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1 | INTRODUCTION

Danai Koutra? |

Chandra Sripada®

Abstract

Confirming the presence (or absence) of dynamic functional connectivity (dFC) states
during rest is an important open question in the field of cognitive neuroscience. The
prevailing dFC framework aims to identify dynamics directly from connectivity esti-
mates with a sliding window approach, however this method suffers from several
drawbacks including sensitivity to window size and poor test-retest reliability. We
hypothesize that time-varying changes in functional connectivity are mirrored by sig-
nificant temporal changes in functional activation, and that this coupling can be lever-
aged to study dFC without the need for a predefined sliding window. Here, we
introduce a data-driven dFC framework, which involves informed segmentation of
fMRI time series at candidate FC state transition points estimated from changes in
whole-brain functional activation, rather than a fixed-length sliding window. We
show our approach reliably identifies true cognitive state change points when applied
on block-design working memory task data and outperforms the standard sliding win-
dow approach in both accuracy and computational efficiency in this context. When
applied to data from four resting state fMRI scanning sessions, our method consis-
tently recovers five reliable FC states, and subject-specific features derived from
these states show significant correlation with behavioral phenotypes of interest (cog-
nitive ability, personality). Overall, these results suggest abrupt whole-brain changes
in activation can be used as a marker for changes in connectivity states and provides

new evidence for the existence of time-varying FC in rest.
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patterns of spatially distinct regions of the brain, typically measured

by blood oxygen level-dependent (BOLD) functional magnetic reso-

Over the past two decades the study of functional connectivity
(FC) has emerged as a preeminent method in cognitive and clinical
neuroscience, aiming to characterize the functional network organiza-
tion of the brain, and to identify objective markers of neuropsychiatric
diseases and clinically relevant phenotypes. FC describes the intercon-

nection (often computed as temporal correlation) in activation

nance imaging (fMRI). Originally, the entire field of FC was built on a
critical assumption: that patterns of connectivity are static during any
given measurement interval in a resting state, that is, the absence of
any cognitive task (Biswal, Yetkin, Haughton, & Hyde, 1995). Static
FC has been used to identify global differences in functional network

organization of the brain between cognitive task states and resting
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state (Greicius, Krasnow, Reiss, & Menon, 2003), as well as to charac-
terize differences in FC between healthy controls and subjects with
neuro-psychiatric diagnoses, such as schizophrenia (Lynall, 2010) or
autism spectrum disorder (Hull et al., 2017).

Recently, however, a number of studies have questioned this
assumption, instead advocating the “dynamic” or “time-varying” con-
nectivity view that functional connectivity patterns exhibit substantial
moment-to-moment changes over time, specifically within a standard
fMRI measurement interval of 5 to 15 min (Calhoun, Miller,
Pearlson, & Adah, 2014; Chang & Glover, 2010; Cohen, 2018;
Hutchison et al., 2013; Lurie et al., 2019; Preti, Bolton, & Van De
Ville, 2017). These changing FC patterns are thought to correspond to
cognitively meaningful discrete FC network configurations, or connec-
tivity states, that are reproducible both within and between individual
subjects. Dynamic states have been documented across different
populations, including children (Marusak et al., 2018) and adults (Allen
et al., 2014; Cai et al., 2018; Chen, Cai, Ryali, Supekar, &
Menon, 2016; Choe et al., 2017; Liu & Duyn, 2013; Smith, Zhao,
Keilholz, & Schumacher, 2018), and have been supported with concur-
rent electroencephalography (EEG) data (Allen, Damaraju, Eichele,
Wu, & Calhoun, 2018; Chang, Liu, Chen, Liu, & Duyn, 2013;
Tagliazucchi, von Wegner, Morzelewski, Brodbeck, & Laufs, 2012).
Furthermore, it has been shown that other characteristics such as the
amount of time spent in specific states and the number of transitions
between states vary with meaningful individual differences such as
age (Cabral et al., 2017; Hutchison & Morton, 2015; Marusak
et al., 2016), sex (Mao, Zheng, Long, Yao, & Wu, 2017), or disease sta-
tus (Cordes et al., 2018; Damaraju et al., 2014; Jones et al., 2012;
Rashid, Damaraju, Pearlson, & Calhoun, 2014).

By definition, the presence of dynamic functional connectivity
(dFC) in resting state is marked by changes in the connectivity struc-
ture of the fMRI time series. The prevailing sliding window framework
aims to identify these second-order changes using functional connec-
tivity “snapshots” obtained from time windows of fixed length slid
across the entire fMRI time series. The resultant windowed con-
nectomes are then flattened into feature vectors, concatenated across
subjects, and clustered into k distinct connectivity states. Importantly,
there are two distinct elements of the sliding window paradigm (win-
dowing and connectome estimation) that present several methodolog-
ical choices that can be mixed-and-matched to create numerous
potential sliding window workflows. For example, the windowing step
involves the choice of the size and shape of the window (Mokhtari,
Akhlaghi, Simpson, Wu, & Laurienti, 2019; Shakil, Billings, Keilholz, &
Lee, 2018; Shakil, Keilholz, & Lee, 2015; Shakil, Lee, & Keilholz, 2016),
the optimal choice of which still constitutes an active area of research.
There are also several choices of connectivity estimation, including
Pearson correlation (Allen et al., 2014), Spearman correlation (Savva,
Mitsis, & Matsopoulos, 2019), instantaneous shared trajectory (Faghiri
et al, 2020), and instantaneous phase synchrony (Pedersen,
Omidvarnia, Zalesky, & Jackson, 2018). Each of these methods pre-
sents its own benefits, but Pearson correlation is generally the most
commonly used connectivity estimator in sliding window paradigms.

The sliding window approach represents an important advance in the

study of time-varying brain connectivity, but it nonetheless suffers
from several important limitations.

First, the sliding window method relies heavily on the somewhat
arbitrary choice of window size, and results can differ substantially
across various window widths (Hindriks et al., 2016; Shakil
et al.,, 2016). A second problem is that simulations suggest that sliding
window methods can introduce artifactual connectivity variation even
under conditions when such variation is known to be absent
(Laumann et al., 2017; Lindquist, Xu, Nebel, & Caffo, 2014). Third, per-
haps due to one or more of the preceding issues, the sliding window
method has been found to have poor test-retest reliability (Choe
et al., 2017). Fourth, the overlapping nature of the sliding windows
precludes definitive segmentation of the fMRI time series into states,
making interpretation of the state dynamics difficult. Finally, the slid-
ing window approach requires constructing a sizable number of over-
lapping windowed connectivity matrices: with 400 timepoints and a
30 second window, 370 distinct connectivity matrices are required
(at a step = 1 TR = 1 s). This poses serious scalability issues for rela-
tively long or more temporally granular fMRI datasets.

