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Abstract—5G and beyond is the key enabler for extreme
mobile-broadband (xMBB), Massive and Ultra-reliable machine-
type communication (mMTC, uMTC). To handle such large-scale
and real-time traffics, Edge Cloud (EC) plays a critical role to
minimize the latency and provide compute power at the edge
of the network for Internet of Things (IoTs). However, an EC
endures limited compute capacity in contrast with the back-end
cloud (BC). Intelligent resource management techniques become
imperative in such resource constrained environment. This paper
studies the problem of compute and wireless resource allocation
in an integrated EC and BC environment. Machine learning-
based techniques are emerging to solve such optimization prob-
lems. However, it is challenging to adopt traditional discrete
action space-based methods since they do not scale well in large-
scale environments. To this end, to overcome the bottlenecks of
wireless bandwidth and compute capacity in resource constrained
EC and BC, we propose continuous action space-based DDPG-
Edge-Cloud, a deep deterministic policy gradient-based multi-
resource allocation (MRA) framework with a pruning principle.
The proposed agent is equipped with a Conv1D residual block,
gated recurrent unit (GRU) layer and an attention layer for
local and long-term temporal feature extraction. We validate
the proposed framework by comparing with two alternative
agents. Experimental results demonstrate that our proposed
agent converges fast and achieves up to 55% and 86.5% reduction
in operational cost and rejection rate, and achieves up to 115%
gain in the quality of experience on average.

Index Terms—Edge cloud computing, deep deterministic policy
gradient, resource allocation, smart city, IoT.

I. INTRODUCTION

Next generation mobile applications (e.g. Augmented Re-
ality (AR), Virtual Reality (VR)) and streetscape applica-
tions (e.g. swift control-response for emergency vehicles and
situation-aware traffic/pedestrian signaling) possess resource-
hungry and real-time constraints [1]. Edge-cloud (EC) archi-
tecture is a stepping stone to meet the above compute and real-
time constraints by reducing the network latency and providing
the computational resources at the edge of the network [2].
Furthermore, A three-tier hierarchical EC system integrated
with the back-end cloud (BC) provides support for a broad-
range of applications with varying QoS requirements in greater
extent [3].

Edge clouds possess a limited amount of computational
resources [3] and back-end clouds experience the same in
the case of pay-as-you go model [4]. 5G supports dynamic
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Radio Access Network (RAN) and a wider frequency spectrum
landscape [5]. However, in the presence of excessive amount
of connected devices in the EC environment, a large amount
of concurrent traffic can be anticipated. Thus, communication
resources, which connect the devices with EC and BC, also
become a bottleneck for the system. This multi-resource
allocation (MRA) and system cost reduction challenge is
manifold: First, handling the user requests from a wide range
of applications at large scale with different QoS requirements.
Second, the computational complexity pertaining to optimal
resource allocation in a large system particularly in dynamic
traffic patterns requires scalable solution techniques.

The proven success of Machine Learning (ML) based tech-
niques has spurred the adoption of ML algorithms to solve
control and management problems for IoTs in clouds and
5G wireless networks [6]–[8]. Cheng et al. [9] utilized the
Deep Reinforcement Learning (DRL) to train the Deep Q-
Network in order to solve a resource provisioning and task
scheduling problem in a cloud-based environment under the
strict QoS requirement. Wei et al. [10] proposed a natural
actor-critic reinforcement learning framework to jointly solve
the problem of content caching, computation offloading and
radio resource management with the goal of minimizing the
end-to-end delay. Deep deterministic policy gradient (DDPG)
based methods, which provide superior state representation
in high-dimensional space, are also adopted to solve the
resource allocation problems. Peng et al. [11] leveraged the
DDPG and hierarchical learning architectures to jointly solve
the spectrum, computation and storage allocation problem
in an EC based system. Recent studies [12], [13] solved
the computation offloading and resource allocation problem
for multiple mobile users in EC based systems by utilizing
the DDPG-based framework and proposing the sate-of-the-art
algorithms. Nevertheless, all of the above consider either EC
or BC based environments separately, and lack the three-tier
hierarchical architecture integrated with the BC.

