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TOWARD TIGHT APPROXIMATION BOUNDS FOR GRAPH
DIAMETER AND ECCENTRICITIES\ast 
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Abstract. Among the most important graph parameters is the diameter, the largest distance
between any two vertices. There are no known very efficient algorithms for computing the diameter
exactly. Thus, much research has been devoted to how fast this parameter can be approximated.
Chechik et al. [Proceedings of SODA 2014, Portland, OR, 2014, pp. 1041--1052] showed that the
diameter can be approximated within a multiplicative factor of 3/2 in \~O(m3/2) time. Furthermore,
Roditty and Vassilevska W. [Proceedings of STOC '13, New York, ACM, 2013, pp. 515--524] showed
that unless the strong exponential time hypothesis (SETH) fails, no O(n2 - \varepsilon ) time algorithm can
achieve an approximation factor better than 3/2 in sparse graphs. Thus the above algorithm is
essentially optimal for sparse graphs for approximation factors less than 3/2. It was, however,
completely plausible that a 3/2-approximation is possible in linear time. In this work we conditionally
rule out such a possibility by showing that unless SETH fails no O(m3/2 - \varepsilon ) time algorithm can
achieve an approximation factor better than 5/3. Another fundamental set of graph parameters is
the eccentricities. The eccentricity of a vertex v is the distance between v and the farthest vertex from
v. Chechik et al. [Proceedings of SODA 2014, Portland, OR, 2014, pp. 1041--1052] showed that the
eccentricities of all vertices can be approximated within a factor of 5/3 in \~O(m3/2) time and Abboud,
Vassilevska W., and Wang [Proceedings of SODA 2016, Arlington, VA, 2016, pp. 377--391] showed
that no O(n2 - \varepsilon ) algorithm can achieve better than 5/3 approximation in sparse graphs. We show
that the runtime of the 5/3 approximation algorithm is also optimal by proving that under SETH,
there is no O(m3/2 - \varepsilon ) algorithm that achieves a better than 9/5 approximation. We also show that
no near-linear time algorithm can achieve a better than 2 approximation for the eccentricities. This
is the first lower bound in fine-grained complexity that addresses near-linear time computation. We
show that our lower bound for near-linear time algorithms is essentially tight by giving an algorithm
that approximates eccentricities within a 2 + \delta factor in \~O(m/\delta ) time for any 0 < \delta < 1. This beats
all eccentricity algorithms in Cairo, Grossi, and Rizzi [Proceedings of SODA 2016, Arlington, VA,
2016, pp. 363--376] and is the first constant factor approximation for eccentricities in directed graphs.
To establish the above lower bounds we study the S-T diameter problem: Given a graph and two
subsets S and T of vertices, output the largest distance between a vertex in S and a vertex in T .
We give new algorithms and show tight lower bounds that serve as a starting point for all other
hardness results. Our lower bounds apply only to sparse graphs. We show that for dense graphs,
there are near-linear time algorithms for S-T diameter, diameter, and eccentricities, with almost
the same approximation guarantees as their \~O(m3/2) counterparts, improving upon the best known
algorithms for dense graphs.
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1156 BACKURS ET AL.

1. Introduction. Among the most important graph parameters are the graph's
diameter and the eccentricities of its vertices. The eccentricity of a vertex v is the
(shortest path) distance to the furthest vertex from v, and the diameter is the largest
eccentricity over all vertices in the graph.

The eccentricities and diameter measure how fast information can spread in net-
works. Efficient algorithms for their computation are highly desired (see, e.g., [PRT12b,
BCH+15, LWCW16]). Unfortunately, the fastest known algorithms for these pa-
rameters are very slow on large graphs. For unweighted graphs on n vertices and
m edges, the fastest diameter algorithm runs in \~O(min\{ mn, n\omega \} )1 time [CGS15]
where \omega < 2.373 is the exponent of square matrix multiplication [Wil12, Le 14,
Sto10]. For weighted graphs, the fastest eccentricity and diameter algorithms ac-
tually compute all distances in the graph, i.e., they solve the all-pairs shortest paths
(APSP) problem. The fastest known algorithms for APSP in weighted graphs run in
min\{ \~O(mn), n3/ exp(

\surd 
log n)\} [Wil14, Pet04, PR05].

Whether one can solve diameter faster than APSP is a well-known open problem
(e.g., see Problem 6.1 in [Chu87] and [ACIM99, Cha12]). Whether one can solve
eccentricities faster than APSP was addressed by [WW10] (for dense graphs) and
by [LWW18] (for sparse graphs). Vassilevska W. and Williams [WW10] showed that
eccentricities and APSP are equivalent under subcubic reductions, so that either both
of them admit O(n3 - \varepsilon ) time algorithms for \varepsilon > 0 or neither of them do. Lincoln,
Vassilevska W., and Williams [LWW18] proved that under a popular conjecture about
the complexity of weighted clique, the O(mn) runtime for eccentricities cannot be
beaten by any polynomial factor for any sparsity of the form m = \Theta (n1+1/k) for
integer k.

Due to the hardness of exact computation, efficient approximation algorithms
are sought. A folklore \~O(m + n) time algorithm achieves a 2-approximation for di-
ameter in directed weighted graphs and a 3-approximation for eccentricities in undi-
rected weighted graphs. Aingworth et al. [ACIM99] presented an almost-3/2 ap-
proximation2 algorithm for diameter running in \~O(n2 + m

\surd 
n) time. Roditty and

Vassilevska W. [RV13] improved the result of [ACIM99] with an \~O(m
\surd 
n) expected

time almost-3/2 approximation algorithm. Chechik et al. [CLR+14] obtained a (gen-
uine) 3/2 approximation algorithm for diameter (in directed graphs) and a (gen-
uine) 5/3-approximation algorithm for eccentricities (in undirected graphs), running
in \~O(min\{ m3/2,mn2/3\} ) time. These are the only known nontrivial approximation
algorithms for diameter in directed graphs. So far, there are no known faster than
mn algorithms for approximating eccentrities in directed graphs within any constant
factor.

Cairo, Grossi, and Rizzi [CGR16] generalized the above results for undirected
graphs and obtained a time-approximation trade-off: for every k \geq 1 they obtained
an \~O(mn1/(k+1)) time algorithm that achieves an almost-2 - 1/2k approximation for
diameter and an almost 3 - 4/(2k + 1)-approximation for eccentricities.

1.1. Our contributions. We address the following natural question:
Main question: Are the known approximation algorithms for diameter and

eccentricities optimal?
A partial answer is known. Under the strong exponential time hypothesis (SETH),

every 3/2  - \varepsilon approximation algorithm (for \varepsilon > 0) for diameter in undirected un-
weighted graphs with O(n) vertices and edges must use n2 - o(1) time [RV13]. Similarly,

1 \~O notation hides polylogarithmic factors.
2An almost-c approximation of X is an estimate X\prime so that X \leq X\prime \leq cX +O(1).
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TOWARD TIGHT APPROXIMATION BOUNDS FOR DIAMETER 1157

every 5/3 - \varepsilon approximation algorithm for the eccentricities of undirected unweighted
graphs with O(n) vertices and edges must use n2 - o(1) time [AVW16]. This, however,
does not answer the question of whether the runtimes of the known 3/2 and 5/3 ap-
proximation algorithms can be improved. It is completely plausible that there is a
3/2-approximation algorithm for diameter or a 5/3-approximation for eccentricities
running in linear time.

We address our main question for both sparse and dense graphs. Our results are
shown in Table 1.

Sparse graphs. Our first result (restated as Theorem 18) regards approximating
diameter in undirected unweighted sparse graphs.

Theorem 1 (3/2-diameter approximation is tight). Under SETH, no O(n3/2 - \delta )
time algorithm for \delta > 0 can output a 8/5 - \varepsilon approximation for \varepsilon > 0 for the diameter
of an undirected unweighted sparse graph.

In particular, any 3/2-approximation algorithm in sparse graphs must take
n3/2 - o(1) time. Hence the \~O(m3/2) time 3/2-approximation algorithm of [RV13,

Table 1
Our results. An (\alpha , \beta )-approximation means that if D is the true value and D\prime is our estimate,

then D/\alpha  - \beta \leq D\prime \leq D. All of the lower bounds hold even for sparse graphs. S-T Diameter is a
variant of Diameter introduced later in this section.

Runtime Approximation Comments

Diameter upper bounds

\~O(n2) expected (3/2, 5/3) undirected unweighted

O(n2.05) (3/2, 1/3) undirected unweighted

O(m2/n) < 2 for constant even diameter directed unweighted

Diameter lower bounds (under SETH)

\Omega (n3/2 - o(1)) 8/5 - \varepsilon undirected unweighted, implies [RV13,
CLR+14] alg is tight

\Omega (n3/2 - o(1)) 5/3 - \varepsilon undirected weighted

\Omega (n1+1/(k - 1) - o(1)) (5k  - 7)/(3k  - 4) - \varepsilon directed unweighted, any k \geq 3

Eccentricities upper bounds

\~O(m
\surd 
n) 2 directed weighted, approximation factor

is tight

\~O(m/\delta ) 2 + \delta directed weighted, essentially tight

\~O(n2) (5/3, 1) undirected unweighted

O(n2.05) (5/3, 1/5) undirected unweighted

Eccentricities lower bounds (under SETH)

\Omega (n1+1/(k - 1) - o(1)) 2 - 1/(2k  - 1) - \varepsilon undirected unweighted, any k \geq 2,
tight for extremal k

\Omega (n2 - o(1)) 2 - \varepsilon directed unweighted, essentially tight

S-T diameter upper bounds

O(m) 3 tight

\~O(m
\surd 
n) (2, 3/2) essentially tight

\~O(n2) (2, 7/2)

O(n2.05) (2, 3/2)

S-T diameter lower bounds (under SETH)

\Omega (n1+1/(k - 1) - o(1)) 3 - 2/k  - \varepsilon any k \geq 2, tight for extremal k
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1158 BACKURS ET AL.

CLR+14] is optimal in two ways: improving the approximation ratio to 3/2 - \varepsilon causes
a runtime blow-up to n2 - o(1) [RV13] and improving the runtime to O(m3/2 - \delta ) causes
an approximation ratio blow-up to 8/5.

Our lower bound instance says that in O(m3/2 - \delta ) time one cannot return 6 when
the diameter is 8. One may be tempted to extend the above lower bound by showing
that, say, in O(m4/3 - \delta ) time one cannot even return 5 when the diameter is 8. This
approach, however, fails: in Theorem 27 we give an O(m2/n) time algorithm that
does return 5 in this case, and in general when the diameter is 2h, it returns at least
h+1. Notice that when the diameter is 2h, the folklore linear time algorithm returns
an estimate of only h. Hence for sparse graphs, our algorithm runs in linear time and
outperforms the folklore algorithm. Also, for constant even diameter, it gives a better
than 2 approximation.

We obtain stronger diameter hardness results for weighted graphs and for directed
unweighted graphs. In particular, assuming SETH,

1. for weighted sparse graphs, no O(n3/2 - \delta ) time algorithm for \delta > 0 can output
a 5/3 - \varepsilon diameter approximation (for \varepsilon > 0) (Theorem 19);

2. for directed unweighted sparse graphs, using a general time-accuracy trade-off
lower bound (Theorem 21), we show that no near-linear time algorithm can
achieve an approximation factor better than 5/3.

Figure 1 shows our diameter lower bounds.
We address our main question for eccentricities as well. Our main result for

eccentricities is Theorem 15. Its first consequence is as follows.

Theorem 2 (5/3-eccentricities algorithm is tight). Under SETH, no O(n3/2 - \delta )
time algorithm for \delta > 0 can output a 9/5  - \varepsilon approximation for \varepsilon > 0 for the
eccentricities of an undirected unweighted sparse graph.

In other words, the \~O(m3/2) time 5/3-approximation algorithm of [RV13, CLR+14]
is tight in two ways. Improving the approximation ratio to 5/3  - \varepsilon causes a runtime
blow-up to n2 - o(1) [AVW16] and improving the runtime to O(m3/2 - \delta ) causes an ap-
proximation ratio blow-up to 9/5.

More generally, we prove (in Theorem 15) that for every k \geq 2, under SETH,
distinguishing between eccentricities 2k  - 1 and 4k  - 3 in unweighted undirected
sparse graphs requires n1+1/(k - 1) - o(1) time. Thus, no near-linear time algorithm can
achieve a 2 - \varepsilon -approximation for eccentricities for \varepsilon > 0.

The best (folklore) near-linear time approximation algorithm for eccentricities
currently achieves only a 3-approximation, and only in undirected graphs. There
is no known constant factor approximation algorithm for directed graphs! Is our
limitation result for linear time eccentricity algorithms far from the truth?

We show that our lower bound result is essentially tight, for both directed and
undirected graphs, by producing the first nontrivial near-linear time approximation
algorithm for the eccentricities in weighted directed graphs (Theorem 23).

Theorem 3 (2-approximation for eccentricities in near-linear time.). Under
SETH, no n1+o(1) time algorithm can output a 2  - \varepsilon approximation for \varepsilon > 0 for
the eccentricities of an undirected unweighted sparse graph.

For every \delta > 0, there is a randomized \~O(m/\delta ) time algorithm that with high prob-
ability produces a (2+ \delta )-approximation for the eccentricities of any directed weighted
graph.

The approximation hardness result is the first result within fine-grained complex-
ity that gives tight hardness for near-linear time algorithms.
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(a) Undirected unweighted Di-
ameter

2

1
1 3/2

3/2

25/3 7/4 15/8 31/16

4/3

5/4
6/5

Runtime
Exponent

Approx.
Factor

(b) Undirected weighted Di-
ameter

2

1
1 3/2

3/2

8/5
13/8 2

4/3

5/4
6/5
7/6

5/3

Runtime

Exponent

Approx.
Factor

(c) Directed unweighted Di-
ameter

Fig. 1. Our hardness results for diameter. The x-axis is the approximation factor and the
y-axis is the runtime exponent. Black lines represent lower bounds. Black dots represent existing
algorithms. Gray dots represent existing algorithms whose approximation is potentially off by an
additive term (the algorithms of [CGR16]). Transparent dots represent algorithms that might exist
and would be tight with our lower bounds.

The 2+\delta approximation ratio that our algorithm produces beats all approximation
ratios for eccentricities given by Cairo, Grossi, and Rizzi [CGR16]. It also constitutes
the first known constant factor approximation algorithm for eccentricities in directed
graphs.

Our approximation algorithm also implies as a corollary an approximation algo-
rithm for the source radius problem3 studied in [AVW16] with the same runtime and
approximation factor (2+\delta ). Abboud, Vassilevska W., and Williams [AVW16] showed
that, under the hitting set conjecture, any (2 - \varepsilon )-approximation algorithm (for \varepsilon > 0)
for source radius requires n2 - o(1) time, and hence our source radius algorithm is also
essentially tight.

Our lower bound in Theorem 3 holds already for undirected unweighted graphs,
and the upper bound works even for directed weighted graphs. The algorithm pro-
duces a (2+ \delta )-approximation, which, while close, is not quite a 2-approximation. We
design (in Theorem 22) a genuine 2-approximation algorithm running in \~O(m

\surd 
n)

time that also works for directed weighted graphs. We then complement it (in

3The source radius problem is a natural extension of the undirected radius definition. The goal
is to return minx maxv d(x, v).
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2

1
1

3/2

25/3 9/5

4/3

13/7

5/4

Runtime

Exponent

Approx.
Factor

(a) Undirected Eccentricities

2

1
1

3/2

2

Runtime

Exponent

Approx.
Factor

(b) Directed Eccentricities

Fig. 2. Our algorithms and hardness results for eccentricities. The lower bounds are for un-
weighted graphs and the upper bounds are for weighted graphs. The x-axis is the approximation
factor and the y-axis is the runtime exponent. Black lines represent lower bounds. Black dots rep-
resent existing algorithms (including our algorithm at (2, 3/2) in (b)). Gray dots represent existing
algorithms whose position may not be exactly as it appears in the figure. Here, the gray dots rep-
resent our (2 + \delta )-approximation algorithm running in \~O(m/\delta ) time. Transparent dots represent
algorithms that might exist and would be tight with our lower bounds.

Theorem 16) with a tight lower bound under SETH: in sparse directed graphs, if
you go below factor 2 in the accuracy, the runtime blows up to quadratic.

Theorem 4 (tight 2-approximation for eccentricities). Under SETH, no n2 - \delta 

time algorithm for \delta > 0 can output a 2 - \varepsilon approximation for the eccentricities of a
directed unweighted sparse graph.

There is a randomized \~O(m
\surd 
n) time algorithm that with high probability produces

a 2-approximation for the eccentricities of any directed weighted graph.

We thus give an essentially complete answer to our main question for eccentrici-
ties. Our results are summarized in Figures 2(a) and 2(b).

Our conditional lower bounds for both diameter and eccentricities are all based on
a common construction: a conditional lower bound for a problem called S-T diameter.
In S-T diameter, the input is an undirected graph G = (V,E) and two subsets S, T \subseteq 
V , not necessarily disjoint, and the output is DS,T := maxs\in S,t\in T d(s, t).

S-T diameter may be a problem of independent interest. It is related to the
bichromatic furthest pair problem studied in geometry (e.g., as in [KI92]), but for
graphs (if we set T = V \setminus S).

It is easy to see that if one can compute the S-T diameter, then one can also
compute the diameter in the same time: just set S = T = V . We show that actually,
when it comes to exact computation, the S-T diameter and diameter in weighted
graphs are computationally equivalent (Theorem 14).

We show that S-T diameter also has similar approximation algorithms to diam-
eter. We give a 3-approximation running in linear time (Claim 24 based on the folk-
lore diameter 2-approximation algorithm), and a 2-approximation running in \~O(m3/2)
time (Theorem 25 based on the 3/2-approximation algorithm of [RV13, CLR+14]).

We prove the following lower bound for S-T diameter (restated as Theorem 7),
the proof of which is the starting point for all of our conditional lower bounds.

Theorem 5. Under SETH, for every k \geq 2, every algorithm that can distin-
guish between S-T diameter k and 3k  - 2 in undirected unweighted graphs requires
n1+1/(k - 1) - o(1) time.
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Theorem 5 implies that under SETH, our aforementioned 2- and 3-approximation
algorithms are optimal.

For all of our lower bounds, we also address the question of whether they can
be extended to higher values of diameter and eccentricities. All of our lower bounds,
with the exception of directed eccentricities, are of the form ``any algorithm that can
distinguish between diameter (or eccentricity) a and b requires a certain amount of
time"" for small values of a and b. This doesn't exclude the possibility of an algorithm
that distinguishes between higher diameters (or eccentricities) of the same ratio, i.e.,
between a\ell and b\ell for some \ell . For weighted diameter, our lower bound easily extends
to higher values of diameter by simply scaling up the edge weights. For S  - T di-
ameter and undirected eccentricities, our lower bounds easily extend to higher values
of diameter and eccentricities by simply subdividing the edges. For unweighted di-
rected diameter, our lower bound extends to higher values of diameter with a slight
loss in approximation factor by subdividing some of the edges. For unweighted undi-
rected diameter, our lower bound does not seem to easily extend to higher values of
diameter.

Dense graphs. Can we address our main question for dense graphs as well? In par-
ticular, can we extend our runtime lower bounds of the form n1+1/\ell  - o(1) tomn1/\ell  - o(1),
thus matching the known algorithms for larger values of m? We show that the an-
swer is ``no."" For undirected unweighted graphs, we obtain \~O(n2) time algorithms
for diameter achieving an almost 3/2-approximation (Theorem 32) and for all ec-
centricities achieving an almost 5/3-approximation algorithm (Theorem 36). These
algorithms run in near-linear time in dense graphs, improving the previous best run-
time of \~O(m

\surd 
n) by Roditty and Vassilevska W. [RV13], and subsuming (for dense

unweighted graphs) the results of Cairo, Grossi, and Rizzi [CGR16].