Some alternatives to sliding window approaches have been pro-
posed in recent years; however, these too have certain drawbacks
and limitations. The dynamic conditional correlation (DCC) model is a
multivariate volatility model that estimates the changing covariance
structure at each timepoint in the fMRI time series (Choe et al., 2017,
Lindquist et al., 2014). While the DCC model allows for a parametric
approach to estimating framewise FC with robust statistical inference,
it increases the number of connectivity matrices to consider in the
final clustering step compared to the sliding window method, further
hindering its scalability. Furthermore, the formulation of the DCC
model has been shown to give biased results in high dimensional data
(Hafner & Reznikova, 2012), which poses an issue for application in
fMRI data with a large number of ROlIs and time points. Two other
recently proposed moment-to-moment methods, multiplication of
temporal derivatives (Shine et al, 2015) and edge co-fluctuations
(Esfahlani et al., 2020), have similar formulations and are both aimed
at uncovering the degree of functional coupling for all ROI pairs at
each timepoint. Similarly to DCC, these methods result in a higher
dimensional output than that of the sliding window, and the instanta-
neous estimates of connectivity at each timepoint are highly suscepti-
ble to noise. Hidden Markov models (HMMs), which seek to
decompose a time series into a sequence of discrete “hidden” states,
are another increasingly popular approach for estimating connectivity
dynamics (Baker et al., 2014; Quinn et al., 2018; Vidaurre, Smith, &
Woolrich, 2017; Zhang et al., 2020). However, HMMs rely on several
strong assumptions including a predefined number of k hidden states
that transition between one another in a Markovian fashion (state
transitions depend solely on the state at the previous time point).
Moreover, HMMs trained at the group level assume a single
governing state-to-state transition structure across all subjects, which
may be too strict and miss important individual variability.

Our focus here is on a hybrid approach that bridges windowed
and instantaneous methods by leveraging moment-to-moment

changes in activation to inform tailored time series segmentation at
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candidate FC state change points, which reduces both the dimension-
ality and noisiness that affects many other moment-to-moment dFC
methods. It is well known from the task-based fMRI literature that
task-driven changes in activation patterns co-occur with changes in
connectivity patterns (Davison et al, 2015; Gonzalez-Castillo
et al., 2015; Shine & Poldrack, 2018; Spielberg, Miller, Heller, &
Banich, 2015; Sripada et al., 2014; Telesford et al., 2016). This cou-
pling of activation and connectivity changes suggests the possibility
that changes in the activation structure of the fMRI time series, which
are easily derived, can serve as a reasonably reliable marker for
changes in the connectivity structure, which are more difficult to obtain
in an unbiased way. Though connectivity changes may not always be
accompanied by activation changes, as long as there is significant cor-
respondence, we can leverage the latter (straightforwardly identified)
to find the former (less so) without the need for sliding windows.

In this work we leverage the coupling between activation and
connectivity to present the activation-informed segmentation
approach, a data-driven dFC framework centered around informed
segmentation of fMRI time series at candidate FC state change points.
Moment-to-moment changes in functional activations have previously
been utilized in the literature to investigate dynamic functional con-
nectivity (Shine et al., 2015), but have yet to be used to localize con-
nectivity state changepoints for dynamic time series segmentation.
Our approach detects significant instantaneous changes in functional
activation patterns and generates data-driven segments of stable con-
nectivity throughout the fMRI time series. For clarity, we will use the
term “segments” when referring to our method and “windows” when
referring to the sliding window approach. Separating the time series
into discrete time segments rather than a set of highly overlapped
sliding windows significantly improves the computational efficiency of
dFC analysis and enhances interpretability of results by enabling pre-
cise identification of state transition junctures—something the sliding
window method cannot provide. We suggest that these FC-tailored
segments provide a useful alternative to standard sliding windows in
dFC analyses and show that our approach significantly outperforms
the sliding window paradigm in recovering known FC state transitions
in a block-design task. Furthermore, we propose a framework for the
comparison of connectomes derived from segments of variable length,
as well as a graph embedding step for summarizing connectomes into
low-dimensional representations that we show are better suited for
downstream clustering and machine learning tasks than current

approaches.
2 | METHODS
2.1 | Data description

211 | HCPdata

In this work, we utilize the Human Connectome Project (HCP) $1200
Young Adult dataset made publicly available through the Washington
University and the University of Minnesota HCP consortium (http://

humanconnectome.org). It is one of the richest collections of neuroim-
aging data to date, consisting of structural and functional MRI, behav-
ioral assessments, and genotypes for 1200 healthy subjects ages 22-
35. A full description of the acquisition protocol can be found in (Van
Essen et al., 2013). In short, all HCP fMRI data were acquired on a
modified Siemens Skyra 3 T scanner using multiband gradient-echo
EPI (TR = 720 ms, TE = 33 ms, flip angle = 52°, multiband accelera-
tion factor = 8, 2 mm isotropic voxels, FOV = 208 x 180 mm,
72 slices, alternating RL/LR phase encode direction). Participants com-
pleted four total resting state fMRI scanning sessions (two sessions
collected on each of two different days). Each resultant resting state
fMRI time series consisted of 1200 volumes sampled every 0.72 s, for
a total acquisition time of 14 min and 24 s. During the resting state
sessions participants were instructed to keep their eyes open and fix-
ated on a cross hair on the screen, while remaining as still as possible.
For clarity, we will refer to resting state data from the first collection
day as sessions 1A (RL) and 1B (LR), and similarly sessions 2A and 2B
for those collected on the second day.

Though our main objective is to assess FC dynamics during rest,
we also leverage the repeating task/rest block structure of the work-
ing memory (WM) task data available in HCP as a natural ground truth
to test the performance of our method in identifying the known tran-
sitions between the task and rest conditions. The HCP WM task con-
sists of four repeating task/rest blocks, where each block is structured
as follows: 27.5 s Task 1 (0-back), 27.5 s Task 2 (2-back), 15 s rest.
Using the same acquisition details outlined above, each WM task
fMRI time series consisted of 405 volumes sampled every 0.72 s, for a
total acquisition time of 4 min and 52 s. Two sessions of WM task
fMRI were acquired back-to-back, alternating between RL and LR
phase encoding directions. We will refer to these as WM session
1 (RL) and WM session 2 (LR).

2.1.2 | Data preprocessing
Processed volumetric data from the HCP minimal preprocessing pipe-
line including ICA-FIX denoising were used. Full details of these steps
can be found in (Glasser et al., 2013; Salimi-Khorshidi et al., 2014).
Briefly, BOLD fMRI data were gradient-nonlinearity distortion
corrected, rigidly realigned to adjust for motion, fieldmap corrected,
aligned to the structural images, and then registered to MNI space
with the nonlinear warping calculated from the structural images.
Then FIX was applied on the data to identify and remove motion and
other artifacts in the timeseries. These files were used as a baseline
processing and analysis (e.g, MNINonLinear/
Results/rfMRI_REST1_RL/rfMRI_REST1_RL_hp2000_clean.nii.gz from
released HCP data).