Motivated from the above discussion, we aim at presenting
a scalable solution which can also be easily implemented in
real-world scenarios like COSMOS testbed. The COSMOS
is a National Science Foundation (NSF) sponsored project
with many academia partners including The City College
of New York [14]. Our recent work [15] proposed a novel
resource allocation framework to solve the bandwidth alloca-
tion problem in COSMOS based environment. The presented
results are encouraging, which stimulated to extend the current
framework [15] and comprehensively solve the multi-resource
allocation (MRA) problem with continuous action-space. This
is the rationale behind the introduction of DDPG-Edge-Cloud.
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The proposed framework takes into account the wireless
and computation resource allocation problem equitably at the
Edge-cloud (EC) and back-end cloud (BC). To the best of our
knowledge, none of the existing works applied DDPG with
local and temporal feature learning networks, and pruning
principle to solve the MRA problem jointly in EC and BC
with the goal of minimizing overall system cost for providers,
meeting the strict QoS requirements of applications and fast
self-learning capability.

The main contribution of our work is summarized as fol-
lows:

• We present a simple user job model which takes into
consideration both the deadline of the job and data to be
processed at the same time. Thereafter, to aptly process
these jobs, we present a multi-resource allocation (MRA)
model under an integrated wireless communication, EC
and BC environment to handle a large-scale of user
requests under constrained resources.

• We formulate the MRA problem for user requests into
DDPG-based Actor-Critic framework. The reward max-
imization objective for resource allocation with wireless
bandwidth, EC and BC compute resources considers
to optimize three fundamental bench-marking points; 1)
Minimize system cost; 2) Minimize rejection rate for
enhanced reliability; and 3) Minimize round-trip time of
a user request for better Quality of Experience (QoE).

• Instead of using fully-connected networks (FCNs), both
the actor and critic networks in the DDPG-based frame-
work consist of convolution (Conv1D) residual block,
gated recurrent unit (GRU) and an attention layer.
Conv1D residual block aims at learning the correlations
among local features of each input state, and GRU and
attention layers capture the temporal features. Further, our
proposed pruning principle [15] helps to minimize the
rejection rate by efficiently offloading the service requests
to servers and base stations.

• The performance of DDPG-Edge-Cloud is evaluated in
terms of convergence efficiency, average operational cost,
rejection rate and QoE. Compared with other DDPG-
based agents, our proposed method achieves better con-
vergence and loss results during training. In addition,
our proposed approach outperforms two DDPG-based
methods in all of the test scenarios. Overall our proposed
approach achieves better performance for the MRA prob-
lem.

The remainder of this paper is organised as follows: The
multi-resource allocation (MRA) in EC and BC based smart
streetscape system is modeled in Section II. Section III intro-
duces our core DDPG-based framework and pruning principle
for our MRA system. Section IV presents the performance
evaluation and discusses the experimental results, followed by
the conclusion and future directions in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Description
We consider the Edge-cloud (EC) based streetscape system

as shown in Fig. 1. Our proposed system provides 5G based
wireless radio access (including sub-6 GHz and mmWave)
to sensors, street signals, vehicles, security cameras, mobile
devices and other Internet of Things (IoTs) via software
defined radios (SDRs) herein called virtual base stations (BSs).
In 5G architecture, one SDR/BS covers a small cell; therefore,
multiple BSs can connect to one nearby edge-computing
infrastructure via high speed and low-latency software defined
fiber links [14]. For the beyond 5G deployments, mobile
network operators (MNO) rely on connected EC and BC for

Edge-Cloud

Back-end Cloud

Fig. 1: System model and Structure of Edge-cloud based Streetscape System.

scalability and enhanced services [16]. Therefore, it is vital
to consider EC along with BC in order to propose a realistic
system. In our proposed system, EC is interconnected with the
BC via high speed fiber links to leverage abundant and always
available resources at public clouds (AWS, Google Compute
Engine, Microsoft Azure) in order to offload delay-tolerant
multimedia tasks or to save data for future uses.