Theorem 6. There is an expected O(n2 log n) time algorithm that for any undi-
rected unweighted graph with diameter D = 3h+ z for h \geq 0, z \in \{ 0, 1, 2\} , returns an
extimate D\prime such that 2h - 1 \leq D\prime \leq D if z = 0, 1 and 2h \leq D\prime \leq D if z = 2.

There is an expected O(n2 log n) time algorithm that for any undirected unweighted
graph returns estimates \varepsilon \prime (v) of the eccentricities \varepsilon (v) of all vertices such that 3\varepsilon (v)/5 - 
1 \leq \varepsilon \prime (v) \leq \varepsilon (v) for all v.

We also show (in Theorem 38) that one can improve the estimates slightly with
an O(n2.05) time algorithm.

1.2. Related work. The fastest known algorithm for APSP in dense weighted
graphs is by Williams [Wil14] and runs in O(n3/2\Theta (

\surd 
logn)) time. For sparse undi-

rected graphs, the fastest known APSP algorithm is by Pettie [Pet04] running in
O(mn+n2 log log n) time. The fastest APSP algorithm for sparse undirected weighted
graphs is by Pettie and Ramachandran [PR05] and runs in O(mn log\alpha (m,n)) time.
For APSP on undirected unweighted graphs with m > n log log n, Chan [Cha12] pre-
sented an O(mn log log n/ log n) time algorithm. In graphs with small integer edge
weights bounded in absolute value by M , APSP can be computed in \~O(Mn\omega ) time
(by Shoshan and Zwick [SZ99] building upon Seidel [Sei95] and Alon, Galil, and Mar-
galit [AGM97]) in undirected graphs and in \~O(M0.681n2.5302) time (by Zwick [Zwi02])
in directed graphs. Zwick [Zwi02] also showed that APSP in directed weighted
graphs admits an (1 + \varepsilon )-approximation algorithm for any \varepsilon > 0, running in time
\~O(n\omega /\varepsilon log(M/\varepsilon )). For diameter in graphs with integer edge weights bounded by
M , Cygan, Gabow, and Sankowski [CGS15] obtained an algorithm running in time
\~O(Mn\omega ).
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The pioneering work of Aingworth et al. [ACIM99] on diameter and shortest paths
approximation was the root of many subsequent works. Building upon Aingworth
et al. [ACIM99], Dor, Halperin, and Zwick [DHZ00] presented additive approximation
algorithms for APSP in undirected unweighted graphs, achieving, among other things,
an additive 2-approximation in \~O(n7/3) time (notably, the best known bound on \omega is >
7/3). They also presented an \~O(n2) time additive O(log n)-approximation algorithm.
These algorithms were generalized by Cohen and Zwick [CZ01], who showed that in
undirected weighted graphs APSP has a (multiplicative) 3-approximation in \~O(n2)
time, a 7/3-approximation in \~O(n7/3) time, and a 2-approximation in \~O(n

\surd 
mn)

time. Baswana and Kavitha [BK10] presented an \~O(m
\surd 
n + n2) time multiplicative

2-approximation algorithm and an \~O(m2/3n+n2) time 7/3-approximation algorithm
for APSP in weighted undirected graphs.

Spanners are closely related to shortest paths approximation. A subgraph H is
an (\alpha , \beta )-spanner of G = (V,E) if for every u, v \in V , dH(u, v) \leq \alpha \cdot dG(u, v) + \beta ,
where dG\prime (u, v) is the distance between u and v in G\prime . Any weighted undirected graph
has a (2k  - 1, 0)-spanner with O(n1+1/k) edges [ADD+93]. Baswana and Sen [BS07]
presented a randomized linear time algorithm for constructing a (2k  - 1, 0)-spanner
with O(kn1+1/k) edges. Dor, Halperin, and Zwick [DHZ00] showed that a (1, 2)-
spanner with O(n1.5) edges can be constructed in \~O(n2) time. Elkin and Peleg [EP04]
showed that for every integer k \geq 1 and \varepsilon > 0 there is a (1 + \varepsilon , \beta )-spanner with
O(\beta n1+1/k) edges, where \beta depends on k and \varepsilon but is independent of n. Baswana
et al. [BKMP10] presented a (1, 6)-spanner with O(n4/3) edges. Woodruff [Woo06]
presented an \~O(n2) time algorithm that computes a (1, 6)-spanner with O(n4/3) edges.
Chechik [Che13] presented a (1, 4)-spanner with O(n7/5) edges. Recently, Abboud
and Bodwin [AB17] showed that there is no additive spanner with constant error and
O(n4/3 - \varepsilon ) edges.

Thorup and Zwick [TZ05] introduced the notion of distance oracles, a data struc-
ture that stores approximate distances for a weighted undirected graph. Thorup and
Zwick designed a distance oracle that for any k takes O(mn1/k) time to construct and
is of size O(kn1+1/k), and given a pair of vertices u, v \in V it returns in O(k) time a
(2k - 1)-approximation for d(u, v). Baswana and Sen [BS06] showed that the construc-
tion time can be made O(n2) for unweighted graphs. Baswana and Kavitha [BK10]
extended the O(n2) construction time to weighted graphs. Subsequently, Baswana
et al. [BGSU08] obtained subquadratic construction time in unweighted graphs, at
the price of having additive constant error in addition to the 2k  - 1 multiplicative
error.

Chechik [Che15] gave an oracle with space O(n1+1/k) and O(1) query time, which,
like previous work, returns a (2k  - 1)-approximation. P\v atra\c scu and Roditty [PR10]
obtained a distance oracle that uses \~O(n5/3) space, has O(1) query time, and returns
a (2k + 1)-approximation. Sommer [Som16] presented an \~O(n2) time algorithm that
constructs such a distance oracle. The construction time was recently improved to
O(n2) by Knudsen [Knu17]. P\v atra\c scu, Roditty, and Thorup [PRT12a] presented
infinitely many distance oracles with fractional approximation factors that for graphs
with m = \~O(n) converge exactly to the integral stretch factors and the corresponding
space bound of Thorup and Zwick. Thorup and Zwick [TZ01] also extended their
techniques from [TZ05] to compact routing schemes.

The lower bounds presented in this paper were inspired by a lower bound by
P\v atra\c scu and Roditty [PR10], who showed conditional hardness based on a conjecture
on the hardness of a set intersection problem for the space usage of any distance oracle
that can distinguish between distances 3 and 7.
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Subsequent work. Our approximation algorithms for eccentricities in Theorems 3
and 4 have recently been improved to a true 2-approximation in \~O(m) time by Choud-
hary and Gold [CG20]. From the lower bounds side, there have been several very
recent improvements for diameter. Li [Li20] improved our unweighted undirected
construction for diameter to match our weighted undirected construction. That is, he
showed that under SETH, any 5/3 - \varepsilon approximation algorithm for diameter in undi-
rected unweighted graphs requires m3/2 - o(1) time. Then, Bonnet [Bon20] surpassed
this 5/3 bound for directed weighted graphs, by showing that under SETH, any 7/4 - \varepsilon 
approximation algorithm for diameter requires m4/3 - o(1) time. Then, concurrent and
independent work by Dalirrooyfard and Wein [DW20] and Li [Li20] closed the gap for
near-linear time algorithms for diameter in directed unweighted graphs, by showing
that for any fixed integer k \geq 2, SETH implies that for all \delta > 0, any ( 2k - 1

k  - \delta )-
approximation algorithm for diameter in an unweighted directed graph on m edges

requires m
k

k - 1 - o(1) time. This implies that the folklore \~O(m) time 2-approximation
is tight. Li also showed that better SETH-based reductions are impossible, assuming
other nondeterministic versions of SETH. Additionally, there have been two surveys
with sections devoted to diameter approximation [RW19, Wil18].

1.3. Organization. In section 3 we prove our lower bounds for S-T diameter
which serve as a basis for the rest of our lower bounds. We also show equivalence
between diameter and S-T diameter. In section 4 we prove our lower bounds for
eccentricities: one for directed graphs and one for undirected graphs. In section 5
we prove our lower bounds for diameter. This section is divided into four subsec-
tions, one for each of the results in Table 1. In section 6 we describe our algorithms
for sparse graphs: our 2-approximation and (2 + \delta )-approximation for eccentricities,
our 2-approximation and 3-approximation for S-T diameter, and our less than 2-
approximation for diameter. In section 7 we describe our algorithms for dense graphs:
our nearly 3/2-approximations for diameter and our nearly 5/3-approximations for ec-
centricities.

2. Preliminaries. Let G = (V,E) be a weighted or unweighted, directed or
undirected graph, where | V | = n and | E| = m. For every u, v \in V let dG(u, v) be the
length of the shortest path from u to v. When the graph G is clear from the context
we omit the subscript G.

The eccentricity \varepsilon (v) of a vertex v is defined as maxu\in V d(v, u). The diame-
ter D of a graph is maxv\in V \varepsilon (v). In a directed graph we additionally let \varepsilon in(v) =
maxu\in V d(u, v). In a directed graph, we sometimes use \varepsilon out(v) to denote \varepsilon (v) to
emphasize the distinction between \varepsilon in(v) and \varepsilon out(v). For all of these definitions, a
distance d(u, v) is considered to be \infty if v is not reachable from u.

Let deg(v) be the degree of v and let Ns(u) be the set of the s closest vertices of
v, where ties are broken by taking the vertex with the smaller ID. In a directed graph
let degout(v) (resp., degin(v)) be the outgoing (incoming) degree of v. Let Nout

s (v)
(resp., N in

s (v)) be the set of the s closest outgoing (incoming) vertices of v, where ties
are broken by taking the vertex with the smaller ID. For a subset S \subseteq V of vertices
and a vertex v \in V we write d(S, v) := mins\in S d(s, v) to denote the distance from the
set S to the vertex v.

Let k \geq 2. The k-orthogonal vectors problem (k-OV) is as follows: given k
sets S1, . . . , Sk, where each Si contains N vectors in \{ 0, 1\} d, determine whether
there exist v1 \in S1, . . . , vk \in Sk so that their generalized inner product is 0, i.e.,\sum d

i=1

\prod k
j=1 vj [i] = 0.
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Williams [Wil05] (see also [Vas15]) showed that if for some \varepsilon > 0 there is an
Nk - \varepsilon poly (d) time algorithm for k-OV, then CNF-SAT on formulas with N \prime variables
and M clauses can be solved in 2N

\prime (1 - \varepsilon /k)poly (M) time. In particular, such an
algorithm would contradict the SETH of Impagliazzo, Paturi, and Zane [IPZ01], which
states that for every \varepsilon > 0 there is a K such that K-SAT on N \prime variables cannot be
solved in 2(1 - \varepsilon )N \prime 

poly N \prime time (say, on a word-RAM with O(logN \prime ) bit words).
This also motivates the following k-OV conjectures (implied by SETH) for all

constants k \geq 2: k-OV requires Nk - o(1) time on a word-RAM with O(logN) bit
words. Most of our conditional lower bounds are based on the k-OV conjecture for a
particular constant k, and thus they also hold under SETH.

A main motivation behind SETH is that despite decades of research, the best
upper bounds for K-SAT on N \prime variables and M clauses remain of the form
2N

\prime (1 - c/K)poly (M) for constant c (see, e.g., [Hir98, PPSZ05, Sch99]). The best
algorithms for the k-OV problem for any constant k \geq 2 on N vectors and dimension
c logN run in time Nk - 1/O(log c) (Abboud, Williams, and Yu [AWY15] and Chan and
Williams [CW16]).

3. \bfitS -\bfitT diameter hardness. In this section we will prove that under SETH,
our S-T diameter algorithms are essentially optimal. Our S-T diameter construction
serves as the basis for all of our conditional lower bounds. We prove the following
theorem, which implies Theorem 5.

Theorem 7. Let k \geq 2 be an integer. There is an O(kNk - 1dk - 1) time reduction
that transforms any instance of k-OV on sets of N d-dimensional vectors into an
unweighted undirected graph on O(Nk - 1 + kNk - 2dk - 1) vertices and O(kNk - 1dk - 1)
edges and two disjoint sets S and T on Nk - 1 vertices each, so that if the k-OV
instance has a solution, then DS,T \geq 3k  - 2, and if it does not, DS,T \leq k.

From Theorem 7 we get that if there is some k \geq 2, \varepsilon > 0, and \delta > 0 so that there
is an O(m1+1/(k - 1) - \varepsilon ) time (3 - 2/k  - \delta )-approximation algorithm for S-T diameter
in m-edge graphs, then k-OV has an nk - \gamma poly (d)-time algorithm for some \gamma > 0 and
SETH is false.

We obtain an immediate corollary.

Corollary 8. For S-T diameter, under SETH, there is
\bullet no O(m2 - \delta ) time (2 - \varepsilon )-approximation algorithm for any \varepsilon > 0, \delta > 0,
\bullet no O(m3/2 - \delta ) time (7/3 - \varepsilon )-approximation algorithm for any \varepsilon > 0, \delta > 0,
\bullet no m1+o(1) time, (3 - \varepsilon )-approximation algorithm for any \varepsilon > 0.

3.1. Warm-up: Construction for \bfitk = 3. We first review the construction
of [RV13] for S-T diameter for k = 2. Their construction is explicitly written as a
construction for the standard diameter problem, but it implicitly gives a construction
for S-T diameter. Then, we will describe our construction for k = 3. This will provide
some intuition for the general construction.

Review of the k = 2 case. In the k = 2 case, we are given an OV instance
consisting of sets W0,W1 \subseteq \{ 0, 1\} d, each of size N . Our goal is to construct a graph
on \~O(N) vertices and edges so that if the OV instance is a NO instance, then the S-T
diameter is 2, and if the OV instance is a YES instance, then the S-T diameter is at
least 4.

We construct a layered graph G on three layers L0, L1, L2 where edges only go
between adjacent layers. We set S = L0 and T = L2 for the S-T diameter instance.
L0 consists of one vertex for each vector a \in W0, and L2 consists of one vertex for
each vector b \in W1. L1 consists of one vertex for each coordinate in [d].
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There is an edge between a \in L0 and i \in L1 if and only if a is 1 in coordinate i.
There is an edge between b \in L2 and i \in L1 if and only if b is 1 in coordinate i. This
completes the description of the construction.

If the OV instance is a NO instance, then by definition, for every pair a \in W0,
b \in W1, there exists a coordinate x that is 1 for both a and b. Thus, there is a path
of length 2 in G from a \in L0 to b \in L2 through x \in L1. On the other hand, if the OV
instance is a YES instance with orthogonal pair a \in W0, b \in W1, then by definition
there is no coordinate such that a and b are both 1. Therefore, the distance between
a \in L0 and b \in L2 is more than 2, and it must be at least 4 due to the layered
structure of the graph.

The k = 3 case. We are given a 3-OV instance consisting of sets W0,W1,W2 \subseteq 
\{ 0, 1\} d, each of size N . Our goal is to construct a graph on \~O(N2) vertices and edges
so that if the 3-OV instances is a NO instance, the S-T diameter is 3, and if the 3-OV
instance is a YES instance, the S-T diameter is at least 7. Our construction is shown
in Figure 3.

We construct a layered graph G on four layers L0, L1, L2, L3 where the edges go
only between adjacent layers. We will set S = L0 and T = L3 for the S  - T diameter
instance. L0 consists of one vertex for each pair of vectors a0 \in W0, a1 \in W1, and L3

consists of one vertex for each pair of vectors b1 \in W1, b2 \in W2.
Now, we would like to define L1, L2, and the edges so that the S-T diameter is

3 if and only if the 3-OV instance is a NO instance. To provide some intuition, we
fix a pair of vertices (a0, a1) \in S, (b1, b2) \in T and ask the question, What can we say
about the vectors a0, a1, b1, and b2 in a NO instance? By definition, in a NO instance
the vectors a0, a1, and b2 are all 1 at some coordinate x0. Similarly, the vectors a0,
b1, and b2 are all 1 at some coordinate x1. Because the S side of the graph concerns
the vectors a0 and a1 and the T side of the graph concerns the vectors b1 and b2, we
separate the conditions on a0, a1, b1, and b2 according to each side of the graph. For
the S side, we have that a0[x0] = a1[x0] = a0[x1] = 1. For the T side, we have that
b1[x1] = b2[x1] = b2[x0] = 1.

This motivates a first attempt for how to define the rest of the graph. Suppose L1

and L2 both consist of one vertex for every pair of coordinates x0, x1 \in [d]. We add
an edge from (a0, a1) \in L0 to (x0, x1) \in L1 if a0[x0] = a1[x0] = a0[x1] = 1. We add
an edge from (b1, b2) \in L3 to (x0, x1) \in L2 if b1[x1] = b2[x1] = b2[x0] = 1. Finally,
we add an edge from (x0, x1) \in L1 to (x\prime 

0, x
\prime 
1) \in L2 if x0 = x\prime 

0 and x1 = x\prime 
1. While

this construction has S-T diameter 3 for a NO instance of 3-OV, it does not have
S-T diameter 7 for a YES instance, as we would like. In particular, suppose a0 \in W0,
a1 \in W1, a2 \in W2 is an orthogonal triple. We would like the distance between
(a0, a1) \in L0 and (a1, a2) \in L3 to be at least 7; however, with the current construction,

L0 L1 L2 L3

a0a1 a0x0x1

b2x
′
0x

′
1 b1b2

a0[x0] = 1
a1[x0] = 1
a0[x1] = 1

b1[x
′
1] = 1

b2[x
′
1] = 1

b2[x
′
0] = 1

x0 = x′
0

x1 = x′
1

Fig. 3. The construction when k = 3.
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there could be a path of length 5 from (a0, a1) \in L0 to some (x0, x1) \in L1, to some
(a\prime 0, a1) \in L0, to some (x\prime 

0, x
\prime 
1) \in L1, to (x\prime 

0, x
\prime 
1) \in L2, to (a1, a2) \in L3. The issue is

that from (a0, a1) \in L0 we can reach (a\prime 0, a1) \in L0 with a path of length 2 for some
convenient choice of a\prime 0.

To overcome this issue, we also include the vector a0 in the representation of
vertices in L1; that is, L1 consists of one vertex for every triple (a0 \in W0, x0 \in 
[d], x1 \in [d]). There is an edge from (a0, a1) \in L0 to (a\prime 0, x0, x1) \in L1 if and only if
a = a\prime and a0[x0] = a1[x0] = a0[x1] = 1. Symmetrically, L2 consists of one vertex
for every triple (b2 \in W2, x0 \in [d], x1 \in [d]) and there is an edge from (b1, b2) \in L3

to (b\prime 2, x0, x1) \in L2 if and only if b2 = b\prime 2 and b1[x1] = b2[x1] = b2[x0] = 1. Last,
there is an edge between (a0, x0, x1) \in L1 and (b2, x

\prime 
0, x

\prime 
1) \in L2 if and only if x0 = x\prime 

0

and x1 = x\prime 
1. This completes the description of the construction. One can verify that

this construction indeed satisfies the property that the S-T diameter is 3 for a NO
instance of 3-OV, and the S-T diameter is 7 for a YES instance of 3-OV.

3.2. Construction for general \bfitk . We will prove the following more detailed
theorem, which will be useful for our diameter lower bounds.

