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Abstract

Solar flares have been linked to some of the most significant space weather hazards at Earth. These hazards,
including radio blackouts and energetic particle events, can start just minutes after the flare onset. Therefore, it is of
great importance to identify and predict flare events. In this paper we introduce the Detection and EUV Flare
Tracking (DEFT) tool, which allows us to identify flare signatures and their precursors using high spatial and
temporal resolution extreme-ultraviolet (EUV) solar observations. The unique advantage of DEFT is its ability to
identify small but significant EUV intensity changes that may lead to solar eruptions. Furthermore, the tool can
identify the location of the disturbances and distinguish events occurring at the same time in multiple locations.
The algorithm analyzes high temporal cadence observations obtained from the Solar Ultraviolet Imager instrument
aboard the GOES-R satellite. In a study of 61 flares of various magnitudes observed in 2017, the “main” EUV flare
signatures (those closest in time to the X-ray start time) were identified on average 6 minutes early. The
“precursor” EUV signatures (second-closest EUV signatures to the X-ray start time) appeared on average 14
minutes early. Our next goal is to develop an operational version of DEFT and to simulate and test its real-time use.
A fully operational DEFT has the potential to significantly improve space weather forecast times.

Unified Astronomy Thesaurus concepts: Solar extreme ultraviolet emission (1493); Solar flares (1496); Solar
corona (1483)

1. Introduction

It is well known that significant extreme-ultraviolet (EUV) and
X-ray radiation occurs at the time of a flare. This radiation can be
observed at the flare footpoints, where plasma is heated by
nonthermal electron beams. The electrons are accelerated through
magnetic reconnection, and some of them travel down along the
magnetic field lines and bombard deeper layers of the atmosphere
Brown (1971). Mrozek et al. (2007) showed that higher-energy
electrons are able to pass deeper into the atmosphere and lead to
EUV radiation at the flare footpoints. Studying the 2003 October
28 X17 class flare, Su et al. (2006) found magnetic shear in the
flare region that decreased significantly during the impulsive
phase of the flare. They also found EUV brightenings before the
hard X-ray emission, which appeared to be associated with the
main-phase flare. Su et al. (2006) hypothesized that the EUV
brightenings that occurred before the X-ray emission have the
same generation mechanism as the ones that appeared during the
flare. In this paper we present evidence that, with a highly
sensitive instrument and the right processing tools, pre-flare EUV
signatures can be detected for all magnitudes of flares and
potentially used for space weather forecasting.

Understanding the physical processes leading to solar flares
and developing tools to identify them early are essential for
space weather forecasting. Solar flares can cause a number of
space weather hazards at Earth: the X-ray radiation from flares
increases the ionization of the ionosphere (Tobiska et al. 2000),
potentially leading to high-frequency radio blackouts, and the
energetic particles from flares can disrupt technological systems
and human activities in space. Furthermore, since the radiation
originating in the flares travels at the speed of light, the impacts
are often felt by the time the flares are detected.

Over the past decade, there have been many advancements in
flare forecasting. A large number of prediction tools now utilize

machine-learning (ML) methods (e.g., support vector machine,
k-nearest neighbors, randomized trees, random forest) in order
to forecast the likelihood of flares occurring in the next 24 hr
(Alipour et al. 2019; Chen et al. 2019; Domijan et al. 2019; Liu
et al. 2019; Zheng et al. 2019; Deshmukh et al. 2020; Jiao et al.
2020; Li et al. 2020; Panos & Kleint 2020; Tlatov et al. 2020;
Wang et al. 2020; Abed et al. 2021; Asaly et al. 2021;
Nishizuka et al. 2021). Many of these methods claim to have
relatively high skill scores for forecasting flares. However,
these evaluations can be dependent on the database used and
the type of performance metrics chosen. Leka et al. (2019)
analyzed a large number of forecast methods, and the results
showed that while many methods performed above the “no
skill” level, none of the operational flare forecasting methods
performed above 0.5 across all evaluation metrics. Note, 0.5 is
the value halfway between “no skill” and “perfect.”
Furthermore, ML methods can be computationally heavy,

they can require multiple data inputs that might not be readily
available in real-time, and their success is dependent on the
initial training data set. For this reason, most of them are not
ready for operational, real time space weather forecasting. While
there is undoubtedly value in forecasting the possibility of a flare
within 24 hr (a capability offered by numerous ML methods), in
the realm of operational space weather preparedness, there is
even more value in forecasting an impending flare within an
hour. A shorter, more precise lead time can give industries and
agencies vulnerable to space weather disturbances a chance to
minimize interruption to services and operations.
Among the flare prediction tools that do not use ML, Shramko