Context aware control of resources is main ingredient of
the smart streetscape environment such as smart control of
pedestrian signal for elderly people and traffic signal control
for emergency situations (e.g. fire on a building) or in a
logistics unloading case, traffic can automatically be diverted
to a safer and smoother street with the help of data sent by
the IoTs [17].

Multi-media (AR, VR, Video) applications are bandwidth
hungry and resource intensive, at the same time require
low end-to-end latency [1]. In such scenarios, proposed EC
infrastructure plays an important role to supply uninterrupted
services to both streetscape and multi-media applications.
Upon arrival of a service request, based on it’s exigency, the
system decides whether to run it on EC or BC, and based on
the availability of resources how much bandwidth and compute
resources have to be allocated in order to execute the task
within the deadline.

B. Users and Jobs Model
In the proposed framework, we consider all the de-

vices which are connected to the system as EC users.
Each user offloads its computational task in the form
of a distinct service request. The entire workload of the
system is a set of J jobs from U users i.e. J =
{j1(dl1, d1), j2(dl2, d2), ..., jU (dlU , dU )}. A job ju(dlu, du) is
a tuple of two variables where dlu means the hard deadline
in milliseconds and du represents the data in bytes to be
processed in job ju offloaded by user u. The user job can
demand both CPU and Memory for a successful execution but
processing vitally involves CPU; therefore, we only consider
CPU cycles as a job processing source as proposed by Cheng
et al. [9]. Suppose C represents the number of CPU cycles
required to process 1 Byte of data, then Lu is given as the total
CPU cycles required to compute data du (Lu = du × C). A
similar task computation model (with CPU cycles) is proposed
in [12], [13] as well.
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C. Wireless Bandwidth Model
As shown in Fig. 1, an EC system owns W base sta-

tions (BSs) {1, 2, 3, ...,W}, each of which makes meshed
wireless connections with actuators/relays to provide wireless
access capacity, load-balancing and failover. The total wireless
bandwidth that is available on all BSs is represented as
B. Each BS w can support H wireless bandwidth channels
{chw

1 , ch
w
2 , ch

w
3 , ..., ch

w
H}, and each wireless bandwidth chan-

nel chw
h (h ∈ [1, H]) provides a variable amount of bandwidth

(data rate in bps) and costs cwh . The directional antenna array
in mmWave cellular networks of the COSMOS testbed [14]
is capable of exploiting beamforming, which compensates the
increased path-loss at mmWave frequencies and overcomes the
additional noise due to the large transmission bandwidth [5].
Interference isolation is also achieved in directional beamform-
ing, which, as a result, reduces the adjacent-cell interference.
Therefore, in our case, we ignore path-loss, channel noise and
interference factors, and manage resources at the application
layer through well-defined APIs [3], which provides a fine-
grained control of the wireless bandwidth.

D. Computational Model
1) Edge Cloud: An Edge-cloud (EC) owns M servers
{1, 2, 3, ...,M}. Each server m processes an offloaded
job via a set of virtual machines (VMs). Let K =
{vmm

1 , vmm
2 , vmm

3 , ..., vmm
K} be the set of VMs that can be

assigned by server m and each VM vmm
k provides a variable

amount of compute capacity (CPU cycles in Hz) to process
a job and costs cmk . The total compute capacity on all EC
servers is given by Cec CPU cycles. Chen et al. [13] proposes
a similar computational model; however, they consider EC
with unlimited compute resources, which may not be valid
for practical scenarios.

In practice, a fine-grained control of the compute resources
can be achieved at the application layer by processing user
jobs in a Docker container, which uses cgroups to limit the
system resources. However, for the simplicity of the model,
we will use the term VM in this study.

2) Back-end Cloud: Previous work [18] considered back-
end cloud (BC) as a source of unlimited compute capacity.
However, we take into account a realistic model to min-
imize the overall cost of the system by adopting pay-as-
you go model. Therefore, just like an EC, we consider N
BC servers {1, 2, 3, ..., N}, which execute a job via a set of
K = {vmn

1 , vm
n
2 , vm

n
3 , ..., vm

n
K} VMs, each with a variable

amount of compute capacity (CPU cycles) and costs cnk . Cbc
denotes the total number of CPU cycles available on all BC
servers. This model can be easily extended to infinite resource
model by relaxing Cbc and K sufficiently large.