Images were smoothed with a 6 mm FWHM Gaussian kernel, and

for further

then resampled to 3 mm isotropic resolution. This step as well as the
use of the volumetric data, rather than the surface data, were done to
allow comparability with other large datasets in ongoing and planned
analyses that are not amenable to surface-based processing. The

smoothed images then went through a number of resting state
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processing steps, including motion artifact removal steps comparable
to the type B (i.e., recommended) stream of (Siegel et al., 2017). Fur-
ther details on motion artifact removal can be found in (Sripada
et al., 2019). Lastly, we calculated spatially averaged time series for
each of the 268 ROIs from the parcellation given in (Finn et al., 2015).
For our analysis, we first considered the set of 966 subjects listed
in (Sripada et al., 2019) that met the following criteria: structural T1
and T2 data, four complete resting state fMRI sessions, and < 10% of
resting state frames censored due to excessive motion (framewise dis-
placement of 0.5 mm). From this set 922 subjects also had two com-
plete WM task fMRI sessions, defining our final subset of subjects.

2.2 | The activation-informed segmentation
framework

Here, we propose a novel framework for identifying dynamic changes
in functional connectivity in fMRI time series, termed the activation-
informed segmentation method. This method leverages the coupling
between changes in connectivity structure and changes in whole-
brain activation patterns to produce an intuitive, interpretable, and
computationally efficient alternative to the sliding window approach.
Our framework consists of three main steps: tailored segmentation of
all fMRI time series, summarization of the functional connectivity
within each discovered segment, and finally segregation and charac-
terization of a final set of connectivity states (Figure 1). These steps
are detailed in Sections 2.2.1-2.2.3 below.

221 | Activation-informed time series
segmentation

The dynamic FC paradigm suggests the presence of significant instan-
taneous changes in connectivity structure at transition points
between two distinct functional states. Using this logic, we sought to
identify potential connectivity state transition points within fMRI data

and utilize them to perform informed segmentation of the time series

Activation-Informed Segmentation

GTD

Time —

FIGURE 1

as a means for assessing FC dynamics. Based on the phenomenon
established in task-based literature (Davison et al., 2015; Gonzalez-
Castillo et al., 2015; Shine & Poldrack, 2018; Spielberg et al., 2015;
Sripada et al., 2014; Telesford et al., 2016), we hypothesize that
changes in the activation structure of the fMRI time series, which are
easily derived, can serve as a reasonably reliable marker for changes in
the connectivity structure, which are more difficult to obtain in an
unbiased way. To estimate the changes in functional connectivity
from one time point t to the next, we observe changes in functional
activation from one time point to the next by calculating the temporal
derivative (dt) of each of n ROI activation time series (A) of length
T using first-order differencing similar to that in the multiplication of
temporal derivatives (MTD) method (Shine et al., 2015):

dti(t) =Ai(t) —Ai(t—1) 1

At this point, our method importantly diverges from the MTD method:
while the MTD uses these ROI-wise temporal derivatives to define
the connectivity between each pair of ROIs and ultimately generate
an n x n connectome estimate at each time point, our method instead
summarizes the regional temporal derivatives to provide a univariate
estimate of moment-to-moment changes in activation on the whole
brain scale. At this point in our pipeline, the resulting n temporal deriv-
ative series of length T-1 are summarized by taking the L,-norm, that
is, the root sum of squares, at each time step t, resulting in a single
vector of length T-1, which we have termed the Global Temporal
Derivative (GTD) series:

GTD(t) = |[dtua(t)ll, = /> dti(t)? (2)

The GTD provides a univariate summarization of instantaneous
changes in global brain activation throughout an fMRI time series,
therefore peaks in the GTD series correspond to instances of signifi-
cant moment-to-moment alterations in functional activity. In this way,
the GTD is akin to the derivative of the global signal. Growing

research suggests the global signal is not noise and carries meaningful

State
Characterization

T IRT
ﬁs I' | ||
)

FC Summarization

k-means LR ‘

State 3 State K

v v | ...
[ - ] Structural [ . ] .. r
Graph
Emt;;?jfjmgs .... r

Depiction of our activation-informed segmentation pipeline. Briefly, peaks in the GTD series define the boundaries of our tailored,

nonoverlapping stable-FC segments s to s, (note S can vary between subjects) for all subjects 1 to N. Next, functional connectivity is
summarized using structural graph embeddings for each segment in the set of all segments {{s},s},...},....{s}.s},..} }. Finally, k-means is applied

to segregate all segments into a set of k connectivity states
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information about mental states (Wong, Olafsson, Tal, & Liu, 2013).
Here, we build on this work to suggest that global signal shifts mark
changes in dynamic mental states. We seek to automatedly identify
these change points as candidate FC state transitions for the subse-
quent time series segmentation step. We begin by applying exponen-
tially weighted moving average smoothing (window size = 15 TR,
a:m) to the GTD series to reduce noisy peaks. We then
perform moving average peak detection (window size = 20 TR for
Rest, 10 TR for WM task) on the smoothed GTD series, identifying
points in the time series that are > = 2.5 standard deviations above
the moving average. To avoid identification of multiple points that
surpass this threshold but actually correspond to a single true peak,
we collapsed points in close proximity to one another to the local
maximum (within 10 TR, corresponding to 7s or the approximate
time-to-peak of the hemodynamic response function [Friston, 2003]).
Furthermore, as these change points define our tailored segments for
downstream calculation of functional connectivity, we set a minimum
inter-peak distance of 25 TR to ensure sufficiently large segments for
calculating Pearson correlation (Schénbrodt & Perugini, 2013; Thirion
et al., 2007; Turner, Paul, Miller, & Barbey, 2018) (note: we reduce this
to 15 TR for the case of WM task data to accommodate the shorter
resting state segments we intend to capture). This final set of change
points define the boundaries of the tailored time segments, within
which we compute FC and between which we investigate potential
dynamic FC shifts.

2.2.2 | Functional connectivity estimation

For each tailored segment s, we compute the functional connectivity
matrix C®, where the i,jth entry is the Pearson correlation of the acti-
vation time series of ROIls i and j within the time segment, Ai(s)
and Aj(s):

(a)
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We then apply the Fisher transformation followed by z-scoring on
each FC matrix C®, to allow for better comparisons between connec-
tivity matrices of segments of differing lengths. Connectivity matrices
derived from shorter segments have, on average, higher correlation
values than those from longer segments, resulting in a skewed sample
distribution. Applying the Fisher transformation enforces an approxi-
mately normal distribution of the connectivity values within each seg-
1915),
connectivity values in terms of their standard deviations from the

ment (Fisher, and the z-score then translates these
mean. While these connectome transformations are common practice
in the field of FC, they are especially important when attempting to
compare connectomes from segments of variable lengths, which is
illustrated in Figure 2.