et al. (2019) demonstrated the possibility of forecasting flares
within 24 hr relying solely on microwave radiation signatures.
Goodman et al. (2020) studied 14 active regions and showed that
increases in the photospheric resistive heating rate in active
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regions are correlated with the occurrence of M and X flares a
few hours to a few days later. Morales & Santos (2020)
investigated the predicting capabilities of the Lu and Hamilton
self-organized-criticality avalanche model (Lu & Hamilton 1991).
In the cases studied, they found that in more than half of the cases
there was enough information to predict large or extreme events.

Flare forecast methods are often difficult to compare because
they analyze different data sets. Barnes et al. (2016) reviewed and
systematically compared 11 statistical forecast methods that rely
on photospheric magnetic field and continuum intensity observa-
tions (for more details on the methods, see Barnes et al. 2016).
The comparative study showed that none of the methods stood out
or achieved high skill score values.

Guerra et al. (2020) investigated ensemble forecasting for major
solar flares by linearly combining full-disk probabilistic forecasts
from six operational forecasting methods. A total of 28 ensembles
were created to study M- and X-class flare forecasts. They found
that the majority of ensembles performed not only better than the
ensemble members alone but also better than the equal-weights
ensemble. While this is a promising result, an ensemble forecasting
method would be more computationally heavy and require more
time to provide a forecast, compared to just one model. Such an
ensemble might also rely on data that are not readily available in
real time.

It is clear that the challenge to construct a real-time, consistent,
and robust flare forecasting method is still ongoing. It is also
important to emphasize that any competitive forecast method
needs to rely primarily on data that are acquired in near real time
—without this, even the best forecasting tool will fall short of
operational use.

In order to mitigate the impacts of flare-related space weather
events, it is critical to identify flares as early as possible.
Ideally, we would not only identify flares as they happen but
also predict them in advance. However, the latter is still a major
challenge. This lack of predictive capability indicates that we
have yet much to discover about the physics of flares: how
flares are initiated, whether there are different processes that
trigger flares, the potential differences between flare initiation
mechanisms, when these mechanisms start and when/if they
are observable by currently available instruments, and whether
the magnetic configuration of an active region is a key factor in
the initiation, recurrence, and magnitude of flares. These are
questions that have been extensively studied and yet are still
highly debated in the solar physics community. As of this
moment, consistent and reliable flare prediction is still out of
reach.

Flares have been and are still primarily detected using space-
based instruments measuring solar X-ray irradiance (e.g., the
XRS instrument aboard the GOES spacecraft; Hanser &
Sellers 1996). However, these measurements suffer from
several important limitations, which also affect the globally
trusted flare detection methods used by the National Oceanic
and Atmospheric Administration Space Weather Prediction
Center (NOAA/SWPC). First, since X-ray irradiance is an
integrated signal, the location of the source region is unknown
(it is identified manually after the fact). Furthermore, using
irradiance, we cannot know whether the signal came from one
or more regions and how the distribution of the signal changed
over time. Second, in order to avoid false detections due to
small variations in the coronal background, SWPC’s detection
method requires a rise in the total X-ray irradiance for at least 4
consecutive minutes and a total increase of at least 40% before

it registers a flare (Ryan et al. 2016). Hence, there is an inherent
delay in this flare detection method. Also, XRS is not sensitive
enough to identify weak flare precursor signatures that might be
evident in solar imagery but not in the total X-ray irradiance of
the Sun.
As mentioned above, this approach is also limited when co-

temporal flares occur: a second flare can be detected only after
the irradiance drops below 50% of the difference between the
pre-flare flux and the peak flare flux. This means that the
method sometimes fails to appropriately identify flares that
occur at or around the same time in different locations on the
Sun. Typical forecasting scenarios only allow for alerts, issued
when flare irradiance reaches a certain threshold, and follow-up
summary messages are generally issued well after the peak of a
flare event. At SWPC, alerts are issued when irradiance reaches
the M5 level flare threshold, with no pre-alert warning.
We propose to complement and improve on current operational

