence of many unexpressed transcripts in the ground
truth, meaning a high number of values tied at rank
zero. Here, small deviations from zeros can lead to large
changes in rank, leading to non-trivial differences in the
resulting Spearman correlation metric. We demonstrate
this phenomenon with respect to the ground truth abun-
dance of a simulated sample (SRR1265495) with a mean
TPM of 5.98, in which 49% of transcripts are unexpressed
(82,358 / 167,268). We report the change in Pearson cor-
relation, R? score, and Spearman correlation of ground
truth TPMs versus ground truth TPMs perturbed with
normally distributed noise at varying standard devia-
tions. As we can see from Fig. 4, even small perturbations
cause non-trivial changes in Spearman rank correlation,
while changes in Pearson correlation are entirely imper-
ceptible. The Pearson correlation, however, suffers from
the well known problem that, in long-tailed distribu-
tions spanning a large dynamic range, like those com-
monly observed for transcript abundances, the Pearson
correlation is largely dominated by the most abundant
transcripts.

Second, we complement measuring Spearman correla-
tion of non-zero ground truth TPMs with reporting the
area under receiver operating characteristic (AUROC)
for recalling ground truth zeros based on estimated
abundances. While the measurement of Spearman cor-
relation on the truly expressed transcripts is robust to
small changes in predicted abundance near zero, it fails
to account for false positive predictions even if they are
of non-trivial abundance. The complementary metric of
the AUROC for recalling ground truth zeros comple-
ments that metric, since it is affected by false positive
predictions.
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Effect of small perturbations on different metrics
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Fig. 4 Spearman correlation, Pearson correlation and R? with respect to all transcripts in the reference, and AUROC for recalling ground truth
unexpressed transcripts, with respect to added normally distributed noise with varying standard deviations. Plotted lines for Pearson correlation and

Differential expression analysis on simulated data

We perform transcript level differential expression
analysis and analyze the recall of known differentially
expressed transcripts in simulated lung tissue data
(see 3.6.2). We perform differential expression analysis
at the trancript level using swish [39] using 20 infer-
ential replicates from salmon. We modified salmon
to ensure that prior sizes supplied via the ——vbPrior
flag are propagated to the Gibbs sampling algorithm.
We plot receiver operating characteristic (ROC) curves
and report the mean AUROC for predicting differen-
tially expressed transcripts over multiple folds. We assign
P =1 to transcripts for which swish does not assign
adjusted P-values.

Evaluation of eXpress abundance estimates

We measure the change in perplexities of abundance esti-
mates inferred by eXpress (version 1.5.1) when running
0, 1, and 2 additional rounds of the online expectation
maximization (EM) optimization step. We specify the
number of additional online EM steps using the —addi-
tional-online parameter. We provide to eXpress
alignments to the human transcriptome computed by
bowtie2 [40] using the parameters recommended

by eXpress with: -a -X 600 -rdg 6,5 -rfg
6,5 -score-min L,-.6,-.4 —-no-discordant
—no-mixed.

To compute perplexity, we use the transcript effec-
tive lengths computed by eXpress for each transcript
inferred to be expressed. For each transcript inferred
to be unexpressed, we use transcript lengths in place of
effective lengths, since eXpress sets the effective length
for these transcripts to zero. We take effective counts
computed by eXpress to be expected fragment per-
transcript counts.

Implementation

We implement perplexity in Rust and provide snake-
make [41] workflows to (a) set up quantify-validate
splits of fragment-sets for K-fold cross-validation,
and (b) compute perplexities of salmon abundance
estimates with respect to validation fragment sets at:
github.com/COMBINE-lab/perplexity. Approximate
per-fragment probabilities (Eq. 6) are computed by
running salmon with options -skipQuant and -
dumpEq. Code to reproduce the experiments and fig-
ures for this work is available at github.com/COMBI
NE-lab/perplexity-paper.


