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Abstract 
Background: There has been rapid development of probabilistic models and inference methods for transcript 
abundance estimation from RNA-seq data. These models aim to accurately estimate transcript-level abundances, to 
account for different biases in the measurement process, and even to assess uncertainty in resulting estimates that 
can be propagated to subsequent analyses. The assumed accuracy of the estimates inferred by such methods under-
pin gene expression based analysis routinely carried out in the lab. Although hyperparameter selection is known to 
affect the distributions of inferred abundances (e.g. producing smooth versus sparse estimates), strategies for per-
forming model selection in experimental data have been addressed informally at best.

Results: We derive perplexity for evaluating abundance estimates on fragment sets directly. We adapt perplexity from 
the analogous metric used to evaluate language and topic models and extend the metric to carefully account for cor-
ner cases unique to RNA-seq. In experimental data, estimates with the best perplexity also best correlate with qPCR 
measurements. In simulated data, perplexity is well behaved and concordant with genome-wide measurements 
against ground truth and differential expression analysis. Furthermore, we demonstrate theoretically and experimen-
tally that perplexity can be computed for arbitrary transcript abundance estimation models.

Conclusions: Alongside the derivation and implementation of perplexity for transcript abundance estimation, our 
study is the first to make possible model selection for transcript abundance estimation on experimental data in the 
absence of ground truth.
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Background
Due to its accuracy, reproducibility, simplicity and low 
cost, RNA-seq has become one of the most popular 
high-throughput sequencing assays in contemporary use, 
and it has become the de facto method for the profiling 
of gene and transcript expression in many different bio-
logical systems. While there are many uses for RNA-seq 
that span the gamut from de novo transcriptome assem-
bly [1, 2] through meta-transcriptome profiling [3], one 
of the most common uses is to interrogate the gene or 
isoform-level expression of known (or newly-assembled) 

transcripts, often with the subsequent goal of performing 
a differential analysis between conditions of interest.

Because of the popularity of gene and transcript 
expression profiling using RNA-seq, considerable effort 
has been expended in developing accurate, robust and 
efficient computational methods for inferring transcript 
abundance estimates from RNA-seq data. Some popular 
approaches focus on counting the aligned RNA-seq reads 
that overlap genes in different ways [4, 5]. However, these 
approaches have no principled way to deal with reads 
that align well to multiple loci (e.g. to different isoforms 
of a gene, or between sequence-similar regions of related 
genes), and this restricts their use primarily to gene-
level analysis, where they may still under-perform more 
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sophisticated approaches that attempt to resolve frag-
ments of ambiguous origin [6].

Alternatively, many approaches offer the ability to esti-
mate transcript-level expression using RNA-seq data 
(which can, if later desired by a user, be aggregated to 
the gene-level). #e majority of these approaches per-
form statistical inference over a probabilistic generative 
model of the experiment based either on sufficient sta-
tistics of counts [7, 8] or the set of fragment alignments 
themselves [9]. Moreover, in addition to methods focused 
on deriving point estimates for transcript abundances, 
there has been considerable development of probabilistic 
Bayesian approaches for this inference problem [10–15], 
as well as recent attempts at multi-sample probabilis-
tic models for simultaneous experiment-wide transcript 
abundance estimation [16, 17]. Bayesian approaches can 
sometimes offer more accurate or robust inference than 
methods based strictly on maximum likelihood estima-
tion, but these Bayesian models invariably expose prior 
distributions, with associated hyperparameters, upon 
which the resulting inferences depend.

Interestingly, the recommended best practices sug-
gested by the different Bayesian (or variational Bayesian) 
approaches for selecting hyperparameters differ. Spe-
cifically, Nariai et  al. [12] evaluate performance varying 
the prior used in their variational Bayesian expectation 
maximization (VBEM)-based method, and they conclude 
that a small prior (i.e. α < 1 ) leads to a sparse solution, 
which, in turn, results in improved accuracy. On the 
other hand, Hensman et al. [11] perform inference using 
a prior of α = 1 read per transcript. #ey find that, doing 
so, their method produces the most robust estimates (i.e. 
with the highest concordance between related replicates) 
that are also more accurate under different metrics that 
they measure. #eir conclusion is that methods adopting 
a maximum likelihood model inferred using an expec-
tation maximization procedure tend to produce sparse 
estimates close to the boundary of the parameter space 
which leads to less robust estimation among related 
samples. Unfortunately, regardless of how prior studies 
have argued for a “better” prior, none provide an empiri-
cal or practical procedure for model selection. Rather, 
they show that a value works well across a range of data 
under some evaluation metric, and set this as the default 
value for all inference tasks. Given the number of existing 
methods that can make use of prior information (includ-
ing methods like those by Srivastava et al. [18] for single-
cell data, or those by Liu et al. [19] that use orthogonal 
modalities of data to set priors), it becomes increasingly 
important to develop methods that lets one robustly and 
automatically select an appropriate prior (hyperparam-
eter) for these algorithms.

To perform model (or hyperparameter) selection for 
transcript abundance estimators, one must be able to 
evaluate estimated abundances. However, evaluation 
of abundance estimates remains a challenge for cur-
rent methods on experimental data where ground truth 
is completely absent. Notably, evaluation of transcript 
abundance estimators on experimental data have relied 
on careful experiment design that enables comparisons 
to complementary assays (e.g. correlation with qPCR) 
or measurements (e.g. concordance with known mixing 
proportions or spike-ins) [20]. Such evaluation proce-
dures vary from study-to-study, and are simply not pos-
sible when complementary experiments are not designed 
or available. #us, the natural question is then: can the 
quality of transcript abundance estimates be meaning-
fully evaluated on the set of given fragments directly?

It may initially be unintuitive to think that the “good-
ness” of a transcript abundance estimate can be evalu-
ated in the absence of ground truth. However, in a related 
line of research, likelihood-based metrics for assessing 
the quality of de novo assemblies, where ground truth is 
unavailable, have been explored. For example, Rahman 
and Pachter [21] developed a method to compute the 
likelihoods of assembled genomes; Li et  al. [22] devel-
oped a likelihood-based score to evaluate transcriptome 
assemblies; Smith-Unna et  al. [23] developed a method 
to assess the quality of assembled contigs in transcrip-
tomes; and Clark et  al. [24] developed a method that is 
applicable to both genome and metagenomic assemblies. 
Furthermore, if we look to other unsupervised problem 
settings where ground truth annotations are absent, met-
rics for measuring the “goodness” of estimated models 
with latent parameters not only exist, but are regularly 
used. For example, metrics such as the silhouette score 
used to evaluate clustering algorithms come to mind [25]. 
In fact, evaluation of unsupervised probabilistic models, 
especially language and topic models in natural language 
processing, is commonplace [26, 27]. Specifically, per-
plexity, the inverse geometric mean per-word likelihood 
of a held-out test set, has been ubiquitously used to com-
pare models [26].