flare detection strategies using state-of-the-art, real-time, low-
latency observations from the Solar Ultraviolet Imager (SUVI;
Fulbright et al. 2017; Tadikonda et al. 2019) instrument aboard
the GOES-R satellite. Preliminary tests of our new detection
method—the Detection and EUV Flare Tracking, aka DEFT—
reveal improvements of several minutes in main-phase flare alert
times, and over 10 minutes in precursor signature detection.
Furthermore, we can also detect and separately track concurrent
events. These improvements can yield important gains in
prediction times for solar flares, and they could allow warnings
to be issued in advance of the primary onset of a major flare—
which is currently not possible. In the following sections we will
describe the data we used (Section 2), our new detection method
(Section 3), and the initial results of our investigation (Section 4).
We conclude by discussing the implications of DEFT for the
future of flare warning and space weather forecasting and how we
will further develop our tool (Section 5).

2. Instrument and Observations

SUVI is a normal-incidence EUV Ritchey-Chrétien telescope
that observes the solar atmosphere in six ultraviolet passbands—
93, 131, 171, 195, 284, and 304Å—corresponding to emission
from ion species at a range of temperatures between about 50,000
K and 20 MK. SUVI images are approximately 53 3× 53 3,
1280× 1280 pixel square images with a plate scale of 2 5. Each
SUVI instrument operates at a cadence of 10 s, obtaining images at
a variety of wavelengths and exposure times. SUVI observations
extend back to early 2017 (at this moment, public data are only
available from 2018 May).
Narrowband images, such as those we use from SUVI, are

capable of distinguishing plasma at a wide range of temperatures,
and they are sensitive to a variety of possible signs of flare onset
that can occur before the production of high-temperature plasma
(generally observed in X-rays). Because different passbands
correspond to ion species at different temperatures, various
narrowband image channels respond differently to flares depending
on when and where heating or cooling of the flare-associated
plasma is occurring. The overall sensitivity of the EUV images we
use allows us to detect very small, localized changes in radiance
that would not be detectable in integrated flux measurements.
Furthermore, SUVI observations provide imaging (as opposed to
integrated signal), which allows us to resolve the locations of flares
and their temporal changes. Thus, we are able to distinguish events
that are happening at or around the same time, which is impossible
with irradiance observations.
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On global scales EUV emission tends to brighten some time
after more energetic emissions like X-rays. However, smaller
features typically brighten at or before the onset of eruptions,
particularly in high-temperature channels where plasma might
be energized by the initial onset of magnetic reconnection.
Reeves & Golub (2011) and Savage et al. (2012) discuss such a
case, where structures that are clearly associated with
reconnection in a current sheet were the earliest signs of an
eruptive flare. These bright structures are relatively small, so
they do not significantly influence the total solar irradiance
early in the flare and might not be detectable in irradiance
measurements. However, they could be detectable in EUV
images.

3. The DEFT Flare Detection Method

Our goal with DEFT is to identify solar flares of space
weather relevance in EUV observations quickly, consistently,
and with minimal computational overhead. We assembled a
catalog of 61 flares from 2017, using GOES-R 16/SUVI data.
We stored their magnitude and X-ray start time using the
SWPC flare database. We then obtained GOES/SUVI EUV
observations before and after the recorded flare start times. This
was done in order to identify possible EUV signatures before
the flare X-ray start time or afterward, if none were identified
beforehand.

We investigated the efficiency of the six available SUVI
wavelengths at detecting pre-flare EUV signatures. The temporal
cadence for some wavelengths is not optimal: the 131, 171, and
284Åwavelength observations have a cadence of 4 minutes,
which could mean a 4-minute delay in detection. The 94Å
wavelength observations have higher cadence (2 minutes), but they
are best for observing the main-stage flare (multimillion-kelvin
corona signatures). For the 94Åwavelength the signature comes
after the X-ray start time, so it is not very useful for forecasting.
The 195Åwavelength has a higher cadence (1 minute) but detects
a lot of intensity fluctuations and is also better for observing the
main-stage flare (after the X-ray start time). The 304Åwavelength
observations are higher cadence (2 minutes), and they capture pre-
flare signatures in the transition region/chromosphere (<100,000
K). For this reason the current version of DEFT only relies on the
304Åwavelength.

