Better Distance Preservers and Additive Spanners

GREG BODWIN, University of Michigan EECS, USA
VIRGINIA VASSILEVSKA WILLIAMS, MIT EECS, USA

We study two popular ways to sketch the shortest path distances of an input graph. The first is distance
preservers, which are sparse subgraphs that agree with the distances of the original graph on a given set of
demand pairs. Prior work on distance preservers has exploited only a simple structural property of shortest
paths, called consistency, stating that one can break shortest path ties such that no two paths intersect, split
apart, and then intersect again later. We prove that consistency alone is not enough to understand distance
preservers, by showing both a lower bound on the power of consistency and a new general upper bound
that polynomially surpasses it. Specifically, our new upper bound is that any p demand pairs in an n-node
undirected unweighted graph have a distance preserver on O(n%/3p?/3 + np'/3) edges. We leave a conjecture
that the right bound is O(n?/3p?/3 + n) or better.

The second part of this paper leverages these distance preservers in a new construction of additive spanners,
which are subgraphs that preserve all pairwise distances up to an additive error function. We give improved
error bounds for spanners with relatively few edges; for example, we prove that all graphs have spanners on
O(n) edges with +O(n3/7*¢) error. Our construction can be viewed as an extension of the popular path-buying
framework to clusters of larger radii.

CCS Concepts: « Mathematics of computing — Paths and connectivity problems; Extremal graph
theory; Graph algorithms;

Additional Key Words and Phrases: Spanners, distance preservers, sparsification

ACM Reference format:

Greg Bodwin and Virginia Vassilevska Williams. 2021. Better Distance Preservers and Additive Spanners.
ACM Trans. Algorithms 17, 4, Article 36 (October 2021), 24 pages.

https://doi.org/10.1145/3490147

1 INTRODUCTION

How much can graphs be compressed while keeping their distance information roughly in-
tact? This question falls within the scope of both metric embeddings and graph theory and is
fundamental to our understanding of the metric properties of graphs. When the compressed
version of the graph must be a subgraph, it is called a spanner. Spanners have a multitude of ap-
plications, essentially everywhere shortest path information needs to be compressed while still
allowing for graph algorithms to be run, and they have been intensively studied theoretically
[2-5,7,15-17, 19, 28-30]. The quality of a spanner is measured by the tradeoff between its sparsity

Preliminary version appeared in SODA 2016. Research performed while authors were employed by Stanford University.
Authors’ addresses: G. Bodwin, University of Michigan EECS, 2260 Hayward St, Ann Arbor, MI 48109, USA; email:
bodwin@umich.edu; V. V. Williams, MIT EECS, 32 Vassar St, Cambridge, MA 02139, USA; email: virgi@mit.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1549-6325/2021/10-ART36 $15.00

https://doi.org/10.1145/3490147

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

https://doi.org/10.1145/3490147
mailto:permissions@acm.org
https://doi.org/10.1145/3490147

36:2 G. Bodwin and V. V. Williams

and its accuracy in preserving distances. There are several different versions of spanners; we will
discuss two of them below.

1.1 Distance Preservers

One possible version of the spanner problem is distance preservers, in which we must preserve
some of the pairwise distances exactly. All graphs in this paper are undirected and unweighted.

Definition 1 (Distance Preservers [12]). Given a graph G = (V,E) andaset P C V XV of demand
pairs, we say that a subgraph H C G is a distance preserver of G, P if disty (u, v) = distg(u, v) for
all (u,v) € P.

Distance preservers are fundamental combinatorial objects: they generalize BFS trees (which are
distance preservers for the special case P = {s} X V), they have applications to many other types
of graph sketches [1-3, 6, 10, 14, 18, 21, 27], and they have been recently popular objects of study
in their own right [6, 8, 9, 12-14, 20, 22, 25]. Since a distance preserver must contain the edges of a
shortest path for each demand pair, without loss of generality constructing a distance preserver is
equivalent to choosing a tiebreaking scheme, i.e., a way to select one of the possibly many shortest
paths for each demand pair, and then overlaying the chosen shortest paths to obtain the preserver.
A basic property a tiebreaking scheme can have is consistency, meaning that the intersection of any
two chosen shortest paths 7y, 73 is a single (possibly empty) continuous subpath of each. One major
reason consistency is fundamental is because it is the property that gives rise to BES trees: that is,
for demand pairs {s} X V, one gets a distance-preserving tree if and only if one overlays shortest
paths according to a consistent tiebreaking scheme. Another reason consistency is fundamental is
that it gives the current state-of-the-art upper bounds for distance preservers in general: given p
demand pairs in an n-node graph, a consistent tiebreaking scheme will yield a distance preserver
on O(min{n + n'/?p, np'/?}) edges [12]. This result is even partially tight in the following sense: it
implies that p = O(+/n) demand pairs have a distance preserver on O(n) edges, and this corollary
cannot possibly be improved by increasing the range to any p = w(n'/?) while still paying only
O(n) edges [12].

Given all this, it is natural to ask if we actually need to investigate any deeper properties of
shortest paths, or if consistency alone will suffice to understand distance preservers. In this work,
we answer this question with the following two new results:

THEOREM 1. For any integer p = O(n?), there is an infinite family of n-node graphs, sets of
p demand pairs, and consistent tiebreaking schemes for which the resulting distance preserver has
Q(min{n + n'/?p, np'/?}) edges.

THEOREM 2. Everyn-node graph and set of p demand pairs has a distance preserver on O(n?/>p?/3+
np'/3) edges.

See Figure 1 for a picture of these bounds. In particular, Theorem 1 implies that the analysis
in [12] of consistent tiebreaking was exactly tight, but Theorem 2 shows that different tiebreaking
improves on it polynomially - so consistency alone is not enough. The +np'/? term in Theorem 2
arises for purely technical reasons; it is unlikely to be really needed, but we have been unable to
remove it.

CoONJECTURE 3. Every n-node graph and set of p demand pairs has a distance preserver on
O(n?3p?3 + n) edges.

1.2 Additive Spanners

Another type of spanner is when all pairwise distances must be preserved up to an error term:

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

Better Distance Preservers and Additive Spanners 36:3

7/4
1

edges in preserver |E|
232
N

/4
.
~

number of demand pairs p

Fig. 1. The state-of-the-art asymptotic tradeoffs for distance preservers. The upper bounds of [12] are in
solid blue, of Theorem 2 in solid green, and of Conjecture 3 in dotted green. The dashed red curve is, roughly,
a lower bound from [12]. Some subpolynomial improvements in [9] are not pictured here.

Definition 2 (Additive Spanners). Given a graph G = (V, E), a subgraph H C G is a +f (additive)
spanner of a graph G if disty (v, v) < distg(u,v) + fforallu,v € V.

There are many interesting constructions with f as an absolute constant: all n-node graphs have
+2 spanners on O(n*/?) edges [4], +4 spanners on 5(717/5) edges [15], and +6 spanners on O(n*/?)
edges [7] (see also [23, 24, 32]). But unfortunately, this setting then hits a dead-end: there is not
a general construction of +f spanners on O(n*/3~¢) edges, for any choice of absolute constants
B,e > 0 [2] (see also [1, 21, 31]). In particular, to obtain additive spanners in the regime O(n*/37¢),
one essentially has to settle for § = poly(n). Many applications call for spanners of linear size
(O(n) edges, or maybe a little more), so the additive error f3, attainable by a spanner on O(n) edges
has attracted particular research interest. Currently, it is known that

Q(nl/ll) < ﬁO < 5(n1/2)

where the upper bound is by prior work of the authors [10] and the lower bound is by Lu [26] (see
also [6, 15, 27]). We improve polynomially on the upper bound:

THEOREM 4. Assuming Conjecture 3, for any e > 0 and 1 < & < n'/3, every n-node graph has a
+O(n3/7*¢E717) additive spanner on O, (nE) edges. Moreover, this result holds unconditionally when
E=0(1) or& = Q(n¥1).

See Figure 2 for a picture of these bounds. In particular, the new (unconditional) upper bound
is By < n3/7%¢,

Technical Overview of Spanner Construction. Here we give a brief technical overview of our span-
ner construction, aimed at a reader with some familiarity with the area. Theorem 4 is based in part
on the popular path-buying framework used in many previous spanner constructions, introduced
in [7]. For background, these constructions begin with a clustering phase, in which (1) we add all
edges incident on “low-degree” nodes to the spanner, and (2) the “high-degree” nodes are parti-
tioned into clusters of radius 1 each. Then they have a path-buying phase, where some shortest
paths are added to the graph with the goal of connecting the existing clusters.