E. Delay Model
We define round-trip time (RTT) as the total time that it

takes for a job to upload to the EC or BC via a wireless
channel, process the job and then send the result back. This
involves propagation, transmission (2-way) and processing
time. A similar delay model is also used in [10].

1) Propagation Time: Propagation time through fiber or air
media is negligible and assumed to be constant. Therefore,
we consider a constant delay tu(propec) = 5ms for EC and
tu(propbc) = 50ms for BC depending on where the resources
are allocated for job execution.

2) Transmission Time: This includes the time that a job
takes to upload to the EC or BC and the time to send the
result back successfully. It depends upon the amount of data
and wireless channel that is allocated. The transmission time of
a job to the EC can be calculated as: tu(transec) = du

chw
h
+ Ru

chw
h

,

where Ru is the result which is generated after the job exe-
cution and sent back. In general, the result is a control signal
and contains only a few kilobytes of data [13]. Nonetheless,
the result for AR/VR applications can be substantially large,
therefore, we incorporate it in our framework.

According to Fig. 1, EC is connected with BC via a high
capacity fiber link and considered to guarantee b bandwidth
[14]. Thus, the transmission time between a device and BC
can be given as: tu(transbc) = tu(transec) +

du

b + Ru

b .
3) Processing Time: This depends upon the number of

required CPU cycles Lu and the allocated VM vmm
k , vmn

k

at EC or BC, respectively, and given as: tu(procec) = Lu

vmm
k

for the EC, and tu(procbc) =
Lu

vmn
k

for the BC.
To summarize, when a job ju is offloaded to the EC, the

total round-trip time is given as: rttec(ju) = tu(propec) +
tu(transec)+ tu(procec), similarly, when the job is offloaded
to the BC then: rttbc(ju) = tu(propbc) + tu(transbc) +
tu(procbc).

F. Utility Model
The total usage of the system resources at any given time

t is the sum of the occupied resources by all the jobs which
are being processed. Therefore, the bandwidth utility rate of
all base stations W is given as:

UrW (t) =

∑W
w=1(

∑H
h=1 ch

w
h .µ

w
h (t))

B
, (1)

where µw
h (t) is the total number of chw

h channels which are
serving the jobs at time t. Similarly, the utility rate of a server
at EC and BC can be measured as:

UrM (t) =

∑M
m=1(

∑K
k=1 vm

m
k .µm

k (t))

Cec
, (2)

and

UrN (t) =

∑N
n=1(

∑K
k=1 vm

n
k .µ

n
k (t))

Cbc
, (3)

respectively.

III. THE PROPOSED DDPG-EDGE-CLOUD AGENT

In this section, we present DDPG-Edge-Cloud to solve the
MRA problem for mobile and streetscape based applications.
Like RL agent in [15], the proposed DDPG-Edge-Cloud agent
also runs on the EC for better accessibility of the environment
and faster training. In our DDPG-based framework, the agent
contains actor and critic networks whose architectures are
same. The actor, i.e., a policy function, observes the state st
by interacting with the environment and takes a continuous
action at via a deterministic policy and receives an immediate
reward rt. On the other hand, the critic uses the action-
value function Q(st, at) to update the policy parameters. At
each state, different resource allocation actions yield different
rewards. The goal of the agent is to maximize the long-term
reward by finding an optimal resource allocation policy. We
define state and action space followed by our unique reward
model below.

1) State Space: The state of the system at any time t is
the observation of utility rates of all the base stations, EC and
BC servers, and the current job ju which has to be scheduled
either at EC or BC. The state contains five parameters, i.e. st =
{UrW , UrM , UrN , ju(dlu, du)}. Based on these sequences,
the agent learns optimal resource allocation strategies in each
decision epoch.
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Edge-Cloud

Back-end Cloud

Train

Train

Fig. 2: The architecture of the proposed DDPG-Edge-Cloud framework.