In this work, we derive perplexity for transcript abun-
dance estimation with respect to held-out per-read like-
lihoods. As we shall see, the perplexity of a held-out 
fragment set given an abundance estimate, computed 
via a quantify-then-validate approach, is a theoretically 
and experimentally motivated measure of the quality 
of the given estimate. Notably, perplexity quantifies an 
important biologically motivated intuition—that a good 
abundance estimate ought to generalize and generate the 
validation set, which is, in a sense, a form of a technical 
replicate, with high probability.
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Perplexity can be used wherever the assessment 
of the quality of abundance estimates is desired. For 
example, perplexity can be used to compare different 
transcript abundance estimation algorithms or, as sug-
gested above, to perform model selection to obtain the 
most accurate estimates from a given algorithm. In this 
work, we focus on experimentally assessing perplexity 
with respect to the latter, model selection for the prior 
used to estimate abundances with salmon [15]. In 
salmon, the reads-per-transcript prior size is a hyper-
parameter that controls its preference for inferring 
sparse or smooth abundance estimates. Notably, the 
problem of model selection offers a succinct assess-
ment and immediately useful application of how per-
plexity can be computed to evaluate and compare the 
quality of candidate transcript abundance estimates.

Contributions
Theoretically, we derive and motivate a notion of per-
plexity for transcript abundance estimation—a met-
ric for evaluating inferred estimates in the absence of 
ground truth. Experimentally, we demonstrate that 
perplexity for transcript abundance estimates is well 
behaved, and establish empirical correspondence 
between perplexity and other metrics that are more 
commonly used to demonstrate the “goodness” of 
transcript abundance estimates.

We summarize our experimental contributions 
below: 

1 In experimental data from the Sequencing Quality 
Control (SEQC) consortium [20], we show that tran-
script abundance estimates with the lowest perplex-
ity (lower is better) achieve the highest correlation 
with complementary qPCR measurements of biologi-
cal replicates.

2 In simulated data, perplexity is concordant with 
respect to three measurements against ground truth: 
Spearman correlation with respect to expressed 
transcripts, AUROC with respect to unexpressed 
transcripts, and downstream differential transcript 
expression analysis.

3 In a proof-of-concept style experiment, we demon-
strate that perplexity can be computed for almost any 
transcript abundance estimation model.

Evidenced by these results, we propose perplexity as 
the first and, to our knowledge, only theoretically and 
experimentally justified metric for model selection for 
transcript abundance estimation in experimental data 
where ground truth is entirely absent.

Preliminaries: (Approximate) Likelihood 
for transcript abundance estimation
Before deriving perplexity for transcript abundance esti-
mation, we shall briefly recall and define the necessary 
objects that pertain to the likelihood of the probabilistic 
model that underpins transcript abundance estimation 
(as in [9, 15]).

#e transcript abundance estimation problem, or 
quantification, from short RNA-seq fragments (a term 
used to refer, generically, to either single reads or read 
pairs), is the problem of assigning each fragment fj of an 
input fragment-set F = {f1, ...fN } to its transcript of ori-
gin. For this work, we shall only consider quantification 
with respect to a given reference transcriptome whereby 
a quantifier maps each input fragment fj to a transcript in 
an input set of reference transcripts T = {t1, .., tM}.

Given the sequence of an input fragment, said fragment 
may align to more than one transcript, ti , in the reference 
transcriptome T  . Here, the de facto method for deter-
mining transcript of origin for fragments that multi-map 
to more than one transcript is to view the true fragment 
to transcript assignment as a latent variable, and to infer 
the latent variable’s expected value by performing infer-
ence in the underlying probabilistic model.

Assuming an appropriate normalization of alignment 
scores, we write the probability of observing a fragment, 
fj , given that it originates from (or aligns to) transcript ti 
to be P(fj | ti) . #e probability that a molecule in a sam-
ple that is selected for sequencing is the transcript ti is 
then P(ti | θ) , a multinomial over T  . Marginalizing over 
all possible alignments, the likelihood of observing the 
fragment set F  given model parameters θ is,

In this work, we shall work with the range-factorized 
equivalence class approximation of the likelihood that 
has proven to be effective and is efficient to compute [28]. 
Here, sets of fragments in F  that map to the same set of 
transcripts, and have similar conditional probabilities of 
arising from these transcripts, are said to belong to the 
equivalence class Fq (indexed by q). Instead of working 
with alignment probabilities P(fj | ti) of each fragment, 
fragments in an equivalence class Fq are approximated 
to have the same conditional probability P(fj | F

q , ti) 
for mapping to each transcript ti . Let C be the set of 
equivalence classes induced by F  and !(Fq) be the set 
of transcripts to which f ∈ Fq map. #e range-factor-
ized equivalence class approximation of the likelihood 
P(F | θ) is,

(1)P(F | θ) =

N∏

j

M∑

i

P(ti | θ) · P(fj | ti).
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Here, the approximate likelihood can be computed over 
the number of unique equivalence classes, which is con-
siderably smaller than the number of all possible align-
ments for all fragments.

Methods
We propose a subtle but instructive change in the usual 
computational protocol for evaluating transcript abun-
dance estimates. We propose a quantify-then-validate 
approach which evaluates the quality of transcript abun-
dance estimates directly on read-sets, analogous to 
train-then-test approaches for evaluating probabilistic 
predictors common in natural language processing (NLP) 
and other fields [29, Ch.  1.3]. Instead of quantifying all 
available fragments and then performing evaluation with 
respect to complementary measurements downstream, 
the quantify-then-validate approach validates and evalu-
ates the quality of a given abundance estimate directly 
on a set of held-out validation fragments withheld from 
inference.

We derive and adapt from NLP, the notion of perplex-
ity for transcript abundance estimation for this quantify-
then-validate approach [26, 27]. Perplexity is computed 
given only an abundance estimate, and a held-out valida-
tion set of fragments as input. #us, perplexity evaluates 
the quality of abundance estimates on fragments directly 
and can evaluate estimates from experimental data in 
the absence of ground truth. Most importantly, evaluat-
ing perplexity with the quantify-then-validate approach 
enables quantitative, evidence-based, cross-validated 
selection of hyperparameters for transcript abundance 
estimation methods that use them.