Theorem 9. Let k \geq 2. Given a k-OV instance consisting of sets W0,W1, . . . ,
Wk - 1 \subseteq \{ 0, 1\} d, each of size N , we can in O(kNk - 1dk - 1) time construct an un-
weighted, undirected graph with O(Nk - 1 + kNk - 2dk - 1) vertices and O(kNk - 1dk - 1)
edges that satisfies the following properties.

1. The graph consists of k+1 layers of vertices S = L0, L1, L2, . . . , Lk = T . The
number of vertices in the sets is | S| = | T | = Nk - 1 and | L1| , | L2| , . . . , | Lk - 1| \leq 
Nk - 2dk - 1.

2. S consists of all tuples (a0, a1, . . . , ak - 2) where for each i, ai \in Wi. Similarly,
T consists of all tuples (b1, b2, . . . , bk - 1) where for each i, bi \in Wi.

3. If the k-OV instance has no solution, then d(u, v) = k for all u \in S and
v \in T .

4. If the k-OV instance has a solution a0, a1, . . . , ak - 1 where for each i, ai \in Wi

then if \alpha = (a0, . . . ak - 2) \in S and \beta = (a1, . . . , ak - 1) \in T , then d(\alpha , \beta ) \geq 
3k  - 2.

5. Suppose the k-OV instance has a solution a0, a1, . . . , ak - 1 where for each i,
ai \in Wi. Let t = k  - 2. Let s be such that 0 \leq s \leq t.
Let bt - s+j \in Wt - s+j for all j \in [1, . . . , s] be some other vectors, potentially
different from at - s+j. Consider \alpha = (a0, a1, . . . , at - s, bt - s+1, . . . , bt) \in L0

and \beta = (a1, . . . , at+1) \in Lt+2. Then the distance between \alpha and \beta is at least
3t - 2s+ 4.
Symmetrically, let cj \in Wj for all j \in [1, . . . , s] be some other vectors, po-
tentially different from aj. Consider \alpha = (a0, a1, . . . , at) \in L0 and \beta =
(c1, . . . , cs, as+1, . . . , at+1) \in Lt+2. Then the distance between \alpha and \beta is at
least 3t - 2s+ 4.

6. For all i from 1 to k - 1, for all v \in Li there exists a vertex in Li - 1 adjacent
to v and a vertex in Li+1 adjacent to v. We can assume that this property
holds because we can remove all vertices that do not satisfy this property from
the graph and the resulting graph will still satisfy the other properties.

Proof of Theorem 9. We will prove the theorem for k = t+ 2 for any t \geq 0.
We will create a layered graph G on t + 3 layers, L0, . . . , Lt+2, where the edges

go only between adjacent layers Li, Li+1. We will set S = L0 and T = Lt+2 for the
S-T diameter instance. In particular, DS,T \geq t+ 2 because of the layering.
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L0 L1 L2 L3 L4

a0a1a2 a0a1x0x1x2

a0b3x
′
0x

′
1x

′
2

a0a3x0x1x2 a2a3x0x1x2

b2b3x
′′
0x

′′
1x

′′
2 b1b2b3

a1a2a3

a0[xi] = 1, ∀i
a1[x0] = a1[x1] = 1
a2[x0] = 1

b3[x
′′
i ] = 1, ∀i

b2[x
′′
1 ] = b2[x

′′
2 ] = 1

b1[x
′′
2 ] = 1

a3[xi] = 1, ∀i
a2[x1] = a2[x2] = 1
a1[x2] = 1

xi = x′
i, ∀i

x′′
i = x′

i, ∀i

Fig. 4. The reduction graph from (t+2)-OV for t = 2. The figure depicts when a path of length
t + 2 exists between arbitrary a0a1a2 \in L0 and b1b2b3 \in Lt+2. It also shows that when there is a
path of length t+ 2 between a0a1a2 \in L0 and a1a2a3 \in Lt+2, a0, a1, a2, a3 cannot be an orthogonal
4-tuple.

Let us describe the vertices of G. L0 consists of N t+1 vertices, each corresponding
to a t + 1-tuple (a0, a1, . . . , at) where for each i, ai \in Wi. Similarly, Lt+2 consists
of N t+1 vertices, each corresponding to a t+ 1-tuple (b1, b2, . . . , bt+1) where for each
i, bi \in Wi. Layer L1 consists of N tdt+1 vertices, each corresponding to a tuple
(a0, . . . , at - 1, \=x) where for each i, ai \in Wi and \=x = (x0, . . . , xt) is a (t + 1)-tuple of
coordinates in [d]. Similarly, Lt+1 consists of N tdt+1 vertices, each corresponding
to a tuple (b2, . . . , bt+1, \=x) where for each i, bi \in Wi and \=x is a (t + 1)-tuple of
coordinates. For every j \in \{ 2, . . . , t\} , Lj consists of N tdt+1 vertices (a0, . . . , at - j ,
bt+3 - j , . . . , bt+1, \=x), where for each i, ai \in Wi, bi \in Wi and \=x = (x0, . . . , xt) is a
(t+1)-tuple of coordinates in [d]. In other words, there is a vector from Wi for every
i /\in \{ t - j + 1, t - j + 2\} .

Now let us define the edges. Consider a vertex (a0, . . . , at) \in L0. For every
\=x = (x0, . . . , xt), connect (a0, . . . , at) to (a0, . . . , at - 1, \=x) \in L1 if and only if for every
j \in \{ 0, . . . , t\} , aj is 1 in coordinates x0, . . . , xt - j . For any i \in \{ 1, . . . , t\} let's define the
edges between Li and Li+1. For (a0, . . . , at - i, bt+3 - i, . . . , bt+1, \=x) \in Li

4 and for any
ct+2 - i \in Wt+2 - i, add an edge to (a0, . . . , at - i - 1, ct+2 - i, bt+3 - i, . . . , bt+1, \=x) \in Li+1.
Here we ``forget"" vector at - i and replace it with ct+2 - i, leaving everything else the
same.

Finally, the edges between Lt+1 and Lt+2 are as follows. Consider some (b1, . . . ,
bt+1) \in Lt+2. For every \=x = (x0, . . . , xt), connect (b1, . . . , bt+1) to (b2, . . . , bt+1, \=x) \in 
Lt+1 if and only if for every j \in \{ 1, . . . , t+ 1\} , bj is 1 in coordinates xt+1 - j , . . . , xt.
Figure 4 shows the construction of the graph for t = 2.

An important claim is as follows.

Claim 10. For every \=x, each (a0, . . . , at - 1, \=x) \in L1 is at distance t to every
(b2, . . . , bt, \=x) \in Lt+1.

Proof. Consider the path starting from (a0, . . . , at - 1, \=x), and then for each i \geq 1
following the edges (a0, . . . , at - i, bt+3 - i, . . . , bt+1, \=x)\in Li to (a0, . . . , at - 1 - i, bt+2 - i, . . . ,
bt+1, \=x) \in Li+1, until we reach (b2, . . . , bt+1, \=x) \in Lt+1. This path exists by construc-
tion and has length t.

Now we proceed to prove the bounds on the S-T diameter.

Lemma 11 (property 3 of Theorem 9). If the (t+2)-OV instance has no solution,
then DS,T = t+ 2.

4Here if i = 1, there are no b's in the tuple.
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1168 BACKURS ET AL.

Proof. If the (t + 2)-OV instance has no solution, then for every c0 \in W0, c1 \in 
W1, . . . , ct+1 \in Wt+1, there is some coordinate x such that c0[x] = c1[x] = \cdot \cdot \cdot =
ct+1[x] = 1.

Now consider the graph and any (a0, . . . , at) \in L0, (b1, . . . , bt+1) \in Lt+2. For
every j \in \{ 0, . . . , t\} , let xj be a coordinate so that a0, . . . , at - j , bt - j+1, . . . , bt+1 are
all 1 in xj . Let \=x = (x0, . . . , xt).

By construction, (a0, . . . , at) has an edge to (a0, . . . , at - 1, \=x) and (b2, . . . , bt+1, \=x)
has an edge to (b1, . . . , bt+1). Also, by Claim 10, (a0, . . . , at - 1, \=x) has a path of length
t to (b2, . . . , bt+1, \=x).

This shows that DS,T \leq t+ 2; equality follows because the graph is layered.

Now we prove the guarantee for the case when an orthogonal tuple exists.

Lemma 12 (property 4 of Theorem 9). If there exist a0 \in W0, . . . , at+1 \in Wt+1

that are orthogonal, then DS,T \geq 3t+ 4.

To prove the lemma, we will actually prove a more general claim: property 5 of
Theorem 9.

Claim 13 (property 5 of Theorem 9). Suppose that a0 \in W0, . . . , at+1 \in Wt+1

are orthogonal. Let s be such that 0 \leq s \leq t.
Let bt - s+j \in Wt - s+j for all j \in [1, . . . , s] be some other vectors, potentially

different from at - s+j . Consider \alpha = (a0, a1, . . . , at - s, bt - s+1, . . . , bt) \in L0 and \beta =
(a1, . . . , at+1) \in Lt+2. Then the distance between \alpha and \beta is at least 3t - 2s+ 4.

Symmetrically, let cj \in Wj for all j \in [1, . . . , s] be some other vectors, potentially
different from aj. Consider \alpha = (a0, a1, . . . , at) \in L0 and \beta = (c1, . . . , cs, as+1, . . . ,
at+1) \in Lt+2. Then the distance between \alpha and \beta is at least 3t - 2s+ 4.

If the claim is true, then using s = 0 we get that the diameter is at least 3t + 4
so Lemma 12 is true. The claim for s > 0 is useful for the rest of our constructions.

Proof. We will show that the distance between \alpha = (a0, a1, . . . , at - s, bt - s+1, . . . ,
bt) \in L0 and \beta = (a1, . . . , at+1) \in Lt+2 is strictly more than 3t+ 2 - 2s. Because the
graph is layered and hence bipartite and t+ 2 \equiv 3t+ 2 mod 2, the distance must be
at least 3t - 2s+ 4.

Let's assume for contradiction that the shortest path P between \alpha and \beta is
of length \leq 3t + 2  - 2s. First let's look at any subpath P \prime of P strictly within
M = L1 \cup \cdot \cdot \cdot \cup Lt+1. All vertices on P \prime must share the same \=x. Furthermore, if
P \prime starts with a vertex of L1 and ends with a vertex of Lt+1, then by Claim 10, P \prime 

must be of length exactly t. Next, notice that P cannot go from L0 to Lt+2 and then
back to L0. This is because it needs to end up in Lt+2 and any time it crosses over
M , it would need to pay a distance of t+ 2, so P would have to have length at least
3t+6 > 3t+2 - 2s. Hence, P must be of the following form: a path from \alpha through
L0 \cup M back to L0 (possibly containing only \alpha ), followed by a path crossing M to
reach Lt+2, followed by a path through Lt+2 \cup M to Lt+2 (possibly empty).

We will show that if P has length \leq 3t + 2  - 2s, then P must contain a length
t + 2 subpath Q between a vertex (a0, . . . , aq, wq+1, . . . , wt) \in L0, for some choices
of the w's and some q \leq t  - s, and a vertex (v1, . . . , vq, aq+1, . . . , at+1) \in Lt+2, for
some choices of v's. That is, this path traverses M without weaving, by follow-
ing (a0, . . . , aq, wq+1, . . . , wt - 1, \=x) \in L1, (a0, . . . , aq, wq+1, . . . , wt - 2, at+1, \=x) \in L2, . . .,
(v2, . . . , vq, aq+1, . . . , at - s, . . . , at+1, \=x) \in Lt+1. Suppose we show that such a subpath
exists. Then by the construction of our graph we have that for every i \in \{ 0, . . . , q\} ,
ai[xj ] = 1 for all j \in \{ 0, . . . , t  - i\} , and that for all i \in \{ q + 1, . . . , t + 1\} , ai[xj ] = 1
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α

α∗

a∗ b∗
β∗

β

L0 L1 Li Lj Lt+1 Lt+2

Fig. 5. Here P contains at least two vertices in L0 and at least two in Lt+2, and s = 0.

for all j \in \{ t+1 - i, . . . , t\} . That is, for all i, ai[xt - q] = 1, and we get a contradiction
since the ai were supposed to be orthogonal.

Now let \alpha \ast be the last vertex from L0 on P and let \beta \ast be the first vertex of Lt+2

of P . Let a\ast \in L1 be the vertex right after \alpha \ast and let b\ast \in Lt+1 be the vertex right
before \beta \ast . See Figure 5.

Since the subpath of P between a\ast and b\ast is within M , it must share the same
\=x, and it must have length exactly t by Claim 10. We will show that the subpath
Q that we are looking for is the subpath of P between \alpha \ast and \beta \ast . Its length is
exactly what we want: t + 2. It remains to show that for some q \leq t  - s and some
choices of w's and v's, \alpha \ast = (a0, . . . , aq, wq+1, . . . , wt) and \beta \ast = (v1, . . . , vq, aq+1, . . . ,
at+1).

Consider the path P1 between \alpha = (a0, a1, . . . , at - s, bt - s+1, . . . , bt) and \alpha \ast and
the path P2 between \beta = (a1, . . . , at+1) and \beta \ast . Let Li be the layer in M with largest i
that P1 hits and let Lj be the layer in M with smallest j that P2 hits. For convenience,
let us define j\prime = t+2 - j. The length of P1 is then at least 2i and the length of P2 is at
least 2j\prime . The length | P | of P equals t+2+| P1| +| P2| \geq t+2+2i+2j\prime = t+2+2(i+j\prime ).
Since we have assumed that | P | \leq 3t+ 2 - 2s, we must have that t+ 2 + 2(i+ j\prime ) \leq 
3t + 2  - 2s and hence i + j\prime \leq t  - s. Now, since P1 goes at most to Li, then from
getting from \alpha to \alpha \ast , at most the last i elements of (a0, a1, . . . , at - s, bt - s+1, . . . , bt)
can have been ``forgotten."" Hence, \alpha \ast = (a0, . . . , at - max\{ s,i\} , bt - max\{ s,i\} +1, . . . , bt - i,
wt - i+1, . . . , wt) for some w's. (If i \geq s, the b's do not appear.)

Similarly, between \beta and \beta \ast , at most the first j\prime elements of \beta can have been
forgotten. Thus, we have that \beta \ast = (v1, . . . , vj\prime , aj\prime +1, . . . , at+1) for some v's. Now,
since i+ j\prime \leq t - s, we must have that j\prime \leq t - s - i \leq t - max\{ s, i\} , and hence the
path between \alpha \ast and \beta \ast is the path Q we are searching for.

3.3. Equivalence between diameter and \bfitS -\bfitT diameter. Here we will prove
that when it comes to exact computation, S-T diameter and diameter in weighted
graphs are equivalent. The proof for directed graphs is much simpler, so we focus
on the equivalence for undirected graphs. Also, it is clear that if one can solve S-T
diameter, one can also solve diameter in the same running time since one can simply
set S = T = V . We prove the following.

Theorem 14. Suppose that there is a T (n,m) time algorithm that can compute
the diameter of an n vertex, m edge graph with nonnegative integer edge weights.
Then, the S-T diameter of any n vertex m edge graph with nonnegative integer edge
weights can be computed in T (O(n), O(m)) time.

Proof. Let G = (V,E), S, T be the S-T diameter instance; let w : E \rightarrow \{ 0, . . . ,M\} 
be the edge weights. First, we can always assume that M is even: if it is not, multiply
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all edge weights by 2; all distances (and hence also the S-T diameter) double. Let
S = \{ s1, . . . , sk\} and T = \{ t1, . . . , t\ell \} .

Now, let W = Mn. First add | S| = k new vertices S\prime = \{ v1, . . . , vk\} . For each
i \in \{ 1, . . . , k\} add a new edge (vi, si) of weight W . Let GS be this new graph. Let's
consider the diameter of GS . For every pair of vertices u, v /\in S\prime , the distance is the
same as in G. For vi \in S\prime and x /\in S\prime , the distance is W +dG(si, x) \leq W +M(n - 1) <
2W . For vi, vj \in S\prime , the distance is 2W + d(si, sj). Hence the diameter of GS is
2W +maxsi,sj\in S d(si, sj). Hence by computing the diameter of GS , we can compute
DS = maxsi,sj\in S d(si, sj).

We can create a similar graph GT whose diameter will allow us to compute DT =
maxti,tj\in S d(ti, tj).

After this, let's create a graph GS,T as follows (note that GS,T is not yet the final
construction). Add new vertices S\prime = \{ v1, . . . , vk\} and T \prime = \{ u1, . . . , u\ell \} . For each
i \in \{ 1, . . . , k\} add a new edge (vi, si) of weight W . For each j \in \{ 1, . . . , \ell \} add a
new edge (uj , tj) of weight W . With a similar argument as above, the diameter D\prime of
GS,T is D\prime = 2W +maxu,v\in S\cup T dG(u, v).

Let's assume without loss of generality (w.l.o.g.) that DS \geq DT . If D\prime > DS ,
then D\prime = 2W +maxu\in S,v\in T dG(u, v), and we can compute the S-T diameter of G by
subtracting 2W .

Now suppose that we get D\prime \leq DS ; we must have then actually gotten D\prime = DS .
The S-T diameter of G might be strictly smaller than DS . We add two new vertices
x and y to GS,T . We add an edge (x, y) of weight 2W , edges (x, vi) for every vi \in S\prime 

of weight DS/2 and (symmetrically) edges (y, uj) for every uj \in T \prime of weight DS/2.
Let G\prime be the resulting graph. See Figure 6.
Let us consider the distances in this new graph G\prime .
1. For every a, b /\in S\prime \cup T \prime \cup \{ x, y\} , d(a, b) = dG(a, b) < W as any path not in G

would have to use an edge of weight W > d(a, b).
2. For every b /\in S\prime \cup T \prime \cup \{ x, y\} , d(x, b) = W + DS/2 + mina\in S dG(a, b) \leq 

2W +DS/2. Similarly, d(y, b) = W +DS/2+mina\in T dG(a, b) \leq 2W +DS/2.
3. For every vi \in S\prime , d(x, vi) = DS/2, and d(y, vi) = 2W + DS/2. For every

ui \in T \prime , d(y, ui) = DS/2, and d(x, ui) = 2W +DS/2.
4. For every vi, vj \in S\prime , d(vi, vj) = DS . For every ui, uj \in T \prime , d(ui, uj) = DS .
5. For every vi \in S\prime and b /\in S\prime \cup T \prime \cup \{ x, y\} , d(vi, b) \leq W + d(si, b) \leq 2W. For

every ui \in T \prime and b /\in S\prime \cup T \prime \cup \{ x, y\} , d(ui, b) \leq W + d(ti, b) \leq 2W.
6. For every vi \in S\prime and uj \in T \prime , d(vi, uj) is the minimum ofDS+2W,DS+2W+

mins\in S dG(s, tj), DS+2W +mint\in t dG(t, si) and 2W +dG(si, tj). The middle
two terms are \geq DS + 2W , and hence d(vi, uj) = 2W +min\{ DS , dG(si, tj)\} .

s1

s2
s3 = t3

t2

t1

a

b

x y

S T

G

v1

v2

v3S’
no edges within

u2

u1

u3

T’

no edges within

W

W

W

W

W

W

2W

DS/2

DS/2

DS/2
DS/2DS/2

DS/2

Fig. 6. A depiction of the construction of G\prime .
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Consider si \in S, tj \in T that are the endpoints of the S-T diameter D in G.
Then D = dG(si, tj). Now, we have from before that D \leq DS , as otherwise we have
computed D already. Hence in G\prime , the distance d(ui, vj) equals 2W +min\{ DS , D\} =
2W +D

We note that for any si, sj \in S, and any t \in T , dG(si, sj) \leq dG(si, t)+dG(t, sj) \leq 
2maxs\in S,t\in T dG(s, t) = 2D. Thus, D \geq DS/2. The distances in cases 1 to 5 are all
\leq 2W +DS/2 \leq 2W +D. Hence the diameter of G\prime is actually exactly 2W +D.

