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Abstract

Magnetic helicity is conserved under ideal magnetohydrodynamics and quasi-conserved even under a resistive
process. The standard definition for magnetic helicity cannot be applied directly to an open magnetic field in a
volume, because it is gauge-dependent. Instead, the relative magnetic helicity is widely used. We find that the
energy of a potential magnetic field in a rectangular domain with periodic lateral boundary conditions is less than
that of the field with a fixed normal component on all six boundaries. To make use of this lower energy potential
field in the analysis of relative magnetic helicity, we introduce a new definition for magnetic helicity for the
magnetic field, which involves the periodic potential field. We apply this definition to a sequence of analytic
solutions and a numerical simulation. The results show that our new gauge-invariant helicity is very close to the
current-carrying part of the relative magnetic helicity of the original magnetic field. We find also that the ratio
between the current-carrying helicity and the relative magnetic helicity for the original and our defined relative
helicity show different behavior. It seems that the new helicity is more sensitive to the component of the field due
to the electric current in the volume, which is the source for instabilities and solar eruptive phenomena.

Unified Astronomy Thesaurus concepts: Solar magnetic fields (1503); Solar physics (1476)

1. Introduction

Magnetic helicity is a global measurement of the magnetic
field line linkage in a closed volume where the normal
component of the magnetic field vanishes on the boundary
(Woltjer 1958a, 1958b; Moffatt 1969). One of the most
important properties of the magnetic helicity is that it is strictly
invariant under an ideal magnetohydrodynamic (MHD)

process, and quasi-invariant under resistive MHD (Berger 1984;
Taylor 1986; Berger & Rosner 1995). However, in the case
where magnetic field lines cross the boundary, like the case of
the solar atmosphere, the magnetic helicity is not gauge-
independent. This issue was solved by introducing a new
definition of helicity, the relative magnetic helicity, which uses
the difference between the real magnetic field in the unbounded
volume and a reference field defined in the same volume that
shares the same normal component of the magnetic field on all
boundaries (Berger & Field 1984).

A potential field is usually chosen as the reference field. The
potential magnetic field Bp is based on the hypothesis that
there is no electric current in the volume, i.e.,∇×Bp=0.
Thus the magnetic field can be written as the gradient of a
scalar field, Bp=∇f, where f satisfies Laplace’s equation,
∇

2f=0. If boundary conditions are available on all
boundaries, then the Neumann boundary condition can be used,
i.e., f¶ =¶W ¶WBn n∣ ∣ on all boundaries, where Ω and ∂Ωdenote
the computational domain and its boundary, and Bn is the
normal component of the field. This choice of a potential field
for the reference field is required for the relative magnetic
helicity to be gauge-invariant. According to Thomson’s
theorem (Stratton 1941; Sakurai 1979), the potential field with
the Neumann boundary condition on all boundaries is the
minimum energy field, for those boundary conditions.

However, in the case of magnetic fields on the Sun, only the
photospheric and/or chromospheric magnetograms can be
obtained from observations and serve as the bottom boundary.
When potential fields are calculated from solar boundary

conditions, some assumptions should be made for the lateral
and top boundaries, e.g., a periodic condition on the lateral
boundaries. Usually, the potential magnetic field Bp can be
obtained by using the Green’s function technique (Chiu &
Hilton 1977) or Fourier transformation (Alissandrakis 1981).
The Fourier technique intrinsically involves periodic boundary
conditions.
When calculating relative magnetic helicity, we should keep

in mind that the potential field is not the only choice of the
reference field: any field that shares the same normal
component of the magnetic field on the boundaries can play
the role of the reference field. Various authors have considered
the properties and definition of relative magnetic helicity. Prior
& Yeates (2014) proved the existence of an untwisted reference
field. Low (2006) proposed a primitive form of the magnetic
helicity based on the Chandrasekhar–Kendal decomposition of
the magnetic field. In general the relative magnetic helicity is
only uniquely defined if we restrict the choice of the reference
field. It is worth noting that solving the Laplace’s equation with
Neumann boundary conditions with an irregular boundary and/
or a nonuniform grid is complex and challenging, and various
techniques have been proposed (Longcope & Malanushenko
2008; Malanushenko et al. 2009; Teunissen & Keppens 2019).
Some additional properties of relative magnetic helicity might
exist depending on the choice of the reference field, e.g., the
conservation property of the helicity (Pariat et al. 2015).
However, this topic is outside the scope of this paper.
The periodic potential magnetic field B0 used in the force-