2) Action Space: In each state st, the agent decides how
much bandwidth and VM resources (on EC or BC) have
to be allocated in order to successfully execute the job
within the deadline. The continuous action space, at =
{chh, vmk, cloud}, has three parameters. chh is the amount
of bandwidth, vmk is the amount of CPU cycles and cloud
has value either 0 or 1 which means task is offloaded to EC
or BC, respectively.

3) Reward: In our model, the reward can be calculated as
the sum of lump income and cost of resource procurement in
the MRA system:

rt(st, at) = Iu(st, at)− costu(st, at)× rtt(ju), (4)

where Iu(st, at) is the net income earned by executing the
job ju and costu(st, at) is the cost of resource procurement
for rtt(ju) time (time it takes to process the job) for selecting
action at at state st. In the definitions of Iu(st, at) and
costu(st, at), we take into account the completion time of
the job and the utility of wireless and computation resources.

Iu(st, at) is defined as,

Iu(st, at) =

{
(dlu − rttec(ju)).δ, if cloudt = 0
(dlu − rttbc(ju)).δ, if cloudt = 1.

(5)

In Eq. (5), δ represents the revenue that the service provider
generates by successfully executing the user job. It can be set
on-the-fly which can differ depending on the job completion
time. Note that, if the completion time of job (rtt(ju)) exceeds
the deadline (dlu), then the income becomes negative which
impacts the overall reward. This effect encourages the system
to take the allocation decisions that can complete the jobs
before deadlines.

In contrast to the income, costu(st, at) describes the cost
of resource procurement per unit time by allocating wireless
bandwidth channel and a VM at EC or BC and is given as,

costu(st, at) =

{
UrW (t).ch + UrM (t).ck, if cloudt = 0
UrW (t).ch + UrN (t).ck, if cloudt = 1,

(6)

where ch and ck represent the cost of wireless bandwidth
channel and VM allocation per unit time, respectively.

As compared to [18], we calculate the reward for each
individual job, so as the cost and the income. This approach
is more meaningful in a way that the QoS requirement in
each job may vary and calculating reward for every individual
job can better assist the agent to derive an optimal resource
allocation policy.

The optimization problem of wireless bandwidth and VM
allocation for the user jobs at different base stations and
servers, while considering the varying QoS requirements and
constrained resources is formulated as below:

maximize
T∑

t=1

rt(st, at) (7)

subject to the constraints UrW (t) ≤ 1, UrM (t) ≤ 1
and UrN (t) ≤ 1,∀t ∈ T , which describes that the util-
ity of bandwidth and EC and BC servers does not exceed
from it’s total available capacity, respectively. The constraint
rttec(ju) ≤ dlu, rttbc(ju) ≤ dlu,∀u ∈ U guarantees the
hard deadline requirement of the job offloaded at EC or BC,
respectively.
A. Actor-Critic Framework

In traditional DDPG-based framework, fully-connected net-
works (FCNs) are mostly used as both actor and critic net-
works [19], which have huge trainable weights and capture
only global descriminative features of the task sequences.
However, the computation-intensive tasks have complex tem-
poral variations in nature. For high-quality state representation
and better function approximation of MRA system, we propose
a network to capture the local and temporal features in sequen-
tial data. Inspired from [13], the first part of our proposed
agent contains Conv1D residual block structure to learn the
correlations among local features of each input state. The
second part contains GRU to learn the temporal dependencies
and an attention mechanism to capture meaningful information
at certain moments that has decisive effect on prediction.
GRU model has fewer parameters and controls the flow of
the information without using a memory unit, resulting in less
complicated structure with the performance on par with LSTM
[20]. This is why we prefer GRU over LSTM.

To break the undesired temporal correlations of training
samples and reduce variance, an experience replay (ER) is
used to store all the experience ((st, at, rt, st+1)) to train the
agent on more independent samples. Uniform sampling is used
to randomly select a mini-batch of transitions from the ER
buffer to train the actor and critic networks.