4. Lower bounds for eccentricities.

4.1. Undirected graphs. In this section we will prove the following theorem,
which implies Theorem 2 and the lower bound part of Theorem 3.

Theorem 15. Let k \geq 2. Under the k-OV conjecture, for any \delta > 0, any ( 4k - 3
2k - 1 - 

\delta )-approximation algorithm for all eccentricities in an unweighted undirected graph
with n vertices and O(n) edges requires at least n1+1/(k - 1) - o(1) time on a O(log n)-bit
word-RAM.

Proof. Let's start with the S-T diameter construction for k obtained from a given
k-OV instance. We have a graph on O(Nk - 1dk - 2) vertices and edges with the fol-
lowing properties:

1. Suppose that the k-OV instance has no k-OV solution. Then for every s \in 
S, t \in T , d(s, t) = k. Also, for every s \in S and u /\in S\cup T , d(s, u) \leq (k - 1)+k = 2k - 1
since we can take a \leq (k  - 1) length path from u to some vertex t \in T and since
d(s, t) = k.

2. If there is a k-OV solution, there are two vertices s \in S, t \in T with d(s, t) \geq 
3k  - 2.

We modify the construction as follows. For every s \in S, we create an undirected
path on k  - 2 new vertices s1 \rightarrow s2 \rightarrow . . . \rightarrow sk - 2 and add an edge (s, s1); let's call
s by s0. Now, the distance between s0 and si is i. Add a new vertex y and create
edges (sk - 2, y) for every s \in S. Now, d(y, s0) = k  - 1 for every s \in S, and also for
every s, s\prime \in S and all i, j \in \{ 0, . . . , k  - 2\} , we have that d(si, s

\prime 
j) \leq 2k  - 2.

Now, we also attach paths to the vertices in T . In particular, for each t, add an
undirected path t \rightarrow t1 \rightarrow . . . \rightarrow tk - 1. See Figure 7.

The distance between any s \in S and any ti is i+ d(s, t). Hence when there is no
k-OV solution, the eccentricities of all s0 for s \in S are \leq k + (k  - 1) = 2k  - 1.

For every s \in S, t \in T , there is now potentially a path between them through y
that was not present in the original S-T diameter construction. This path goes from
s to y in k  - 1 steps, then to some other s\prime in k  - 1 steps, and then to t using \geq k
steps. The length is \geq 2(k  - 1) + k = 3k  - 2. Thus, when there is a k-OV solution,

S-T Diameter instance from k-OV

S T

y

s10

s20

s30

s40

s11

s21

s31

s41

s12s13

s22s23

s32s33

s42s43

t1

t2

t3

t4

t11

t21

t31

t41

t12 t13 t14
S-T Diameter k vs 3k − 2

t22 t23 t24

t32 t33 t34

t42 t43 t44
Here k = 5

Undirected eccentricities from vertices in S: either ≤ 2k − 1 or ≥ 4k − 3.

Fig. 7. The undirected eccentricities lower bound for k = 5.
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there is still a pair s, t at distance at least 3k  - 2. Then, due to the paths attached
to T , we have d(s0, tk - 1) \geq (3k  - 2) + (k  - 1) = 4k  - 3.

4.2. Directed graphs. In this section we prove the following theorem, which
implies the lower bound part of Theorem 4.

Theorem 16. Under the 2-OV conjecture, for any \delta > 0, any (2 - \delta )-approxima-
tion algorithm for all eccentricities in an n vertex, O(n)-edge directed unweighted
graph requires n2 - o(1) time on a O(log n)-bit word-RAM.

Proof. Suppose we are given an instance of 2-OV: two sets of vectors U, V over
\{ 0, 1\} d, each of size N ; we want to know whether there are u \in U, v \in V with u \cdot v = 0.

Let L \geq 1 be any integer. Let us create a directed unweighted graph G; an
illustration can be found in Figure 8. G will have a vertex u for every u \in U and
a vertex c for every c \in [d]. Every v \in V will be represented by a directed path
v0 \rightarrow v1 \rightarrow . . . \rightarrow vL.

In addition, there is a directed path Px on L extra vertices, x1 \rightarrow . . . \rightarrow xL so
that every u \in U has directed edges (u, x1) and (xL, u). For every u \in U and every c
for which u[c] = 1, we add a directed edge (u, c). For every v and every c for which
v[c] = 1, we add a directed edge (c, v0). Remove any c that does not have at least one
edge coming from U .

Let us consider the eccentricity of any vertex u \in U . First, for all u\prime \in U ,
d(u, u\prime ) \leq L + 1 since one can go through the path Px. For every c \in [d], there is
at least one edge coming from some u\prime \in U , and so one can reach c from u by first
taking Px to u\prime and then using the edge (u\prime , c). Hence, d(u, c) \leq L+ 2 for all c \in [d].

For any v \in V and i \in \{ 1, . . . , L\} , the distance d(u, vi) = i+ d(u, v0), and so we
consider d(u, v0). If there is a c for which u[c] = v[c] = 1, then d(u, v0) = 2, and hence
for all i, d(u, vi) \leq L+2. If no such c exists and so if u and v are orthogonal, the only
way to reach v0 is potentially via Px to some other u\prime \in U which is at distance 2 to
v0. Hence if u and v are orthogonal, d(u, v0) = L + 3, and hence d(u, vL) = 2L + 3.
Thus, we have that the eccentricity of u is L+2 if it is not orthogonal to any vectors
in V and it is \geq 2L+ 3 if there is some v that is orthogonal to u.

The number of vertices in the graph is O(NL + d) and the number of edges
is O(NL + Nd). Suppose that there is a (2  - \varepsilon )-approximation algorithm for all
eccentricities in graphs with O(m) vertices and edges running in O(m2 - \delta ) time for
some \varepsilon , \delta > 0. Then, we construct the above instance for L = \lceil 1/\varepsilon \rceil and run the
algorithm on it. The approximation returned is at least as good as a (2  - 1/L)-
approximation. Hence if the diameter is at least 2L + 3, the algorithm will re-
turn an estimate that is at least L(2L + 3)/(2L  - 1) > L + 2. Thus the algorithm

x1 x2 x3

v10 x11 v12 v13

v20 v21 v22 v23

v30 v31 v32 v33

u1

u2

u3

1

2

u1 = (1, 1), u2 = (1, 0), u3 = (0, 1)

v1 = (1, 0), v2 = (1, 1), u3 = (0, 1)

ε(u1) = 5, ε(u2) = ε(u3) = 9

Fig. 8. The directed eccentricities lower bound.
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TOWARD TIGHT APPROXIMATION BOUNDS FOR DIAMETER 1173

can solve 2-OV in time O((NL + Nd)2 - \delta ) = O(N2 - \delta d2 - \delta ), contradicting the 2-OV
conjecture.

5. Diameter lower bounds. For all of our constructions we begin with the S-T
diameter lower bound construction from Theorem 9. Here, if the k-OV instance has
no solution, DS,T \leq k, and if the instance has a solution, DS,T \geq 3k - 2. To adapt this
construction to diameter, we need to ensure that if the OV instance has no solution
then all pairs of vertices have small enough distance. We begin by augmenting the
S-T diameter construction by adding a matching between S and a new set S\prime as well
as a matching between T and a new set T \prime . Without any further modifications, pairs
of vertices u, v \in S\cup S\prime (or u, v \in T \cup T \prime ) could be far from one another. The challenge
is to add extra gadgetry to make these pairs close for ``no"" instances while maintaining
that in ``yes"" instances the distance between the diameter endpoints s\prime \in S\prime , t\prime \in T \prime 

is large. That is, for ``yes"" instances, we want a shortest path between the diameter
endpoints s\prime and t\prime to contain the vertex s \in S matched to s\prime and the vertex t \in T
matched to t\prime so that we can use use the fact that d(s, t) \geq 3k  - 2. In other words,
we do not want there to be a shortcut from s\prime to some vertex in S that allows us to
use a path of length k from S to T . For example, we cannot simply create a vertex x
and connect it to all vertices in S \cup S\prime because this would introduce shortcuts from
S\prime to S.

We will describe some intuition for the augmentations to the graph regarding 3-
OV for simplicity. Recall that s\prime \in S\prime , t\prime \in T \prime are the endpoints of the diameter and let
t be the vertex matched to t\prime . To solve the problem outlined in the above paragraph,
we observe that in the ``yes"" case there are three types of vertices s \in S: (1) close,
d(s, t) = 3; (2) far, d(s, t) \geq 7 (property 4 of Theorem 9); and (3) intermediate,
d(s, t) \geq 5 (property 5 of Theorem 9). For close s, we need d(s\prime , s) to be large so
that there is no shortcut from s\prime to t\prime through s. For far s, it is acceptable if d(s\prime , s)
is small because d(s, t) is large enough to ensure that paths from s\prime to t\prime through s
are still long enough. For intermediate s, d(s\prime , s) cannot be small, but it also need
not be large. To fulfill these specifications, we add a small clique (the graph is still
sparse) and connect each of its vertices to only some of the vertices in S and/or S\prime 

according to the implications of property 5 of Theorem 9. When s is close, we ensure
that d(s\prime , s) is large by requiring that a shortest path from s\prime to s goes from s\prime to the
clique, uses an edge inside of the clique, and then goes from the clique to s. When s is
intermediate, we ensure that d(s\prime , s) is not too small by requiring that a shortest path
from s\prime to s goes from s\prime to the clique and then from the clique to s (without using
an edge inside of the clique). These intermediate s are important as they allow every
vertex in the clique to have an edge to some vertex in S and thus be close enough to
the T side of the graph in the ``no"" case.

5.1. 5 versus 8 unweighted undirected construction. In this section we
show that under the 3-OV hypothesis, any algorithm that can distinguish between
diameter 5 and 8 in sparse undirected unweighted graphs requires \Omega (n3/2 - o(1)) time.

Theorem 9 gives us the following theorem.

Theorem 17. Given a 3-OV instance consisting of three sets A,B,C \subseteq \{ 0, 1\} d,
| A| = | B| = | C| = N , we can in O(N2d2) time construct an unweighted, undirected
graph with O(N2+Nd2) vertices and O(N2d2) edges that satisfies the following prop-
erties.

1. The graph consists of four layers of vertices S,L1, L2, T . The number of
vertices in the sets is | S| = | T | = N2 and | L1| , | L2| \leq Nd2.
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2. S consists of all tuples (a, b) of vertices a \in A and b \in B. Similarly, T
consists of all tuples (b, c) of vertices b \in B and c \in C.

3. If the 3-OV instance has no solution, then d(u, v) = 3 for all u \in S and
v \in T .

4. If the 3-OV instance has a solution a \in A, b \in B, c \in C with a, b, c orthogonal,
then d((a, b) \in S, (b, c) \in T ) \geq 7.

5. If the 3-OV instance has a solution a \in A, b \in B, c \in C with a, b, c orthogonal,
then by setting k = 3, s = 1 in property 5 of Theorem 9 we have that for any
b\prime \in B we have d((a, b) \in S, (b\prime , c) \in T ) \geq 5 and d((a, b\prime ) \in S, (b, c) \in T ) \geq 5.

6. For any vertex u \in L1 there exists a vertex s \in S that is adjacent to u.
Similarly, for any vertex v \in L2 there exists a vertex t \in T that is adjacent to
v. We can assume that this property holds because we can remove all vertices
that do not satisfy this property from the graph and the resulting graph will
still satisfy the other properties.

In the rest of the section we use Theorem 17 to prove the following result, which
implies Theorem 1.

Theorem 18. Given a 3-OV instance, we can in O(N2d2) time construct an
unweighted, undirected graph with O(N2 + Nd2) vertices and O(N2d2) edges that
satisfies the following two properties.

1. If the 3-OV instance has no solution, then for all pairs of vertices u and v
we have d(u, v) \leq 5.

2. If the 3-OV instance has a solution, then there exists a pair of vertices u and
v such that d(u, v) \geq 8.

Construction of the graph. We construct a graph with the required properties
by starting with the graph from Thereom 17 and adding more vertices and edges.
Figure 9 illustrates the construction of the graph. We start by adding a set S\prime of N2

vertices. S\prime consists of all tuples (a, b) of vertices a \in A and b \in B. We connect every
(a, b) \in S\prime to its counterpart (a, b) \in S. Thus, there is a matching between the sets of
vertices S and S\prime . We also add another set S\prime \prime of N vertices. S\prime \prime contains one vertex
a for every a \in A. For every pair of vertices from S\prime \prime we add an edge between the
vertices. Thus, the N vertices form a clique. Furthermore, for every vertex a \in S\prime \prime we

S ′ S L1 L2 T T ′

abab

S ′′ a

same a

clique

bcbc

T ′′ c

same c

clique

matching matching

Fig. 9. The illustration for the 5 versus 8 construction. The edges between sets S,L1, L2, and
T are not depicted. The edges between vertices in S\prime and S (T and T \prime ) form a matching. Vertices
in S\prime \prime (T \prime \prime ) form a clique.
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add an edge to (a, b) \in S for all b \in B. In total we added N2 +N = O(N2) vertices
and

\bigl( 
N
2

\bigr) 
+2N2 = O(N2) edges. We do a similar construction for the set T of vertices.

We add a set T \prime of N2 vertices---one vertex for every tuple (b, c) of vertices b \in B
and c \in C. We connect every (b, c) \in T \prime to (b, c) \in T . Finally, we add a set T \prime \prime of
N vertices. T \prime \prime contains one vertex for every vector c \in C. For every pair of vertices
from T \prime \prime we add an edge between the vertices. We connect every c \in T \prime \prime to (b, c) \in T
for all b \in B. This finishes the construction of the graph. In the rest of the section
we show that the construction satisfies the promised two properties.

Correctness of the construction. We need to consider two cases.
Case 1: The 3-OV instance has no solution. In this case we want to show that

for all pairs of vertices u and v we have d(u, v) \leq 5. We consider three subcases.
Case 1.1: u \in S\cup S\prime \cup S\prime \prime \cup L1 and v \in T\cup T \prime \cup T \prime \prime \cup L2. We observe that there exists

s \in S with d(u, s) \leq 1. Indeed, if u \in S, then s = u works. If u \in S\prime \cup S\prime \prime , then we are
done by the construction. On the other hand, if u \in L1, then there exists such an s \in S
by property 6 from Theorem 17. Similarly we can show that there exists t \in T such
that d(v, t) \leq 1. Finally, by property 3 we have that d(s, t) = 3. Thus, we can upper
bound the distance between u and v by d(u, v) \leq d(u, s)+d(s, t)+d(t, v) \leq 1+3+1 = 5
as required.

Case 1.2: u, v \in S \cup S\prime \cup S\prime \prime \cup L1. From the previous case we know that there
are two vertices s1, s2 \in S such that d(u, s1) \leq 1 and d(s2, v) \leq 1. To show that
d(u, v) \leq 5 it is sufficient to show that d(s1, s2) \leq 3. This is indeed true since both
vertices s1 and s2 are connected to some two vertices in S\prime \prime and every two vertices in
S\prime \prime are at distance at most 1 from each other.

Case 1.3: u, v \in T \cup T \prime \cup T \prime \prime \cup L2. The case is analogous to the previous case.
Case 2: The 3-OV instance has a solution. In this case we want to show that

there is a pair of vertices u, v with d(u, v) \geq 8. Let a \in A, b \in B, c \in C be a
solution to the 3-OV instance. We claim that d((a, b) \in S\prime , (b, c) \in T \prime ) \geq 8. Let P
be an optimal path between u = ((a, b) \in S\prime ) and v = ((b, c) \in T \prime ) that achieves the
smallest distance. We want to show that P uses at least eight edges. Let t \in T be the
first vertex from the set T that is on path P . Let s \in S be the last vertex on path P
that belongs to S and precedes t in P . We can easily check that if s \not = ((a, b) \in S),
then d(u, s) \geq 3, and, similarly, if t \not = ((b, c) \in T ), then d(t, v) \geq 3. We consider three
subcases.

Case 2.1: s \not = ((a, b) \in S) and t \not = ((b, c) \in T ). Since s and t are separated by
two layers of vertices, we must have d(s, t) \geq 3. Thus we get lower bound d(u, v) \geq 
d(u, s) + d(s, t) + d(t, v) \geq 3 + 3 + 3 = 9 > 8 as required.

Case 2.2: s = ((a, b) \in S) and t = ((b, c) \in T ). In this case we use property 4
and conclude d(u, v) \geq d(u, s) + d(s, t) + d(t, v) = 1 + d((a, b) \in S, (b, c) \in T ) + 1 \geq 
1 + 7 + 1 = 9 > 8 as required.

Case 2.3: Either s = ((a, b) \in S) or t = ((b, c) \in T ) holds but not both. W.l.o.g.
s \not = ((a, b) \in S) and t = ((b, c) \in T ). If the path uses an edge in the clique on S\prime \prime before
arriving at s, then d(u, s) \geq 4 and we get that d(u, v) \geq d(u, s) + d(s, t) + d(t, v) \geq 
4+3+1 = 8. On the other hand, if the path does not use any edge of the clique, then
s = ((a, b\prime ) \in S) for some b\prime \in B. By property 5 we have d(s, t) = d((a, b\prime ) \in S, (b, c) \in 
T ) \geq 5. We conclude that d(u, v) \geq d(u, s) + d(s, t) + d(t, v) \geq 3 + 5 + 1 = 9 > 8 as
required.

5.2. 6 versus 10 weighted undirected construction. In this section we
change the construction from Theorem 18 to show that under the 3-OV hypothesis,
any algorithm that can distinguish between diameters 6 and 10 in sparse undirected
weighted graphs requires \Omega (n3/2 - o(1)) time.
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We get the following theorem.

Theorem 19. Given a 3-OV instance, we can in O(N2d2) time construct a
weighted, undirected graph with O(nN2 + nNd2) vertices and O(nN2d2) edges that
satisfies the following two properties.

1. If the 3-OV instance has no solution, then for all pairs of vertices u and v
we have d(u, v) \leq 6.

2. If the 3-OV instance has a solution, then there exists a pair of vertices u and
v such that d(u, v) \geq 10.

Each edge of the graph has weight either 1 or 2.

Construction of the graph. The construction of the graph is the same as in Theo-
rem 19 except all edges connecting vertices between sets L1 and L2 have weight 2 and
all edges inside the cliques on vertices S\prime \prime and T \prime \prime have weight 2. All the remaining
edges have weight 1.

Correctness of the construction. The correctness proof is essentially the same as
for Theorem 18. As before we consider two cases.

Case 1: The 3-OV instance has no solution. In this case we want to show that
for all pairs of vertices u and v we have d(u, v) \leq 6. In the analysis of Case 1 in
Theorem 18 we show a path between u and v such that the path involves at most
one edge from the cliques or between sets L1 and L2. Since we added weight 2 to the
latter edges, the length of the path increased by at most 1 as a result. So we have
upper bound d(u, v) \leq 6 for all pairs u and v of vertices.