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

36:4 G. Bodwin and V. V. Williams

spanner error +f

nl1/8 3/2

edges in spanner |E|

Fig. 2. The state-of-the-art asymptotic tradeoffs for additive spanners. The upper part of the solid blue
curve is an upper bound of [10], the lower solid blue line is the upper bound of [15], and the upper bound
of Theorem 4 is in solid green, dotted in the regime where it is conditional on Conjecture 3. The dashed red
line is, roughly, a lower bound from [26].

To obtain even sparser spanners at the cost of more error, it is a natural idea to try to apply the
same framework, but using clusters of radius r > 1. Our key idea is that distance preservers play
a key role in the proper extension of this method. Instead of differentiating between high-degree
and low-degree nodes, we propose an analogous dichotomy between high-radius clusters that are
large — meaning that they contain many nodes — and clusters that are bottlenecked, meaning they
can be separated from the rest of the graph by removing a relatively small set of nodes. The idea
nearly reduces to the high-degree/low-degree dichotomy in the extreme case of our construction
where r = 1, but it gains efficiency for larger r. It turns out that bottlenecked clusters, analogous
to low-degree nodes, can be handled cleanly with an application of distance preservers: one only
has to add a distance preserver between pairs of nodes in the separating node set, and then for
any shortest path, a subpath passing in and out of a bottlenecked cluster will already have all of
its edges contained in a spanner.

Theorem 4 is obtained by plugging the distance preservers of Conjecture 3 into this large/
bottlenecked framework, and then proceeding through a reasonable generalization of the path-
buying method of [7] with a few extra optimizations. Conjecture 3 is confirmed in the settings
p = O(n'/?) and p = Q(n), and this corresponds to the ranges & = O(1) and & = Q(n*") in
which Theorem 4 holds unconditionally. One can also obtain a weaker yet unconditional version
of Theorem 4 in the regime w(1) < & < o(n?/!%) by plugging the unconditional distance preserver
bounds known in the intermediate regime. These bounds are given in Section 3.4.

2 DISTANCE PRESERVERS

We will be concerned only with existential distance preserver bounds in this paper and not with
construction runtime. We note that any existential bound is automatically algorithmic: that is, if
e*(n, p) is the maximum number of edges needed for a distance preserver of p demand pairs in an
n-node graph, then there is a folklore algorithm that runs in polynomial time and always outputs

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

Better Distance Preservers and Additive Spanners 36:5

a distance preserver on < e*(n,p) edges. This algorithm is simply to consider the edges of G in
any order and delete the current edge if doing so does not change the distance between any given
demand pair. By construction, the final graph H will be the unique distance preserver of itself, so
it cannot have more than e*(n, p) edges.

As discussed in the introduction, it is nice theoretically to reduce the construction of distance
preservers to shortest path tiebreaking:

Definition 3 (Tiebreaking Schemes). A tiebreaking scheme on a graph G is a map x from node
pairs (u, v) to a shortest u ~> v path 7 (u,v) in G.

A subgraph is a distance preserver if it contains the edges of a shortest path for each demand pair,
so w.l.o.g. we may assume that any distance preserver is constructed by selecting a tiebreaking
scheme 7 and then overlaying the chosen shortest paths for each demand pair. In other words,
given a graph G and demand pairs P, the distance preserver H associated to a given tiebreaking
scheme 7 is the one where an edge e is included in H if there is (u,v) € P with e € 7(u, v).

2.1 Limitations of Consistent Tiebreaking

Definition 4 (Consistency). A tiebreaking scheme 7 is consistent if, for any nodes w, x, y, z, we
have that 7(w, x) N 7 (y, z) is a (possibly empty) continuous subpath of both 7 (w, x) and 7 (y, z).

It is folklore that every graph has a consistent tiebreaking scheme. For example, one is obtained by
random reweighting, in which we add a tiny random variable to each edge weight to break ties with
probability 1. In the reweighted graph G’ all shortest paths are unique, and thus there is only one
tiebreaking scheme 7 over G’. For any two paths 7(w, x), 7 (y, z) their intersection (if nonempty)
is the unique shortest path between its endpoints, which is thus a continuous subpath of both
7(w, x) and 7 (y, z). Hence 7 is consistent in G’, and so it is also consistent in G when the original
unit edge weights are restored. Coppersmith and Elkin proved:

THEOREM 5 ([12]). Foranyp demand pairs and consistent tiebreaking scheme rt in an n-node graph,
the associated distance preserver has O(min{n!/2p + n, np'/?}) edges.

Our first new result is that this is tight for consistency. In particular:

THEOREM 6 (SEE FIGURE 3). For any p = O(n?), there is an infinite family of n-node graphs G,
consistent tiebreaking schemes x, and p demand pairs so that the associated distance preserver has
Q(min{n'/?p + n, np'/?}) edges.

Proor. Let g be a prime and let G be the graph whose nodes are the elements of the field Fé and
whose edge set contains exactly the node pairs whose first coordinate differs by 1, not including
“wraparound” edges of the form ((0,x), (¢ — 1,y)). The demand pairs P are exactly the node pairs
((0,x),(q—1,y)) for any x,y € F,. By a linein FS we will mean a set of points that can be described
by

{(x,mx +b) | x € Fg}
for some fixed m,b € F; (note this does not include “vertical” lines with fixed first coordinate).
Each demand pair (u,v) uniquely determines a line in F; passing through both points. Define
7(u, v) as the path containing exactly the nodes on this line. Note that dist(u, v) = g — 1 since the
first coordinate of two nodes only differs by 1 over an edge; thus, each 7 (u, v) is indeed a shortest
path since it has exactly g — 1 edges, so is a tiebreaking scheme. Additionally, 7 is consistent,
since the paths 7 (u, v) correspond to lines in F; and any two lines intersect on only 0 or 1 nodes.

The distance preserver associated to 7 is G itself, since every edge of G similarly determines a
line in F; which is thus equal to 7 (u, v) for exactly one demand pair (u,v). The graph G has ¢* =: n

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

36:6 G. Bodwin and V. V. Williams

(0,6) (6,6)
L4 S S L o 9

[] []
(0,0) (6,0)

Fig. 3. The construction described in Theorem 6, with g = 7. For clarity, only the first 4 out of the 49 shortest
paths 7 (u, v) are pictured here.

nodes and (q — 1)g° = ©(n%/?) edges, and we have |P| = ¢° = n demand pairs, which gives our
claimed lower bound in the special case when p = n. To obtain our lower bound for other values

of p:

e In the regime n < p < n?, we modify our construction by taking only its first few layers.
That is: letting k < g — 1 be a parameter of the construction, we only let the first coordinate
range from 0 to k but everything else remains the same (essentially, the nodes of G are now
[k] x Fg). This gives a lower bound on n := kg nodes, (k - 1)¢> = O(n?/k) edges, and
q* = n*/k* demand pairs. The lower bound thus follows by choosing k = ©(n/+/p).

e In the regime yn < p < n, we modify our construction by arbitrarily choosing p demand
pairs to keep. We then discard the rest, as well as all the edges in G that appear in 7(s, t) for
any discarded demand pair (s, t). The resulting construction has n nodes, p pairs, and since
each surviving demand pair has g — 1 = ©(+/n) distinct edges in its path, the lower bound
has ©(p+/n) edges.

Finally, the lower bound of Q(n) in the regime p < +/n is trivial (let G be a big long path, and take
the endpoints of this path as one of the demand pairs).]

2.2 Beyond Consistent Tiebreaking

We will next prove our new upper bound on distance preservers. We first develop two technical
ingredients. In the sequel it will be convenient to interpret demand pairs (s,¢) € P to be ordered
(e.g. (s, t) rather than (t,s)), and we will write (u,v) € (s, t) to mean that the nodes u, v appear
adjacently in that order in 7(s, t); that is, this notation implies that u is closer to s and v is closer
to t.

Definition 5 (Branching Events [12]). Given a graph G, a set of demand pairs P, and a tiebreaking
scheme 7, a branching event is a pair of distinct edges (u, v), (w, v) that share an endpoint node
v, such that there are two distinct demand pairs p,p” € P with (u,v) € n(p) \ #(p’) and (w,v) €

z(p’) \ 7(p).