Thresholding is another common pre-processing step in func-
tional connectivity analysis, as it preserves only the high-fidelity con-
nections within connectomes and effectively filters out noise. Though
the Fisher transformation with z-scoring helps to align the sample dis-
tributions of connectivity values between longer and shorter seg-
ments, we still observed the effects of segment length when
thresholding on z-scores alone—connectomes from shorter segments
were denser (i.e., had more edges preserved) after thresholding than
connectomes from longer segments. This segment-length discrepancy
in connectome density with z-score thresholding had significant
downstream effects in our pipeline, as we found the resultant FC
state clusters were highly correlated with segment length. To avoid
these segment length effects, we fix the density of all connectomes
by thresholding to the top-K connections (or edges) in each
connectome. Recent work has suggested that such rank-based
schemes are optimal for reliability and reproducibility in FC analyses
(Bridgeford et al., 2020). Here, we set top-K = 10,000, which

(b)
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FIGURE 2 Effects of (a) no transformation, (b) z-score transformation, (c) Fisher transformation, and (d) z-scored (Fisher) transformation on

the distribution of Pearson correlation-based connectivity values in short (<25 TR) and long (>35 TR) segments
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preserves the strongest (i.e., highest magnitude) 27.95% edges,

thereby providing sufficient noise reduction.

223 | State clustering

The final step of our dFC framework involves using k-means clustering
to separate all thresholded connectomes into a discrete set of
k connectivity states. This state clustering occurs on the aggregated
set of m connectomes, where m is the total number of time segments
across all subjects in a single fMRI scanning session (Table 1). In tradi-
tional dFC streams, this approach involves performing k-means clus-
tering on the flattened upper triangular of all m connectomes,
however we found poor performance with this method, likely due to
the high dimensionality of the flattened connectomes (>35,000)
(Table S1). We address this issue of high dimensionality by generating
low-dimensional latent representations of each thresholded connec-
tivity matrix that sufficiently summarize the connectivity patterns
within the time segment. Specifically, we utilize state-of-the-art graph
embedding methods, which are commonly used in the field of data
mining to generate low-dimensional representations of graphs
(i.e., networks) (Rossi et al., 2020). Connectomes are graphs by defini-
tion, consisting of a set of nodes (ROIs) connected by edges (z-scored
correlations), so graph mining methods naturally extend to the
connectome space. To generate our graph embeddings, we first apply

GraphWave (Donnat, Zitnik, Hallac, & Leskovec, 2018) on the top-K-
thresholded connectomes to produce a set of d-dimensional node
embeddings for each of the n ROIs per connectome. GraphWave
learns structural node embeddings, which individually capture the
structural role of each node (ROI) within its local network neighbor-
hood and in aggregate provide insights into the topological organiza-
tion of the connectome graph. We then utilize principal components
analysis (PCA) to summarize the set of n d-dimensional node embed-
dings, concatenated into one long node embedding vector of length
n*d, into a single graph embedding vector by extracting the top
100 principal components. Aggregating these connectome graph
embeddings across all time segments from all subjects results in a fea-
ture matrix of size m x 100.

We performed k-means clustering on the resultant group-level
feature matrix, varying the number of clusters k in the range of 2-10.
To determine the optimal number of clusters we utilized the elbow
criterion of the cluster validity index, computed as the ratio of within-
cluster distance to between-cluster distance (Allen et al., 2014). We
mapped corresponding clusters across the session replicates to a sin-
gle overall state based on shortest Euclidean distances between the
cluster centroid connectomes. Reproducibility of FC state clusters
was tested across scanning sessions (two sessions for WM task, four
sessions for resting state). Test-retest reliability was calculated across
scanning sessions between centroid connectomes of corresponding

states using the image intra-class correlation (12C2) (Shou et al., 2013).

TABLE 1  Symbols and abbreviations Sl el Value
FC Functional connectivity -
dFC Dynamic functional connectivity -
WM Working memory -
ROI Region of interest -
GTD Global temporal derivative -
N Number of subjects N =922
n Number of ROIs n=268
dt Temporal derivative -
Ai Activation time series of ROl i -
Length of time series Twwm =405, Trest = 1200
t Time point t -
s, S Time segment s and total number of -
segments S, respectively
c® Functional connectivity matrix for time -
segment s
Ai(s) Activation time series of ROl i in time =
segment s
K Number of edges retained in top-K K =10,000
thresholding
k Number of clusters in k-means clustering k=(2-10)
m Total number of time segments/ mym1 = 8740, mym = 9052

connectomes across all subjects in a
single fMRI scanning session

d Dimensionality of graph embedding

MRESTIA = 16, 104,mREST13 = 16,015
MRgesT24 = 15,420, Mgestop = 16,062

d=100
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12C2 is the generalization of the intra-class correlation (ICC) coeffi-
cient to high-dimensional multivariate data, such as images (or in our
case, connectomes). As a brief description, let Xjc) be the true,
unknown connectome for state i and Wjlc) be the estimated
connectome for state i during session j at connectome edge c. The
classical measurement error model for the connectome images across

replication studies can then be written as

Wij(c) =Xi(c) +Uj(c)
where connectomes are represented as Cx 1 vectors; W;; = {Wj(c):
¢ =1, .., C} are the observed connectomes; X; = {Xi(c):c =1, ..., C} are

the true connectomes, and U;; = {Ujfc): ¢ = 1, ..., C} are the measure-

ment error of the connectomes. In this framework, i = 1, ..., I, where
| = total states=5,andj=1, ...,
nected to the classical measurement error model above and analogous

to the standard ICC formulation, the 12C2 is defined as:

Ji, where J; = total sessions = 4. Con-

trace(Kx) trace(Kw) —trace(Ky)
trace(Kw) trace(Kw)

_ trace(Ku)
trace(Kw)

12C2=

where Ky = cov(U;, Uy), Kx = cov(X;, X)), and Ky, = cov(Wj, W), and
both Ky and Kx cannot be estimated directly since U; and X; are
unobserved. Therefore, the 12C2 is computed using the following
method of moments estimators:

I
_ — 2
trace(Ky) = S 1(1 - 1); 2 ; {Wi(c)-Wi(0)}
- 1 4 c o )
trace(Kw) = Z Z {Wj(c)-W.(c)}
Z, 1 )1:1 j=1 c=1

5

— ! Wi(e) .
where W; (c) :M is the average connectome for state i over all
' Wii(c)

sessions j, and W_(c) :Z% is the average connectome across all
states and sessions. Utilizing these estimators, 12C2 metrics were
computed in R using the package provided by the authors in Neuro-
(https://rdrr.io/github/neuroconductor/12C2/man/12C2.

html). We further characterize the resultant connectivity states with

conductor

standard dFC features including average dwell time and state-to-state
transition probabilities, and go on to correlate these dFC features with
neurophenotypes of interest.