Perplexity for transcript abundance estimation quanti-
fies the intuition that an abundance estimate for a given 
sample ought, with high probability, explain and gener-
ate the set of fragments of a technical replicate. #e key 
observation is that the likelihood P(F | θ) is simply a 
value that can be computed for any fragment set F  and 
any abundance estimate θ (model parameters), irrespec-
tive of whether θ is inferred from F  . It is the context and 
application of the likelihood, P(F | θ) , that yield seman-
tic meaning.

Given a fragment set, F , over which one seeks to infer and 
evaluate abundance estimates, the quantify-then-validate 
procedure is as follows. First, partition the input set into a 
quantified set, F  , and a validation set, F̂  . Second, quan-
tify and infer abundance estimates (model parameters) θ 
given the quantified set F  . #ird, validate and compute the 

(2)

P(F | θ) ≈
∏

Fq∈C




∑

ti∈"(Fq)

P(ti | θ) · P(fj | F
q , ti)




Nq

.

perplexity, PP(F̂ , θ)—the inverse geometric mean held-
out per-read likelihood of observing the validation set, F̂
—given model parameters θ and the validation set F̂  . #e 
lower the perplexity, the better the parameters θ describe 
the held-out fragments F̂  , and the better the abundance 
estimate parameterized by θ ought to be. In fact, if we 
believe that the generative model is truly descriptive of the 
distributions that arise from the underlying biological and 
technical phenomena, perplexity is, in expectation, mini-
mized when the “true” latent parameters are inferred.

Formally, given an abundance estimate θ , and a validation 
fragment-set F̂ = {f̂1, . . . , f̂N̂ } , the perplexity for transcript 
abundance estimation is:

with per-fragment likelihood,

Crucially, the probability P(f̂j | θ) of observing each held 
out fragment given θ is computed and marginalized over 
the product of two terms, P(f̂j | ti) that depends only on 
the validation set of held-out fragments, and P(ti | θ) that 
depends only on the given abundance estimate.

One particular application of the perplexity metric, 
which we explore here, is to select the best abundance 
estimate out of many candidate estimates arising from dif-
ferent hyperparameter settings for quantifiers. #us, in 
this work, we use the range-factorized equivalence class 
approximation for perplexity (as in Eq. 2) throughout [28]. 
Given the range-factorized equivalence classes, Ĉ  , induced 
by the validation set, F̂  , (where N̂ q is the number of frag-
ments in an equivalence class F̂q ∈ Ĉ  ) the approximation 
is:

with approximate per-fragment likelihood,

We use salmon’s selective-alignment based probabil-
istic model for conditional probabilities P(f̂j | F̂

q , ti) 
and effective lengths of transcripts, since the model 

(3)

PP(F̂ , θ) = exp

{
−

1

N̂
logP(F̂ | θ)

}

= exp





−

1

N̂

N̂∑

j=1

logP(f̂j | θ)





,

(4)P(f̂i | θ) =

M∑

i=1

P(ti | θ) · P(f̂j | ti).

(5)

PP(F̂ , θ) ≈ exp





−

1

N̂

∑

F̂q∈Ĉ

N̂ q · logP(f̂i | F̂
q , θ)





,

(6)P(f̂i | F̂
q , θ) =

∑

ti∈"(F̂q)

P(ti | θ) · P(f̂j | F̂
q , ti).
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and equivalence class approximation salmon uses has 
proven to be a fast and effective way to approximate 
the full likelihood [17, 28]. For the scope of this work, 
salmon’s format for storing range-factorized equiva-
lence classes conveniently contains all relevant informa-
tion and values to compute perplexity with vastly smaller 
space requirements than would be required to store per-
fragment alignment probabilities P(f̂j | ti).

“Impossible” fragments given parameter estimates θ
We now address a perplexity-related issue that is unique 
to evaluating transcript abundance estimates—that 
an observed event in the validation set may be deemed 
“impossible” given model parameters  θ . #e marginal 
probability, P(f̂j | θ) , for observing a fragment f̂j in the 
validation set given some abundance estimate, θ , may 
actually be zero, even if said validation fragment aligns 
to the reference transcriptome. #is occurs exactly when 
all transcripts, ti , to which the validation fragment f̂j 
map are deemed unexpressed by θ (i.e. P(ti | θ) = 0 for 
all such transcripts). Here, we say that f̂j is an impossi-
ble fragment given θ , and that θ calls f̂j impossible. When 
impossible fragments are observed in the validation set, 
perplexity is not a meaningful measurement.

To illustrate how impossible fragments come to be, 
consider the toy example in which all fragments in a 
quantified set that align to transcripts A, B, or C only 
ambiguously map to {A,B} , or to {A,C} . #at is, no such 
fragments uniquely map—a phenomenon observed 
rather frequently for groups of similar isoforms expressed 
at low to moderate levels. Now, suppose that an abun-
dance estimation model assigns all such fragments to 
transcript A and produces an estimate θ . #e quantifier 
may be satisfying a prior that prefers sparsity; or prefers 
to do so because transcript A is considerably shorter than 
transcripts B and C, which gives it a higher conditional 
probability under a length normalized model. In this 
case, the marginal probability, P(f̂j | θ) , of observing a 
validation fragment f̂j that maps to {B,C} is exactly zero 
given the parameters θ.

As an example, we randomly withhold varying per-
centages of fragments from one sample (SRR1265495) 
as validation sets and use all remaining fragments to 
estimate transcript abundances with salmon’s default 
model (i.e. the VBEM model using prior size of 0.01 
reads-per-transcript). Figure  1 shows that at all par-
titioned percentages, impossible fragments in the 
validation set are prevalent with respect to estimated 
abundances. In fact, due to the prevalence of impossible 
reads, perplexity as written in Eq. 5 is undefined (or infi-
nite) for all estimates and all validation sets in the experi-
ments below. An important observation in both the toy 
and experimental examples is that there likely exist better 

abundance estimates that would call fewer fragments 
impossible, while still assigning high likelihood to the rest 
of the (possible) fragments. For example, an abundance 
estimate that reserves even some small probability mass 
to transcript B in the toy example would not call the vali-
dation fragments in question impossible.

Why perplexities need to be smoothed
#e problem with impossible fragments is not only that 
they exist. #e problem is that, for a fixed validation frag-
ment set, perplexity deems an abundance estimate that 
calls even one fragment impossible equally as bad as an 
abundance estimate that calls all fragments impossible. 
Here, both estimates would have unbounded perplex-
ity since the validation set has zero likelihood given each 
estimate. However, the former ought be preferred over 
the latter.