http://github.com/COMBINE-lab/perplexity
http://github.com/COMBINE-lab/perplexity-paper
http://github.com/COMBINE-lab/perplexity-paper
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Fig.5 Perplexity plots for SEQC samples. Plots show perplexity versus VBEM reads-per-transcript prior size for SEQC samples—plots only for the
first replicate of samples from conditions A-D are shown. Perplexity plots for other replicates are consistent within condition and are included in
Appendix. Mean perplexities across five folds are plotted in red, and perplexities for each fold are plotted in gray

Results
Low perplexity implies accurate abundance estimates
in experimental SEQC data
In experimental data from the Sequencing Quality Con-
trol (SEQC) project [20], we demonstrate that perplexity
can be used to perform parameter selection and select
the salmon VBEM prior size that leads to the most
accurate transcript abundance estimates. We note that
perplexity plots for replicates are similar within condi-
tions A-D, and thus include only plots for the first repli-
cate in each condition in the main text. For completeness,
plots for all samples are presented in Appendix (Figs. 10,
11,12, 13).

Empirically, perplexity is well-behaved over all
samples in the experimental data. As shown in
Figs. 5 and 6, plots of perplexity against VBEM prior

size and Spearman correlation against VBEM prior size
both display an empirically convex shape minimized at
the same VBEM prior size. This suggests that minimiz-
ing perplexity is, at least, locally optimal with respect to
the set of explored hyperparameters.

Furthermore, for almost all samples, perplexity is
minimized where correlation with PCR measurements
is maximized. For all replicates in conditions {B, C, D},
estimates that minimize perplexity with respect to
held-out validation fragments achieve the best correla-
tion with qPCR measured gene expression. For repli-
cates in these conditions, abundances inferred using a
prior size of 1 read-per-transcript resulted in estimates
with the lowest perplexity. In replicates from condition
A, estimates with lowest perplexity are significantly
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Fig. 6 Spearman correlation of abundance estimates at various VBEM reads-per-transcript prior sizes, versus parallel gPCR microarray
gene-expression measurements conditions A-D. Each point in above plots indicate the mean correlation across replicates for a given fold

Spearman Corr. of RNASeq estimates vs. Microarray (B)

0.8460

)
- 699900000

0.8440

Spearman Correlation

0.8435

0.8430

le-6 le-5 le-4 le-3 le-2 le-l 1 2 3 5 6 7 8 9 1lel

VBEM prior S|ze

Spearman Corr. of RNASeq estimates vs. Microarray (D)

0.7995
0.7990
0.7985
0.7980 9
0.7975
0.7970
0.7965

0.7960

Spearman Correlation

le-6 le-5 le-4 le-3 le-2 le-l 1 5 6 7 8 9 1lel

VBEM prlor SIZE

better than estimates at default hyperparameter set-
tings (0.01 reads-per-transcript).

Perhaps surprisingly, both perplexity and correlation
against qPCR measurements prefer a reads-per-tran-
script prior size that is larger than the 0.01 reads-per-
transcript that is the current default for the salmon
VBEM model. Selecting a larger per-transcript prior for
transcript abundance estimation with salmon results in
estimates that are more smooth. Compared to a sparser
estimate, a smoother abundance estimate likely calls
fewer validation time fragments impossible. Here, the
number reads an estimate calls of impossible is sympto-
matic of two kinds of inferential errors—that some tran-
scripts are incorrectly inferred to be unexpressed, and
that other transcripts are assigned inaccurate inferred
expression.

Without perplexity, it would be difficult to determine
empirically, or a-priori, that a VBEM prior size of 1 is
an optimal parameter setting since no comparison to

ground-truth is possible. To the best of our knowledge,
this experiment is the first to carry out both an effective
and ubiquitously applicable quantitative strategy to per-
form model selection in the context of transcript abun-
dance estimation on experimental data in the absence of
ground truth.

Perplexity versus ground truth, and differential expression
analysis in simulated data

In simulated data, the relationship between perplex-
ity and measurements against ground truth, though
well-behaved, is admittedly less direct. In short, under
the implemented experimental framework, minimiz-
ing perplexity does not always find the best perform-
ing estimates. Across all 10 samples, perplexity prefers
abundance estimates that are smoother than estimates
that are most accurate when compared to ground truth.
For brevity, we include in the main text perplexity plots
of three samples (SRR1265{496,503,504}) that are
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VBEM prior size

representative of three main modalities of perplexity
plot behaviors (Fig. 7). For completeness, and plots for all
samples are presented in Appendix (Figs. 14 and 15).