Due to our orientation of edges, this technically means (for example) that a directed tree rooted
at a node s could have 0 branching events if the tree paths are all directed away from s, or Q(n?)
branching events if the paths are directed towards s. So branching events depend on the ordering
of demand pairs ((s, t) vs. (¢, s)). One could just as easily define branching events to be two oriented

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

Better Distance Preservers and Additive Spanners 36:7

w
w

|
! I
! I
| d‘
d! I
! I
! |
|

» ¢ > > »
X V1 V2 Vad+1 Vad+2

X Vi V2 V2d+1 Vad+2

(b) ... then there is an alternate shortest w ~> v; path
for one of these nodes, which uses a different edge
entering v;.

(a) If 7 routes 2d + 2 paths for demand pairs starting
with w to branch with another path 7 (x, y) ...

Fig. 4. The pigeonhole technique used in Lemma 8.

edges leaving the same node ((v, u), (v, w)), as opposed to two oriented edges entering the same
node as we’ve done here; this choice is somewhat arbitrary.

LEMMA 7 ([12]). If a tiebreaking scheme n for G, P has b branching events, then the associated
distance preserver has O((nb)'/? + n) edges.

Proor. Let H = (V, E) be the associated distance preserver. Pick an arbitrary total ordering of
the set P and label each edge e € E with the first demand pair (s,¢) € P in the ordering so that
e € (s, t). Since we assign e the orientation from s towards ¢, we can say that each node v € V is
the endpoint for > (degiz"(v)) different branching events. We then compute:

|El =) deg;,(v)
veV
=0(n) + Z deg;,,(v)

{veV | deg;,(v)>2}

1/2
=0(n)+0 (n : Z deg;, (v)z) Cauchy-Schwarz
{veV | deg;,(v)>2}

1/2
—om+0 (» (degiznw)))

veV
=0(n) + O ((nb)"*).. o

LEMMA 8 (SEE FIGURE 4). Let G be an n-node graph and let S be a subset of |S| = o nodes of
diameter d (meaning for all s1,s, € S we have dist(s1,s2) < d). Let P € S XV be a set of |P| = p
demand pairs. Then there is a distance preserver of G, P on

0} ((npO'd)l/Z + n)
edges.

Proor. Let 7 be a tiebreaking scheme whose associated distance preserver H has as few edges
as possible. Every edge e can then be labeled with a demand pair (s,t) € P so that every s ~» ¢
shortest path in H includes e (if no such demand pair (s, t) exists, then we can modify 7 to make
all paths avoid e, thus removing e from H). Each branching event (e, e’) is then labeled with a pair
of demand pairs p,p’ € P, inheriting the labels of e, e’.

We will prove this lemma by showing that there are only O(pod) total branching events in H;
the lemma then follows by plugging b = O(pod) into Lemma 7. Suppose towards contradiction

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

36:8 G. Bodwin and V. V. Williams

that we have > po(2d + 1) branching events in H; then by the pigeonhole principle there is a node
w € S, a demand pair (x,y) € P, and (at least) 2d + 2 branching events {by, ..., bsg,2} so that
each branching event b; has a label of the form (x, y), (w, z;) (i.e. x,y, w are the same in the labels
of all these branching events, and only z; varies). Let v; be the node shared by the two edges in
the branching event b;, and we will assume for convenience that the nodes {v;} are ordered by
increasing dist(x, v;). By the triangle inequality and the diameter of S, for any 1 < i < 2d + 2 we
have
d > dist(w, x) > dist(w, v;) — dist(x, v;) > — dist(w, x) > —d.
Hence, by the pigeonhole principle, there are 1 < i < j < 2d + 2 with
dist(w, v;) — dist(x, v;) = dist(w, v;) — dist(x, v;)

and so
dist(w, v;) + dist(x, v;) — dist(x, v;) = dist(w, v;).
Note that x,v;,v; all lie on 7(x,y) in that order, and so dist(x,v;) — dist(x,v;) = dist(v;, v)).
Therefore
dist(w, v;) + dist(v;, v;) = dist(w, v;).

This equation implies that v; lies on a shortest w ~» v; path, and so we can form a shortest w ~ v;
path by concatenating 7 (w, v;) with 7 (x, y)[v; ~ v;]. This concatenated path enters v; along an
edge in 7(x, y). Thus, there exists a shortest w ~> v; path that uses an edge in 7 (x, y) to enter v;.
Hence it is not the case that every shortest w ~» v; path includes an edge e used in the branching
event b;. This contradicts the labeling of our branching events.]

In order to convert this lemma to an upper bound on distance preservers in general, we will use
the following standard lemma in graph theory:

LEMMA 9. Let G = (V, E) be a nonempty graph with average degree &. Then there exists a node v
that has Q(&) neighbors of degree Q(E) each.

Proor. While there exists a node of degree < &/4, remove that node and all of its incident edges
from G. Letting n be the initial number of nodes in G, the total number of edges removed in this
way is < n&E/4 < |E|/2, so when this process halts G still has at least |E|/2 edges, so it is nonempty
and it has minimum degree Q(&). So we can pick any node in the remaining graph. o

THEOREM 10. Every n-node graph and set of |P| = p demand pairs has a distance preserver on
O(n?*p*3 + np'/3) edges.

Proor. Let & be an integer parameter that we will choose later. Let 7’ be any tiebreaking scheme
and let H" = n’(P) be the associated distance preserver. Repeat the following process until the
average degree in H' is < &.

Using Lemma 9, we can find a node a node v in H” and a set S containing |S| = Q(&) neighbors
of v which all have degree Q(&). Hence there is a set Q C P of |Q| = &* demand pairs so that,
for every (x,y) € Q, the path n’(x,y) contains a node in S. Letting sy, € S be a node so that
Sx,y € 7'(x,y), we may split each demand pair (x,y) into two demand pairs (sx,y, X), (Sx,y>Y)-
Now, using Lemma 8 (with parameters d = 2,0 < &,p = 26%) we can build a distance preserver

of the demand pairs in Q on
O (VnIQIIST + n) = O(n"/2E%* + n)

edges.
We can now remove the (original) demand pairs in Q from P, and repeat. Since we remove @(&E?)
demand pairs from P in each round, we repeat only O(p/E?) times in total. Thus, if we union

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

Better Distance Preservers and Additive Spanners 36:9

together the distance preservers computed in each round and also the final leftover preserver H’,
the total size is

0 (i) -0(n'28%2 4 n) + 0(n&) = O(pn2E72 + np&~?% + n&)
82 — —
——

size in each round size of H’
number of rounds

edges. Choosing & = p?/3n~1/3 gives
|E| = O(n2/3p2/3 + n5/3p_1/3),
which is O(n?/3p?/%) when p = Q(n). Choosing & = p'/3 gives
|E| — O(np1/3 + n1/2p5/6)’
which is O(np'/®) when p = O(n). O

It seems that the +np'/3 term arises in this argument for a purely technical reason. The culprit is
essentially the +n in Lemma 7, which is amplified over the union bound of the separate preservers
built for each set Q in the above proof. Of course the +n in Lemma 7 can’t be removed in general,
as shown by the counterexample where G is a big long path, which needs Q(n) edges for a distance
preserver despite having b = 0 branching events. However, such graphs generally admit very good
distance preservers when many demand pairs are considered. We thus conjecture that with more
care this problem can be avoided.

CoONJECTURE 11. Every n-node graph and p demand pairs have a distance preserver on
O(n?/® p*/3 + n) edges.

3 ADDITIVE SPANNERS

We now give our additive spanner construction. As discussed previously, our bounds are param-
eterized on an arbitrary ¢ > 0. We will use standard O, () notation to hide multiplicative factors
that depend only on the choice of ¢ (but not on n), and we will use notation O(-) to hide factors of
the form n®(®). (We also use ©, Q notation defined analogously.) We will prove:

THEOREM 12. Assuming Conjecture 11, for any e > 0 and 1 < & < n!'/3

G = (V,E) has an additive spanner with

, every n-node graph

+0(n*767°"7)
error and O, (n&) edges.

At the end, we will also give versions of this theorem with slightly worse error bounds that hold
unconditionally. We let be a parameter of the construction, which roughly controls the spanner
error (in the end we will set § ~ n*/7&7°/7). We will use the following notations:

B(v,r):={u €V | dist(u,v) <r}, and
B_(v,r) :={u eV | dist(u,v) =r}.
We view our approach as an extension of the classic path-buying method from [7] to clusters
of larger radius; our construction reduces to something very similar to the one in [7] when the
parameters are set such that f = O(1). Although familiarity with [7] is not required to read the

following proofs, it may be helpful, and we will occasionally pause to explain analogs to this
argument in [7] for the reader who is familiar with this prior work.