Case 2: The 3-OV instance has a solution. In this case we want to show that
there is a pair of vertices u, v with d(u, v) \geq 10. Similarly to Theorem 18 we will show
that d((a, b) \in S\prime , (b, c) \in T \prime ) \geq 10, where a \in A, b \in B, c \in C is a solution to the
3-OV instance. The analysis of the subcases is essentially the same as in Theorem 18.
For Cases 2.1 and 2.2 in the proof of Theorem 18 we had d((a, b) \in S\prime , (b, c) \in T \prime ) \geq 9.
Since we increased edge weights between L1 and L2 to 2 and every path from (a, b) \in S\prime 

to (b, c) \in T \prime must cross the layer between L1 and L2, we also increased the lower
bound of the length of the path from 9 to 10 for Cases 2.1 and 2.2. It remains to
consider Case 2.3. As in the proof of Theorem 18, w.l.o.g. s \not = ((a, b) \in S) and
t = ((b, c) \in T ). If the path uses an edge in the clique on S\prime \prime before arriving at s, then
d(u, s) \geq 5 and we get lower bound d(u, v) \geq d(u, s)+d(s, t)+d(t, v) \geq 5+4+1 = 10.
On the other hand, if the path does not use any edge of the clique, then s = ((a, b\prime ) \in 
S) for some b\prime \in B. By property 5 and because we increased edge weights between
L1 and L2 to 2, we have d(s, t) = d((a, b\prime ) \in S, (b, c) \in T ) \geq 6. We conclude that
d(u, v) \geq d(u, s) + d(s, t) + d(t, v) \geq 3 + 6 + 1 = 10 as required.

5.3. 3\bfitk  - 4 versus 5\bfitk  - 7 unweighted directed construction. In this sec-
tion, we show that under SETH, for every k \geq 3, every algorithm that can distin-
guish between diameter 3k  - 4 and 5k  - 7 in directed unweighted graphs requires
\Omega (n1+1/(k - 1) - o(1)) time.

Theorem 9 gives us the following theorem.

Theorem 20. Given a k-OV instance consisting of k \geq 2 sets W0,W1, . . . ,Wk - 1

\subseteq \{ 0, 1\} d, each of size N , we can in O(kNk - 1dk - 1) time construct an unweighted,
undirected graph with O(Nk - 1 + kNk - 2dk - 1) vertices and O(kNk - 1dk - 1) edges that
satisfies the following properties.

1. The graph consists of k+1 layers of vertices S = L0, L1, L2, . . . , Lk = T . The
number of vertices in the sets is | S| = | T | = Nk - 1 and | L1| , | L2| , . . . , | Lk - 1| \leq 
Nk - 2dk - 1.
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2. S consists of all tuples (a0, a1, . . . , ak - 2) where for each i, ai \in Wi. Similarly,
T consists of all tuples (b1, b2, . . . , bk - 1) where for each i, bi \in Wi.

3. If the k-OV instance has no solution, then d(u, v) = k for all u \in S and
v \in T .

4. If the k-OV instance has a solution a0, a1, . . . , ak - 1 where for each i, ai \in Wi,
then if \alpha = (a0, . . . ak - 2) \in S and \beta = (a1, . . . , ak - 1) \in T , then d(\alpha , \beta ) \geq 
3k  - 2.

5. Setting s = k  - 2 in property 5 of Theorem 9, if the k-OV instance has
a solution a0, a1, . . . , ak - 1 where for each i, ai \in Wi, then for any tuple
(b1, . . . , bk - 2), if \alpha = (a0, b1, . . . , bk - 2) \in S and \beta = (a1, . . . , ak - 1) \in T ,
then d(\alpha , \beta ) \geq k + 2. Symmetrically, if \alpha = (a0, a1, . . . , ak - 2) \in S and
\beta = (b1, . . . , bk - 2, ak - 1) \in T , then d(\alpha , \beta ) \geq k + 2.

6. For all i from 1 to k - 1, for all v \in Li there exists a vertex in Li - 1 adjacent to
v and a vertex in Li+1 adjacent to v. We can assume that this property holds
because we can remove all vertices that do not satisfy this property from the
graph and the resulting graph will still satisfy the previous three properties.

In the rest of the section we use Theorem 20 to prove the following result.

Theorem 21. Given a k-OV instance, we can in O(kNk - 1dk - 1) time construct an
unweighted, directed graph with O(kNk - 1 + kNk - 2dk - 1) vertices and O(kNk - 1dk - 1)
edges that satisfies the following two properties.

1. If the k-OV instance has no solution, then for all pairs of vertices u and v
we have d(u, v) \leq 3k  - 4.

2. If the k-OV instance has a solution, then there exists a pair of vertices u and
v such that d(u, v) \geq 5k  - 7.

Construction of the graph. We construct a graph with the required properties by
starting with the graph from Thereom 20 and adding more vertices and edges. First
we will construct a weighted graph and then we will make it unweighted. Figure 10
illustrates the construction of the graph for the special case k = 4.

We start by adding a set S\prime of Nk - 1 vertices. S\prime consists of all tuples (a0, a1, . . . ,
ak - 2) where for each i, ai \in Wi. We connect every (a0, a1, . . . , ak - 2) \in S\prime to its

S ′ S L1 L3 T T ′

a0a1a2a0a1a2

S ′′ a0

same a0

clique

a1a2a3a1a2a3

T ′′ a3

same a3

clique

matching matching

L2

same a0
same a3

Fig. 10. The 3k  - 4 vs 5k  - 7 construction for the special case k = 4. The edges between sets
S,L1, L2, L3, and T are not depicted. The matching between sets S and S\prime consists of unweighted
paths of length k  - 2 = 2. The edges between sets S and S\prime \prime consist of unweighted paths of length
k  - 2 = 2, and similarly for the right side.
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counterpart (a0, a1, . . . , ak - 2) \in S with an undirected edge of weight k  - 2 to form a
matching. We also add another set S\prime \prime of N vertices. S\prime \prime contains one vertex a0 for
every a0 \in W0. For every pair of vertices in S\prime \prime we add an undirected edge of weight
1 between the vertices. Thus, the N vertices form a clique. Furthermore, for every
vertex a0 \in S\prime \prime we add an undirected edge of weight k  - 2 to (a0, b1, . . . , bk - 2) \in S
for all b1, . . . , bk - 2. Finally for every vertex a0 \in S\prime \prime we add a directed edge of weight
1 toward (a0, b1, . . . , bk - 2) \in S for all b1, . . . , bk - 2. Some of the edges that we added
have weight k  - 2. We make those unweighted by subdividing them into edges of
weight 1. Let S\prime \prime \prime be the set of newly added vertices. In total we added O(kNk - 1)
vertices and O(kNk - 1) edges.

We do a similar construction for the set T of vertices. We add a set T \prime of Nk - 1

vertices---one vertex for every tuple (a1, . . . , ak - 1) where for each i, ai \in Wi. We
connect every (a1, . . . , ak - 1) \in T \prime to (a1, . . . , ak - 1) \in T by an undirected edge of
weight k  - 2. Finally, we add a set T \prime \prime of n vertices. T \prime \prime contains one vertex for
every vector ak - 1 \in Wk - 1. We connect every pair of vertices in T \prime \prime by an undirected
edge of weight 1. We connect every vertex ak - 1 \in T \prime \prime to (b1, . . . , bk - 2, ak - 1) \in T
by an undirected edge of weight k  - 2 for all b1, . . . , bk - 2. Also, for every vertex
ak - 1 \in T \prime \prime we add a directed edge of weight 1 from (b1, . . . , bk - 2, ak - 1) \in T \prime to ak - 1

for all b1, . . . , bk - 2. Some of the edges that we just added have weight k - 2. We make
those unweighted by subdividing them into edges of weight 1. Let T \prime \prime \prime be the set of
newly added vertices. This finishes the construction of the graph. In the rest of the
section we show that the construction satisfies the promised two properties stated in
Theorem 21.

Correctness of the construction. We need to consider two cases.
Case 1: The k-OV instance has no solution. In this case we want to show that

for all pairs of vertices u and v we have d(u, v) \leq 3k  - 4. We consider subcases.
Case 1.1: u \in S\cup S\prime \cup S\prime \prime \cup S\prime \prime \prime \cup Li for 1 \leq i \leq k - 2 and v \in T\cup T \prime \cup T \prime \prime \cup T \prime \prime \prime \cup Lj for

2 \leq j \leq k - 1. We observe that there exists s \in S that has d(u, s) \leq k - 2. Similarly,
there exists t \in T with d(t, v) \leq k  - 2. By Property 3 from Theorem 20 we have
that d(s, t) \leq k. This gives us upper bound d(u, v) \leq d(u, s) + d(s, t) + d(t, v) \leq 
(k  - 2) + k + (k  - 2) = 3k  - 4 as required. The proof when the sets for u and v are
swapped is identical since we only use paths on unweighted edges.

Case 1.2: u, v \in S \cup S\prime \cup S\prime \prime \cup S\prime \prime \prime \cup L1. We note that there is some vertex s \in S\prime \prime 

with d(u, s) \leq 2(k - 2) (via undirected edges). Also, there is some vertex s\prime \in S\prime \prime with
d(s\prime , v) \leq k  - 1 (possibly using directed edges). S\prime \prime is a clique so d(s, s\prime ) \leq 1. Thus,
d(u, v) \leq d(u, s) + d(s, s\prime ) + d(s\prime , v) \leq 2(k  - 2) + 1 + (k  - 1) = 3k  - 4.

Case 1.3: u, v \in T \cup T \prime \cup T \prime \prime \cup T \prime \prime \prime \cup Lk - 1. This case is similar to the previous
case. We note that there is some vertex t \in T \prime \prime with d(t, v) \leq 2(k - 2) (via undirected
edges). Also, there is some vertex t\prime \in T \prime \prime with d(u, t\prime ) \leq k - 1 (possibly using directed
edges). S\prime \prime is a clique so d(t\prime , t) \leq 1. Thus, d(u, v) \leq d(u, t\prime ) + d(t\prime , t) + d(t, v) \leq 
(k  - 1) + 1 + 2(k  - 2) = 3k  - 4.

Case 2: The k-OV instance has a solution. In this case we want to show that
there is a pair of vertices u, v with d(u, v) \geq 5k - 7. Let (a0, a1, . . . , ak - 1) be a solution
to the k-OV instance where for each i, ai \in Wi. We claim that d((a0, . . . , ak - 2) \in 
S\prime , (a1, . . . , ak - 1) \in T \prime ) \geq 5k  - 7. Let P be an shortest path between u = ((a0, . . . ,
ak - 2) \in S\prime ) and v = ((a1, . . . , ak - 1) \in T \prime ). We want to show that P uses at least
5k - 7 edges. Let s \in S be the first vertex on path P that belongs to S and let t \in T
be the last vertex from the set T that is on path P . We observe that due to the
directionality of the edges, s and t must be the counterparts of u and v, respectively;
that is, s = ((a0, . . . , ak - 2) \in S) and t = ((a1, . . . , ak - 1) \in T ). Note that these
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TOWARD TIGHT APPROXIMATION BOUNDS FOR DIAMETER 1179

definitions of s and t differ from the definitions of s and t in previous proofs. We
consider three subcases.

Case 2.1: A vertex in S\prime \cup S\prime \prime \cup S\prime \prime \prime appears after s on the path P . We observe
that if s1, s2 \in S is a pair of vertices on the path P such that no vertex in S appears
between them on P , then the portion of P between s1 and s2 either contains only
vertices in S\prime \cup S\prime \prime \cup S\prime \prime \prime or contains no vertices in S\prime \cup S\prime \prime \cup S\prime \prime \prime . Let s1, s2 \in S be
such that the portion of P between them contains only vertices in S\prime \cup S\prime \prime \cup S\prime \prime \prime . Such
s1, s2 exist by the specification of this case. If s1 = s2, then P is not a shortest path.
Otherwise, the portion of P between s1 and s2 must include a vertex in S\prime \prime . Thus,
d(s1, s2) \geq 2(k  - 2). We consider three subcases.

\bullet s1 \not = s. The distance between any pair of vertices in S is at least 2 so
d(s, s1) \geq 2. Then, d(u, v) \geq d(u, s) + d(s, s1) + d(s1, s2) + d(s2, t) + d(t, v) \geq 
(k  - 2) + 2 + 2(k  - 2) + k + (k  - 2) = 5k  - 6.

\bullet s1 = s and s2 = ((a0, b1, . . . , bk - 2) \in S) for some b1, . . . , bk - 2. In this case,
by Property 5 we have d(s2, t) \geq k + 2. Thus, d(u, v) \geq d(u, s1) + d(s1, s2) +
d(s2, t) + d(t, v) \geq (k  - 2) + 2(k  - 2) + (k + 2) + (k  - 2) = 5k  - 6.

\bullet s1 = s and s2 = ((b0, . . . , bk - 2 \in S) for some with b0 \not = a0. In this case, the
path from s1 to s2 must include an edge in the clique S\prime \prime since these are the
only edges among vertices in S\prime \cup S\prime \prime \cup S\prime \prime \prime for which adjacent tuples can differ
with respect to their first element. Thus, d(s1, s2) \geq 2(k  - 2) + 1 \geq 2k  - 3.
Therefore, d(u, v) \geq d(u, s1) + d(s1, s2) + d(s2, t) + d(t, v) \geq (k  - 2) + (2k  - 
3) + k + (k  - 2) = 5k  - 7.

Case 2.2: A vertex in T \prime \cup T \prime \prime \cup T \prime \prime \prime appears before t on the path P . This case is
analogous to the previous case.

Case 2.3: The portion of the path P between s and t contains no vertices in
S\prime \cup S\prime \prime \cup S\prime \prime \prime \cup T \prime \cup T \prime \prime \cup T \prime \prime \prime . By Property 4, d(s, t) \geq 3k  - 2. Thus, d(u, v) \geq 
d(u, s) + d(s, t) + d(t, v) \geq (k  - 2) + (3k  - 2) + (k  - 2) = 5k  - 6.

We note that a slight modification of this construction gives a lower bound for
higher values of diameter. For any L, we can get an L(3k  - 4) vs L(5k  - 8) + 1
construction by subdividing all of the edges in the construction (into paths of length
L) except for the directed edges and the edges within the cliques.

6. Algorithms for sparse graphs.

6.1. 2-approximation for eccentricities in \~\bfitO (\bfitm 
\surd 
\bfitn ) time. In this section

we prove the following theorem, which implies the upper bound part of Theorem 4.

Theorem 22. Given a weighted, directed m edge n vertex graph, there is an
\~O(m

\surd 
n) time randomized algorithm that outputs for each v \in V a quantity \epsilon \prime (v)

such that for all v \in V we have \epsilon (v)/2 \leq \epsilon \prime (v) \leq \epsilon (v).

Proof. The algorithm is inspired by the 2-approximation algorithm for directed
radius of Abboud, Vassilevska W., and Wang [AVW16]. We claim that the following
algorithm achieves the above guarantees.

1. Sample a random subset S \subset V of size | S| = \Theta (
\surd 
n log n). With high proba-

bility for every u \in V we have N in\surd 
n
(u) \cap S \not = \emptyset .

2. Let w be a vertex that maximizes d(S,w), which we find using Dijkstra's
algorithm. Let S\prime := N in\surd 

n
(w).

3. For every vertex v \in S\prime we output \epsilon \prime (v) = \epsilon (v) by running Dijkstra's algorithm
and following the outgoing edges.
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1180 BACKURS ET AL.

4. For every vertex v \not \in S\prime we output the estimate \epsilon \prime (v) = maxs\in S\cup \{ w\} d(v, s).
We can determine all these quantities by running Dijkstra's algorithm out of
all vertices in S \cup \{ w\} and following the incoming edges.

Correctness. Consider an arbitrary vertex v \not \in S\prime (if v \in S\prime , then we are done by
the third step). If there exists s \in S such that d(v, s) \geq \epsilon (v)/2, then we are done
since \epsilon \prime (v) \geq d(v, s) \geq \epsilon (v)/2. Otherwise, we have d(v, s) < \epsilon (v)/2 for all s \in S.
Let v\prime be a vertex that achieves d(v, v\prime ) = \epsilon (v). By the triangle inequality we have
d(s, v\prime ) > \epsilon (v)/2 for all s \in S. Equivalently, d(S, v\prime ) > \epsilon (v)/2. This implies that
d(S,w) > \epsilon (v)/2 by our choice of w. Since d(S,w) > \epsilon (v)/2 and S\prime = N in\surd 

n
(w)

intersects S, we must have that S\prime contains all vertices u with d(u,w) \leq \epsilon (v)/2. Since
v \not \in S\prime , we must have d(v, w) > \epsilon (v)/2 and we are done since \epsilon \prime (v) \geq d(v, w) >
\epsilon (v)/2.

6.2. Almost 2-approximation for eccentricities in almost linear time.
In contrast to our \~O(m

\surd 
n) time algorithm from the previous section, our near-linear

time (2 + \delta )-approximation algorithm is very different from all previously known
algorithms. Our algorithm proceeds in iterations and maintains a set S of vertices
for which we still do not have a good eccentricity estimate. In each iteration either
we get a good estimate for many new vertices and hence remove them from S or we
remove all vertices from S that have large eccentricities, and for the remaining vertices
in S we have a better upper bound on their eccentricities. After a small number of
iterations we have a good estimate for all vertices of the graph.

In this section we prove the following theorem, which implies the upper bound
part of Theorem 3.

Theorem 23. Suppose that we are given a weighted, directed m edge n vertex
graph. The weights of all edges are nonnegative and in the range [1/nc, nc] for some
constant c. For any 1 > \tau > 0, there is a randomized \~O(m/\tau ) time algorithm that
with high probability outputs for each v \in V a quantity \varepsilon \prime (v) such that for all v \in V
we have 1 - \tau 

2 \varepsilon (v) \leq \varepsilon \prime (v) \leq \varepsilon (v).

Proof. We begin by computing the strongly connected components of the graph,
which allows us to determine which vertices have infinite eccentricity. We maintain a
subset S \subseteq V of vertices v for which we still do not have an estimate \varepsilon \prime (v). Initially
S = V and we will end with | S| = O(log n). When | S| = O(log n) we can evaluate
\varepsilon (v) for all v \in S in the total time of \~O(m). Also we maintain a value D that upper
bounds the largest eccentricity of a vertex in S. That is, \varepsilon (v) \leq D for all v \in S. We
begin by computing the strongly connected components of the graph, which allows us
to determine which vertices have infinite eccentricity. Then we set D = nC for some
large enough constant C > 0. The algorithm proceeds in phases. Each phase takes
\~O(m) time and either | S| decreases by a factor of at least 2 or D decreases by a factor
of at least 1/(1 - \tau ). After O(log(n)/\tau ) phases either | S| = O(log n) or D < 1/nc.

For a subset S \subseteq V of vertices and a vertex x \in V we define a set Sx \subseteq S to
contain those | Sx| = | S| /2 vertices from S that are closest to x (according to distance
d(\cdot , x)). The ties are broken by taking the vertex with the smaller ID. Given a subset
S \subseteq V of vertices and a threshold D, a phase proceeds as follows.

\bullet We sample a set A \subseteq S of O(log n) random vertices from the set S. With
high probability for all x \in V we have A \cap Sx \not = \emptyset .