In all but two samples (SRR1265{497,504}),
perplexity plots display a empirically convex shape
with a local minima close to the optimal VBEM prior
size (1 read-per-transcript). For example, for sam-
ple SRR1265503, perplexity is minimized at a VBEM
prior setting of 1 reads-per-transcript, exactly the best
performing hyperparameter setting with respect to
Spearman correlation (Fig. 7; middle). And for sample
SRR1265496, we can see that perplexity prefers VBEM
prior setting in a wide local minima ranging from 1 to 3
reads-per-transcript (Fig. 7; top). Sample SRR1265504
is one sample for which a local minimal perplexity can-
not be identified with respect to the range of hyper-
parameters scanned (Fig. 7; bottom). However, the

perplexity plot for SRR1265504 displays a knee-like
behavior which suggests that after a certain VBEM prior
size, larger VBEM prior sizes are no longer preferred—
which is consistent across all perplexity plots and com-
parisons to ground truth.

These experiments in simulated data suggest that, per-
haps, perplexity remains an imperfect tool. Nonetheless,
these observations do offer insights about how perplexity
ought to be used in practice. First, perplexities may prefer
abundance estimations smoother than ideal. In particu-
lar, when perplexities for two VBEM prior settings are
close, or when perplexities are roughly minimized for a
range of values, one ought to select the model that out-
puts the sparsest estimates. Second, careful (albeit quali-
tative) inspection of perplexity plots can be used to select
an optimal hyperparameter setting experiment-wide. For
example, inspection of perplexity plots (Figs. 14 and 15)



Fan et al. Algorithms for Molecular Biology (2022) 17:6

Page 14 of 23

Quality of DTE calls (AUROC for FPR < 0.05)

ROC curves for DTE calls

ROC curves for DTE calls

0572

=%,

068 ?
0566 ?
_—

L

0562 L]

AUROC

o.

le2 1 2 3 45 6
VBEM prior size

0.000 0.025 0.050  0.075  0.100 0.125 0150 0.175  0.200 0.00 0.01 0.02 0.03 0.04 0.05
FPR

FPR
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quality of estimated abundances after each online EM round

over all samples show either knee-like behaviors begin-
ning at, or local minimas centered close to a VBEM prior
size of 1 reads-per-transcript—the best hyperparameter
setting.

Notably, the results also show that perplexity can
simply be used to quantitatively reject poor abun-
dance estimates (or the hyperparameters that generate
them). Although the significance of this property may
be overlooked at first, perplexity is to our knowledge
the only metric that can do so when ground truth is not
available.

We also analyze the accuracy of differential transcript
expression (DTE) analysis of estimates with the same
VBEM prior size experiment-wide. We report AUROC
of DTE calls up to a nominally useful maximum false
discovery rate (FDR) of 0.05 (Fig. 8). Not surprisingly,
AUROC of DTE calls mirror the shape of Spearman cor-
relations of estimates inferred from different VBEM prior
sizes. Again, for each individual sample, minimizing
perplexities may not always select the best hyperparam-
eter setting. But, experiment-wide, perplexity plots do
begin to exhibit minima or knee-like behaviors at VBEM
prior size of 1 reads-per-transcript—the best performing
hyperparameter setting with regard to DTE (Fig. 8).

Perplexity measures improved accuracy due to additional
eXpress online optimization rounds

Crucially, perplexity can be used to evaluate the perfor-
mance of arbitrary abundance estimators that output
per-transcript probabilities P(¢;]0). This is because, per-
plexity is computed from decoupled per-transcript terms
P(t; | 6) from abundance estimates inferred only from
the quantification fragment set, and per-fragment terms
P(f; | t;) from mapping probabilities calculated only from
the the validation fragment set. The comparison of differ-
ent models simply requires agreement on per-fragment
probabilities P(fj|t;) for all fragments in the validation
set. Per-fragment probabilities P(f|;) can simply be
computed from any tool that makes these available (e.g.
salmon).