From this point on the analysis is fully automated: the DEFT
algorithm first creates a mask to analyze a disk in the
observation. This mask is centered on and is slightly larger
than the solar disk. The mask allows us to exclude any
erroneous signatures that could occur off-disk but include flare
signatures that occur on-disk, or even slightly above the limb.
Next, an intensity histogram is created using the observed disk.
The histogram helps distinguish high-intensity flare and pre-
flare signatures from the rest of the disk. We store the resulting
full-disk image and subimage of the possible flare signature
site, as well as the physical properties of the signature:
heliographic location, EUV intensity peak, pixel count, and the
corresponding running difference values.

High-intensity signatures can also appear at the same time, in
different locations. For this reason we developed a spatial
discriminator that groups together high-intensity pixels based
on their spatial proximity (within 10° only, to avoid other
regions) and helps distinguish separate regions of activity. This
means that we can analyze separate regions and determine
which ones display pre-flare activity and which ones do not.
The signal in a group is summed and treated as one source.

Once the signature groups are created, DEFT can determine
whether any group has trespassed the threshold and can flag
possible pre-flare activity. DEFT also determines the location
of the activity—a key factor in understanding and providing
alerts for flares that could pose a real risk of space weather
hazards such as radio blackouts and risks to GPS navigation,
extravehicular activities (EVAs), and satellite operations.
Figure 1 shows an observation where two high-intensity

EUV sources were identified: AR 12673 near the west limb
(highlighted in red in the left panels), and AR 12677 in the
eastern hemisphere (highlighted in red in the right panels). A
third region—AR 12674—is visible in the NW quadrant, but
this region did not contain pixels with high enough intensity,
and hence we do not discuss it. The high-intensity pixels were
located, grouped together based on their proximity, and labeled
as two separate sources. This process is essential to accurately
determine the EUV intensity at any given time and to track
temporal changes in each location separately. The image was
taken with the GOES/SUVI instrument on 2017 September 7
at 9:45 UTC. In the top panels we show the same observation
but highlight each region of interest separately with red pixels
and block out the other region (black) for processing and easier
visual discrimination. In the panels right below, we show a
zoomed-in image of the corresponding regions of interest. The
panels on the left show the pre-flare EUV signal source that
was linked to an M1.4 flare in AR 12673, with an X-ray start
time of 9:49 UTC on 2017 September 7.
Once the EUV observations were processed with DEFT, we

identified the signatures that appeared right before the flares.
Using the start time from the SWPC flare catalog, the last two
EUV signatures at or before the X-ray start time were identified
and recorded. If no EUV signature at all was observed within
an hour before the flare, the first signature after the X-ray start
time was recorded. We refer to the signature closest to the
X-ray start time as the “main signature” and the signature
observed even earlier as the “precursor signature.”
Once the pre-flare EUV signatures were identified for each

of the 61 flares in our catalog, their properties were statistically
analyzed. Our goal is to better understand the EUV signatures
that happen right before the X-ray flare: how/if the EUV
signature properties are linked to flare magnitude, what their
characteristics are, how early they occur, and whether they
could be used for early space weather warnings. Identifying
relationships between the X-ray flare properties and the EUV
signatures could be used to develop DEFT into a real-time
operational tool that could improve and/or complement the
currently used X-ray-based forecasting system at SWPC.
Detecting the start of a flare even a few minutes early would
be significant in itself since it would allow space weather alerts
to be issued earlier than has been possible until now. We found
that there is a clear indication that pre-flare EUV signatures are
detectable for B-, C-, M-, and X-class flares several minutes
early before the X-ray start time. In the following section we
detail the statistical results of the DEFT detections.

4. Results

The SUVI instrument provides observations in six different
wavelengths; however, in the current work we only used the
304Åwavelength, which proved to be the most sensitive and
successful in identifying both precursors and main-stage events.
Using the 2017 GOES X-ray flare catalog, we selected 61 flares: 4
X-class (the only X-class flares in 2017), 19 M-class, 19 C-class,
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and 19 B-class flares. For every flare in the catalog a “main” EUV

signature was identified. However, for 1 X-class and 1 M-class

flare (both limb flares), and for 2 C and 8 B flares, no “precursor”

EUV signature was found. And aside from the 61 flares discussed

in this paper, we also found three small flares with no EUV

signatures at all (a B1, a B2, and a B3 flare).
The main and precursor signatures were analyzed separately

for each flare class. The panels from left to right in Figure 2

show the time difference (Δt), total pixel count, and pixel count

change averaged for each class. Δt signifies the time between

the EUV pre-flare signal and the official start of the X-ray flare.