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

36:10 G. Bodwin and V. V. Williams

3.1 Clustering

The construction in [7] begins with a clustering, in which the nodes of the graph are either “low-
degree” or “high-degree;” they accept all edges incident to low-degree nodes into the spanner,
and the high-degree nodes are covered by a small number of clusters of diameter 2 each. In our
setting where poly(n) spanner error is allowed ([7] only allows +6 error), it is natural to attempt an
analogous method, using clusters of radius poly(n) instead of 2. We set up an analogous clustering
in the following two lemmas. Our “bottlenecked clusters” are analogous to the low-degree nodes
from [7], while the “large clusters” are analogous to the clusters that cover high-degree nodes.

LEMMA 13. There exists a set of k nodes {vy, . .., vk} and k associated integers {ry, ..., rr}, where
each r; = O(p), satisfying the following two properties:

o (Coverage) For eachv € V, there is1 < i < k such thatv € B(v;, ;).

k
e (Non-Overlap) Y. |B(v;, 2r;)| = Oc(n).
i=1

(Note the different radii, r; vs. 2r;, in the coverage/non-overlap properties.)

Proor. First, for every node v € V we compute a potential radius r}, as follows. This will ulti-
mately be half the radius of the cluster centered at v, if v is chosen as a cluster center. Let ¢ be a
parameter and initialize r;, « . If

c|B(v,r,)| = |B(v,4r.)|,

then finalize r;, at its current value. Otherwise, set r;, < 4r;, and repeat. Since |B(v, ;)| < nalways,
and this quantity grows by at least -c in each iteration, we repeat < log, n times. Thus we have

r, < ﬁ41°g0" = ﬁn@

We choose ¢ = ©(41/¢), and so r/, < Bnf. Our next step is to select the nodes that will be cluster
centers. Sort the nodes v € V descendingly by value of r;,. We repeat the following process until
we are out of nodes. Remove the first remaining node v from the list and add it to the list of
selected cluster centers. Then, for each remaining node u in the list with B(u, ;) N B(v, 7)) # 0,
delete u from the list.

The final radius associated with each selected cluster center u will be r, := 2r]. To ver-
ify the coverage property: let v € V. If v is chosen as a cluster center we immediately have
dist(v, v) = 0 < 2r]. Otherwise, we discarded v during the construction, so there is a cluster center
u considered before v with B(u,) NB(v, r,) # 0. Since r;, > r,, this implies dist(v, u) < 2r,, = 2r,.
For the non-overlap property, we compute:

k k
Z |B(vi, 2ri)| = Z |B(v;, 4r))]
i=1 i=1

k
< > clB,)

i=1
<cn since {B(v;, r])} are disjoint
= O,(n). O

We can classify balls as in Lemma 13 into two types as follows:

LEMMA 14 (SEE FIGURE 5). For all nodes v and positive integers r, we have either:
e (Large) |B(v,2r)| = Q (r4/38), or
e (Bottlenecked) there exists r < r* < 2r so that |B=(v, r*)| < |B(v, r*)|}/* /4.

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

Better Distance Preservers and Additive Spanners 36:11

A
NV N

(b) In a “bottlenecked” ball, at least one of the rings
around the core (its “bottleneck layer”) contains few
nodes. This small layer will be exploited in our con-
struction.

(a) In a “large” ball, every ring around the core con-
tains many nodes, so the cluster contains many nodes
overall.

Fig. 5. The two types of clusters used in our construction of additive spanners.

Proor. Suppose that B(v, 2r) is not bottlenecked. We have |B(v,r)| > 1 (conservatively), and
we also have the relationship

|B(v,)| = [B(v,r" = 1)| + |B=(v, ")
> |B(v, r* — 1)| + |B(v, r* — 1)|//* &%/

for all r < r* < 2r (since |B=(v,r*) > |B(v;,r* — 1)|"/*&3/*). Phrased another way, if we let
xj := |B(v,r +j)|, then we have a recurrence with initial condition xy > 1, and recurrence relation
1/4 o3/4
Xj = Xj-1 +xj_18 / .
The general solution to a recurrence of this form is x; = Q(j*/38), and plugging in j = r thus gives
|B(v, 2r)| = Q(r*/3&), implying that the cluster is large. mi

In the following, we let {vy, ..., vk}, {r1,...,ri} be selected as in Lemma 13. We classify each
pair v;, r; into large or bottlenecked as in Lemma 14 (some balls can satisfy both criteria, in which
case we can classify as either large or bottlenecked, it doesn’t matter). If it is large, then we refer to
the ball B(v;, 2r;) as a large cluster, and B(v;, ;) is its core. If it is bottlenecked, then we refer to the
ball B(v;,) as a bottlenecked cluster, and B (v;, r}) is its bottleneck layer. Anode x € B(v;,r; —1) is
bottlenecked by the cluster B(v;, r*). Note that a node on the bottleneck layer itself is not generally
bottlenecked (although it can be bottlenecked if it is also contained in a different cluster). In either
case, v; is the center node of the cluster.

3.2 Initialization Phase

Like many spanner constructions, ours can be divided into an initialization and completion phase.
The completion phase is the part that enforces the final spanner inequality. The initialization phase
adds some edges to the graph beforehand, whose purpose is purely to assist in the argument that
the completion phase doesn’t add too many edges to the spanner.

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

36:12 G. Bodwin and V. V. Williams

In this part we will state the initialization phase (only) and provide some relevant analysis before
moving on to the completion phase. First off, our initialization phase actually includes an additive
spanner on the inside. We will use the following spanners from prior work internally:

THEOREM 15 ([11]). Forany& > 1, everyn-node graph has a spanner on O(n&) edges with additive
error +O(n'/2§71/2),

The spanners in Theorem 15 are state-of-the-art only in some range of parameters, when & is
not too large. If one uses other spanner constructions instead and rebalances parameters, from [11]
or [15], one can optimize the quality of our spanner for certain larger values of &. We will not do
so, since using piecewise internal spanners introduces considerable additional complexity in the
analysis, and the spanners from Theorem 15 give the best possible results when & = O(1) which
we consider to be the most interesting setting. We now state our initialization phase:

(1) (Initialization Phase) The spanner H is initially empty. Then, we compute a clustering
as described in the previous section, and:
(a) For any cluster C of either type, add a shortest path tree rooted at its center node v
to all nodes in C.
(b) For each bottlenecked cluster B(v, r*), construct a distance preserver with demand
pairs B_(v, r*)? in the subgraph induced on B(v, r*), and add its edges to H.
(c) For each large cluster B(v, 2r), construct a spanner using Theorem 15 in the subgraph
induced on B(v, 2r), and add its edges to H.
(2) (Then perform the Completion Phase, described later)

The distance preservers on bottlenecked clusters are analogous to the step in [7] in which we
add all edges to low-degree nodes. This roughly lets us “ignore” bottlenecked nodes, as we ignore
low-degree nodes in [7], in a sense we will make precise shortly. The spanners on large clusters do
not have an analogy in [7]; this is an optimization that is only useful in the setting of large-radius
clusters. The shortest path trees enforce that, if two nodes x, y are in the same cluster C with center
node v, then we have

disty; (x,y) < disty (x,v) + distg (v, y) = O(B);

this inequality will occasionally be useful. Let us next count the number of edges added to the
spanner in the initialization phase.

LEMMA 16 (INITIALIZATION EDGE BOUND). Assuming Conjecture 11, only O.(nE) edges are added
to H during the initialization phase.

Proor. For each bottlenecked cluster B(v, r*), the associated distance preserver has
1B (0,7)?| = |B=(v, ") < [B(o, r)|"/* &2
demand pairs. Using Conjecture 11, the number of edges in the distance preserver is
0 (1B) (1B(@,r) €)™ + |B(o,r)l) = O(B(@, 1) €).
For each large cluster |B(v,2r)|, since we apply Theorem 15 with parameter &, we add

O(&E|B(v;, 2r;)|) edges to the cluster. We also add a shortest path tree to both types of clusters,
but this does not change either estimate. By a union bound, the total number of edges added over

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

Better Distance Preservers and Additive Spanners 36:13

(s, t) (s, t)
(R RS -

—_,-’> ('---..