Other fields that have adopted and used perplexity (e.g. 
natural language processing) usually sidestep the issue of 
impossible events entirely both by construction and pre-
processing, working only with smoothed probabilistic 
models in which no event has probability zero, or remov-
ing rare words from input language corpora. However, 
neither strategy is available nor appropriate for evaluat-
ing transcript abundance estimates. It is neither reason-
able nor useful to amend and modify each of the many 
modern quantifiers to produce smooth outputs (outputs 
in which no transcript has truly zero abundance), and 
fragments and transcripts cannot be pre-processed away 
since the set of expressed transcripts cannot be identi-
fied a priori. One may also be tempted to simply remove 
impossible fragments from a validation set, F̂  , before 
computing a perplexity or hold out fragments—but this 

Fig. 1 Number of fragments called impossible versus withheld 
validation fragment set size for sample SRR1265495. All remaining 
fragments are used to estimate abundances using salmon’s 
VBEM model using default parameters (i.e. using a prior size of 0.01 
reads-per-transcript)
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also is not a valid strategy. #is is because two different 
abundance estimates θ and θ ′ may call different validation 
fragments in F̂  impossible, and comparisons of likeli-
hoods P(F̂ ′ | θ ′) and P(F̂ | θ) are only meaningful if the 
validation sets are the same (i.e. F̂ = F̂ ′ ). Furthermore, 
there is no straightforward strategy to sample and hold-
out validation fragments so that no fragments are impos-
sible. #is is because most validation fragments cannot 
be determined to be impossible prior to abundance esti-
mation, and any non-uniform sampling strategy would 
alter the underlying distributions that estimators aim to 
infer. To compare estimates that may call different valida-
tion fragments impossible, the proposed perplexity met-
ric (as in Eq. 5) must be smoothed. Strategies that smooth 
perplexities ought penalize estimates that call fragments 
impossible. #at is, impossible fragments under such 
smoothing strategies ought result in a penalty and over-
come the shrinkage of P(F̂ | θ) to zero. Below, we detail 
two such smoothing strategies for computing perplexi-
ties: (a) Laplacian smoothed perplexity and (b) Good-
Turing smoothed perplexity.

We schematically illustrate how a smoothed perplex-
ity measure, using the proposed quantify-then-validate 
protocol, can be computed to evaluate the quality of tran-
script abundance estimates in Fig. 2.

Laplacian smoothed perplexity
We define Laplacian smoothed perplexity given abun-
dance estimate θ to be the perplexity evaluated with the 
smoothed distribution P̃β(ti | θ) in place of P(ti | θ) . 
#e Laplacian smoothing scheme smooths input abun-
dance estimates by redistributing a small constant prob-
ability mass across the reference transcriptome. Let 
P(ti | θ) = ηi and M be the number of transcripts in the 
reference. #e smoothed distribution parameterized by β 
is defined to be:

Laplacian smoothed perplexity is flexible and easy to 
implement but requires the user to set a value (preferably 
small e.g. 1 × 10−8 ) for the smoothing parameter β.1 At 
the cost of not being parameter-free, Laplacian smoothed 
perplexity allows the user to tune the degree to which 
impossible reads are penalized. #e smaller the value of 
β , the smaller larger the penalty an estimate incurs for 
each validation fragment it calls impossible

(7)P̃β(ti | θ) =
ηi + β

1+Mβ
.

Fig. 2 Overview of the quantify-then-validate approach using smoothed perplexity to evaluate the quality of abundance estimates directly on 
fragment sets in the absence of ground truth. (1) An input fragment set is first partitioned into a quantified and a validation set. (2) Abundance 
estimates for different candidate models (e.g. for explored hyperparameters as part of model selection) are inferred from the quantified fragment 
set only. (3) To account for “impossible” fragments and avoid shrinkage to unbounded perplexities, given abundance estimates are smoothed (see 
Sect. 3.2). (4) Mapping probabilities to the reference transcriptome are computed for fragments in the validation set. (5) Smoothed perplexity is 
computed given each input abundance estimate and the held-out validation fragment set to evaluate and perform model selection—the lower 
the perplexity, the better an abundance estimate describes the held-out set of validation fragments

1 "is is equivalent to adding, for each transcript ti in the reference, 
β ·

∑M
j cj/"̃j reads-per-nucleotide to the expected fragments per-transcript 

counts ci then re-normalizing to obtain TPMs, given effective transcript 
lengths !̃i (as defined in salmon [15]).
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Good-Turing smoothed perplexity—an adaptive, 
“parameter-free” strategy
#e major drawback of Laplacian smoothed perplexity 
is that it depends on a reasonable a priori selection of a 
value for the smoothing parameter β . One further con-
cern is that Laplacian smoothed perplexity is not adaptive 
and does not account for the amount of evidence from 
which an input estimate is derived, i.e. the read-depth or 
the number of quantified reads in a sample. For a fixed 
value of β , the Laplacian smoothed perplexity smooths 
probabilities inferred from a million fragments equally as 
much as probabilities inferred from a trillion fragments. 
However, for the latter estimate that is inferred from 
much more data, it is more sensible to smooth and redis-
tribute less probability mass.

For example while varying one of salmon’s hyperpa-
rameters, Laplacian smoothed perplexities suggest the 
existence of a locally optimal behavior when computed 
with a wide range of values for β (see Fig. 16). However, 
the locally optimal behavior can no longer be observed 
if Laplacian smoothed perplexities are computed with 
β = 1 × 10−6.

A better, adaptive, smoothing strategy would directly 
estimate the probability of observing fragments from 
transcripts that are not expressed. Abstractly, the prob-
lem to be solved is to estimate the probabilities of observ-
ing unobserved events. Here, we turn to the Simple 
Good-Turing (SGT) method [30] that has been applied 
in a wide range of areas, including estimating the prob-
abilities of unseen sequences in computational linguis-
tics [30], as well as for the detection of empty droplets in 
droplet-based single-cell RNA sequencing protocols [31].

Below, we define the Good-Turing smoothed perplexity 
measure, where smoothed probabilities are derived from 
SGT smoothed fragment per-transcript counts.

Given frequencies over a population—i.e. the num-
ber of reads originating from each trancsript—the SGT 
method estimates: 

1 the total probability mass that ought be assigned 
to unseen events—the “expression” of unexpressed 
transcripts, and

2 the appropriate adjustments for probabilities of 
observed events—the adjusted probabilities for 
expressed transcripts.

It is not immediately obvious how to implement SGT 
smoothing for the purpose of smoothing transcript abun-
dance estimates. One issue is that the SGT estimator 
expects as input, integer-valued frequencies of observed 
events, while input abundance estimates for comput-
ing perplexity are real-valued estimated frequencies of 
per-transcript counts. For the purposes of smoothing 

and computing perplexity, we round the estimated num-
ber of fragments per-transcript, ci , to the nearest inte-
ger and treat these as raw frequencies of events for SGT 
smoothing.