Total pixel count refers to the total number of EUV pre-flare

signature pixels. The pixel rate of change is the change in the

signature pixel numbers at the time when the EUV pre-flare

signal was detected. Blue corresponds to the precursor signal

(the second to last signal before the official X-ray start time),

and red corresponds to the main EUV signal (the last signal

before the official X-ray start time). The typical meanΔt values

for EUV precursors were 17, 16, 11, and 12 minutes for B-, C-,

M-, and X-class flares, respectively. The typical mean Δt

values for the main EUV signals were 6, 8, 2, and 9 minutes

early for B-, C-, M-, and X-class flares, respectively.
We emphasize that these times are compared to the X-ray

start time. Compared to the NOAA/SWPC alerts, we gain an

additional 4 minutes at least. This means that apart from the

M-class main signatures, across all classes we recorded EUV

signature times that were over 10 minutes earlier than the

earliest SWPC alert times. Also, the middle panel shows that

Figure 1. The spatial discrimination process of DEFT allows the accurate measurement and tracking of EUV signals originating in different regions. Both images

show the same observation taken at the 304 Å wavelength with GOES-R/SUVI on 2017 September 7 at 9:45 UTC. Each image highlights one source in red; the other
source is blocked out with black. The panel below each full-disk image shows a close-up of the corresponding region of interest (left panels highlight AR 12673 in red;
the right panels highlight AR 12677). A pre-flare signal was identified in AR 12673 (see left panels) and was linked to an M1.4 flare that started at 9:49 UTC.
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M- and X-class flares were observed to have significantly

higher pixel count rates on average. This result will be useful in

developing DEFT’s ability to estimate flare magnitudes.
The top row in Figure 3 shows density scatter plots for the

main signal properties (darker color indicates higher density).

From left to right the density scatter plots show Δt, total pixel

count, and the pixel count change. The bottom panels show the

same values from left to right for precursor signatures. The

Spearman (S) correlation values are shown in each panel.

The highest correlation is between the flare magnitude and the

pixel count for both precursor and main signatures (middle

panels in Figure 3): the Spearman correlation coefficient is 0.39

(p-value= 0.0017) and 0.5 (p-value= 0.0003), respectively.

This indicates a moderate positive monotonic relationship

between flare magnitude and the EUV signature pixel count.

We also highlighted the location of the flux equivalent of an

M1 flare (vertical red line in the middle panels). More than

90% of the data points for pixel count were under 100 counts.

Figure 2. From left to right: the mean Δt, total pixel count, and the pixel count change for each flare class. Blue and red correspond to precursor and main signature
properties, respectively. (Δt is the time difference between the EUV signal and the flare X-ray start time. Total pixel count is the total number of pixels in the EUV
flare signature. The pixel count change is the change in the flare pixel numbers when the EUV pre-flare signal was identified.)

Figure 3. The top and bottom rows show main and precursor signal properties, respectively. From left to right the density scatter plots show Δt, the total pixel count,
and the pixel count change for the EUV signals relative to flare magnitude. The Spearman (S) correlation values are listed in each panel. The vertical red line shows the
flux that corresponds to an M1 flare; the higher values correspond to higher M- and X-class flares. The horizontal red line denotes the 100-pixel count. (Note: fluxes of
10−7, 10−6, 10−5, and 10−4 Wm−2 correspond to B1, C1, M1, and X1 flares, respectively.)
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Note that pixel counts over 100 (shown with a horizontal red
line) only occur for M- and X-class flares—for both main and
precursor signals.

Note that a p-value of less than 0.05 suggests a statistically
significant correlation, and our values were considerably lower.
No other significant correlation was found between the flare
magnitudes and the EUV properties listed. We also calculated
the Pearson correlation values, but these were very low and not
statistically significant.

We also analyzed the relationship between main and precursor
signal properties (Figure 4). The left panel of Figure 4 shows that
the Δt values of main and precursor signals have a moderate
Pearson (P= 0.49) and strong Spearman (S= 0.64) correlation
with p-values well below 0.001. This indicates that earlier
precursor signals could be accompanied by earlier main signals.
We found strong correlation between the main and precursor pixel
count values (middle panel of Figure 4): the Pearson and Spearman
correlation coefficients were 0.93 and 0.68, respectively. The p-
values were significantly below 0.001 for both. This suggests that
larger precursor pixel counts tend to be accompanied by larger
main signal pixel counts. No correlation was found between the
pixel count change values (right panel of Figure 4).