free extrapolation methods, like the Current-field Iteration
Method (Wheatland 2006, 2007), has a lower energy than the
potential field with Neumann boundary condition on all
boundaries if the original magnetic field is itself periodic, and
has equal net fluxes on the top and bottom boundaries, as
demonstrated in Appendix A. The definition and uniqueness of
the periodic potential field are demonstrated in Appendix B.
Hence it is of interest to consider the use of this field in defining
relative magnetic helicity.
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A given magnetic field B can be decomposed as the sum of a
potential field Bp and a current-associated field Bj, where Bp

comes from Laplace’s equation with Neumann boundary
conditions, and Bj is the residual field. If the vector potential
of the magnetic field experiences a gauge transform,  +A A

y , the change in the relative magnetic helicity is D =Hr

òy -B B Sdp( ) · . Using the Neumann boundary condition of
Bp, the surface integral is zero, which ensures the relative
magnetic helicity is gauge-invariant. However, the periodic
potential field B0 only depends on the top and bottom data and
assumes the lateral boundary is periodic. Hence the current-
associated magnetic field is not closed. As a consequence of this,
ΔHr will not be zero, breaking the gauge-invariant property.
This demonstrates that the periodic potential field cannot play
the role of the reference field directly for the relative magnetic
helicity, with the usual definition.

In this paper, we present a new definition for a relative
magnetic helicity partly based on the periodic potential field.
The newly defined magnetic helicity is consistent with the
result from Berger (1997), in that with the newly defined
helicity the periodic potential field is not used as the reference
field directly.

This paper is organized as follows. Section 2 introduces the
new definition, and we apply the new concept to both static and
dynamic magnetic models in Section 3. In Section 4, we
summarize results on the new magnetic helicity based on the
periodic potential field.

2. Definition of Helicity Based on Periodic Potential Field

For comparison with our new definition, we will briefly
review the relative magnetic helicity given by Berger & Field
(1984). A magnetic field B in a three-dimensional (3D)

volume, Ω, can be decomposed as B=Bj+Bp, with the
boundary condition - =¶WB B n 0p( ) · ˆ∣ , where ∂Ωis the
boundary and n̂ is the associated unit normal vector. Thus Bp

can play the role of the reference field. With this decomposi-
tion, the relative magnetic helicity can be defined with the
formula from Finn & Antonsen (1985),

ò= + -
W
A A B B xH d , 1r p p

3( ) · ( ) ( )

where A and Ap are the corresponding vector potentials. The
above formula is widely used in both theoretical and numerical
computation (Démoulin & Berger 2003; Pariat et al. 2005,
2015, 2017; Demoulin et al. 2006; Longcope & Malanushenko
2008; Jing et al. 2012; Valori et al. 2012, 2016; Yang et al.
2013, 2018; Guo et al. 2017; Moraitis et al. 2019). Berger
(1999) separated the relative magnetic helicity of Equation (1)
into two gauge-independent parts, the current-carrying part, Hj,
and the mutual helicity between the potential and current-
carrying fields, Hpj. Specifically, Hr=Hj+Hpj, with

ò= - -
W
A A B B xH d , 2j p p

3( ) · ( ) ( )

and

ò= -
W
A B B xH d2 . 3pj p p

3· ( ) ( )

Recently, based on the analysis of numerical simulations and
observations of eruptions in the solar corona, it has been
hypothesized that the ratio between Hj and Hr might have a

crucial value for the onset of an eruption (Pariat et al. 2017;
Linan et al. 2018; Zuccarello et al. 2018; Moraitis et al. 2019).
We can also decompose a 3D magnetic field B into a

current-associated field and a potential field with periodic
boundary condition, B=B0+Bc, following the procedure in
the Current-field Iteration Method for extrapolation of non-
linear force-free fields from bottom boundary data (Wheat-
land 2006, 2007). In this case, B0 satisfies the condition

- =B B n 00( ) · ˆ on the bottom and top boundaries, and we
assume all of the lateral boundaries are periodic. Therefore B0

does not match the lateral boundary condition on B, and B nc · ˆ
on the lateral boundaries does not vanish. The field B0 is
uniquely defined ignoring the possibility of a constant
horizontal field, as demonstrated in Appendix B. The
possibility of a constant horizontal field component is usually
neglected during extrapolation, because the calculation of the
periodic potential field only depends on the top and bottom
boundaries. As previously stated, it is not possible to use the
periodic potential field, B0, as a reference field for calculating
relative magnetic helicity, because the result is gauge-
dependent. However, following the original definition from
Berger & Field (1984), we can decompose Bc into two
parts, Bc=Bc1+Bp1, where Bp1 is the solution of
Laplace’s equation that satisfies the boundary condition

- =¶WB B n 0c p1( ) · ˆ∣ on all boundaries. Similar to Equation
(1) from Finn & Antonsen (1985), we can then define a gauge-
invariant relative magnetic helicity for the field Bc:

ò= + -
W
A A B B xH d . 4cr c p1 c p1

3( ) · ( ) ( )