#e SGT method also requires that input frequencies-
of-frequencies (i.e. the number of transcripts that have 
the same fragments per-transcript) to be log-linear. 
Empirically, we show in Fig. 3 that rounded input abun-
dance estimates do, indeed, follow a log-linear distribu-
tion. #e confirmed log-linear relationship demonstrates 
the rounding step to be a reasonable approximation.

#e SGT method estimates the adjusted frequencies 
r! for each event observed r times. #ese adjusted fre-
quencies are then used to compute per-event (or per-
transcript) probabilities. Let ci be the rounded number of 
fragments per-transcript ti . Let the frequency of frequen-
cies nr = |{ti | ci = r}| . And let there be n total reads. 
#e SGT method computes and outputs, 

1 the adjusted frequencies, r! = (r + 1)
S(n(r+1))

S(nr )
;

2 and the total probability, P0 = n1
n

 , for observing any 
transcript with ci = 0.

Here, S(nr) computes a smoothed frequency of frequen-
cies. Frequencies of frequencies nr have to be smoothed 
because nr for many large r are zero in observed data. 
#e precise details for computing the smoothed S(nr) are 
described in [30]. In brief, SGT smooths nr by fitting a fit-
ted log-linear function on r against nr and reading off val-
ues of nr for “large” r.

Good-Turing smoothed perplexity is perplexity com-
puted with the smoothed per-transcript distribution 
P̃(ti | θ) in place of P(ti | θ) . Here, the smoothed per-
transcript distribution is derived from adjusted frequen-
cies r! and P0.

Fig. 3 Frequencies-of-frequencies follow log-linear distribution for 
SEQC sample A1
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For each “expressed” transcript ti with count, ci = r , 
greater than zero, the SGT smoothed probability is pro-
portional to the transcript’s adjusted frequency normal-
ized by its effective length, with P̃(ti | θ) ∝ r"/#̃i . #e 
smoothed probabilities for expressed transcripts are nor-
malized so that they sum to (1 − P0).

For each “unexpressed” transcripts with ci = 0 , the 
SGT smoothed probability is proportional to the tran-
script’s effective length, and is derived from distribut-
ing the probability mass P0 uniformly over the effective 
lengths of all unexpressed transcripts in the reference. 
Here, the smoothed per-transcript distribution is defined 
P̃(ti | θ) ∝ P0"i . #e smoothed probabilities for unex-
pressed transcripts are normalized so that they sum to P0.

For all following sections we shall use perplexity to 
mean Good-Turing smoothed perplexity unless stated 
otherwise.

Model selection using perplexity in practice
Arguably, one of the most useful outcomes of being able 
to evaluate the quality of abundance estimates in the 
absence of ground truth is the ability to perform model 
selection for transcript abundance estimation in experi-
mental data. For those familiar with train-then-test 
experimental protocols for model selection in machine 
learning or NLP, model selection for transcript abun-
dance estimation vis-a-vis our proposed quantify-
then-validate approach is analogous and identical in 
abstraction. However, since, to our knowledge, this work 
is the first to propose a quantify-then-validate approach 
for transcript abundance estimation, we shall briefly 
detail how perplexity ought to be used in practice.

Let us consider model selection via fivefold cross-vali-
dation using perplexity given some fragment set F . First, 
F is randomly partitioned into five equal sized, mutually 
exclusive validation sets, {F̂1, . . . , F̂5}—and quantified 
sets are subsequently defined, Fi = F − F̂i . Now, sup-
pose we desire to choose between L model configurations 
(e.g. from L hyperparameter settings). #en for each !-
th candidate model, we produce a transcript abundance 
estimate from each i-th quantified set, θ (")i  . To select the 
best out of the L candidate models, one simply selects the 
model that minimizes the average perplexity over the five 
folds, 15

∑
i PP(F̂i, θ

(")
i ).

One additional practical consideration should also be 
noted. Given any pair of quantification and validation 
sets F  and F̂  , a validation fragment, f̂j ∈ F̂  , can be nec-
essarily impossible. A necessarily impossible validation 
fragment is one that maps to a set of transcripts to which 
no fragments in the quantified set F  also map. Such a 
fragment will always be called impossible given any abun-
dance estimate deriving from the quantified set F  , since 

no fragments in F  provide any evidence that transcripts 
to which f̂j map are expressed.

It is of limited meaning to evaluate estimates with 
respect to necessarily impossible fragments. For the pur-
poses of this work, we shall consider the penalization of 
an abundance estimate only with respect to impossible 
fragments that are recoverable—in other words, frag-
ments that could be assigned non-zero probability given 
a better abundance estimate inferable from F  . As such, 
we remove necessarily impossible validation fragments 
from F̂  , given F  , prior to computing perplexity when-
ever fragment sets are partitioned into validation and 
quantified fragment sets.

Data
Sequencing Quality Control (SEQC) project data
We downloaded Illumina HiSeq 2000 sequenced data 
consisting of 100+100 nucleotide paired-end reads from 
the Sequencing Quality Control (SEQC) project [20]. 
SEQC samples are labeled by four different conditions 
{A,B,C ,D} , with condition A being Universal Human 
Reference RNA and B being Human Brain Reference 
RNA from the MAQC consortium [32], with additional 
spike-ins of synthetic RNA from the External RNA 
Control Consortium (ERCC) [33]. Conditions C and D 
are generated by mixing A and B in 3:1 and 1:3 ratios, 
respectively.

In this work, we analyze the first four replicates from 
each condition sequenced at the Beijing Genomics Insti-
tute (BGI)—one of three official SEQC sequencing cent-
ers. For each sample, we aggregate fragments sequenced 
by all lanes from the flowcell with the lexicographically 
smallest identifier.2 Quantitative PCR (qPCR) data of 
technical replicates for each sample in each condition are 
downloaded via the seqc BioConductor package.

Simulated lung transcript expression data
We simulated read-sets based on 10 sequenced healthy 
lung samples, with Sequence Read Archive accession 
number SRR1265{495-504} [34]. Transcript abun-
dance estimates inferred by Salmon using the --useEM 
flag for each sample are used as ground truth abundances 
for read simulation (expressed in transcripts per million 
(TPM) and expected read-per-transcript counts). #en, 
transcript abundances in samples SRR1265{495-
499}, for 10% of transcripts expressed in at least one of 
the five samples, are artificially up or down regulated by 
a constant factor ( 2.0× ) to simulate differential transcript 
expression. We treat the resulting read-per-transcript 

2 Scripts to download and aggregate SEQC data are available at github. com/ 
theja sonfan/ SEQC- data.

http://github.com/thejasonfan/SEQC-data
http://github.com/thejasonfan/SEQC-data
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counts as ground truth, and generate for each sample a 
fragments set of 100+100 nucleotide paired-end reads 
using Polyester at a uniform error rate of 0.001 with no 
sequence specific bias [35].