Figure 5 shows histograms of the Δt values (left panels), the
pixel count values (middle panels), and the pixel change values
(right panels). The top row shows values for all flare
magnitudes (B, C, M, and X), the middle row shows values
for only M- and X-class flares (the most important flares for
space weather forecasting), and the bottom row shows values
for the B and C flares only (these have low or no space weather
impact). The histogram for the precursor values is shown in
orange, and the main signal values are shown in blue. The
mean, mode, and standard deviation values for the main and
precursor signatures are listed under the corresponding labels.

Across all magnitudes, we could identify precursors on
average 14 minutes, and main flare signatures 6 minutes earlier
than the X-ray flare start time. For M and X flares combined
this value was lower: 11 and 3 minutes, respectively. For B and
C flares this value was considerably higher: 16 and 7 minutes,
respectively.

The total pixel count of EUV signatures across all flare
magnitudes was on average 79 for precursors and 62 for the
main signal. This value was significantly higher for M and X
flares combined: 155 pixels for precursors and 123 for main
signatures. For B and C flares this value was significantly
lower: 20 for precursors and 25 pixels for the main signature.

Across all magnitudes the average pixel count change was 15
and 17 pixels for precursors and main signals, respectively. These
values were a little higher for the high-magnitude flares: 20 and 17
pixels, respectively. For low-magnitude flares these values were
somewhat lower: 11 and 17 pixels, respectively.
This shows that while M and X flares could be identified a little

later than B and C flares, they can have significantly higher pixel
counts than B- and C-class flares. Considering pixel count change
values, larger flares demonstrate only slightly higher values.
When assembling our catalog, we had to exclude seven B

flares and three C flares that transitioned behind the limb, since
we were not able to identify any signatures. However, in two
cases (an M-class and an X-class flare) we could observe the
main-stage flare despite the fact that the active region was
mostly behind the limb (these cases are in our catalog). For one
flare DEFT identified no signal in the hour before the flare; the
only signal identified was 6 minutes after the X-ray start time.
This was an M-class flare at the solar limb that started on 2017
October 10 at 23:10 UTC and was identified by DEFT at 23:16
UTC using existing data. Records show that SWPC identified it
as a flare at 23:35 UTC (25 minutes after the X-ray start time),
and the alert was issued at 00:27 UTC the next day (77 minutes
after the X-ray start time). Hence, the identification time by
DEFT was still at least 19 minutes earlier than the first recorded
SWPC identification time.
The above-mentioned cases suggest that the main-stage EUV

signatures of higher-magnitude (M and X) flares might still be
observable by DEFT if the active region is at or slightly behind
the observable limb, but we lose their precursor signatures and
also most of the smaller (B and C) flare signatures. We plan to
investigate specifically limb flares to better understand DEFT’s
limitations at the limb. Nevertheless, our analysis indicates that
detecting the EUV flare signatures becomes more challenging
at the solar limb.

5. Conclusions

Detection of pre-flare EUV signatures has the potential to not
only improve space weather forecasting but also help us better
understand the physical mechanisms leading to a flare. Mrozek
et al. (2007) showed that higher-energy electrons are able to
penetrate deeper into the atmosphere (i.e., chromosphere). This
finding is in alignment with the fact that the 304Å observations,
which are optimal for imaging the chromosphere, were the best for
identifying pre-flare brightenings using DEFT. Furthermore, since

Figure 4. Density scatter plots showing the main and precursor signal properties relative to each other. The Pearson (P) and Spearman (S) correlation values are listed
in each panel.
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the flare-related EUV radiation occurs near the flare footpoints, it
could explain why the pre-flare EUV signals were harder to detect
near the limb using DEFT. The closer the flare footpoints are to the
limb, the more the EUV signal decreases owing to line-of-sight
obscuration.

Su et al. (2006) analyzed the X17 flare of 2003 October 28 in
EUV and hard X-ray observations. They found magnetic shear
in the flare region that decreased significantly during the
impulsive phase of the flare. They also found EUV bright-
enings before the hard X-ray emission, which appeared to be

associated with the flare EUV brightenings. Su et al. (2006)
hypothesized that the EUV brightenings that occurred before
the X-ray emission were generated through the same mech-
anism as the brightenings that appeared during the flare. Our
observations show that these pre-flare EUV brightenings are
common—we observed them in all the flares in our study. They
can be detected for flares of all magnitudes, which suggests that
there is a similar process at work regardless of the magnitude of
the flare. It is unclear why the signatures appear earlier for B
and C flares and closer to the main phase for M and X flares.