\bullet Let w \in V be a vertex that maximizes d(A,w). We can find it using Dijkstra's
algorithm.
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TOWARD TIGHT APPROXIMATION BOUNDS FOR DIAMETER 1181

\bullet We consider two cases.
Case d(S \setminus Sw, w) \geq 1 - \tau 

2 D. For all x \in S \setminus Sw we have 1 - \tau 
2 D \leq \varepsilon (x) \leq D

and we assign the estimate \varepsilon \prime (x) = 1 - \tau 
2 D. This gives us that 1 - \tau 

2 \varepsilon (x) \leq 
1 - \tau 
2 D = \varepsilon \prime (x) \leq \varepsilon (x) for all x \in S \setminus Sw. We update S to be Sw. This

decreases the size of S by a factor of 2 as required.
Case d(S \setminus Sw, w) <

1 - \tau 
2 D. Set S\prime = S. For every vertex v \in S evaluate

rv := maxx\in A d(v, x). We can evaluate these quantities by running Dijk-
stra's algorithm from every vertex in A and following the incoming edges.
If rv \geq 1 - \tau 

2 D, then assign the estimate \varepsilon \prime (v) = 1 - \tau 
2 D and remove v from

S\prime . Similarly as in the previous case we have 1 - \tau 
2 \varepsilon (v) \leq \varepsilon \prime (v) \leq \varepsilon (v) for all

v \in S \setminus S\prime . Below we will show that for every v \in S\prime we have \varepsilon (v) \leq (1 - \tau )D.
Thus we can update S = S\prime and decrease the threshold D to (1  - \tau )D as
required.

Correctness. We have to show that if there exists v \in S\prime such that \varepsilon (v) > (1 - \tau )D,
then we will end up in the first case (this is the contrapositive of the claim in the
second case). Since v \in S\prime we must have that d(v, x) \leq 1 - \tau 

2 D for all x \in A. Since
\varepsilon (v) > (1 - \tau )D, we must have that there exists v\prime such that d(v, v\prime ) > (1 - \tau )D. By
the triangle inequality we get that d(x, v\prime ) > 1 - \tau 

2 D for every x \in A. By choice of w
we have d(A,w) > 1 - \tau 

2 D. Since A \cap Sw \not = \emptyset , we have d(S \setminus Sw, w) \geq 1 - \tau 
2 D and we

will end up in the first case.
The guarantee on the approximation factor follows from the description.

As a corollary, we get an algorithm for source radius with the same runtime and
approximation ratio as Theorem 23. First, run the eccentricities algorithm and let v
be a vertex with minimum estimated eccentricity \epsilon \prime (v). Then run Dijkstra's algorithm
from v and report \epsilon (v) as the radius estimate R\prime . Let R be the true radius of the
graph and let x be a vertex with minimum eccentricity, i.e., \epsilon (x) = R. If \alpha is the
approximation ratio for the eccentricities algorithm, then \epsilon (v) \leq \alpha \epsilon \prime (v) \leq \alpha \epsilon (v) and
\epsilon (x) \leq \alpha \epsilon \prime (x) \leq \alpha \epsilon (x). By choice of v, \epsilon \prime (v) \leq \epsilon \prime (x). Thus, \alpha R = \alpha \epsilon (x) \geq \alpha \epsilon \prime (x) \geq 
\alpha \epsilon \prime (v) \geq \epsilon (v) = R\prime . Clearly R\prime \geq R, so R \leq R\prime \leq \alpha R.

6.3. \bfitS -\bfitT diameter algorithms. Recall that the S-T diameter problem is as
follows: Given an undirected graph G = (V,E) and two sets S \subseteq V, T \subseteq V , determine
DS,T = maxs\in S,t\in T d(s, t). Here we will outline two algorithms for the problem.

Let us first consider a fast 3-approximation algorithm.

Claim 24. There is an O(m + n) time deterministic algorithm that for any n
vertex m edge unweighted graph G = (V,E) and S \subseteq V, T \subseteq V computes an estimate
D\prime such that DS,T /3 \leq D\prime \leq DS,T and two vertices s \in S, t \in T such that d(s, t) = D\prime .
In graphs with nonnegative weights, the same estimate can be achieved in O(m +
n log n) time.

Proof. The algorithm is extremely simple: pick arbitrary vertices s \in S and
t \in T , compute BFS(s) and BFS(t), and return max\{ maxt\prime \in T d(s, t\prime ),maxs\prime \in S d(s\prime , t)\} 
(also returning the two vertices achieving the maximum). For weighted graphs, run
Dijkstra's algorithm instead of BFS.

Let's see why this algorithm provides the promised guarantee. Suppose that for
every t\prime \in T , d(s, t\prime ) < DS,T /3 (otherwise we are done). Then for every t\prime , t\prime \prime \in T ,
d(t\prime , t\prime \prime ) \leq d(t\prime , s)+d(s, t\prime \prime ) < 2DS,T /3. In particular, for all t\prime \in T , d(t, t\prime ) < 2DS,T /3.
If we also had that for every s\prime \in S, d(t, s\prime ) < DS,T /3, then we'd get that for all
s\prime \in S, t\prime \in T , d(s\prime , t\prime ) \leq d(s\prime , t)+d(t, t\prime ) < DS,T , contradicting the definition of DS,T .
Thus, max\{ maxt\prime \in T d(s, t\prime ),maxs\prime \in S d(s\prime , t)\} \geq DS,T /3.
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Algorithm 1. 2-approximation for S-T diameter

1: procedure 2-Approx
2: X - random sample of vertices, | X| = \Theta (

\surd 
n log n)

3: D1 := 0
4: for every x \in X do
5: Run BFS(x)
6: Let tx be the closest vertex to x in T
7: Run BFS(tx)
8: D1 = max\{ D1,maxs\in S d(s, tx)\} 
9: Let \=t be the furthest vertex of T from X (computed above)

10: Run BFS(\=t)
11: D2 = maxs\in S d(s, \=t).
12: Let Y be the closest

\surd 
n vertices to \=t.

13: for every y \in Y do
14: Run BFS(y)
15: Let sy be the closest vertex to y in S
16: Run BFS(sy)
17: D2 = max\{ D2,maxt\in T d(sy, t)\} 

return max\{ D1, D2\} 

We will now show an analogue to the \~O(m
\surd 
n) time almost-3/2-approximation

diameter algorithm of Roditty and Vassilevska W. [RV13] for S-T diameter giving a
2-approximation. Using a trick from Chechik et al. [CLR+14] we also obtain a true 2
approximation algorithm running in \~O(m3/2).

We use Algorithm 1 to prove the following.

Theorem 25. There is an \~O(m
\surd 
n) time randomized algorithm that with high

probability outputs an estimate D\prime for the S-T diameter D of an m edge n vertex
unweighted undirected graph such that 2\lfloor D/4\rfloor \leq D\prime \leq D.

In \~O(m3/2) time one can obtain an estimate D\prime \prime such that D/2 \leq D\prime \prime \leq D.

Proof. First we analyze Algorithm 1. Let s\ast \in S and t\ast \in T be a pair of vertices
with d(s\ast , t\ast ) = D. Let d = \lfloor D/4\rfloor .

Suppose first that for some x \in X, d(x, t\ast ) \leq d. Then, d(x, tx) \leq d(x, t\ast ) \leq d
and hence d(tx, t

\ast ) \leq d(tx, x) + d(x, t\ast ) \leq 2d. However, then d(tx, s
\ast ) \geq d(t\ast , s\ast )  - 

d(t\ast , tx) \geq D  - 2d \geq D/2. In this case, D1 \geq D/2 and we are done.
Thus, if D1 < D/2, it must be that for every x \in X, d(x, t\ast ) \geq d+ 1. Hence, for

every x \in X, d(x, \=t) \geq d(x, t\ast ) \geq d + 1 by the definition of \=t. If d(\=t, s\ast ) \geq D/2, then
D2 \geq D/2 and we are done, so let us assume that d(\=t, s\ast ) \leq D/2.

Now, as X is random of size c
\surd 
n log n for large enough c, with high probability,

X hits the
\surd 
n-neighborhoods of all vertices. In particular, X\cap Y \not = \emptyset . However, since

d(x, \=t) \geq d+ 1 for every x \in X, it must be that Y contains all vertices at distance d
from \=t as it contains all vertices closer to \=t than x \in Y \cap X.

If s\ast \in Y , then we would have run BFS from s\ast and returned D. Hence d(\=t, s\ast ) >
d. Let a be the vertex on the shortest path between \=t and s\ast with d(\=t, a) = d. We
thus have that a \in Y . Also, since d(\=t, s\ast ) \leq D/2, d(a, s\ast ) \leq D/2  - d and hence
d(a, sa) \leq D/2  - d, so that d(sa, t

\ast ) \geq D  - 2(D/2  - d) \geq 2d. This finishes the
argument that 2-Approx returns an estimate D\prime with 2\lfloor D/4\rfloor \leq D\prime \leq D.
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TOWARD TIGHT APPROXIMATION BOUNDS FOR DIAMETER 1183

It is not too hard to see that the only time that we might get an estimate that
is less than D/2 is in the last part of the argument and only if the diameter is of the
form 4d + 3. (We will prove the algorithm guarantees formally soon.) The analysis
fails to work in that case because Y is guaranteed to contain only the vertices at
distance d from \=t.

In particular, if Y contains all vertices at distance d + 1 from \=t instead of just
those at distance at most d, we could consider a to be the vertex on the shortest
path between \=t and s\ast with d(\=t, a) = d + 1, and a \in Y . Now since d(\=t, s\ast ) \leq 2d + 1
(as otherwise we'd be done), d(a, sa) \leq d(a, s\ast ) \leq 2d + 1  - d  - 1 = d, so that
d(sa, t

\ast ) \geq 2d+ 3. Hence everything would work out.
We handle this issue with a trick from Chechik et al. [CLR+14]. First, we make

the graph have constant degree by blowing up the number of vertices and adding
0 weight edges as follows. Let v be an original vertex and suppose it has degree
d(v). Replace v with a d(v)-cycle of 0 weight edges so that each of the cycle vertices
is connected to one of the neighbors of v, where each neighbor has a cycle vertex
corresponding to it. This makes every vertex have degree 3 and increases the number
of vertices to O(m).

Now, we run algorithm 2-Approx with two changes. The first is that instead of
BFS we use Dijkstra's algorithm5 because the edges now have weights. The second
change is that we redefine Y as follows. Let Z be the closest

\surd 
m vertices to \=t. Define

Y to be Z, together with all vertices that have a nonzero weight edge to some vertex
of Z.

Since every vertex has degree 3, the number of vertices in Y is \leq 4| Z| \leq O(
\surd 
m)

and hence we can afford to run Dijkstra from each of them and complete the algorithm
in \~O(m3/2) time.

Let us now formally analyze the guarantees of the algorithm. If some vertex
x \in X has d(x, t\ast ) \leq D/4, we get that d(tx, s

\ast ) \geq D  - 2(D/4) = D/2. If we are
not done, all vertices of X have d(x, \=t) \geq d(x, t\ast ) > D/4 and Z contains all vertices
at distance \leq D/4 from \=t. If s\ast \in Z, we are done so we must have d(s\ast , \=t) > D/4.
Consider the last vertex a\prime on the \=t to s\ast shortest path (in the direction toward s\ast )
for which d(\=t, a\prime ) \leq D/4. We have that a\prime \in Z. Also, the vertex a after a\prime on the \=t to
s\ast shortest path must be in Y by definition.

If d(\=t, s\ast ) \geq D/2, we are done. If we are not done, then we get that d(a, s\ast ) < D/4
since d(\=t, a) > D/4. Hence, d(a, sa) < D/4, so d(sa, t

\ast ) > D  - 2(D/4) = D/2.

It is quite straightforward to extend the the S-T diameter algorithms to work for
weighted undirected graphs as well:

Theorem 26. In \~O(m
\surd 
n) time one can obtain an estimate D\prime to the S-T di-

ameter D of an m edge n vertex undirected graph with nonnegative edge weights such
that D/2 - 2w(a, a\prime ) \leq D\prime \leq D for some edge (a, a\prime ).

In \~O(m3/2) time one can obtain an estimate D\prime \prime such that D/2 \leq D\prime \prime \leq D.

Proof. The \~O(m
\surd 
n) time algorithm is identical to Algorithm 1, but with BFS

replaced by Dijkstra's algorithm. The proof is very similar to that of Theorem 25.
The main difference concerns the definition of the vertex a, which is the vertex on
the shortest path between \=t and s\ast with d(\=t, a) = d. Such a vertex a may not exist
here since the graph is weighted. Instead, we let a\prime be the last vertex on the \=t to s\ast 

shortest path that is at distance \leq D/4 from \=t, and let a be the vertex after a\prime .

5We can also use Thorup's algorithm [Tho99], which runs in linear time and is stated for positive
weight edges but can also handle zero weight edges.
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1184 BACKURS ET AL.

We include the full analysis of correctness here for completeness. Let s\ast \in S and
t\ast \in T be the endpoints of the S-T diameter path so that d(s\ast , t\ast ) = D.

If some vertex x \in X has d(x, t\ast ) \leq D/4, we get that d(tx, s
\ast ) \geq D  - 2(D/4) =

D/2. If we are not done, all vertices of X have d(x, \=t) \geq d(x, t\ast ) > D/4 and Y
contains all vertices at distance \leq D/4 from \=t. If s\ast \in Y , we are done so we must
have d(s\ast , \=t) > D/4.

Recall that a\prime is the last vertex on the \=t to s\ast shortest path that is at distance
\leq D/4 from \=t and that a is the vertex after a\prime . We have that a\prime \in Y . If d(\=t, s\ast ) \geq D/2,
we are done. If we are not done, then we get that d(a, s\ast ) < D/4 since d(\=t, a) > D/4.
Thus, d(a\prime , s\ast ) < D/4+w(a, a\prime ). Therefore, d(a\prime , sa\prime ) < D/4+w(a, a\prime ), so d(sa\prime , t\ast ) <
D - 2(D/4+w(a, a\prime )) = D/2 - 2w(a, a\prime ). This completes the analysis of the \~O(m

\surd 
n)

time algorithm.
For the \~O(m3/2) time algorithm, we apply precisely the same trick from [CLR+14]

as the proof of Theorem 25, with identical analysis.

6.4. Linear time less than 2-approximation for diameter. It is an easy
exercise to see that when D = 2h + 1 then the value max\{ \epsilon in(v), \epsilon out(v)\} of an
arbitrary vertex v \in V is an estimation to the diameter which is at least h + 1 and
at most D. In this section we present a deterministic algorithm that gets a directed
unweighted graph G with D = 2h and computes in O(m2/n) time an estimation \^D
such that h+ 1 \leq \^D \leq D.

The algorithm works as follows. A variable \^D is set to zero. The algorithm
searches for a vertex v of minimum total degree (where total degree is the sum of
in-degree and out-degree). Then the algorithm computes the in and out eccentricity
of v and every vertex that has an edge with v (incoming or outgoing). The algorithm
outputs the maximum of all the in and out eccentricities that were computed. See
Algorithm 2.

Theorem 27. Let G = (V,E) be an unweighted directed graph with diameter
D = 2h where h is a positive integer. Algorithm 2 returns in O(m2/n) time an
estimate \^D such that h+ 1 \leq \^D \leq D.

Proof. We start with the running time analysis. Consider the graph G and ignore
the edge directions. For every u \in V let deg(u) = degin(u) + degout(u). Recall that v
is a vertex of minimum degree. Since m = 1

2

\sum 
u\in V deg(u), we have deg(v) \leq 2m/n.

Therefore, the cost of computing in and out eccentricities for all vertices in the set
N(v) \cup \{ v\} is O(mn \times m).

We now turn to bound \^D. Let a, b \in V and let d(a, b) = 2h. If d(a, v) \leq h  - 1,
then \epsilon out(v) \geq h+1. Similarly, if d(v, b) \leq h - 1, then \epsilon in(v) \geq h+1. The remaining
case is that d(a, v) = h and d(v, b) = h. In this case, v is on some shortest path
P (a, b) from a to b.

Algorithm 2. Fast approximation of the diameter

1: procedure Diam-Approx(G)
2: \^D = 0
3: v = argminx\in V degin(x) + degout(x)
4: for every w \in Nin(v) \cup Nout(v) \cup \{ v\} do
5: compute \epsilon in(w) and \epsilon out(w)
6: \^D = max\{ \^D, \epsilon in(w), \epsilon out(w)\} 
7: return \^D
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Let u \in P (a, b) be the vertex that precedes v on the P (a, b). Since u has an
incoming edge to v it follows that u \in N(v) and \epsilon out(u) and \epsilon in(u) are computed.
Since d(a, v) = h it follows that d(a, u) = h  - 1, \epsilon out(u) \geq h + 1 and \^D is at least
h+ 1.

7. Algorithms for dense graphs. In this section we prove the following the-
orem, which is a restatement of Theorem 6.

Theorem 28. There is an expected O(n2 log n) time algorithm that for any undi-
rected unweighted graph with diameter D = 3h+ z for h \geq 0, z \in \{ 0, 1, 2\} , returns an
extimate D\prime such that 2h - 1 \leq D\prime \leq D if z = 0, 1 and 2h \leq D\prime \leq D if z = 2.

There is an expected O(n2 log n) time algorithm that for any undirected unweighted
graph returns estimates \varepsilon \prime (v) of the eccentricities \varepsilon (v) of all vertices such that 3\varepsilon (v)/5 - 
1 \leq \varepsilon \prime (v) \leq \varepsilon (v) for all v.

7.1. Algorithm overview. Recall that the diameter approximation algorithm
of Aingworth et al. [ACIM99] runs in \~O(n2 + m

\surd 
n) time. Roditty and Vassilevska

W. [RV13] removed the \~O(n2) term to obtain an \~O(m
\surd 
n) expected time almost-

3/2 approximation algorithm. For every graph with \Omega (n1.5) edges the running time
of the latter algorithm is not better than the running time of the former algo-
rithm. Therefore, even for not so dense graphs, it is interesting to consider the
opposite question to the one considered by [RV13]. Can the \~O(m

\surd 
n) term be

removed?
For an unweighted undirected graph of diameter D = 3h + z, where z \in [0, 1, 2],

we first show that using existing techniques it is relatively straightforward to obtain
an \~O(n2) time algorithm that returns an estimation \^D such that 2h - 2+z \leq \^D \leq D,
when z \in [0, 1] and 2h - 1 \leq \^D \leq D, when z = 2.

We then show that using a new implementation of a technique that was introduced
by Thorup and Zwick [TZ01] in the context of compact routing schemes we can return
an estimation \^D such that 2h - 1 \leq \^D \leq D, when z \in [0, 1] and 2h \leq \^D \leq D, when
z = 2.

The improvement in the estimation might look negligible. To understand the
importance of this improvement consider the case of directed graphs. The algorithm
of Roditty and Vassilevska W. [RV13] runs in \~O(n2.5) expected time. For D = 3h+z,
where z \in [0, 1, 2], the estimation \^D satisfies 2h + z \leq \^D \leq D for z \in [0, 1] and
2h+1 \leq \^D \leq D for z = 2. The algorithm of Chechik et al. [CLR+14] runs in \~O(n8/3)
expected time and returns an estimation \^D that satisfies \lceil 2/3D\rceil \leq \^D \leq D. If we
consider, for example, a graph with D = 5 we can get an estimation of at least 3 in
\~O(n2.5) time and at least 4 in in \~O(n8/3) time.

In the case of undirected graphs and D = 5 with the straightforward approach
we can only get an estimation of 3, while using our more complicated algorithm we
can get an estimation of 4. As we showed in earlier sections of this paper, every
small difference in the approximation might indicate that a conditional lower bound
exists; therefore, every improvement in the quality of the upper bound is crucial for
our understanding of the problem.