Evaluation and experiments
#e purpose of the experiments in this work are two-
fold. First, to establish the relationship and correspond-
ence between perplexity and commonly used measures 
of goodness or accuracy in transcript abundance estima-
tion. And second, to demonstrate how model and hyper-
parameter selection can be performed using perplexity. 
In particular, we perform and evaluate hyperparameter 
selection for salmon with respect to the prior size in the 
variational Bayesian expectation maximization (VBEM) 
model used for inference [15]. #e user-selected prior 
size for the VBEM model in salmon encodes the prior 
belief in the number of reads-per-transcript expected 
for any inferred abundance estimate. #is hyperparam-
eter controls salmon’s preference for inferring sparse or 
smooth estimates—the smaller the prior size, the sparser 
an estimate salmon will prefer. As discussed above, 
prior studies on Bayesian models have not necessarily 
agreed on how sparse or smooth a good estimate ought 
to be [11, 12]—the experiments in this work aim to pro-
vide a quantitative framework to settle this disagreement.

We perform all experiments according to the proposed 
quantify-then-validate procedure and report results with 
respect to various metrics over a fivefold cross-validation 
protocol. We use the Ensembl human reference tran-
scriptome GRCh37 (release 100) for all abundance esti-
mation and analysis [36].

Evaluation versus parallel SEQC qPCR measurements
We analyze the relationship between perplexity and 
accurate abundance estimation in experimental data 
from the SEQC consortium. In SEQC data, we evaluate 
accuracy of abundances estimated by salmon by com-
paring estimates to qPCR gene expression data on bio-
logical replicates, a coarse proxy to ground truth. We 
evaluate the Spearman correlation between gene expres-
sions of qPCR probed genes in SEQC replicates versus 
the corresponding abundance estimates. Gene expression 
from estimated transcript expression is aggregated via 
txImport [6] with transcript-to-gene annotations from 
EnsDb.Hsapiens.v86 [37]. From gene expression 

data, Ensembl genes are mapped to corresponding Entrez 
IDs via biomaRt [38], and 897 genes are found to have 
a corresponding qPCR measurement in downloaded 
SEQC data. Expressions for genes with repeated entries 
in SEQC qPCR data are averaged.

Evaluation versus ground truth on simulated data
In simulated data, since ground truth abundances are 
available, we compare estimated TPMs (computed by 
salmon) against ground truth TPMs under two metrics.

First, we consider the Spearman correlation with 
respect to known expressed transcripts (i.e. transcripts 
with non-zero expression in ground truth abundances). 
We choose to evaluate Spearman correlation with 
respect to ground truth non-zero TPMs because of the 
presence of many unexpressed transcripts in the ground 
truth, meaning a high number of values tied at rank 
zero. Here, small deviations from zeros can lead to large 
changes in rank, leading to non-trivial differences in the 
resulting Spearman correlation metric. We demonstrate 
this phenomenon with respect to the ground truth abun-
dance of a simulated sample (SRR1265495) with a mean 
TPM of 5.98, in which 49% of transcripts are unexpressed 
(82,358 / 167,268). We report the change in Pearson cor-
relation, R2 score, and Spearman correlation of ground 
truth TPMs versus ground truth TPMs perturbed with 
normally distributed noise at varying standard devia-
tions. As we can see from Fig. 4, even small perturbations 
cause non-trivial changes in Spearman rank correlation, 
while changes in Pearson correlation are entirely imper-
ceptible. #e Pearson correlation, however, suffers from 
the well known problem that, in long-tailed distribu-
tions spanning a large dynamic range, like those com-
monly observed for transcript abundances, the Pearson 
correlation is largely dominated by the most abundant 
transcripts.

Second, we complement measuring Spearman correla-
tion of non-zero ground truth TPMs with reporting the 
area under receiver operating characteristic (AUROC) 
for recalling ground truth zeros based on estimated 
abundances. While the measurement of Spearman cor-
relation on the truly expressed transcripts is robust to 
small changes in predicted abundance near zero, it fails 
to account for false positive predictions even if they are 
of non-trivial abundance. #e complementary metric of 
the AUROC for recalling ground truth zeros comple-
ments that metric, since it is affected by false positive 
predictions.
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Di"erential expression analysis on simulated data
We perform transcript level differential expression 
analysis and analyze the recall of known differentially 
expressed transcripts in simulated lung tissue data 
(see  3.6.2). We perform differential expression analysis 
at the trancript level using swish [39] using 20 infer-
ential replicates from salmon. We modified salmon 
to ensure that prior sizes supplied via the --vbPrior 
flag are propagated to the Gibbs sampling algorithm. 
We plot receiver operating characteristic (ROC) curves 
and report the mean AUROC for predicting differen-
tially expressed transcripts over multiple folds. We assign 
P = 1 to transcripts for which swish does not assign 
adjusted P-values.

Evaluation of eXpress abundance estimates
We measure the change in perplexities of abundance esti-
mates inferred by eXpress (version 1.5.1) when running 
0, 1, and 2 additional rounds of the online expectation 
maximization (EM) optimization step. We specify the 
number of additional online EM steps using the –addi-
tional-online parameter. We provide to eXpress 
alignments to the human transcriptome computed by 
bowtie2 [40] using the parameters recommended  

by eXpress with: -a -X  600 –rdg  6,5 –rfg 
6,5 –score-min  L,-.6,-.4 –no-discordant 
–no-mixed.

To compute perplexity, we use the transcript effec-
tive lengths computed by eXpress for each transcript 
inferred to be expressed. For each transcript inferred 
to be unexpressed, we use transcript lengths in place of 
effective lengths, since eXpress sets the effective length 
for these transcripts to zero. We take effective counts 
computed by eXpress to be expected fragment per-
transcript counts.

Implementation
We implement perplexity in Rust and provide snake-
make [41] workflows to (a) set up quantify-validate 
splits of fragment-sets for K-fold cross-validation, 
and (b) compute perplexities of salmon abundance 
estimates with respect to validation fragment sets at: 
github. com/ COMBI NE- lab/ perpl exity. Approximate 
per-fragment probabilities (Eq.  6) are computed by 
running salmon with options –skipQuant and –
dumpEq. Code to reproduce the experiments and fig-
ures for this work is available at github. com/ COMBI 
NE- lab/ perpl exity- paper.