Fig. 6. If ashortest path (s, t) contains a missing edge inside a bottlenecked cluster, then due to the distance
preservers added in the initialization phase, we can reroute a subpath of (s, t) to remove this missing edge.
This observation is applied repeatedly to prove Lemma 17.

all clusters is thus

Z O(8|C|):O(8- Z ICI)

C is a cluster C is a cluster

= OE (n8)$
where this last equality follows from the non-overlap property of Lemma 13. O

Before we state our completion phase, we need a technical lemma describing the structure of
shortest paths in the post-initialization spanner. We think of Lemma 18 as a more technically-laden
version of the trivial fact used in [7] that, after we add all edges to low-degree nodes, no missing
edges in a shortest path are incident on low-degree nodes; its role in our overall proof is essentially
as a tool that lets us focus on large clusters and ignore bottlenecked clusters. In the following, a
missing edge is an edge in the original graph G that is not contained in the current spanner (here,
meaning after the initialization phase is complete).

LEmMA 17 (SEE FIGURE 6). For any two non-bottlenecked nodes s, t, there is a shortest path (s, t)
in G such that no missing edge is contained in a bottlenecked cluster.

Proor. Let (s, t) be an arbitrary shortest path, let B(v, r*) be a bottlenecked cluster, and sup-
pose 7 (s, t) has a missing edge e € B(v, r*). Let 7 (s, t)[x ~> y] be the longest contiguous subpath
contained in B(v, r*) that includes the missing edge e. Since s, t are not bottlenecked, this subpath
must terminate in the bottleneck layer; that is, x,y € B=(v,r"). Therefore, we added a shortest
x ~> y path contained in B(v, r*) as part of a distance preserver in the initialization phase. We can
thus reroute the subpath (s, t)[x ~ y] to coincide with this previously-added shortest x ~ y
path. This changes at least one missing edge e from (s, t), and it does not introduce any new
missing edges to (s, t). Thus we can repeat this process until the lemma holds. O

LEMMA 18. For any shortest path n(s,t) as in Lemma 17, there is a collection of edge-disjoint
subpaths Q of n(s, t) such that:
e Every missing edge in (s, t) is contained in a subpath q € Q,
o Every subpath in Q except possibly for the last one has length Q(f), and

o Each subpath q € Q may be “charged” to a large cluster C such that ¢ C C, and each large
cluster is charged for at most one subpath in Q.

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

36:14 G. Bodwin and V. V. Williams

Proor. Initially Q « 0. Repeat the following process until no longer possible: let (x, y) be the
first missing edge along 7 (s, t) that is not currently contained in any subpath in Q. By the coverage
property of Lemma 13, we have x € B(v, r) for some center node v with associated radius r. Let
q be the subpath of (s, t) that starts with the edge (x, y) and extends as far as possible under the
constraint ¢ € B(v, 2r). Add q to Q, then repeat until all missing edges along (s, t) are covered
by subpaths in Q.

It is immediate from the construction that our subpaths are edge-disjoint and that they cover
the missing edges of 7 (s,). We next verify the subpath length property: a selected subpath g starts
at anode x € B(v,r), and it ends when it cannot be extended further, either because it reaches the
end of (s, t) (in which case it is the last subpath) or because it reaches B=(v, 2r) (in which case it
has length at least r = ﬁ(ﬁ))

Next, we verify the subpath charging property. For each missing edge (x, y), we have x € B(v, r).
Notice that v cannot be the center of a bottlenecked cluster, since otherwise the missing edge (x, y)
would be contained in this bottlenecked cluster, but by Lemma 17 no missing edge in 7(s, t) is in a
bottlenecked cluster. Thus v is the center node of a large cluster, and we can charge the associated
subpath g to this large cluster, since we have g C B(v, 2r).

Finally, we verify that each large cluster is only charged for one subpath in Q. Suppose for
contradiction that a large cluster B(v, 2r) is charged for two different subpaths g1, g2, due to two
different missing edges (x1,v1), (x2,y2) with x1,x, € B(v,r). That means there is a node z €
(s, t)[x; ~ y,] with z ¢ B(v, 2r), since otherwise the subpath g; would extend until it covers
(x2,y2) as well. So we have

distg (x1, x2) = distg(xy, z) + distg(z, x2) > 2r,

since x1,x; € B(v, r) but z ¢ B(v, 2r). However, by the triangle inequality, we also have
distg(x1, x2) < distg(x1,v) + distg (v, x2) < 2r,

completing the contradiction. O

3.3 Completion Phase

We now state the completion phase of the algorithm:

(1) (Perform the Initialization Phase, described previously)

(Completion Phase:)
(2) Let ¢ be a sufficiently large positive constant. For each pair of non-bottlenecked nodes
s, t, if currently
distg (s, t) > distg(s, t) + pn :
(a) Let z(s, t), O be a shortest path and collection of subpaths as in Lemma 18.
(b) For each subpath g € Q, letting x, y be its endpoints, add (x, y) as a weighted edge
to the spanner H, with weight dists (x, y). Charge (x, y) to the large cluster to which
we charged q.

(3) For each large cluster C, let Pc be the set of weighted edges charged to C. Replace the
edges Pc with a distance preserver on the subgraph induced on C, with demand pairs
Pc.

(4) Return the spanner H.

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

Better Distance Preservers and Additive Spanners 36:15

One can imagine our completion phase as following the greedy completion strategy from [7]
or its update in [23]: while there is a pair of non-bottlenecked nodes s, ¢ that violate the spanner
inequality, add a shortest path (s, t) to the spanner to correct this. But there are two key dif-
ferences. First, while [7] uses a “path-buying” argument to directly bound the number of edges
added to each cluster, we use path-buying to bound the number of subpaths that get “charged” to
each large cluster. We will then apply distance preserver bounds at the end to convert a bound on
number of subpaths per cluster to a bound on number of edges per cluster.

Second, in order to apply these distance preserver bounds, we need to be very careful about our
choice of shortest subpaths through each large cluster. That motivates the use of our intermediate
weighted edges: these act as “placeholders” for the specific shortest path through a large cluster
that will ultimately be selected; they record that we have committed to enforcing disty(x,y) =
distg(x,y) in the final spanner, even though we haven’t yet picked the shortest path that will
achieve this. We resolve our weighted edges into shortest paths at the end: this is a way to delay
our choice of shortest x ~» y path until we know the entire set of shortest paths in a large cluster
that will need to be selected, which lets us use a distance preserver construction. If we tried to
simplify our algorithm by avoiding weighted edges, instead having it commit to an entire shortest
path 7 (s, t) right when the node pair s, t is considered, then we would only be able to use “online”
distance preserver bounds, where the shortest path for each demand pair is selected before the
next demand pair arrives.

We will now begin to formally prove properties of our construction. We begin with correctness
of the output spanner:

LEMMA 19 (SPANNER CORRECTNESS - SEE FIGURE 7). For all nodes s,t, we have disty(s,t) <
distg(s,t) + O (B) .

ProoF. Let (s, t) be a shortest s ~» t path as in Lemma 17. Let s” be the last node on 7 (s, t) such
that there exists a bottlenecked cluster C with s, s” € C, or if s is not contained in any bottlenecked
cluster then let s” := s. In either case, since we added a shortest path tree rooted at the center node
of C, the distance between s, s’ is at most twice the radius of C; that is,

distg (s, s’) = O(B).

Similarly, we let ¢’ be the first node on 7 (s, t) such that there exists a bottlenecked cluster C with
t,t" € C, or if ¢ is not contained in any bottlenecked cluster then let ¢’ := t. For the same reason
we have

disty(t, ') = O(B).

Next, let s, t”” be the first, last non-bottlenecked nodes along the subpath 7 (s, t)[s” ~ t']. Notice
that all edges on the s’ ~» s” and t’ ~» t” subpaths are contained in a bottlenecked cluster,
but by choice of s, these bottlenecked clusters do not also contain s, ¢t. Thus, by Lemma 17,
every edge along the s" ~» s” and t’ ~» t” subpaths is already contained in the spanner, and so
we have

disty (s”,s”) = distg(s’,s”) and disty (', t”) = distg(¢’,t").

Finally, in the completion phase, since s”,t"" are non-bottlenecked, we ensure that

disty (s”, ") < distg(s”,t”) + O ().