As we mentioned above, our algorithm is obtained by using ideas developed
originally for distance oracles and compact routing schemes. Let a, b \in V and let
d(a, b) = D; both [ACIM99] and [RV13] used the following idea. Sample a set
A \subseteq V and compute full shortest paths trees for all vertices of A. If a vertex that
is close to a or b is in A we have a good approximation; if not, then all sampled
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vertices are far from both a and b so pick that farthest one and compute for it
and for its

\surd 
n closest vertices full shortest paths trees. Our algorithm uses a dif-

ferent approach. As we are allowed to use quadratic time, we try to estimate the
distance between every pair of vertices. To enable this approach we can no longer
sample A naively. Instead, we adapt a recursive sampling algorithm to compute A
that was introduced by Thorup and Zwick [TZ01] in the context of compact routing
schemes. The expected running time of their algorithm is \~O(mn/| A| ). We pro-
vide a new implementation of their algorithm that runs in expected \~O(n(n/| A| )2)
time.

The set A has the following important property: for every vertex w \in V , its cluster
(see [TZ05]) \{ u | d(u,w) < d(u,A)\} is of size O(n/| A| ). Consider now a pair of vertices
u and v that are in the cluster of w. For any such pair we can efficiently compute
their exact distance. Moreover, we show that for all pairs u, v that are not in the same
cluster of any vertex, we can bound d(u, v) from below with d(u,A)+d(v,A) - 1. This,
combined with some other ideas, gives our approximation guarantees. We extend our
approach to also provide an almost 5/3-approximation for all eccentricities. The idea
of using the bounded clusters of Thorup and Zwick [TZ01] has been used in prior work
to obtain improved distance oracles [PR10, AG13], approximate shortest paths [BK10]
and compact routing schemes [AG11].

7.2. A simple approach with additive error. In this section we present a
simple approach for the problem of approximating the diameter, eccentricities, or S-
T diameter that is based on running existing algorithms on an additive 2 spanner
that is precomputed for the input graph. This simple approach runs in \~O(n2) time
and gets an estimation that is worse by an additive term of 2. We first present
this approach for the diameter. It is simple to adapt it to eccentricities or S-T
diameter.

Suppose that we have an algorithm ALG that can compute in \~O(m
\surd 
n) time, for

any graph G\prime , an estimate D\prime of its diameter D such that p \cdot D  - q \leq D\prime \leq D. Now,
Dor, Halperin, and Zwick [DHZ00] showed that in \~O(n2) time one can compute for
any n vertex G an additive 2 spanner H on \~O(n1.5) edges. In fact Knudsen [Knu17]
recently showed that in O(n2) time one can get H on O(n1.5) edges (i.e., he removed
all logs!).

Let's compute H for our given graph and run ALG on H. The runtime is \~O(n1.5 \cdot \surd 
n) \leq \~O(n2) since H has \leq O(n1.5) edges.
Let D\prime 

H be the estimates that we obtain for the diameter DH of H. Notice that
pD  - q \leq p \cdot DH  - q \leq D\prime 

H \leq DH \leq D + 2 and so pD  - 2 - q \leq D\prime 
H  - 2 \leq D. Thus,

in \~O(n2) time we get almost the same guarantees as in the \~O(m
\surd 
n) time algorithm,

except for an extra additive loss of 2 in the quality.
For the case of eccentricities and S-T diameter the same approach works without

a change. Suppose that we have an algorithm ALG that can compute in \~O(m
\surd 
n)

time estimates e(v) of \epsilon (v) for all v so that r\epsilon (v) - s \leq e(v) \leq \epsilon (v), and an estimate
D\prime \prime of the S-T diameter DS,T so that t \cdot DS,T  - u \leq D\prime \prime \leq DS,T . Let eH(\cdot ), D\prime \prime 

H be the
estimates that we obtain respectively for the eccentricities \epsilon H(\cdot ) of H and the S, T
diameter DH

S,T . Let's return eH(\cdot ) - 2, D\prime \prime 
H  - 2 as our estimates for the eccentricities

and S-T diameter of G.
Since r\epsilon (v) - s \leq r\epsilon H(v) - s \leq eH(v) \leq \epsilon H(v) \leq \epsilon (v) + 2, we get r\epsilon (v) - s - 2 \leq 

eH(v) - 2 \leq \epsilon (v).
Finally since t \cdot DS,T  - u \leq t \cdot DH

S,T  - u \leq D\prime \prime 
H \leq DH

S,T \leq DS,T + 2, we get
t \cdot DS,T  - u - 2 \leq D\prime \prime 

H  - 2 \leq DS,T .
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Algorithm 3. Thorup and Zwick center algorithm

1: procedure center(G, p)
2: A = \emptyset 
3: W = V
4: while W \not = \emptyset do
5: X - random sample of vertices from W , | X| = | W | p
6: A = A \cup X
7: W = \{ w \in V | | CA(w)| > 4/p\} 
8: return A

Below we show how to make the additive loss in quality smaller for diameter and
eccentricities. This is especially important when these parameters are constant, which
is one of the hard cases of the problems.6

7.3. Near linear almost 3/2-approximation for diameter. Thorup and
Zwick [TZ05] introduced distance oracles, a succinct data structure for answering
approximate distance queries efficiently. Among the tools they use are clusters and
bunches. Let A \subseteq V , let pA(u) be the closest vertex to u from A, where ties are
broken in favor of the vertex with a smaller identifier, and let d(u,A) = d(u, pA(u)).
For every v \in V , let BA(u) = \{ v \in V | d(u, v) < d(u,A)\} be the bunch of u. For
every w \in V \setminus A, let CA(w) = \{ v | w \in BA(v)\} be the cluster of w.

Thorup and Zwick [TZ05] showed that if a set A is formed by adding every vertex
of V to A with probability p, then the expected size of BA(v) is O(1/p) for every
v \in V . They also showed, in the context of compact routing schemes [TZ01], that
if the set A is constructed by a recursive sampling algorithm, then it is possible to
bound the maximum size of a cluster as well. They also showed, in the context
of compact routing schemes [TZ01], that if the set A is constructed by a recursive
sampling algorithm, then it is possible to bound the maximum size of a cluster as
well. Their algorithm works as follows. It sets A to the empty set and W to V .
Next, as long as the set W is not empty the algorithm samples from W vertices with
probability p and adds the sampled vertices to A. The algorithm computes CA(w)
for every w \in W and removes from W all the vertices whose cluster has at most 4/p
vertices with respect to the updated A. The pseudocode is given in Algorithm 3.

Thorup and Zwick proved the following theorem.

Theorem 29 (Theorem 3.1 from [TZ01]). The expected size of the set A returned
by Algorithm 3 is at most 2np log n. For every w \in V we then have | CA(w)| \leq 4/p.

Thorup and Zwick claimed that the expected running time of Algorithm 3 is
O(mnp log n). They did not provide the details and refer the reader to [TZ05]. How-
ever, an educated guess is that they compute clusters for the vertices currently in W
in each iteration of the while loop, which results in the claimed running time.

The starting point of the diameter and eccentricities algorithms presented in this
section is an O(n/p2 log n) expected time implementation of Algorithm 3.

The first idea behind our implementation is that, as opposed to what Thorup and
Zwick did, we will compute the bunches and use them to compute the clusters and
the set W . This can be done as follows. Once we have computed BA(v) for every

6If, for example, the diameter is polynomial in n, say, n\varepsilon , then we can approximate the diameter
to an arbitrary precision of 1 + \delta in \~O(mn1 - \varepsilon /\delta ) time by sampling a vertex on the true diameter
path of distance at most \delta 

1+\delta 
n\varepsilon from one of the true diameter endpoints.
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v \in V , we can scan BA(v), and for every w \in BA(v) we can add v to CA(w). The
cost of this process is O(

\sum 
v\in V | BA(v)| ), and since the clusters are by definition the

inverse of the bunches, at the end of this process we have CA(w) and | CA(w)| for
every w \in V and we can compute W (as needed in Algorithm 3).

However, in the current implementation only the expected size of a bunch is
bounded, and since the Thorup--Zwick bound on the number of iterations is O(log n)
in expectation as well, we cannot apply this idea directly to deduce a good expected
running time. To this end, more ideas are needed.

The following simple observation helps us to achieve our goal.

Observation 30. Let Ai be the set A after updating it in the beginning of the
ith iteration of the while loop in Algorithm 3. Let A\ast be a set such that A\ast \subseteq Ai for
every i \geq 1. For every v \in V it holds that BAi

(v) \subseteq BA\ast (v).

It follows from this observation that we only need to pick the first set A1 such
that | BA1

(v)| \leq O(1/p) for every v \in V .
It is folklore that the s closest vertices Ns(v) to a vertex v can be computed in

O(s2) time [DHZ00]. This implies that we can compute N1/p(v) for every v \in V in
O(n/p2) time. It is not hard to see that, given the sets N1/p(v) of all v \in V , one can
(deterministically) compute a ``hitting"" set A of size O(np log n) in O(n+ n/p) worst
case time, so that N1/p(v) \cap A \not = \emptyset for every v \in V (a greedy algorithm works; e.g.,
see [TZ05]).

The second idea behind our implementation is that we first compute the sets
N1/p(v) for every v \in V and the hitting set A, as described above. Then, using these
sets, we initialize Algorithm 3 with a set A such that | BA(v)| = O(1/p) for every
v \in V .

In more detail, our algorithm works as follows. For every v \in V it computes the
set N1/p(v) in O(n/p2) time. Then it finds a set A such that N1/p(v) \cap A \not = \emptyset for
every v \in V . Given the hitting set A, it computes d(v,A) and pA(v) for every v \in V .
Using d(v, pA(v)) and N1/p(v) it computes for every v \in V the bunch BA(v). Finally,
it computes the clusters and W using the bunches as we described above. The rest
of the algorithm is almost identical to Algorithm 3. The only difference is that we
compute the bunches and use them to compute the clusters and the set W . The
pseudocode is given in Algorithm 4.

We show the following.

Lemma 31. Algorithm 4 computes in O(n/p2 log n) expected time a set A of ex-
pected size O((pn) \cdot log n) that guarantees for every vertex w \in V \setminus A that | CA(w)| =
O(1/p), and for every v \in V that | BA(v)| = O(1/p).

Proof. The cost of computing N1/p(v) for every v \in V is O(n(1/p)2) [DHZ00].
The cost of computing A is O(np) time [TZ05]. Computing d(v,A) and pA(v) for every
v \in V in O(m) time is straightforward by running shortest paths tree computation
from a dummy vertex that is connected to the set A. To compute BA(v) using N1/p(v)
we only scan N1/p(v), thus, the total cost is O(n(1/p)). As we explained earlier the
cost of computing clusters using bunches is O(

\sum 
v\in V | BA(v)| ). Since for every v \in V

we have BA(v) \subseteq N1/p(v) the total cost is O(n(1/p)).
This completes the analysis of the part that precedes the while loop. Next, we

analyze the cost of the while loop.
Let A\ast be the set A that was computed before the while loop and let Ai be the

set A after updating it in the beginning of the ith iteration of the while loop. From
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Algorithm 4. New implementation of Thorup and Zwick center algorithm

1: procedure center(G, p)
2: compute N1/p(v) for every v \in V .
3: A = hitting set of the sets N1/p(v), where v \in V .
4: compute d(v,A) and pA(v) for every v \in V .
5: compute BA(v) using N1/p(v) and d(v, pA(v)).
6: for every u \in V do
7: compute CA(u) using BA(\cdot )
8: W = \{ w \in V | | CA(w)| > 4/p\} 
9: while W \not = \emptyset do

10: X - random sample of vertices from W , E[| X| ] = np
11: A = A \cup X
12: for every v \in V do
13: compute BA(v)

14: for every u \in V do
15: compute CA(u) using BA(\cdot )
16: W = \{ w \in V | | CA(w)| > 4/p\} 
17: return A

Observation 30 it follows that BAi
(v) \subseteq BA\ast (v) and therefore in every iteration the

cost of computing bunches from scratch is at most O(n(1/p)2) as | BA\ast (v)| = O(1/p)
for every v \in V . One can also compute BAi+1

(v) from BAi
(v) by first computing

d(v,Ai+1) and if d(v,Ai+1) < d(v,Ai) to prune BAi+1
(v) accordingly at a smaller

cost of O(n(1/p) +m); however, this does not affect the overall complexity.
Thorup and Zwick [TZ01] proved that the expected number of iterations is O(log n).

They show that if the set A in each iteration is chosen from W uniformly at random
with probability p, then in each iteration with probability 1/2 the size of W decreases
by a factor of 2. Thus, the fact that the set A from which we start is different does
not affect the correctness proof, since the set A is still constructed in each iteration
in the same way.

Therefore, we conclude that there are only O(log n) iterations in expectation. This
implies that a set A of expected size (np log n) is returned in O(n/p2 log n) expected
time. The algorithm stops only when there are no large clusters, thus the bound on
the cluster size follows. As we mentioned above the algorithm starts with bunches
that satisfy the required bound and their size can only decrease afterward, thus the
bound on the bunches follows.

We can now turn to describe the new diameter algorithm. The algorithm works as
follows. All entries of an n\times n matrix M are set to n. A set A of centers is computed
using the algorithm of Thorup and Zwick [TZ01]. For every vertex w \in V and every
pair \langle u, v\rangle \in CA(w) \times CA(w) the algorithm sets M(u, v) to min(M(u, v), d(u,w) +
d(v, w)) (step 1). Next, the algorithm searches the matrix M for entries whose value is
still n. Given a pair \langle u, v\rangle \in V \times V for which M(u, v) = n the algorithm sets M(u, v)
to d(u,A)+d(v,A) - 1 (step 2). Finally, the algorithm computes an additive 2 spanner
H of the input graph G and for every u \in A it computes \epsilon H(u), the eccentricity of u
in H (step 3). The algorithm outputs the maximum between D1 and D2  - 2, where
D1 is max\langle u,v\rangle \in V\times V M(u, v) and D2 is maxu\in A \epsilon H(u).

Next, we bound the value returned by Algorithm 5.
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Algorithm 5. Almost 3/2-approximation for diameter

1: procedure 3/2-Approx-Diam(G)
2: M - n\times n matrix whose entries are set to n
3: A = CENTER(G, 1/

\surd 
n)

4: for every w \in V do  \triangleleft step 1
5: for every \langle u, v\rangle \in CA(w)\times CA(w), s.t. u \not = v do
6: M(u, v) = min(M(u, v), d(u,w) + d(v, w))

7: for every \langle u, v\rangle \in V \times V , s.t. M(u, v) = n do  \triangleleft step 2
8: M(u, v) = d(u,A) + d(v,A) - 1

9: H - an additive 2 spanner of G  \triangleleft step 3
10: for every u \in A do
11: compute shortest paths tree for u in H and set \epsilon H(u), the eccentricity of

u in H
12: D1 = max\langle u,v\rangle \in V\times V M(u, v)
13: D2 = maxu\in A \epsilon H(u)
14: \^D = max(D1, D2  - 2)
15: return \^D

Theorem 32. For an unweighted undirected graph G with diameter D = 3h + z
where h is a positive integer and z \in [0, 1, 2], the value \^D returned by Algorithm 5
satisfies

2h - 1 if z \in [0, 1]
2h if z = 2

\leq \^D \leq D.

Proof. We start with the following lemma.

Lemma 33. Let u, v \in V and let P (u, v) be a shortest path between u and v. If
BA(u) \cap BA(v) \not = \emptyset , then (BA(u) \cap BA(v)) \cap P (u, v) \not = \emptyset .

Proof. If v \in BA(u), then the claim trivially holds so we can assume that v /\in 
BA(u). Let w be the vertex farthest from u that is in BA(u) \cap P (u, v). From the
definition of w it follows that d(u,w) = d(u,A) - 1. Assume, toward a contradiction,
that (BA(u) \cap BA(v)) \cap P (u, v) = \emptyset . This implies that w /\in BA(v) and d(v,A) - 1 <
d(v, w) = d(u, v)  - d(u,w). However, since BA(u) \cap BA(v) \not = \emptyset there is a vertex w\prime 

such that d(u,w\prime ) \leq d(u,w) and d(v, w\prime ) \leq d(v,A)  - 1 < d(u, v)  - d(u,w). This
implies that d(u,w\prime ) + d(v, w\prime ) < d(u, v), a contradiction to the triangle inequality.

Lemma 34. Let u, v \in V . If BA(u) \cap BA(v) = \emptyset , then d(u,A) + d(v,A)  - 1 \leq 
d(u, v).

Proof. Notice first that BA(u) (resp., BA(v)) contains all the vertices at distance
d(u,A) - 1 (resp., d(v,A) - 1). Let P (u, v) be a shortest path between u and v. Let
w be the vertex farthest from u on P (u, v) that is also in BA(u). Similarly, let w\prime be
the vertex farthest from v on P (u, v) that is also in BA(v). Since BA(u)\cap BA(v) = \emptyset 
it holds that w \not = w\prime . Therefore,

d(u, v) = d(u,A) - 1 + d(v,A) - 1 + d(w,w\prime ) \geq d(u,A) + d(v,A) - 1.

Let a and b be the diameter endpoints, that is d(a, b) = D = 3h + z, where
z \in [0, 1, 2]. Let P (a, b) be a shortest path between a and b.
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Assume first that BA(a) \cap BA(b) \not = \emptyset . It follows from Lemma 33 that there is a
vertex w \in P (a, b) such that \langle a, b\rangle \in C(w)\times C(w). Therefore, M(a, b) = D after step
1. After the update in step 2 it follows from Lemma 34 that M(u, v) \leq d(u, v) for every
u, v \in V . Therefore, the maximum value in the matrix is d(a, b) and D1 = D. Let
x = argmaxy\in A \epsilon H(y). Since H is an additive 2 spanner it holds that \epsilon H(x) \leq D+2,
hence, we have D2 \leq D and the algorithm returns the exact value of the diameter.

Assume now that BA(a)\cap BA(b) = \emptyset . From the discussion of the previous case it
follows that in this case \^D \leq D as well. Thus, it is only left to prove the lower bound.
Assume that z \in [0, 1]. Consider first the case that d(a,A) \geq h and d(b, A) \geq h; then
from Lemma 34 it follows that M(a, b) \geq 2h - 1 after step 2 and D1 is at least 2h - 1.
If this is not the case, then either d(a,A) < h or d(b, A) < h (or both). Assume,
w.l.o.g., that d(a,A) < h. In this case the eccentricity in H of at least one vertex
from A is at least 2h+ 1 and hence D2  - 2 is at least 2h - 1.

Assume now that z = 2. If either d(a,A) \geq h and d(b, A) > h or d(a,A) > h and
d(b, A) \geq h, then from Lemma 34 it follows that M(a, b) \geq 2h after step 2 and D1 is
at least 2h. If this is not the case, then either d(a,A) \leq h or d(b, A) \leq h (or both).
Assume, w.l.o.g., that d(a,A) \leq h. In this case the eccentricity in H of at least one
vertex from A is at least 2h+ 2 and hence D2  - 2 is at least 2h.

We now analyze the running time of Algorithm 5.

Theorem 35. For an unweighted undirected graph G, the expected running time
of Algorithm 5 is O(n2 log n).

Proof. The set A is computed by the center algorithm presented in Algorithm 4
with p = 1/

\surd 
n. From Lemma 31 it follows that the size of the set A is O(

\surd 
n log n)

and its construction time is O(n2 log n) in expectation. For every w \in V the size of
CA(w) is O(

\surd 
n). Therefore, step 1 takes O(n \times | CA(w)| 2) = O(n2). Step 2 takes

O(n2) time as well. In step 3 we first compute an additive 2 spanner H on O(n1.5)
edges. Knudsen [Knu17], following Dor, Halperin, and Zwick [DHZ00], showed how
to do this in O(n2) time. We also compute | A| shortest paths trees in H. As H has
O(n1.5) edges, this step takes O(n2 log n) time.