Thus, perplexity can be especially useful for investigat-
ing and verifying specific behaviors of different abun-
dance estimation algorithms. To demonstrate this, we
explore how perplexities can be calculated to investigate
the improvement due to additional online optimization
rounds when running eXpress [42]. eXpress uses a
streaming optimization algorithm—online expectation-
maximization (EM)—to quantify transcript abundance
from the alignments of RNA-seq reads. Theoretically
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and empirically, additional rounds of the online-EM step
is known to improve accuracy. Without perplexity, this
behavior can only be verified when parallel measure-
ments in experimental data are available(e.g. qPCR on
biological replicates). With perplexity, this behavior can
be verified from a sample’s fragment-set directly. Accord-
ing to perplexities shown in Fig. 9, running eXpress
using one or two additional online EM rounds results in
improved abundance estimates in four out of five folds.
In this case, the perplexity results concord with the
expectation that additional rounds of the online-EM step
improves convergence and lead to improved estimates of
transcript abundance.

When running an inference algorithm, a user can go
beyond simply verifying that an abundance estimation
model converges on input, quantified fragments. With
perplexity, a user can now verify that said model gen-
eralizes, and is accurate with respect to held-out, vali-
dation fragments drawn exactly from the “true” latent
distribution.

Conclusions

In this work, we derive the smoothed perplexity metric,
which, to our knowledge, is the first metric that enables
the evaluation of the quality of transcript abundance esti-
mates in the absence of ground truth.

In experimental data from the Sequencing Quality
Control (SEQC) project [20], we show that the most
accurate abundance estimates consistently have the
lowest perplexity (lower is better) and demonstrate
how quantitative model selection can be performed
on input fragment sets directly and in the absence of
ground truth. In simulated samples, we demonstrate a
looser, but still useful, relationship between perplexity
and measurements against ground truth. One possible
explanation for the more erratic behavior and noisier
perplexity plots for our simulated samples is due to
these samples consisting of many fewer fragments than
SEQC samples. On average, the simulated samples con-
tain 17,410,732 fragments on average while the SEQC
samples average 47,589,281 fragments.
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Although we only demonstrate model selection with
respect to only one hyperparameter (the VBEM prior
size) in salmon using perplexity, model selection
for other hyperparameters are possible with simple
changes to the experimental protocols implemented
here. For example, perplexity evaluated to choose the
number of bins for the range-factorized likelihood
approximation, or select between VBEM and EM mod-
els and optimization algorithms in salmon.

Notably, perplexity may be useful for investigat-
ing and comparing different abundance estimation
models. In a proof-of-concept style experiment run-
ning eXpress [42], we demonstrate perplexity can be
computed to verify theoretically predicted behavior. In
doing so, we theoretically and empirically demonstrate
that perplexity can be computed for almost any tran-
script abundance estimation model.

In future work, perplexity can perhaps be adapted
and applied to other problem settings in bioinformat-
ics where probabilistic models infer abundances. For
example, perplexity may be useful in metagenomics
where model selection (i.e. choosing confidence cut-
offs for taxa identification, or selecting candidate refer-
ence genomes) can have a large effect on the quality of
inferred abundances [43].

In sum, this work demonstrates that evaluation
of transcript abundance estimates in the absence of
ground truth is indeed possible. Perplexity is an exam-
ple of a promising new direction in which estimated
abundances can be evaluated and validated directly on
input fragments themselves. This may prove fruitful
not only for the re-analysis of previously published data
where ground truth was absent, but also for current
and future experimental settings where parallel experi-
mental measurements complementary to RNASeq are
too expensive or cumbersome to obtain.

Appendix
Additional figures are included as Figs. 10, 11, 12, 13,
14, 15, 16.
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Fig. 14 Quality of transcript abundance estimates as a function of VBEM per-nucleotide prior size for samples SRR1265{495-499}. (Left
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