1) Pruning Principle: Our proposed agent is responsible to
select appropriate amount of bandwidth, VM units and cloud
to execute a job. We introduce pruning principle to further
select the base station and server with the least utility. The
BS is given as wt = argmin(Urw(t)),∀t ∈ T, ∀w ∈ W ,
the EC server is given as mt = argmin(Urm(t)),∀t ∈
T, ∀m ∈ M , and the BC server (if task offloaded to BC)
nt = argmin(Urn(t)),∀t ∈ T, ∀n ∈ N . The major contri-
bution of our proposed pruning principle is the reduction of
action space at every state by a significant amount. It also helps
to balance the load among all the base stations and servers;
which means, it does not lead to overload a single base station
or server which could potentially result in higher rejection rate
for future jobs.

The training process of DDPG-Edge-Cloud agent with prun-
ing principle to obtain an optimal MRA policy is summarized
in Algorithm 1. The target networks of actor and critic are
clone of their respective online networks.
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Algorithm 1: Training process of DDPG-Edge-cloud agent
with Pruning Principle

Input : User jobs with varying QoS requirements
1 Initialize replay memory ∆ to capacity Ω;
2 Initialize the actor and critic online and target

networks with random weights;
3 for episode = 1 to E do
4 Reset the environment;
5 for t = 1 to T do
6 Predict an action at using the actor network;
7 Apply pruning principle to select base station

and server
8 Execute action at, observe next state st+1 and

receive reward rt
9 Store transition sample (st, at, rt, st+1) in ∆

10 Sample random mini-batch of transitions from
∆

11 Train the critic and actor on sampled
mini-batch

12 Update the weight vectors of online networks
in actor and critic

13 Update the weight vectors of target networks in
actor and critic

14 st ← st+1
15 end
16 end

Output: Optimal Multi-Resource Allocation policy

IV. EXPERIMENTAL RESULTS

We develop our MRA framework and proposed DDPG-
Edge-Cloud agent with pruning principle in the Python 3.8.10
to simulate a near real-world environment. The simulation
code will be made public after the community release of
COSMOS testbed [14]. We run all the experiments on Dell
Desktop Machine with 2.9 GHz Intel Core i7 processor,
128GB memory and Windows 10 Pro 64-bit OS, and discuss
the advantages of our proposed algorithm over the alternative
methods.

A. Experiment Setup
The two baselines we use to compare with the DDPG-Edge-

Cloud agent are described below:
• DDPG-NN: Existing DDPG [19] with two fully-

connected network layers used in the actor and critic
networks. Same uniform sampling replay buffer is used
for a fair comparison.

• DDPG-CNN: In a DDPG-based actor and critic net-
works, the fully-connected layers are replaced by identi-
cal Conv1D residual blocks introduced in Section III-A.
As opposed to pruning principle in our proposed method,
base stations and servers are randomly selected in the case
of these agents.

We perform the experiment on three different sizes of
environments, small, medium and large. Small-scale environ-
ment contains 4 wireless base stations, 10 EC and 10 BC
servers. Medium-scale environment contains 12 base stations,
30 servers at the EC and 30 at the BC. The large-scale
environment consists of 20 base stations, 50 EC and 50 BC
servers. We set each base station to provide 1Gbps of total
bandwidth, each server with 18 cores and each core with 2GHz
(total 36GHz) both in the EC and BC servers. The bandwidth
(b) between EC and BC set to 1Gbps. The configurations of
the proposed system can be customized; however, here our
objective is to compare the performance of three algorithms.
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Fig. 3: Convergence comparison of three agents in small-scale environment. (a)
Normalized Reward. (b) Normalized training loss.

We conduct experiments on small-scale, medium-scale and
large-scale environments with 10,000, 100,000 and 1,000,000
jobs, respectively. The wireless bandwidth and VM per unit
rental/usage cost is normalized to 1 cent per second. The value
of revenue δ is set to 10 cents. Mobile users and other IoT
devices generate tasks of different sizes with varying QoS
demands. We group these user tasks/jobs into two groups;
1) Type-1 tasks are critical tasks with comparably small size
(bytes) and deadline. We set the deadline of such tasks to be
in the range of [200ms, 800ms], and the size to be in the
range of [100KB, 500KB]; 2) Type-2 tasks are multi-media
tasks with large size and relaxed deadline as compared to
the Type-1 tasks. The deadline of such tasks is set between
[1000ms, 2000ms], and the size between [1MB, 2MB]. CPU
cycles required to process 1-byte of data is randomly generated
between [1000, 4000] and the resultant data is also randomly
generated between [500, 1000] in KBs.