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

36:16 G. Bodwin and V. V. Williams

+5(ﬁ) err t

(completion phase)

(bottlenecked) (bottlenecked)

+0 err
all edges in spanner
(Lemma 17)

Fig. 7. The organization of the subpaths analyzed in our proof of spanner correctness (Lemma 19).
Putting it all together, we have:
distg (s, t) < distg(s,s”) + distg(s’,s”) + distg (s”, t"") + distg (¢, t") + distg (¢,)

= disty (s',s”) + disty (s, t”) + distg (", 1) + O (B)

= distg(s’,s”) + distg (s, t”') + distg(t”, ') + O (B)

= distg(s’, s”') + distg(s”, 1) + distg (", t') + O (B)

= distg(s’, ') + O (B)

< distg(s, t) + O (B). O

Our goal is now to control the number of edges added in the completion phase. As discussed
previously, we generally follow the path-buying method from [7], with one new optimization for
our setting. In [7], the strategy is roughly to argue that each time a shortest path (s, t) is added,
for each cluster C that is hit by (s, t), we improve the spanner distance from C to either the first
or the last cluster hit by 7 (s, t). This is used to control the number of times any given cluster is
hit by an added shortest path. Our strategy is similar, but we can gain a bit by considering not
just the first and last large clusters hit by 7 (s, t), but rather the first few and last few large clusters
hit by (s, t). This finally reveals the purpose of the spanners we added to large clusters in the
initialization phase: essentially, they allow us to traverse a few extra clusters at the start and end
and stay within our error budget.

Let us next formalize what we mean by “first few” and “last few” large clusters. For a shortest
path 7 (s, t) with associated subpath list Q selected in the completion phase, we define the prefix
Qpre € Q to be the minimal prefix of subpaths in Q that satisfies

IC| > p°3&.
C large cluster
some q€Qpye charged to C
To avoid confusion around the word “prefix:” note that Qp is not obtained by selecting some
prefix of each subpath in Q; rather, each subpath in Q is entirely in or entirely out of Qpe. We are
taking the first few subpaths in Q used by the path being analyzed, until they have sufficiently large
total size. Similarly, we define the suffix Qg as the minimal suffix of subpaths in Q that satisfies

> Cl = p°e,

C large cluster
some q€Qqyf charged to C

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

Better Distance Preservers and Additive Spanners 36:17

and we again caution that this is not obtained by taking a suffix of each path in Q, but rather,
taking all of the last few subpaths in the ordering of Q.

If no prefix/suffix of Q achieves this inequality, then we can define Qpe = Qsuf = O, but it turns
out we will not encounter this situation in our algorithm so it won’t be too important (Lemma 21 to
follow implies that, if the prefix and suffix overlap, then the node pair s, ¢ is already well-spanned
and so it won’t be selected in the completion phase). It is technically possible for a node to be
contained in several large clusters charged by prefix/suffix subpaths. However, we can bound the
frequency with which this happens, leading to a bound on the number of distinct nodes in these
prefix/suffixes. Let A, be the set of nodes contained in any large cluster C for which some g € Qpre
is charged to C, and similarly let Aqys be the set of nodes contained in any large cluster C for which
some q € Qg is charged to C.

LEMMA 20 (PREFIX/SUFFIX SIZE). |Appl, [Ag = Q(p2e).

PrOOF. Let v be a node in Ay or Agyr. Let x, y be the first, last nodes on 7 (s, t) that are respec-

tively contained in large clusters Cy, Cy with v € Cy,v € Cy. Every large cluster has radius 5(/3),
and so we have

distg (x, v), distg(y, v) = O (B) .

So by the triangle inequality, we have distg(x,y) = o (B) . From Lemma 18, every subpath in Q
has length ﬁ(ﬁ), except possibly for the last one. Hence there can only be 5(1) total subpaths in
Q that contain nodes between x and y, and so we can charge only 5(1) different large clusters
that contain v. Thus v is counted only 5(1) times in the sum used to define the prefix and suffix,
leading to the claimed bound. O

When we say the prefix/suffix can be traversed within our error budget, we mean the following
lemma:

LEMMA 21 (PREFIX/SUFFIX DISTANCE ERROR). For any x € Apre,y € Agyp, We have
disty; (s, x) < distg (s, x) + O (B) and disty(y, t) < distg(y,) + O (B).

Proor. We will prove the inequality for the prefix here (x € Ap.); the inequality for the suffix
is essentially identical. Let C* be the large cluster charged by a subpath ¢ € Qpe with x € C*, and
let x” € 7(s,t) be the first node on the subpath g*. Let {q, . .., qk,q"} be the leading subpaths of
Opre Up to g, and let {Cy, ..., Ci, C*} be the respective large clusters charged for these subpaths.
Let x;,y; be the endpoints of each subpath q;. We then have

k-1 1/2
Z disty (x4, y;) < Z distg(xi, y;) + O (l 811|/2) Spanners from initialization
i=1
-1
~ |Cl| . 4/3
Z distg(xi, y;) + O B since |C;| = Q(B*/3E) by Lemma 14
k-1 ﬁ5/3
< (Z distg (x;, yl)) +0 (/32/38) Def of prefix

_

k-
< (distG(xi,yi))+5(ﬁ)~
i=1

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

36:18 G. Bodwin and V. V. Williams

From Lemma 18, every edge along 7 (s, t)[s ~ x] except those contained in x; ~» y; subpaths is
already contained in the spanner. So we have

k-1

disty (s, x") < disty (s, x1) (Z disty (x4, y;) (Z dlstH(y,,x,+1)) + disty (yg, x”)

1
k-1

= distg (s, x1) (Z distg(x;, y;) + 0 B)) + <Z distg(yi,xiﬂ)) + distg (yx, x”)

i=1
= distg (s, x”) + o (B).
Finally, we can complete the proof using the triangle inequality:
distg (s, x) < distg(s,x") + distg (x’, x)
< (distg(s, x") + O(B)) + disty (x', x)
< distg (s, x) + distg (x, x') + distg (x”, x) + O(f)
< distg (s, x) + 5(ﬁ) x,x" in same large cluster. O

In our next two lemmas, we will focus on a particular large cluster L that is charged by at least
one subpath q; € Q. We say that L is cluster-preserved with a node x if there exists anode ¢ € L and
anode x” such that x, x” are in the same large cluster and disty (£, x") = distg (£, x"). We use cluster-
preservation as a sort of potential function: we will argue that, when we charge a new weighted
edge to L, we also cause L to become cluster-preserved with many new nodes. This limits the total
number of weighted edges that may be charged to L over the entire completion phase, since L can
only become newly cluster-preserved with n nodes in total.

LEMMA 22. Before the node pair s, t is considered, either L is not cluster-preserved with any node
in Apre, or L is not cluster-preserved with any node in Agy.

ProoF. Let us first handle the case where the subpath g, charging L is in neither the prefix nor
the suffix. Suppose for contradiction that there are nodes x € Apre,y € Agur and €y, £y € L with
disty(x, {x) = distg(x, £) and disty (y, £y) = distg(y, ;).
Let x’,y" be nodes on 7 (s, t) that share a large cluster with x, y respectively, and let £ € q;. We
then have

distp (s, t) < disty (s, x) + disty (x, £x) + disty (£y, €y) + distg (£y, y) + distg (y, t)

< distg (s, x) + distg(x, €x) + distg(€y, y) + disty (y, t) + 19) (B) Cx,ty in same cluster

(ty
< distg (s, x) + dist (x, £) + distg(€y, y) + distG(y, t) + O (B) Lemma 21
(¢,

< distg (s, x") + distg(x’, £) + distg (€, y') + dista (v, t) + O (B)

where the last inequality uses the triangle inequality together with the fact that the nodes (x, x”),
(tx,t, ty), (y,y’) each lie in same large cluster, which has radius O(ﬁ) Since x’, ¢, y’ all lie along
(s, t), thls 1mp11es
dist (s, 1) < distg(s, 1) + O (B).

But, by choice of large enough constant c, this means we wouldn’t select the node pair s, ¢t in the
completion phase and add any corresponding weighted edges, since the distance inequality for
this node pair would be already satisfied. This contradicts the assumption that s, ¢ were selected
in the completion phase.

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

Better Distance Preservers and Additive Spanners 36:19

The case where gy is in the prefix follows an essentially identical analysis, which we will not
repeat: in this case we do not need nodes x, x’, and we specifically argue that L is not cluster-
preserved with any node in Agyf (or else the above inequality holds, again contradicting that s, ¢
were selected). In the case where gy is in the suffix, we instead do not need nodes y,y’, and we
specifically argue that L is not cluster-preserved with any node in Apre. O

LEMMA 23. After the node pairs, t is considered, L is cluster-preserved with every node in ApreUAgys.