2.3 | Evaluation against ground truth

As described in Section 2.1.1, the WM task consists of four repeating
task/rest blocks, where each block is structured as follows: 27.5 s Task
1 (0-back), 27.5 s Task 2 (2-back), 15 s rest. This repeating task/rest
block structure of the WM Task data serves as a natural ground truth
for validation of our framework: if activation changes can truly be used
as markers for connectivity changes, then we should be able to show

that the discovered activation-informed change points align well with

true onsets of WM task conditions. In fMRI data, signals are expected
to be observed shortly after the stimulus, rather than directly aligned to
the stimulus onset, due to lag in the hemodynamic response. Further-
more, the nature of block-design tasks results in sustained task-related
activation changes rather than instantaneous spikes and subjects may
require an additional 1-2 s after the condition onset to fully enter the
task state and experience the full effects of the task-induced activation
response. Based on this, we defined a state change response window
of 12 TR (8.6 s) to account for the hemodynamic response time of
10 TR (7.2 s) as well as an additional buffer of 2 TR (1.4 s) for subjects
to fully enter the task condition state. All peaks identified in the GTD
series were labeled as either true positives or false positives based on
whether they fell within the state change response window following a
known task condition transition or not. Based on these labels, we calcu-
late the overall precision and recall of our activation-informed change
point detection, as well as the recall for transitions into each of the
three task conditions (Task 1, Task 2, and Rest).

24 | Comparison to sliding window

While the sliding window framework has been widely used to esti-
mate dynamic FC states in resting fMRI where ground truth state
changes cannot be known, it has not, to the best of our knowledge,
been validated against a block-design task structure where the ground
truth state changes are in fact known. To enable a direct comparison
with the performance of our activation-informed segmentation
method we applied the sliding window framework to the WM task
data using the Group ICA of fMRI toolbox (GIFT) (https://
trendscenter.org/software/gift/; Center for Translational Research in
Neuroimaging and Data Science, Atlanta, Georgia) implementation,
2014) as

closely as possible. Specifically, we first performed group-level spatial

following the parameterization detailed in (Allen et al.,

independent component analysis (gICA) (Calhoun, Adali, Pearlson, &
Pekar, 2001) to extract 50 independent components (ICs). IC time
series then underwent a standard postprocessing procedure to
remove low-frequency trends associated with scanner drift, motion
related variance and any other nonspecific “spikes” or possible noise
artifacts. Next, we utilized the dFNC function in the GIFT toolbox to
perform the sliding window analysis. As in (Allen et al., 2014), we use
a tapered window created by convolving a rectangle (window
size = 44 s/61 TR) with a Gaussian (c = 3 TR) and sliding in steps of
1 TR, resulting in 344 total windows per WM fMRI session, and a total
of 317,168 windows across all 922 subjects for each WM Sessions
1 and 2. Finally, the upper triangular of the windowed connectomes
were used as feature vectors of length (50 x (49))/2=1225, and k-
means clustering was applied to separate all windows into a set of
k states. We utilized the “estimate_clusters” option in the GIFT tool-
box to identify the optimal value of k from the range of 2-10. Further
details regarding the implementation of the GIFT toolbox steps can be
found in the software manual (https://trendscenter.org/trends/
software/gift/docs/v4.0b_gica_manual.pdf). To evaluate the accuracy

of the resultant sliding window state clustering and compare against
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that of our proposed method, we implemented the common design
choice of setting the ground truth label (i.e., “task” or “rest”) for each
window as the label assigned to the time point at the center of the

window, in this case timepoint 31.

3 | RESULTS
3.1 | The GTD method accurately identified
known transitions during a working memory task

Results of GTD-based peak discovery in WM task data are shown in
Figure 3. The distribution of the discovered GTD peaks across all sub-
jects showed a concentration of peaks immediately after a new condi-
tion onset (Figure 3B). In fMRI data, signals are expected to be
observed shortly after the stimulus, rather than directly aligned to the
stimulus onset, due to lag in the hemodynamic response. Using the
true positive and false positive labels detailed earlier in Section 2.4,
we found an average precision of 0.72 and average recall of 0.66 of
all discovered change points against ground truth state transitions

(Table 2). We found that Task 1 and Rest state onsets were more

readily identifiable by our method than Task 2 onsets (Recall 0.67,
0.75, and 0.57, respectively), indicating that transitions from task state
to rest state and vice-versa elicit more significant changes in moment-
to-moment activations than transitions from an easier 0-back WM
task (Task 1) to a more difficult 2-back WM task (Task 2).

We found the optimal number of clusters k = 3 for both WM Ses-
sion 1 and WM Session 2. Figure 3A illustrates the alignment of our
segments, colored by their respective clusters, to the ground truth
WM task conditions. Overall, we found good segregation between
task and rest conditions, with improved accuracy in later block repeti-
tions. As observed with the change point detection, the separation
between Tasks 1 and 2 conditions is more difficult, owing both to the
similarity in connectivity between the two working memory task con-
ditions and to the lack of change point detection at Task 2 onset
points resulting in segments that span the time frame of both Tasks
1 and 2. Homogeneity and normalized mutual information (NMI) met-
rics of our discovered clusters compared to the known ground truth
are reported in Table 2. As our temporal segments may not directly
align to the ground truth task blocks we derived ground truth labels
for each discovered segment based on the corresponding task condi-

tion throughout the majority of the segment.

Subjects

Subjects

State 1
® State 2
o State 3

" Task 1 Onset

(b)

Task 2 Onset
Rest Onset

FIGURE 3 Results of the activation-informed segmentation for all subjects in structured WM task data. (A) Temporal alignment of our
discovered segments colored by their corresponding state labels given by k-means clustering shows good alignment to known ground truth
conditions (onsets marked by vertical lines: dashed for Task 1 onset, dotted for Task 2 onset, solid for Rest onset). (B) Histogram of discovered
GTD peak locations show strong alignment to known condition onsets
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TABLE 2
dynamic state changes in WM task data

Activation-informed segmentation

Performance of the activation-informed segmentation method and the standard sliding window method in recovering ground truth

Sliding window

Pipeline step Metric WM Session 1 WM Session 2 Average WM session 1 WM session 2 Average
Change point discovery Overall Precision 0.74 0.70 0.72 - - -
Overall Recall 0.67 0.64 0.66 - - -
Task 1 Recall 0.72 0.62 0.67 - - -
Task 2 Recall 0.54 0.59 0.57 - - -
Rest Recall 0.77 0.73 0.75 - - -
Clustering Optimal k 3 3 3 5 5 5
Homogeneity 0.327 0.233 0.280 0.037 0.037 0.037
NMI 0.231 0.159 0.195 0.018 0.018 0.018

Note: The change point discovery step is unique to our framework and unable to be reported for the sliding window method.