7.4. Near-linear almost 5/3-approximation for eccentricities. Next, we
show how to update Algorithm 5 to obtain an almost 5/3 approximation for all ec-
centricities. We run lines 2--11 of Algorithm 5. The only difference is that H is
augmented with the edges of the shortest paths tree that span the set BA(u)\cup \{ p(u)\} 
for every u \in V . Then, for every u \in V we compute \epsilon 1(u), \epsilon 2(u) and \epsilon 3(u), which are
defined as follows: \epsilon 1(u) = maxv\in V M(u, v), \epsilon 2(u) = \epsilon H(p(u))  - d(u, p(u))  - 2 and
\epsilon 3(u) = dH(u, y)  - 2, where y = argmaxx\in A dH(u, x). The algorithm sets \epsilon \prime (u) to

Algorithm 6. Almost 5/3-approximation for all eccentricities

1: procedure 5/3-Approx-Ecc(G)
2: Run lines 2--11 of Algorithm 5, with H augmented with shortest paths trees

for BA(u) \cup \{ p(u)\} for every u \in V
3: for every u \in V do
4: \epsilon 1(u) = maxv\in V M(u, v)
5: \epsilon 2(u) = \epsilon H(p(u)) - d(u, p(u)) - 2
6: \epsilon 3(u) = dH(u, y) - 2, where y = argmaxx\in A dH(u, x)
7: \epsilon \prime (u) = max(\epsilon 1(u), \epsilon 2(u), \epsilon 3(u))
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1192 BACKURS ET AL.

max\{ \epsilon 1(u), \epsilon 2(u), \epsilon 3(u)\} for every u \in V as an estimation to \epsilon (u). The pseudocode is
given in Algorithm 6.

We now prove the following.

Theorem 36. For an unweighted undirected graph G, for every u \in V , Algo-

rithm 6 computes in O(n2 log n) expected time a value \epsilon \prime (u) that satisfies 3\epsilon (u)
5  - 1 \leq 

\epsilon \prime (u) \leq \epsilon (u).

Proof. We start by analyzing the running time. Lines 2--11 of the algorithm are
the same as in Algorithm 5, with one difference: the spanner H is augmented with
the edges of a shortest paths tree rooted at u that span the set BA(u) \cup \{ p(u)\} for
every u \in V . This adds at most O(n1.5) edges to H and hence the cost of these lines
remains O(n2 log n) time in expectation. The computation of \epsilon 1(u), \epsilon 2(u) and \epsilon 3(u)
for every u \in V costs O(n2) time in total.

Let u \in V be an arbitrary vertex and let \epsilon (u) = d(u, t). We now turn to bound
\epsilon \prime (u).

In our analysis we will use the following simple observation.

Observation 37. In an undirected graph it holds for every u, v \in V that \epsilon (u) \geq 
\epsilon (v) - d(u, v).

It is straightforward to see that both \epsilon 2(u) and \epsilon 3(u) are at most \epsilon (u). Recall
that \epsilon 2(u) = \epsilon H(p(u))  - d(u, p(u))  - 2 \leq \epsilon (p(u))  - d(u, p(u)) \leq \epsilon (u) and \epsilon 3(u) =
dH(u, y) - 2 \leq d(u, y) \leq \epsilon (u).

We distinguish between two cases.
Case 1: BA(u) \cap BA(t) \not = \emptyset . It follows from Lemma 33 that P (u, t) \cap (BA(u) \cap 

BA(t)) \not = \emptyset and M(u, t) = \epsilon (u). From Lemma 34 it follows that M(u,w) \leq d(u,w) for
every w \in V after step 2. Therefore, \epsilon 1(u) = \epsilon (u). Since \epsilon 2(u) \leq \epsilon (u) and \epsilon 3(u) \leq \epsilon (u)
we get that \epsilon \prime (u) = \epsilon (u).

Case 2: BA(u) \cap BA(t) = \emptyset . Consider first the case that d(u, p(u)) \leq \epsilon (u)
5  - 1.

From Observation 37 we get that \epsilon H(p(u)) \geq \epsilon H(u) - dH(u, p(u)). As we augmentedH
with a shortest paths tree that spans BA(u)\cup \{ p(u)\} we have d(u, p(u)) = dH(u, p(u))
and we get \epsilon H(p(u)) \geq \epsilon H(u)  - d(u, p(u)). Hence, we get that \epsilon 2(u) = \epsilon H(p(u))  - 
d(u, p(u))  - 2 \geq \epsilon H(u)  - 2d(u, p(u))  - 2 \geq \epsilon (u)  - 2d(u, p(u))  - 2. As before we have

\epsilon 2(u) \leq \epsilon (u). Using d(u, p(u)) \leq \epsilon (u)
5  - 1 we get that

\epsilon 2(u) \geq \epsilon (u) - 2\epsilon (u)

5
\geq 3\epsilon (u)

5
.

Assume now that d(u, p(u)) \geq \epsilon (u)
5 . This means that d(u,A) - 1 \geq \epsilon (u)

5  - 1.
Let S be the set of all vertices v \in V such that BA(u) \cap BA(v) = \emptyset , that is,

S = V \setminus \cup w\in BA(u)CA(w). Let t
\prime = argmaxx\in S d(x,A) - 1. If d(t\prime , A) - 1 \geq 2\epsilon (u)

5  - 1

we get from Lemma 34 that M(u, t\prime ) \geq 3\epsilon (u)
5  - 1. Assume now that d(t\prime , A) < 2\epsilon (u)

5 .

As t\prime is the farthest vertex from A we get that d(t, p(t)) < 2\epsilon (u)
5 and d(u, p(t)) > 3\epsilon (u)

5 .

Therefore, \epsilon 3(u) = dH(u, y) - 2 \geq d(u, p(t)) - 2 \geq 3\epsilon (u)
5  - 1.

From Lemmas 33 and 34 it follows that \epsilon 1(u) \leq \epsilon (u) and the bound follows.

7.5. Algorithms for dense graphs using matrix multiplication. Here we
will give O(n2.05) time approximation algorithms for diameter and eccentricities in
dense unweighted undirected graphs. The approximation guarantees of these algo-
rithms are slightly better than those in our O(n2 log n) time algorithm. In fact, the
guarantees are exactly the same as in the \~O(m

\surd 
n) time algorithms for diameter
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and eccentricities of Roditty and Vassilevska W. [RV13] and Cairo, Grossi, and
Rizzi [CGR16]. Specifically, we prove the following theorem.

Theorem 38. There is an O(n2.045) time randomized algorithm that with high
probability outputs an almost 3/2-approximation \~D to the diameter D and almost
5/3-approximations e(v) to all eccentricities \epsilon (v) in an unweighted undirected graph:

1. 2D - 1
3 \leq \~D \leq D.

2. For every vertex v, 3\epsilon (v) - 1
5 \leq \~\epsilon (v) \leq \epsilon (v).

To achieve this, we give an efficient implementation using fast matrix multiplica-
tion of the \~O(m

\surd 
n) time algorithms of [CGR16] and [RV13].

The main overhead of the \~O(m
\surd 
n) time algorithms [CGR16, RV13] is in com-

puting the distances from a set S of O(
\surd 
n log n) vertices. Computing the set S itself

can be done in linear time. In particular, S is defined as the union of a set W , a set T ,
and a vertex w. The set W is simply a random sample. The vertex w is the farthest
vertex from W , which can be computed in linear time via BFS from a dummy vertex
adjacent to every vertex in W . The set T is defined as the closest

\surd 
n vertices to w

and can be computed by BFS from w. After one knows all distances from every s \in S
to every v \in V , it takes linear time to output the diameter and eccentricity estimates.

The main idea of our algorithms is as follows. If the diameter is of size \leq O(log n),
then one does not need all distances between S and V , but only those that are
O(log n). Small distances are easy to compute with matrix multiplication. Let A be
the adjacency matrix and AS be its submatrix formed by just the rows in S. Then we
can find the distances for all pairs in S\times V at distance \leq t by computing AS \times At - 1,
which can be computed by performing t - 1 matrix products of dimension | S| \times n by
n\times n, and this can be accomplished in O(tn2.05) time [GU18, Le 12]. If on the other
hand the diameter is D \geq 100 log n, then one can use an \~O(n2) time algorithm by
Dor, Halperin, and Zwick [DHZ00] to compute estimates of all pairwise distances with
an additive error at most 4 log n. The maximum distance estimate computed, minus
4 log n, will be between 0.96D and D, giving a really good approximation already. A
similar argument works for eccentricities and also for S-T diameter.

Below we recap the guarantees of the \~O(m
\surd 
n) time approximation algorithms of

[CGR16, RV13].

Theorem 39 ([CGR16, RV13]). The following can be computed in \~O(m
\surd 
n) time

with high probability:
1. an estimate \^D of the graph diameter D, such that 2

3D  - 1
3 \leq \^D \leq D,

2. for every vertex v, an estimate e(v) of its eccentricity \epsilon (v), such that 3
5\epsilon (v) - 

1
5 \leq e(v) \leq \epsilon (v).

Using Seidel's algorithm [Sei95] we can compute all the distances exactly, and
hence the above parameters as well, all in O(n\omega ) time for \omega < 2.373. We will show that
for dense graphs, we can obtain the same approximation guarantees as in Theorem 39,
in time O(n2.05).

Let us compare to our O(n2 log n) time algorithms. For diameter D = 3h + z,
the O(n2 log n) time algorithm returns an estimate 2h - 1 when z = 0, 1 and 2h when
z = 2. The estimate \^D here is \geq (2D  - 1)/3 = 2h+ (2z  - 1)/3, which is \geq 2h when
z = 0 and \geq 2h+ 1 when z = 1, 2.

For eccentricities, the O(n2 log n) time algorithm returns estimates e(v)\geq 3\epsilon (v)/5 - 
1, and here we return a better estimate e(v) \geq (3\epsilon  - 1)/5.

We will rely on two known algorithms. The first is from a paper by Dor, Halperin,
and Zwick [DHZ00] on additive approximations of APSP. Among many other results,
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1194 BACKURS ET AL.

[DHZ00] show that in \~O(n2) time, one can compute for all pairs of vertices u, v, an
estimate d\prime (u, v) of their distance d(u, v) so that d(u, v) \leq d\prime (u, v) \leq d(u, v) + a log n
for an explicit constant a \leq 4.

The second is an algorithm for the following truncated multisource shortest paths
problem: given an integer Q, a graph G = (V,E), and a set S, compute the distances
d(s, v) for every s \in S and v \in V for which d(s, v) \leq Q.

The algorithm uses fast matrix multiplication and is quite straightforward. Let A
be the n\times n Boolean matrix with rows and columns indexed by V , so that A[u, v] = 1
if there is an edge between u and v or u = v, and A[u, v] = 0 otherwise; i.e., A is
the adjacency matrix added to the identity matrix. Let AS be the | S| \times n submatrix
of A consisting of the rows indexed by vertices of S. For an integer i \geq 1, let Ai

be the ith power of A under the Boolean matrix product. Here, Ai[u, v] = 1 if and
only if the distance between u and v is at most i. Define A0 as the identity matrix.
Consider AS \cdot Ai for any choice of i \geq 0 (under the Boolean matrix product). Here,
(AS \cdot Ai)[s, v] = 1 if and only if the distance between s and v is at most i+ 1. Thus,
if we compute Di := AS \cdot Ai for every 1 \leq i < Q, we would know the distance
from every s \in S to every v \in V , whenever this distance is at most Q. Computing
these matrix products can easily be done by performing the following Q - 1 Boolean
products of an | S| \times n matrix by an n\times n matrix: let D0 = AS ; then for each i from
1 to t  - 1, compute Di := Di - 1 \cdot A. Thus, the running time is O(Q \cdot \scrM (| S| , n, n))
where \scrM (| S| , n, n) is the runtime of multiplying an | S| \times n matrix by an n \times n
matrix.

Armed with these two algorithms, let us recap Roditty et al.'s (and Cairo et
al.'s) approximation algorithm and see how to modify it. The algorithm proceeds as
follows: Let D, R, and \epsilon (v) denote the diameter and radius of G and the eccentricity
of vertex v, respectively.

The runtime bottleneck in the above algorithm is step 2, which runs in \~O(mn1/2)
time if one uses BFS through each vertex of S. Let us describe how to modify the
algorithm. We will replace 2 with a truncated distance computation and also use the
algorithm of Dor, Halperin, and Zwick to handle large distances that we might have
ignored in the truncated computation.

Consider our modified algorithm, FasterApproximation. Now we will prove
several claims.

Claim 40.The runtime of algorithm FasterApproximation is \~O(\scrM (
\surd 
n, n, n)).

Proof. The Dor--Halperin--Zwick part of the algorithm (step 3) runs in \~O(n2) time.
Step 8 runs in O((X + a log n) \cdot \scrM (| S| , n, n)) time where S = \{ w\} \cup W \cup T , using the
iterated rectangular matrix product algorithm. Recall that X + a log n = O(log n).

Algorithm 7. RV/CGR algorithm

1: Using BFS (see [RV13] and [CGR16]), in O(m+ n) time compute W,w, T , where
W \subseteq V is a uniformly chosen subset of size O(

\surd 
n log n), w is the furthest vertex

from W , and T are the closest
\surd 
n vertices to w. Let S = \{ w\} \cup W \cup T .

2: For every s \in S and every v \in V , compute the distance d(s, v) between s and v;
set \epsilon (s) = maxv d(s, v).

3: Set \~D = maxx\in S \epsilon (x).
4: Set for every v \in V , \~\epsilon (v) = max\{ d(w, v),maxx\in W d(x, v),maxx\in T (\epsilon (x) - d(x, v))\} .
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Algorithm 8. Our modified approximation

1: procedure FasterApproximation
2: First part: Handle large distances :
3: Use Dor, Halperin, and Zwick's algorithm to compute distance estimates d\prime (\cdot , \cdot )

so that for every u, v \in V , d(u, v) \leq d\prime (u, v) \leq d(u, v) + a log n. Let X =
3a log n.

4: Set \~D1 = maxu,v\in V d\prime (u, v) - a log n.
5: For every v \in V , set \~\epsilon 1(v) = maxu d

\prime (u, v) - a log n.
6: Second part: Handle small distances :
7: Using BFS (see [RV13] and [CGR16]), in O(m + n) time compute W,w, T ,

whereW \subseteq V is a uniformly chosen subset of size O(
\surd 
n log n), w is the furthest

vertex from W , and T are the closest
\surd 
n vertices to w. Let S = \{ w\} \cup W \cup T .

8: Let Q = 2(X + a log n) = 8a log n. For every s \in S and every v \in V whose
distance d(s, v) is at most Q, compute d(s, v). Let d\leq (s, v) denote d(s, v) if
we have computed it, and \infty otherwise. Set \epsilon \leq (s) = maxv d\leq (s, v).

9: Set \~D2 = maxx\in S \epsilon \leq (x).
10: For all v \in V , set \~\epsilon 2(v) = max\{ d\leq (w, v),maxx\in W d\leq (x, v),maxy\in T (\epsilon \leq (y)  - 

d\leq (y, v))\} . If \epsilon \leq (y) and d\leq (y, v)) are both infinite, \~\epsilon 2(v) is set to \infty .

11: Third part: Set \~D, \~\epsilon (\cdot ):
12: If \~D1 \geq X, set \~D = \~D1, and otherwise set \~D = \~D2.
13: For every v \in V , if there exists some x \in S such that d\prime (x, v) \geq X + a log n,

then set \~\epsilon (v) = \~\epsilon 1(v), and otherwise \~\epsilon (v) = \~\epsilon 2(v).

Thus step 8 runs in \~O(\scrM (| S| , n, n)) time. Since | S| = \~O(
\surd 
n) and we can partition an

| S| \times n\times n matrix product into polylog n, n1/2 \times n\times n matrix products, the runtime
of the step is \~O(\scrM (n1/(2), n, n)). Steps 10 and 13 run in O(n| S| ) < \~O(n2) time. The
rest of the steps run in linear time. Since \scrM (n1/2, n, n) \geq n2 (one must at least read
the input), the total running time is \~O(\scrM (n1/2, n, n)).

Claim 41. 2D - 1
3 \leq \~D \leq D.

Proof. Suppose that \~D1 \geq X. The algorithm returns \~D = \~D1 = maxu,v d
\prime (u, v) - 

a log n. By the guarantee on d\prime , we have D  - a log n \leq \~D1 \leq D. Hence \~D \geq 
D(1 - (a log n)/D) \geq D(1 - (a log n)/X) = 2D/3 \geq (2D  - 1)/3.

Suppose now that \~D1 < X. This means that D < X + a log n and every dis-
tance in the graph is \leq X + a log n. In the second part of the algorithm we set
Q = 2(X + a log n), and hence every distance is computed exactly: for every s \in S,
v \in V , d\leq (s, v) = d(s, v). Hence the second part of the algorithm will be identical
to the RV/CGR algorithm and hence we get the same guarantees: (2D  - 1)/3 \leq 
\~D \leq D.

Claim 42. For every vertex v, 3\epsilon (v) - 1
5 \epsilon (v) \leq \~\epsilon (v) \leq \epsilon (v).

Proof. Fix v. Suppose first that there exists some x such that d\prime (x, v) \geq X +
a log n. Then \epsilon (v) \geq \~\epsilon 1(v) = maxu d

\prime (u, v)  - a log n \geq \epsilon (v)  - a log n = \epsilon (v)(1  - 
a log n/\epsilon (v)). Since \epsilon (v) \geq d(x, v) \geq d\prime (x, v)  - a log n \geq X, we get that \~\epsilon 1(v) \geq 
\epsilon (v)(1 - a log n/X) = 2\epsilon (v)/3.

Now suppose that for all x \in V , d\prime (x, v) < X + a log n. Then, also for all x \in V ,
d(x, v) < X + a log n and \epsilon (v) < X + a log n. Consider all the quantities needed in
the second part of the algorithm to compute \~\epsilon 2(v):
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\bullet d\leq (w, v): since for all x \in V , d(x, v) < X + a log n, d\leq (wi, v) = d(wi, v) for
each wi;

\bullet d\leq (x, v) for every x \in W : as above, d\leq (x, v) = d(x, v);
\bullet \epsilon \leq (x)  - d\leq (x, v) for all x \in T : here, \epsilon (x) \leq \epsilon (v) + d(x, v) \leq 2\epsilon (v) < 2(X +

a log n). Since we compute all distances from vertices in S up to 2(X+a log n)
and x \in S, \epsilon \leq (x) = \epsilon (x). Also as in the above bullets, d\leq (x, v) = d(x, v).

Thus all the quantities needed are the correct ones and \~\epsilon (v) = \~\epsilon 2(v) inherits the same
guarantees as in the algorithm by Cairo, Grossi, and Rizzi.

From Le Gall and Urrutia [GU18] (see also [Le 12]) we obtain that \scrM (
\surd 
n, n, n) \leq 

O(n2.044183). This completes the proof of Theorem 38.
Finally we note that our approach also works to speed up our almost 2-approxima-

tion algorithm for S-T diameter as well, giving an O(n2.045) time almost-2 approx-
imation algorithm. The main reason is that, like in the diameter approximation
algorithm, if the S-T diameter is very large (say, DS,T > 100a log n), then the
+a log n APSP algorithm with a log n subtracted will return an estimate that is at
least DS,T  - a log n > 0.99DS,T . On the other hand, our S-T diameter approximation
algorithm only needs to know the distances up to DS,T to compute an estimate of
DS,T , and so if DS,T \leq 100a log n, then we only need to compute O(log n) matrix
products of dimension O(

\surd 
n log n)\times n\times n again.
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