Proor. Let (s, t) be the shortest path in G, and let 7 (s, t) be the shortest path in the spanner
H obtained from 7 (s, t) by replacing each x ~» y subpath in Q with the weighted edge (x, y) added
to the spanner. (Notice that, from Lemma 18, every edge in 7 (s, t) not contained in a subpath in Q
is already in H from the initialization phase, so this does indeed describe a path contained in H.)

Let z € Apre U Agys, and let C be the large cluster containing z that is charged by a prefix or suffix
subpath. By construction there is a weighted edge (x,y) € 7*(s,t) with x,y € C. Similarly, there
is a weighted edge (x",y’) € n*(s, t) with x”,y” € L. Thus we have disty (x, x") = distg(x, x"), due
to the shortest path 77%(s, t). So L is cluster-preserved with z after 7*(s, t) is added. O

We now put the pieces together:

LEMMA 24 (SEE FIGURE 8). Assuming Conjecture 11, the number of edges added to H during the
completion phase is
. /3
O, (n) +0 (m) .

Proor. Each time we charge a weighted edge to a large cluster L, by Lemmas 22 and 23, we also
newly cluster-preserve it with all nodes in A or with all nodes in Ag,r. Using Lemma 20, we have

|Asutl, IApreI = ﬁ(ﬂS/S‘S)-
Thus, the total number of weighted edges charged to L is only
6 n
’55/3 & '

Applying Conjecture 11, the number of edges added to L as part of the final distance preserver is

n 2/3
2/33
O(|L| +|LI**0 (/3_5/38))

PP 2/3
=0 (|L| + |L| (ﬁ4/38) 1 (0] (‘W)) since |L| = Q(B*/38) by Lemma 14

R 2l
=0(L])+0O (|L| . m) .

Hence the total number of edges added in the completion phase is

R n2/3
() +0(|L| : m)

L large cluster

{53
=0.(n)+ 0 (/3’114—/98) Non-overlap property of Lemma 13. O

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

36:20 G. Bodwin and V. V. Williams

Apee| = & (477 Agutl = O (578

charged

Fig. 8. The “path-buying” part of our argument argues that each time we charge a new weighted edge to a
large cluster L, we also cluster-preserve L with many new nodes (either Apre or Agy) for the first time, thus
limiting the total number of weighted edges charged to L.

We now finish the proof with a parameter balance. Setting
B= @(n3/78—9/7)

means the number of edges added in the completion phase is

n5/3
O¢(n) +0O (—(n3/78‘9/7) 14/9 8)

n5/3
= OE (n + —n2/38_28)
OE (n((_?)),

which completes the proof of Theorem 12.

3.4 Unconditional Extensions

Theorem 12 is phrased conditionally on Conjecture 11. Here we discuss unconditional extensions
of our result, that rely only on known distance preserver bounds. In order to work generally with
all possible distance preserver bounds at once, in the following we let a, b be absolute constants
such that for any n-node graph and set of p demand pairs, there is a distance preserver on O(n +
n®p®) edges. Thus, [12] shows that we may take a = 1/2,b = 1 ora = 1,b = 1/2, and under
Conjecture 11 we may take a = b = 2/3. We then change the following parts of the preceding
argument:

(1) Distance preserver bounds influence Lemma 14, where we classify clusters into large or
bottlenecked. The specific choice of parameters used for bottlenecked clusters comes from
our need to argue in Lemma 16 that each bottlenecked cluster C costs only O(|C|E) edges
for its distance preserver in the initialization. So, we need to redefine bottlenecked clusters
in such a way that this still holds. Specifically, we say that a cluster is bottlenecked if there
exists r < r* < 2r so that

l-a

|B=(v,r")| < |B(v,)] % &7

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

Better Distance Preservers and Additive Spanners 36:21

That way, the cost of the distance preserver for a bottlenecked cluster is

o) <|B o,)|+ |B(v, r)|* |B=(v, r*)|2b)

|B(v,)| + |B(v, r*)|* |B(v, r™)])

L \2b
O(vr)|+|Bvr)|a(|B(vr)| S_b))
(
O (|B(v,r")| &),

as desired.

(2) This redefinition of bottlenecked clusters influences the associated size bound for large clus-
ters. Revisiting the proof of Lemma 14, if B(v, 2r) is not bottlenecked, then we can again
describe its size using a recurrence where x; := |B(v, r + j)|. The initial condition is x, > 1,

and the recurrence relation is

l-a 1
. . 2b 55
Xj 2 Xj-1 + X2 &,

This recurrence solves asymptotically to
x, = Q (r%g; T) _

So this is our new size lower bound for large clusters.

(3) The definition of the prefix and suffix Qpre, Osuf use a particular bound on the sum of cluster
sizes. This bound is selected to push through Lemma 21, which lets us reach prefix and suffix
nodes within small error. This is a function of both the spanner quality in Theorem 15 and
the sizes of large clusters. Our new definition of the prefix Qpre € Q is the minimal prefix of
subpaths satisfying

2b+a

IC| > ﬂzbm 1 84b+2a Z
C large cluster
some q €Qpye charged to C
and the suffix Qgur € Q is defined similarly. To re-prove Lemma 21 under this new definition
of the prefix and suffix, we proceed through the proof exactly as before, and recompute the
following intermediate step:

k-1 k-1
Z disty (x;, ;) < Z distg(x;, y;) + 0} (IC |1/28 1/2) Spanners from initialization
i=1
k= ~ 2b 1 -1/2
< Z distg(x;,y;) + O (IC,-I (ﬁ a1 § 2hra-) 81/2) Large cl. size
i=1
k-1

M

distg (x;, yi) + o (|C | - ﬁzb+a 184b+2a 2)

Il
—

1

diStG(xi,yi)) ((/32513 { & T z)ﬂzbm T E T z) Def of prfx

IA
—
- >~
I |
_ e

>~
|

< (distg (x;, yi)> + 5(ﬂ) .
i=1

From there, the rest of the proof is the same as before.

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

36:22 G. Bodwin and V. V. Williams

(4) Lemma 24 uses distance preserver bounds to convert our limit on the number of weighted
edges charged to each large cluster to a bound on the number of edges in its associated
distance preserver. Specifically, we get

2b+
| Asufl» |Apre| = (ﬂzbm 184b+1a“2)

and so the number of weighted edges charged to any given large cluster L is

~ n
O\ —w———-
(ﬂ ggig i &E 4b2f2+aa 2)
Applying our distance preserver bound of O(n + n%p?), the number of edges added to L as
part of the final distance preserver is

b
~ n
|L| + |L|a ’ O(3b+a-1 2b+a)

ﬁzbm 1E Th+2a—2

b
2b 1 a-1 . n .
IL| + L] - (ﬁ2b+a—18_2b+a—1) O Large cl. size
ﬁzbw 1E Th+2a—2

nb

3b2+ab-b _ 2b’+ab

= O (ILl) + O[|L| - (ﬁ%g%) :
’B 2b+a—1 & ib+2a-2

—3b%+ab- b —2b° 7ub+2a72)

=0 (L)) + 9) (|L| . ﬁ 2bta-1 1h+2a-2

Summing over all large clusters and applying the non-overlap property as before, we get
that the total number of edges added in the completion phase is

—3b%+ab-b _ -2b%-ab+2a-2)

O, (n)+0 (n1+b - BT E abiza-2
(5) Finally, we need to revisit our setting of § in the final parameter balance. We set
p= %) (n%é}%) ,
and so the number of edges added in the completion phase is

—3b2+ab-b ,
- +a-1 —2b—a—4 2b+a-1 —2b°—ab+2a-2
O, (n)+0 n'*b. (n%b a+1 & 6b— zw) E dbrzaz

_3b2iab-b _ (=3b’+ab-b)(-2b—a-4) —2b®—ab+2a-2

=O€ (n)+6 n1+b.(n 3b-a+l & (6b-2a+2)(2b+a-1))5 Th2a—2)

~ “b(-2b-a—4) b abedar
=0,(n)+0 (n1+b (b8 2(2b+a-1))8 T 2)

~ 2b%+ab+ab —2b%—ab+2a-2
=0,(n)+0(n-& wra2 - § dbr2a2

completing the edge bound.
Plugging in a = b = 2/3 gives error of

p=0(""E7"),

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

Better Distance Preservers and Additive Spanners 36:23

exactly as in the previous section. Plugging in a = 1/2,b = 1 for the other distance preserver
bound in [12] gives

ﬁ — 5(n3/78—13/14)’

thus establishing that Theorem 12 holds unconditionally when & = O(1). We can also apply our
bounds in Theorem 10, although we need to be a little more careful here since the respective
settings of a = 1,b = 1/3 and a = b = 2/3 only hold on some range of parameters. The easiest
way forward is to proceed through the previous proof, setting all parameters using both possible
settings of a, b. For example, a bottlenecked cluster would be one that satisfies

|B_(v,r")| < |B(o,r")| & &%

for both choices a = 1,b = 1/3 and a = b = 2/3. The associated large cluster size bound is then

X, =Q min {r%gﬁ}),
(a=1,b=1/3),(a=b=2/3)

and so on. In the end, the spanner error is
B =0m"E™ 4 n23g171%y,
The former term dominates in the parameter regime
& =Qn""),
while the latter term dominates when
&=0(m"").