The default learning rate is set to 0.0001 and 0.001 for actor
and critic networks, respectively, and the discount factor γ =
0.99. The Adam optimizer is used to optimize the loss function
during training. The learning iterations (T ) per episode are set
to 1000.

B. Convergence
We compare the convergence rate of DDPG-Edge-Cloud

with DDPG-NN and DDPG-CNN in a small-scale environ-
ment to get the intuition of the performance of the agents.
Fig. 3(a) and Fig. 3(b) depict the convergence rate in terms of
reward and training loss which are normalized using max-min
normalization method. Initially, DDPG-CNN grows up quickly
as compared to DDPG-NN; however, due to the nature of local
feature extraction only, the DDPG-CNN agent is trapped in
local optima. Our proposed agent learns both local and long-
term features, which results in efficient training and superiority
in convergence.

C. Performance Analysis
Performance comparison is based upon three key perfor-

mance indicators (KPIs) in the MRA system: operational cost,
rejection rate and QoE. The operational cost is calculated using
Eq. (6). A job is considered rejected if its completion time
exceeds the given deadline or no more resources are available
for allocation. Both the cost and rejection rate are averaged
over the total number of accepted jobs in the respective scale.
In our environment, QoE is inversely proportional to the
round-trip time (RTT) of the job. This means, smaller RTT of
a job will induce better QoE for the users. Fig. 4(a) illustrates
the average operational cost, our proposed agent, on average,
achieves 30.5%, 42% and 55% reduction in cost in small,
medium and large-scale environments, respectively. Fig. 4(b)
shows that our proposed strategy consistently gives rejection
rate a multiple of 10−3 even in the large scale environment.
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Fig. 4: Performance comparisons of three agents in small, medium and large-
scale environments. (a) Average operational cost, (b) Average rejection rate, (c)
Quality of Experience.

Moreover, our proposed agent, on average, achieves 68%, 79%
and 86.5% reduction in rejection rate in small, medium and
large-scale environments, respectively. The improvement of
this magnitude is due to the virtue of our proposed pruning
principle, which evenly distributes the load among all base
stations and servers, and minimizes the probability of rejection
for the future jobs. In view of Fig. 4(c), our proposed agent
achieves nearly 22%, 60% and 115% gain in QoE in small,
medium and large-scale environments, respectively.

To summarize, our proposed DDPG-Edge-Cloud adaptively
determines the dynamic selection of VMs, wireless bandwidth
channels and cloud for joint optimization of resources in the
EC and BC. Moreover, our proposed pruning principle helps
reduce the rejection rate significantly. Overall, our proposed
framework outperforms the alternative agents in all three
environments.

V. CONCLUSION AND FUTURE WORK

We present DDPG-Edge-Cloud, a deep deterministic policy
gradient-based multi-resource allocation (MRA) framework.
The MRA system is utilized to optimize the problem of
compute and wireless resources for the IoTs and mobile users
in a smart streetscape based edge-cloud (EC) and back-end
cloud environment. The proposed DDPG-Edge-Cloud agent
is equipped with Conv1D residual block, gated recurrent unit
(GRU) layer and an attention layer. The agent runs in the EC
to make dynamic resource allocation decisions for the user
tasks. The presented algorithm learns the local and long-term
temporal features from the sequential data and outperforms the
alternative methods in convergence speed. DDPG-Edge-Cloud
achieves up to 55% reduction in operational cost on average.
The proposed pruning principle helps our agent to achieve up
to 86.5% reduction in rejection rate on average. Further, the
proposed agent achieves up to 115% gain in the QoE of the
users.

In future, we plan to explore priority-based replay buffer
techniques where priority will be calculated using a heuristic
function, which will help further boost up the convergence
rate. Moreover, to cope with the overwhelming volume of
accumulated data from numerous IoTs, we plan to investigate
on data parallelism techniques for training in a distributed
fashion to accelerate the learning process.
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