3.2 | Inthe working memory task, activation-
informed segmentation performance was superior to
sliding window

We report the results of the GIFT toolbox sliding window pipeline for
k = 5 states, which was estimated as the optimal k using the auto-
mated cluster estimation available in the GIFT toolbox (Table 2).
Though the sliding window approach does capture some repeating
task versus rest signal (Figure 4), we found the GIFT sliding window
approach had significantly decreased performance in segregating
between known task and rest condition windows compared to our
activation-informed segmentation approach (homogeneity = 0.037
vs. 0.280, respectively). Based on these results, we can conclude that
our method more effectively and efficiently summarized the FC in
each time segment, resulting in a 99.8% reduction in size of the final
feature set passed to k-means compared to that of the sliding window
approach (8740 x 100 vs. 3,17,168 x 1225 in WM Session 1). Fur-
thermore, our method proved to be much more computationally effi-
cient than the sliding window approach, completing in <2 hours for all
subjects in a single WM session while the GIFT toolbox required
>24 hours to complete the requisite ICA and dFNC steps for the same
data. Considering together the accuracy, data reduction and the
runtime, we found our activation-informed segmentation method to
outperform the traditional sliding window paradigm in recovering
dynamics in the context of a block-design ground truth.

3.3 | The activation-informed segmentation
method identified five connectivity states during rest

We applied our activation-informed segmentation pipeline separately
on four sessions of resting state fMRI data. Using the elbow criterion
of the cluster validity index, we consistently found the optimal num-
ber of clusters k = 5 across the four sessions (Figure 5). Though our
state clusters were derived using the graph embedding vectors as
described above, we characterized the connectivity of each discov-
ered cluster

using the more interpretable top-K thresholded

connectomes derived upstream in our pipeline for all segments in
each cluster. We mapped corresponding clusters across the four ses-
sion replicates to a single overall “dynamic state” based on shortest
Euclidean distances between the cluster centroid connectomes and
found that each centroid was mapped only to one overall state by this
criterion, indicating each state did indeed exhibit a unique connectiv-

ity signature.

3.4 | Connectivity states during rest exhibit
excellent Test-Retest reliability

To assess the stability of these clusters we use the 12C2 metric, which
was developed to assess the reliability of MRI images for a set of sub-
jects across several image acquisition sessions. The 12C2 metric is a
high-dimensional multivariate generalization of the intra-class correla-
tion coefficient for use on images and other multi-dimensional data,
such as connectomes (Shou et al., 2013). A brief description of 12C2
and its application in our case can be found in Section 2.2.3 above.
We found very high replicability of our states across the four sessions
(12C2 = 0.96), suggesting that the dynamic states recovered by our
method are indeed persistent across subjects and time, and may also

be cognitively meaningful.

3.5 | Activation peaks observed during rest closely
resemble peaks found when transitioning in and out of
cognitively demanding task states

We found that the magnitude of the GTD peaks that correspond
to our discovered FC change points and define our dynamic
states in rest are on the same order and mirror the distribution of
the peaks found in the WM task setting (Kullback-Leibler diver-
gence = 0.030; Figure 6). This indicates that the changes in func-
tional brain activity between dynamic states in rest are as strong
as those observed when transitioning in and out of a cognitively

demanding task state.
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WM Session 1

- Task 1 Onset
,,,,,,, Task 2 Onset

WM Session 2

Rest Onset

Subjects
Subjects

) State 1

L] State 2

State 3
L State 4
) State 5

Windows

Windows

FIGURE 4 Results of GIFT toolbox-based sliding window framework for all subjects in structured WM task data. Task condition onsets
marked by vertical lines: dashed for Task 1 onset, dotted for Task 2 onset, solid for Rest onset

3.6 | Connectivity states involve brain-wide
connectivity patterns and prominently involve
prefrontal/sensory-motor coupling

We further characterized the overall connectivity signature of each
resultant dynamic state by averaging the corresponding cluster centroids
across the four sessions. This signature connectome for each of the five
overall dynamic states is presented in Figure 7. Overall, we observed
states that reflect shifting connectivity across network modules, rather
than within network modules, consistent with prior work (Betzel,
Fukushima, He, Zuo, & Sporns, 2016; Zalesky, Fornito, Cocchi, Gollo, &
Breakspear, 2014). In particular, we observed changing patterns of brain
integration and segregation, prominently involving the frontoparietal
network and the default mode network (Zalesky et al., 2014). States 1, 3,
and 5 all involve sensory/motor anti-correlation with the frontoparietal
network and default mode network. State 1 encompassed all sensory
and motor networks, while State 3 had greater visual network specificity
and State 5 had greater motor specificity. State 2 was characterized by
anticorrelation between frontoparietal and medial frontal network, with-
out sensory/motor involvement. State 4 exhibited none of the above
motifs—just the within network connectivity that was common to all of
the states. Importantly, the five states we observed are highly similar to
the states identified in this same HCP dataset using the classic sliding
window paradigm as reported in Nomi et al., (2017).

3.7 | Resting connectivity states exhibit complex
patterns of transitioning

In addition to summarizing each dynamic state by its unique connec-
tivity patterns, we also extracted common dFC features including

state-to-state transition probabilities, average dwell times per state,
and number of occurrences of each state across the four resting ses-
sions. We extracted these dFC features on a per-subject basis and
then averaged them to capture the general patterns for all five
dynamic states at the group level. The average state-to-state transi-
tion matrix, average dwell times, and average number of occurrences
per state across all subjects are depicted in Figure 8. Overall, we
found the highest probabilities of transitioning into State 4 from any
of the other states. Interestingly, State 4 also exhibits the shortest
dwell time of all five states, averaging a duration of 29.8+2.5 s, as
well as the highest average number of occurrences. This coupled with
the lower overall connectivity observed in State 4 suggests that this
may represent a “buffer” state between the other dynamic states.

3.8 | Resting connectivity states are correlated
with behavioral phenotypes including cognition,
personality, and psychopathology

We performed a regression analysis to assess the combined relation-
ship between subject-specific dFC feature vectors, averaged across the
four resting state sessions, and several neuro-relevant phenotypes.
Specifically, we consider 10 cognitive metrics: a general factor of intelli-
gence (G; generated from a bifactor model as described in [Sripada,
Angstadt, Rutherford, Taxali, & Shedden, 2020]), processing speed (gen-
erated from factor modeling of three NIH Toolbox tasks as described in
(Sripada et al., 2019)), the five facets of personality given by the
Revised NEO Personality Inventory (openness to experience, conscien-
tiousness, extraversion, agreeableness, and neuroticism), and the three
dimensions of psychopathology given by the Adult Self Report Scale
(Internalizing, Attention Problems, Externalizing). We also included the
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FIGURE 5 Temporal alignment of activation-informed segments and their corresponding state labels given by k-means in all four resting state

fMRI sessions

covariates of age and gender. All features (besides the binary gender
marker) were z-scored prior to the regression analysis, so the resultant
model  values could be interpreted similarly to correlation values. At a
Bonferroni-corrected a =0.005 significance threshold, we found sig-
nificant relationships between our dFC features and four phenotypes
(G, externalizing behavior, agreeableness and conscientiousness). Sig-
nificant regression results are reported in Table 3.