Thus, in particular, Theorem 12 holds unconditionally in the parameter regime & = Q(n?/13).

ACKNOWLEDGMENTS

We are grateful to several anonymous reviewers for useful comments and corrections that have
improved this paper.

REFERENCES

[1] Amir Abboud and Greg Bodwin. 2016. Error amplification for pairwise spanner lower bounds. In Proceedings of the
27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied Mathematics,
841-854.

[2] Amir Abboud and Greg Bodwin. 2017. The 4/3 additive spanner exponent is tight. Journal of the ACM (JACM) 64, 4
(2017), 28:1-28:14.

[3] Amir Abboud, Greg Bodwin, and Seth Pettie. 2017. A hierarchy of lower bounds for sublinear additive spanners.

In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Society for Industrial and

Applied Mathematics, 568-576.

Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. 1999. Fast estimation of diameter and shortest

paths (without matrix multiplication). SIAM J. Comput. 28, 4 (1999), 1167-1181.

Ingo Althofer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. 1993. On sparse spanners of weighted

graphs. Discrete & Computational Geometry 9, 1 (1993), 81-100.

Béla Bollobas, Don Coppersmith, and Michael Elkin. 2005. Sparse distance preservers and additive spanners. SIAM

Journal on Discrete Mathematics 19, 4 (2005), 1029-1055.

Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. 2010. Additive spanners and («, f)-spanners.

ACM Transactions on Algorithms (TALG) 7, 1 (2010), 5.

[8] Greg Bodwin. 2019. On the structure of unique shortest paths in graphs. In Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms. SIAM, 2071-2089.
[9] Greg Bodwin. 2021. New results on linear size distance preservers. SIAM J. Comput. 50, 2 (2021), 662-673.
[10] Greg Bodwin and Virginia Vassilevska Williams. 2015. Very sparse additive spanners and emulators. In Proceedings
of the 2015 Conference on Innovations in Theoretical Computer Science (ITCS). ACM, 377-382.

[4

flam

[5

—

(6

—

[7

—

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

36:24 G. Bodwin and V. V. Williams

[11]

[12]

[13]

[14]

[15]
[16]
(17]
(18]
[19]

[20]

[21]

[22]
[23]

[24]

[25]
[26]

(27]
(28]

[29]

[30]

(31]

(32]

Greg Bodwin and Virginia Vassilevska Williams. 2016. Better distance preservers and additive spanners. In Proceed-
ings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied
Mathematics, 855-872.

Don Coppersmith and Michael Elkin. 2006. Sparse sourcewise and pairwise distance preservers. SIAM Journal on
Discrete Mathematics 20, 2 (2006), 463-501.

Marek Cygan, Fabrizio Grandoni, and Telikepalli Kavitha. 2013. On pairwise spanners. In 30th International Sympo-
sium on Theoretical Aspects of Computer Science (STACS 2013) (Leibniz International Proceedings in Informatics (LIPIcs)),
Natacha Portier and Thomas Wilke (Eds.), Vol. 20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many, 209-220. http://drops.dagstuhl.de/opus/volltexte/2013/3935.

Hsien-Chih Chang, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. 2018. Near-optimal distance emulator
for planar graphs. In 26th Annual European Symposium on Algorithms (ESA 2018) (Leibniz International Proceedings
in Informatics (LIPIcs)), Yossi Azar, Hannah Bast, and Grzegorz Herman (Eds.), Vol. 112. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 16:1-16:17. https://doi.org/10.4230/LIPIcs.ESA.2018.16

Shiri Chechik. 2013. New additive spanners. In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 498-512.

Dorit Dor, Shay Halperin, and Uri Zwick. 2000. All-pairs almost shortest paths. Siam Journal on Computing (SICOMP)
29, 5 (2000), 1740-1759.

Michael Elkin and David Peleg. 2004. (1+¢,)-spanner constructions for general graphs. SIAM J. Comput. 33, 3 (2004),
608-631.

Michael Elkin and Seth Pettie. 2016. A linear-size logarithmic stretch path-reporting distance oracle for general graphs.
ACM Transactions on Algorithms (TALG) 12, 4 (2016), 50.

Arnold Filtser and Shay Solomon. 2016. The greedy spanner is existentially optimal. In Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing. 9-17.

Kshitij Gajjar and Jaikumar Radhakrishnan. 2017. Distance-preserving subgraphs of interval graphs. In 25th Annual
European Symposium on Algorithms (ESA 2017) (Leibniz International Proceedings in Informatics (LIPlcs)), Kirk Pruhs
and Christian Sohler (Eds.), Vol. 87. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 39:1-
39:13. https://doi.org/10.4230/LIPIcs.ESA.2017.39

Shang-En Huang and Seth Pettie. 2018. Lower bounds on sparse spanners, emulators, and diameter-reducing shortcuts.
In 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018) (Leibniz International Proceedings
in Informatics (LIPIcs)), David Eppstein (Ed.), Vol. 101. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 26:1-26:12. https://doi.org/10.4230/LIPIcs.SWAT.2018.26

Telikepalli Kavitha. 2017. New pairwise spanners. Theory of Computing Systems 61, 4 (2017), 1011-1036.

Mathias Beek Tejs Knudsen. 2014. Additive spanners: A simple construction. In Scandinavian Workshop on Algorithm
Theory. Springer, 277-281.

Mathias Baek Tejs Knudsen. 2017. Additive spanners and distance oracles in quadratic time. In 44th International
Colloquium on Automata, Languages, and Programming (ICALP 2017) (Leibniz International Proceedings in Informatics
(LIPIcs)), Toannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl (Eds.), Vol. 80. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 64:1-64:12. https://doi.org/10.4230/LIPIcs.ICALP.2017.64
Telikepalli Kavitha and Nithin M. Varma. 2015. Small stretch pairwise spanners and approximate d-preservers. SIAM
Journal on Discrete Mathematics 29, 4 (2015), 2239-2254.

Kevin Lu. 2019. New methods for approximating shortest paths. Ph.D. Dissertation. Massachusetts Institute of
Technology.

Seth Pettie. 2009. Low distortion spanners. ACM Transactions on Algorithms (TALG) 6, 1 (2009), 7.

David Peleg and Jeffrey Ullman. 1989. An optimal synchronizer for the hypercube. SIAM Journal on Computing
(SICOMP) 18, 4 (1989), 740-747.

David Peleg and Eli Upfal. 1989. A trade-off between space and efficiency for routing tables. Journal of the ACM
(JACM) 36, 3 (1989), 510-530.

Mikkel Thorup and Uri Zwick. 2006. Spanners and emulators with sublinear distance errors. In Proceedings of the
17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied Mathematics,
802-809.

David P. Woodruff. 2006. Lower bounds for additive spanners, emulators, and more. In Foundations of Computer Science,
2006. FOCS’06. 47th Annual IEEE Symposium on. IEEE, 389-398.

David P. Woodruff. 2010. Additive spanners in nearly quadratic time. In International Colloquium on Automata, Lan-
guages, and Programming. Springer, 463-474.

Received June 2020; revised June 2021; accepted August 2021

ACM Transactions on Algorithms, Vol. 17, No. 4, Article 36. Publication date: October 2021.

http://drops.dagstuhl.de/opus/volltexte/2013/3935
https://doi.org/10.4230/LIPIcs.ESA.2018.16
https://doi.org/10.4230/LIPIcs.ESA.2017.39
https://doi.org/10.4230/LIPIcs.SWAT.2018.26
https://doi.org/10.4230/LIPIcs.ICALP.2017.64