Fig. 4 Spearman correlation, Pearson correlation and R2 with respect to all transcripts in the reference, and AUROC for recalling ground truth 
unexpressed transcripts, with respect to added normally distributed noise with varying standard deviations. Plotted lines for Pearson correlation and 
R2 overlap

http://github.com/COMBINE-lab/perplexity
http://github.com/COMBINE-lab/perplexity-paper
http://github.com/COMBINE-lab/perplexity-paper
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Results
Low perplexity implies accurate abundance estimates 
in experimental SEQC data
In experimental data from the Sequencing Quality Con-
trol (SEQC) project [20], we demonstrate that perplexity 
can be used to perform parameter selection and select 
the salmon VBEM prior size that leads to the most 
accurate transcript abundance estimates. We note that 
perplexity plots for replicates are similar within condi-
tions A-D, and thus include only plots for the first repli-
cate in each condition in the main text. For completeness, 
plots for all samples are presented in Appendix (Figs. 10, 
11, 12,  13).

Empirically, perplexity is well-behaved over all 
samples in the experimental data. As shown in 
Figs.  5  and  6, plots of perplexity against VBEM prior 

size and Spearman correlation against VBEM prior size 
both display an empirically convex shape minimized at 
the same VBEM prior size. #is suggests that minimiz-
ing perplexity is, at least, locally optimal with respect to 
the set of explored hyperparameters.

Furthermore, for almost all samples, perplexity is 
minimized where correlation with qPCR measurements 
is maximized. For all replicates in conditions {B,C ,D} , 
estimates that minimize perplexity with respect to 
held-out validation fragments achieve the best correla-
tion with qPCR measured gene expression. For repli-
cates in these conditions, abundances inferred using a 
prior size of 1 read-per-transcript resulted in estimates 
with the lowest perplexity. In replicates from condition 
A, estimates with lowest perplexity are significantly 

Fig. 5 Perplexity plots for SEQC samples. Plots show perplexity versus VBEM reads-per-transcript prior size for SEQC samples—plots only for the 
first replicate of samples from conditions A-D are shown. Perplexity plots for other replicates are consistent within condition and are included in 
Appendix. Mean perplexities across five folds are plotted in red, and perplexities for each fold are plotted in gray
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better than estimates at default hyperparameter set-
tings (0.01 reads-per-transcript).

Perhaps surprisingly, both perplexity and correlation 
against qPCR measurements prefer a reads-per-tran-
script prior size that is larger than the 0.01 reads-per-
transcript that is the current default for the salmon 
VBEM model. Selecting a larger per-transcript prior for 
transcript abundance estimation with salmon results in 
estimates that are more smooth. Compared to a sparser 
estimate, a smoother abundance estimate likely calls 
fewer validation time fragments impossible. Here, the 
number reads an estimate calls of impossible is sympto-
matic of two kinds of inferential errors—that some tran-
scripts are incorrectly inferred to be unexpressed, and 
that other transcripts are assigned inaccurate inferred 
expression.

Without perplexity, it would be difficult to determine 
empirically, or a-priori, that a VBEM prior size of 1 is 
an optimal parameter setting since no comparison to 

ground-truth is possible. To the best of our knowledge, 
this experiment is the first to carry out both an effective 
and ubiquitously applicable quantitative strategy to per-
form model selection in the context of transcript abun-
dance estimation on experimental data in the absence of 
ground truth.

Perplexity versus ground truth, and di"erential expression 
analysis in simulated data
In simulated data, the relationship between perplex-
ity and measurements against ground truth, though 
well-behaved, is admittedly less direct. In short, under 
the implemented experimental framework, minimiz-
ing perplexity does not always find the best perform-
ing estimates. Across all 10 samples, perplexity prefers 
abundance estimates that are smoother than estimates 
that are most accurate when compared to ground truth. 
For brevity, we include in the main text perplexity plots 
of three samples (SRR1265{496,503,504}) that are 

Fig. 6 Spearman correlation of abundance estimates at various VBEM reads-per-transcript prior sizes, versus parallel qPCR microarray 
gene-expression measurements conditions A-D. Each point in above plots indicate the mean correlation across replicates for a given fold
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representative of three main modalities of perplexity 
plot behaviors (Fig. 7). For completeness, and plots for all 
samples are presented in Appendix (Figs. 14 and 15).

In all but two samples (SRR1265{497,504}), 
perplexity plots display a empirically convex shape 
with a local minima close to the optimal VBEM prior 
size (1 read-per-transcript). For example, for sam-
ple SRR1265503, perplexity is minimized at a VBEM 
prior setting of 1 reads-per-transcript, exactly the best 
performing hyperparameter setting with respect to 
Spearman correlation (Fig.  7; middle). And for sample 
SRR1265496, we can see that perplexity prefers VBEM 
prior setting in a wide local minima ranging from 1 to 3 
reads-per-transcript (Fig.  7; top). Sample SRR1265504 
is one sample for which a local minimal perplexity can-
not be identified with respect to the range of hyper-
parameters scanned (Fig.  7; bottom). However, the 

perplexity plot for SRR1265504 displays a knee-like 
behavior which suggests that after a certain VBEM prior 
size, larger VBEM prior sizes are no longer preferred—
which is consistent across all perplexity plots and com-
parisons to ground truth.

#ese experiments in simulated data suggest that, per-
haps, perplexity remains an imperfect tool. Nonetheless, 
these observations do offer insights about how perplexity 
ought to be used in practice. First, perplexities may prefer 
abundance estimations smoother than ideal. In particu-
lar, when perplexities for two VBEM prior settings are 
close, or when perplexities are roughly minimized for a 
range of values, one ought to select the model that out-
puts the sparsest estimates. Second, careful (albeit quali-
tative) inspection of perplexity plots can be used to select 
an optimal hyperparameter setting experiment-wide. For 
example, inspection of perplexity plots (Figs. 14 and 15) 

Fig. 7 Quality of transcript abundance estimates as a function of VBEM per-nucleotide prior size for samples SRR1265{496,503,504}. (Left 
column) Spearman Correlation with respect ground truth expressed transcripts. (Middle column) Perplexity of abundance estimates; perplexities 
per-fold indicated in gray and mean perplexities in red. (Right column) AUROC for retrieving ground truth unexpressed transcripts. Leftmost plotted 
points for all plots use default salmon VBEM prior size of 0.01 reads-per-transcript
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over all samples show either knee-like behaviors begin-
ning at, or local minimas centered close to a VBEM prior 
size of 1 reads-per-transcript—the best hyperparameter 
setting.