3.9 | Resting connectivity states are unrelated to
head motion

Head motion is a serious confound in studies of functional connectivity
(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012; Power,

Schlaggar, & Petersen, 2015; Satterthwaite et al, 2012; van Dijk,
Sabuncu, & Buckner, 2012). Moreover, it has recently been argued that
head motion may in fact generate the time varying connectivity
observed with sliding window methods (Laumann et al., 2017). We thus
sought to determine whether the connectivity states we detected at
rest with the GTD method were related to head motion. We found no
significant correlation between the mean framewise displacement time
series and the GTD series in all four resting state sessions
(r = —0.0027; 95% CI = [-0.006, 0.0007]). We report all time-lagged
cross-correlations for =10 TR in each of the four resting state sessions
in Table S2. This lack of correlation between framewise displacement
and the GTD series suggests that there is no significant contribution
of head motion to our discovered change points, and thereby our final
dynamic states in rest. Taken together, these results strongly support
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the general existence of dynamicity in resting state and the reliability
of the states discovered by our activation-informed framework.

4 | DISCUSSION

In this study, we introduce a new data-driven approach for assessing

dynamic functional connectivity through informed time series

WM
[ REST

3000

2000

Count

1000

80 100 120 140 160
GTD Magnitude at Peak

FIGURE 6 Histograms of GTD magnitudes at discovered peaks
for 9700 change points in WM Session 1 and a size-matched random
sample of change points in Rest Session 1A show similar distributions
(Kullback-Leibler divergence = 0.030)

State 2

State 3

segmentation. Our method, termed the activation-informed segmen-
tation method, aims to derive FC states without the limitations of a
predefined time scale for the dynamics or highly overlapped sliding
windows. This framework is built upon the theory that changes in
functional connectivity are mirrored by changes in functional activa-
tion. We validated our activation-informed segmentation method in a
working memory task setting where ground truth transitions between
cognitive states are known. In this validation experiment we found
that our method accurately marked known task boundaries, correctly
recovered three connectivity states, and displayed a precision and
recall profile that compared favorably to a leading sliding window
approach. When applying the method to resting state data, we
detected five connectivity states that displayed excellent test-retest
reliability across four sessions of resting fMRI, exhibited complex tran-
sition dynamics, were correlated with multiple behavioral phenotypes,
and were essentially unrelated to head motion. Our work expands the
methodological toolkit for quantifying and characterizing time-varying
connectivity and provides new evidence for the existence of distinct
dynamic states during rest.

We assessed the activation-informed segmentation method and
sliding window approach head-to-head on a block-design working
memory task to test whether these methods detect connectivity state
changes where ground truth is known. Laumann et al. performed a
test of the opposite issue: They examined a task with extended blocks
where connectivity is assumed to be stable and found sliding window
methods inappropriately found changing connectivity states where
such changes are assumed to be absent (Laumann et al., 2017). In our

Stated

FIGURE 7 Connectivity signatures for each of our five discovered resting FC states. Connectivity signatures are defined by the centroid
(i.e., average) of all connectomes belonging to each state cluster. Glass brain views show the top 0.5% of connections (360 edges) for each state



5730 | Wl LEY DUDA €T AL.
(a) (b)

State 1 State 2 State 3 State 4 State 5 State 1

State 2
State 1

State 3

State 4
State 2

State 5

0 10 20 30 40 50 60 70
Dwell Time (s)
State 3

()

State 1
State 4 State 2
State 3
State 5 State 4
State 5
10 15 20
Occurrences

FIGURE 8 Average transition probabilities of moving from State X (along rows) to State Y (along columns) (a), dwell times (b), and number of
occurrences (c) across all subjects and resting state fMRI sessions

TABLE 3  Ordinary least squares regression results for test, the activation-informed segmentation method performed well.

significantly predicted phenotypes (Bonferroni-corrected = 0.005) We observed an average precision of 0.72, meaning that 72% of acti-

Feature p coefficient  p-value vation changes detected by our algorithm corresponded to true
Dependent variable = G: model F-statistic = 0.000306 changes in functional connectivity. Furthermore, the recall of true
Gender 0.30 0.000 state transition points by our method averaged 0.66 and reached as
State 1 to State 3 transition probability  —0.144 0,041 high as 0.77 depending on the strength of the functional connectivity

. . X changes, indicating that a majority of known connectivity transitions
Dependent variable = externalizing behavior; model

F-statistic — 1.56e-05 are indeed marked by changes in global functional activation. In con-
Gender 287 0.000 trast, the GIFT sliding window method precludes the calculation of
State 3 to State 1 transition probability 2,57 0.008 such precision and recall statistics due to the highly overlapping
nature of the resultant windows. When considering the accuracy of
State 3 to State 2 transition probability -3.38 0.008
the final state clustering, our method indeed performed ~75% better
Probability of remaining in State 3 —208 0.025 than the sliding window method in separating blocks of true task from
State 3 to State 4 transition probability =345 0.011 true rest. As far as we know, this is the first such test of the sliding
State 3 to State 5 transition probability  —3.24 0.004 window method in task data where ground truth is known. The fact
State 5 to State 1 transition probability ~ —1.23 0.050 that the sliding window has only fair accuracy in finding changes in
State 5 to State 3 transition probability =~ —2.01 0.014 connectivity state suggests there is room for improvement and rein-
Probability of remaining in State 5 -1.40 0.010 forces our claim that further methods innovation in the study of time
Occurrence of State 5 1.20 0.039 varying FC would be beneficial.
Age —0.22 0.006 The activation-informed segmentation method found five states
Dependent variable — agreeableness; model F-statistic = 1.94e-06 at rest and these states showed excellent test-retest reliability. These
Gender 191 0.000 states appear to be broadly consistent with those reported in the pre-
State 1 to State 5 transition probability 0.82 0.030 vious literature in terms of number of states as well as connectivity

atterns (Nomi et al., 2017). Furthermore, the mean dwell times are
Dependent variable = conscientiousness; model F-statistic = 0.00127 P ( : . Fu W :

similar in duration. We also found these states are linked to a number

Gender -1.21 0.003 . . X . L
of behavioral phenotypes - with the magnitudes of relationships simi-
P ility of ining i 1 b .031
robability of remaining in State 0.66 0.03 lar to those reported in prior studies (Nomi et al, 2017). Taken
Dwell time State 5 -0.73 0.005

together, these results suggest that there is some continuity in our
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results with the results from sliding window approaches. Nonetheless,
some key differences remain. First, the states identified here have
much higher test-retest reliability. Second, the method to identify
them is intuitive, computationally efficient, and appears not to be
driven by artifactual causes (e.g., head motion).