Figure 5. Histograms showing the Δt values (left panels), the pixel count values (middle panels), and the pixel count change values (right panels). The top row shows
values corresponding to all flare magnitudes (B, C, M, and X), the middle row shows values for only M- and X-class flares, and the bottom row shows values for the B
and C flares only. The main signature values are shown in blue, and the precursor histograms are shown in orange. The mean, mode, and standard deviation values for
the main and precursor signatures are listed under the corresponding labels.
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We found that small (B and C) flares have smaller EUV
signatures (less than 100 pixel counts), while larger (M and X)

flares can have both small and larger EUV signatures (up to
800 pixels). This means that a larger pre-flare EUV signature
could indicate a larger instability in a region and therefore
could help us estimate the magnitude of a flare. We hypothesize
that the pre-flare EUV brightenings are caused by micro-
reconnections that temporarily relieve some of the instability in
the region until the region reaches critical instability and erupts.
In order to better understand the processes leading to a flare,
further case studies are needed to investigate the evolution of
the intensity of pre-flare EUV brightenings and their location
relative to the magnetic inversion line and the main-phase EUV
flare signal.

In this paper we introduced a novel approach to identify pre-
flare EUV signatures within the hour before the X-ray start
time. DEFT can identify pre-flare EUV intensity spikes in just a
few pixels. It is a fast and robust tool that can locate a pre-flare
signature on the solar disk within seconds. This is also possible
because DEFT uses state-of-the-art data: high temporal and
spatial cadence full-disk EUV observations from the GOES/
SUVI instrument that are available in near real time and are not
affected by saturation.

Many recently published ML flare forecasting methods only
offer a binary prediction 24 hr ahead (e.g., Huang et al. 2018;
Park et al. 2018; Deshmukh et al. 2020; Li et al. 2020; Abed
et al. 2021; Asaly et al. 2021), with a considerable false
detection margin. Alerts 24 hr ahead are certainly beneficial but
limit the scope of mitigation: many instruments and infra-
structures cannot be shut down for a whole day in preparation
for a flare. Some forecast centers provide percentage chance
flare forecasts but still heavily rely on now-casting (i.e.,
identifying the flare as it happens and alerting after the event
has already begun). Now-casting is often too late to mitigate
the effects of flare-related high-energy particles impacting
sensitive instruments or astronauts in EVA. Our aim is to
develop a tool that provides alerts early enough for space
weather mitigation purposes, while also minimizing the time
needed to put instruments into safe mode before the impact of
high-energy particles related to flares.

In particular, we want to improve space weather alert times
by identifying and understanding EUV signatures before flares
occur and developing a tool to consistently detect them. In our
study we identified the last two EUV signatures before 61 flares
of various magnitudes. We consistently identified a “main”
EUV signal on average 6 minutes, and a “precursor” EUV
signal on average 14 minutes, before the X-ray start time. We
also found that when separating M- and X-class flares from B-
and C-class flares (based on the severity of their potential space
weather impact), the higher class flares could have significantly
higher pixel count values. This result could help us develop a
way to estimate flare magnitudes in the future. Furthermore, we
found that higher precursor pixel counts are positively
correlated with higher main signal pixel counts, which means
that the precursor could help us determine the expected
magnitude even earlier. By studying flares close to the limb, we
learned about the limitations of DEFT: EUV signals occurring
close to the limb have less lead time compared to the X-ray
start time. This is likely due to line-of-sight observational
limitations in EUV.

Our study sheds light on the properties of pre-flare EUV signals,
their relationship with flares, and the possible mechanisms causing

them. The results will help us to adapt the DEFT algorithm into an
operational tool. The next stage of our project involves adapting
DEFT to run on a large blind database, identifying pre-flare EUV
signatures, filtering out false positives, and making sure all large
flares are detected. This process essentially simulates operational
use. We are currently working on an updated DEFT, and initial
tests show that it is successful in identifying all major flares in
blind data, while also eliminating almost all false positives. In our
next publication, we will detail the operational version of DEFT
and the results of a large statistical blind study. In addition, we will
also test DEFT on other EUV data sets (e.g., SDO/AIA). Our
ultimate goal is to run DEFT on real-time GOES/SUVI data and
improve flare forecast times.
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