Notably, the results also show that perplexity can 
simply be used to quantitatively reject poor abun-
dance estimates (or the hyperparameters that generate 
them). Although the significance of this property may 
be overlooked at first, perplexity is to our knowledge 
the only metric that can do so when ground truth is not 
available.

We also analyze the accuracy of differential transcript 
expression (DTE) analysis of estimates with the same 
VBEM prior size experiment-wide. We report AUROC 
of DTE calls up to a nominally useful maximum false 
discovery rate (FDR) of 0.05 (Fig.  8). Not surprisingly, 
AUROC of DTE calls mirror the shape of Spearman cor-
relations of estimates inferred from different VBEM prior 
sizes. Again, for each individual sample, minimizing 
perplexities may not always select the best hyperparam-
eter setting. But, experiment-wide, perplexity plots do 
begin to exhibit minima or knee-like behaviors at VBEM 
prior size of 1 reads-per-transcript—the best performing 
hyperparameter setting with regard to DTE (Fig. 8).

Perplexity measures improved accuracy due to additional 
eXpress online optimization rounds
Crucially, perplexity can be used to evaluate the perfor-
mance of arbitrary abundance estimators that output 
per-transcript probabilities P(ti|θ) . #is is because, per-
plexity is computed from decoupled per-transcript terms 
P(ti | θ) from abundance estimates inferred only from 
the quantification fragment set, and per-fragment terms 
P(fj | ti) from mapping probabilities calculated only from 
the the validation fragment set. #e comparison of differ-
ent models simply requires agreement on per-fragment 
probabilities P(f̂j|ti) for all fragments in the validation 
set. Per-fragment probabilities P(f̂j|ti) can simply be 
computed from any tool that makes these available (e.g. 
salmon).

#us, perplexity can be especially useful for investigat-
ing and verifying specific behaviors of different abun-
dance estimation algorithms. To demonstrate this, we 
explore how perplexities can be calculated to investigate 
the improvement due to additional online optimization 
rounds when running eXpress [42]. eXpress uses a 
streaming optimization algorithm—online expectation-
maximization (EM)—to quantify transcript abundance 
from the alignments of RNA-seq reads. #eoretically 

Fig. 8 Accuracy of differential expression analysis with respect to experiment-wide selection of VBEM per-nucleotide prior size. (Left) AUROC with 
respect to DTE calls at real FPRs up to 0.05. (Middle) ROC curve up to FPR = 0.20. (Right) ROC curve up to FPR = 0.05. To reduce visual clutter, only 
the ROC curves some representative VBEM prior size settings are plotted

Fig. 9 Change in perplexity from additional eXpress online expectation-maximization (EM) rounds. Reduction in perplexity indicates improved 
quality of estimated abundances after each online EM round
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and empirically, additional rounds of the online-EM step 
is known to improve accuracy. Without perplexity, this 
behavior can only be verified when parallel measure-
ments in experimental data are available(e.g. qPCR on 
biological replicates). With perplexity, this behavior can 
be verified from a sample’s fragment-set directly. Accord-
ing to perplexities shown in Fig.  9, running eXpress 
using one or two additional online EM rounds results in 
improved abundance estimates in four out of five folds. 
In this case, the perplexity results concord with the 
expectation that additional rounds of the online-EM step 
improves convergence and lead to improved estimates of 
transcript abundance.

When running an inference algorithm, a user can go 
beyond simply verifying that an abundance estimation 
model converges on input, quantified fragments. With 
perplexity, a user can now verify that said model gen-
eralizes, and is accurate with respect to held-out, vali-
dation fragments drawn exactly from the “true” latent 
distribution.

Conclusions
In this work, we derive the smoothed perplexity metric, 
which, to our knowledge, is the first metric that enables 
the evaluation of the quality of transcript abundance esti-
mates in the absence of ground truth.

In experimental data from the Sequencing Quality 
Control (SEQC) project [20], we show that the most 
accurate abundance estimates consistently have the 
lowest perplexity (lower is better) and demonstrate 
how quantitative model selection can be performed 
on input fragment sets directly and in the absence of 
ground truth. In simulated samples, we demonstrate a 
looser, but still useful, relationship between perplexity 
and measurements against ground truth. One possible 
explanation for the more erratic behavior and noisier 
perplexity plots for our simulated samples is due to 
these samples consisting of many fewer fragments than 
SEQC samples. On average, the simulated samples con-
tain 17,410,732 fragments on average while the SEQC 
samples average 47,589,281 fragments.

Although we only demonstrate model selection with 
respect to only one hyperparameter (the VBEM prior 
size) in salmon using perplexity, model selection 
for other hyperparameters are possible with simple 
changes to the experimental protocols implemented 
here. For example, perplexity evaluated to choose the 
number of bins for the range-factorized likelihood 
approximation, or select between VBEM and EM mod-
els and optimization algorithms in salmon.

Notably, perplexity may be useful for investigat-
ing and comparing different abundance estimation 
models. In a proof-of-concept style experiment run-
ning eXpress [42], we demonstrate perplexity can be 
computed to verify theoretically predicted behavior. In 
doing so, we theoretically and empirically demonstrate 
that perplexity can be computed for almost any tran-
script abundance estimation model.

In future work, perplexity can perhaps be adapted 
and applied to other problem settings in bioinformat-
ics where probabilistic models infer abundances. For 
example, perplexity may be useful in metagenomics 
where model selection (i.e. choosing confidence cut-
offs for taxa identification, or selecting candidate refer-
ence genomes) can have a large effect on the quality of 
inferred abundances [43].

In sum, this work demonstrates that evaluation 
of transcript abundance estimates in the absence of 
ground truth is indeed possible. Perplexity is an exam-
ple of a promising new direction in which estimated 
abundances can be evaluated and validated directly on 
input fragments themselves. #is may prove fruitful 
not only for the re-analysis of previously published data 
where ground truth was absent, but also for current 
and future experimental settings where parallel experi-
mental measurements complementary to RNASeq are 
too expensive or cumbersome to obtain.

Appendix
Additional figures are included as Figs.  10, 11, 12, 13, 
14, 15, 16.
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Fig. 14 Quality of transcript abundance estimates as a function of VBEM per-nucleotide prior size for samples SRR1265{495-499}. (Left 
column) Spearman Correlation with respect ground truth expressed transcripts. (Middle column) Perplexity of abundance estimates; perplexities 
per-fold indicated in gray and mean perplexities in red. (Right column) AUROC for retrieving ground truth unexpressed transcripts. Leftmost plotted 
points for all plots use default salmon VBEM prior size of 0.01 reads-per-transcript
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Fig. 15 Quality of transcript abundance estimates as a function of VBEM per-nucleotide prior size for samples SRR1265{500-504} 
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