A key assumption of our method is that activation changes can
serve as a marker of changes in connectivity states. Several lines of
evidence support this assumption. First, there is a substantial set of
studies (discussed in the Introduction) that document connectivity
patterns that arise during distinct task conditions. Importantly, these
task conditions are antecedently known to produce distinct distrib-
uted activation profiles so that transitions into the relevant task con-
ditions would produce activation shifts. Second, in the present study,
we observed GTD peaks during the N-back working memory task
when subjects shift task conditions, and we observed distinct connec-
tivity states in the segments flanked by these GTD peaks. Third, if our
main assumption were false, that is, if activation shifts fail to mark
changes in connectivity states, then we should not have found large
activation shifts during rest that are associated with distinct, highly
test-retest reliable connectivity states. The fact that we did observe
these results from rest provides further support that there is in fact a
link between activation shifts and connectivity state changes. Finally,
as we noted in the previous paragraph, the states identified have simi-
larities along multiple dimensions with states identified through tradi-
tional sliding window methods. If our activation-informed
segmentation approach can find connectivity states that are broadly
similar to those found by sliding window approaches, this can only be
explained if activation changes do indeed serve as a marker of con-
nectivity changes.

In a somewhat unexpected finding, we observed GTD peaks during
rest (corresponding to state change points) that were similar in magni-
tude to those seen during a working memory task. This finding is nota-
ble because the N-back working memory task is highly cognitively
demanding and produces vigorous activations across a distributed
“task-positive network” (Cabeza & Nyberg, 2000; Cole &
Schneider, 2007; Mazoyer et al., 2001; Niendam et al., 2012). Rest, in
contrast, is assumed to be a state of substantially reduced cognitive
demands (Andrews-Hanna, Reidler, Huang, & Buckner, 2010; Buckner,
Andrews-Hanna, & Schacter, 2008; McKiernan, Kaufman, Kucera-
Thompson, & Binder, 2003). It is thus remarkable that we observed
GTD peaks during the resting state on par with those that occur in
response to transitions in and out of a cognitively demanding task. The
fact that resting GTD peaks are so large provides additional support for
our framework, which is based on the idea that easy-to-detect GTD
peaks can be leveraged to identify hard-to-detect changes in connectiv-
ity states—large GTD peaks are particularly easy to detect. But critically,
large GTD peaks during rest should be of independent interest to the
field. That is, irrespective of their link to changes in connectivity states
(which has been our focus in this study), the fact that there are regular
and robust GTD peaks during rest is itself a phenomenon that needs
follow up investigation and explanation.

There has been some skepticism in the field about the reality of
time varying connectivity. A sizable portion of this debate centers on

the sliding window methodology for demonstrating varying connectiv-
ity states (Laumann et al., 2017; Lindquist et al., 2014). It is claimed
that this method generates artifacts, finds changes where none exist,
etc. An important advance of the present study is that it demonstrates
time-varying FC during rest without reliance on sliding window
methods. Moreover, the associated connectivity states exhibit excel-
lent test-retest reliability. Therefore, we believe that the present
study offers some of the strongest evidence to date for the reality of
time-varying connectivity at rest. More specifically, we suggest that
the state transition points identified by our framework actually repre-
sent a lower bound of the “true” dynamic state changes in rest. This is
because there is likely only an imperfect relationship between activa-
tion shifts and connectivity state changes: the former may be suffi-
cient but not necessary for the latter. Thus, there may be at least
some connectivity state changes that are not anteceded by prominent
(and thus easy-to-detect) GTD peaks, and our method will fail to
detect the presence of such connectivity states. One such example is
the transition between Tasks 1 and 2 conditions in the WM task
experiment, in which we observed lower recall for the GTD peak
detection at these points, indicating these particular connectivity state
changes are more subtle and nuanced than transitions from rest to
task states and do not result in strong whole brain activation changes.
Future work should seek to extend the change point detection
scheme developed here to enable identification of these “connectiv-
ity-only” transitions. Such a method could be formulated as an exten-
sion of existing instantaneous connectivity estimation methodologies
(i.e., MTD, ECF, DCC), aimed at identifying significant moment-to-
moment changes in multivariate connectivity rather than univariate
activation. It is also possible these requirements can be fulfilled
through the use of deep learning approaches, specifically recurrent
neural network architectures, which are designed to learn complex,
nonlinear patterns in multivariate time series data (Li & Fan, 2018).
This study has several limitations. First, we rely on a key assump-
tion that activation shifts, more specifically those activation shifts that
are strong enough to be observed at the whole-brain scale, can serve
as a marker for changes in connectivity states. We acknowledge that
the relationship is likely imperfect, and our method may underesti-
mate the true number of states. The strength of our method, nonethe-
less, is simplicity and transparency, enabling the method to vyield
notably strong evidence for dynamic states at rest. Second, our peak
detection scheme is reliant on several empirically tuned parameters as
well as an exponentially weighted moving average operation that may
be subject to similar criticism as the sliding window Pearson correla-
tion approach. However, it is important to note that the identification
of local maxima in a univariate signal (i.e., GTD) is not as sensitive to
window size as computation of multivariate cross-correlations—the
strongest peaks will survive across a variety of moving average win-
dow lengths. Additionally, we note that there are methods available
for peak detection that do not rely on moving averages that can be
substituted into our pipeline, and future work can explore these
approaches. Third, unlike sliding window methods that impose a uni-
form length on windowed connectivity matrices, the activation-

informed segmentation method is sensitive to the duration of states.
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We mitigated this in multiple ways, including Fisher transformation
and z-scoring of Pearson correlation-based connectivity matrices, as
well as employing a top-K thresholding to control connectome density
across both short and long segment lengths. Fourth, the meaning and
importance of the dynamic states uncovered by the GTD method is
unclear. We showed activation shifts are large (comparable to transi-
tions in and out of a working memory task). We also presented initial
data that connectivity states are linked to phenotypes of interest. But
additional work is needed to establish what psychological processes
are reflected in these dynamic states, and whether quantifying these
transient states will yield significant theoretical and practical insights
in psychology and neuroscience.

In sum, we introduce here a novel method for identifying dynamic
states in fMRI that generates data-driven segments of stable FC, vali-
date the method in task data where ground truth is known, and dem-
onstrate that the method finds considerable evidence for the

presence of dynamic states at rest.
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