Following the definition in Equations (2) and (3), we have
Hcr=Hcj+Hcpj, where

ò= - -
W
A A B B xH d , 5cj c p1 c p1

3( ) · ( ) ( )

and

ò= -
W
A B B xH d2 , 6cpj p1 c p1

3· ( ) ( )

where Ap1 and Ac are the corresponding vector potentials for
the magnetic fields Bp1 and Bc, respectively. Evidently, both
Hcpj and Hcj are gauge-invariant.
Both Bc1 and Bj obey Ampere’s Law:

m ´ =  ´ =B B J, 7c1 j 0 ( )

where J is the current density in the volume. From the
boundary condition of Bc and Bp1, we can find that the
current-associated magnetic field Bc1 satisfies =¶WB n 0c1 · ˆ∣ ,
which is the same boundary condition as Bj. Because Bc1 and
Bj satisfy the same partial differential equation with the same
boundary conditions, we must have Bc1=Bj. Comparing
the two decompositions, B= Bp+Bj and B=Bc+B0 =

Bc1+Bp1+B0, two relations can be obtained: Bp=B0+
Bp1 and Bc=Bj+Bp1. Using Equations (2) and (5), it is easy
to see that Hcj is exactly the same as Hj. From the definitions,
Equations (1) and (4), we find that if Bc vanishes on all
boundaries, the potential field Bp1 will be zero, thus Bc=Bj.
Then Hcr and Hcj reduce to ò= A B xH dj j j

3· and Hcpj=0.
Strictly speaking, the field Bp1 is the potential field
corresponding to the helicity Hcr, rather than B0.
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For calculating the helicity, we need to compute the vector
potential corresponding to each part of the magnetic field. The
periodic potential and the current-associated fields can be
calculated from a Fourier technique, and thus the associated
vector potential can be easily computed (Wheatland 2007). We
compute Ap1 in the Coulomb gauge by solving the vector
Poisson equation numerically. Appendix C describes our
formulation of a boundary-value problem for Ap1 and its
solution.

3. Application and Comparison

3.1. Titov–Démoulin Model

We test our new helicity on a series of Titov–Démoulin (TD)

flux-rope models (Titov & Démoulin 1999). The parameters
are L=35Mm, R=110Mm, a=23.9Mm, li=0.5,
q= 40 TMm2, and a range of values of d from 1 to
135Mm. The computational domain in the range of
−300Mm<x<300Mm, −300Mm<y<300Mm, and
0Mm<z<600Mm, on a uniform grid with size 1283, in
this domain, the net flux is zero at both bottom and top
boundaries. As the parameter d indicates the depth of the axis

of the flux rope, the decrease of this parameter mimics an
artificial emergence process for the current system. With
the pseudo-emergence, helicity and energy are injected into
the computational domain similar to what happens during the
emergence of a solar active region (Liu et al. 2014). When the
parameter d is less than 70Mm, the flux rope is unstable, but
since this is not our main topic, we will not further discuss the
stability analysis. However, there is no physical flow on the
boundary, so the associated injection flux cannot be calculated
directly. Three snapshots of the flux rope emergence process
are shown in Figure 1. With the rise of the magnetic flux rope,
the background magnetic field also increases simultaneous with
the decrease of the parameter d.
We show the spatial integral of energy and helicity with the

decrease of parameter d in Figure 2. The magnetic energy and
helicity are analyzed using our decompositions based on the
periodic potential field B0 (blue lines), and the potential field
with its normal component fixed on six boundaries Bp (red
lines). We show the total magnetic energy and the current-
carrying part of the relative magnetic helicity with black solid
lines. From the evolution of the energy (Figure 1(a)), the main
feature is that all components of the energy increase, which is

Figure 1. Magnetic field for the artificial emergence process mimicked by changing the value of the parameter d in a sequence of Titov–Démoulin equilibrium
solutions. The bottom boundary shows the distribution of Bz, and the vertical slice shows the total current density J∣ ∣. The values of the magnetic field and current are
in units of 5.9 Gauss and 8.8×1020 statampere. The colored lines indicate magnetic field lines associated with the flux rope.

Figure 2. (a) The black solid line indicates how the total magnetic energy evolves with the decrease of the parameter d in the Titov–Démoulin sequence. The red and
blue dotted lines represent the energy of the potential field (Ep) from the fixed boundary and that from the periodic boundary (E0), respectively. The red/blue dashed
lines are the corresponding free energies, Efree,p=E−Ep and Efree,0=E−E0. As the energies in the two cases are very close to each other, a subwindow shows the
zoom-in view of a subrange. (b) The red dotted line is the usual relative magnetic helicity Hr, and the blue dotted line is our new helicity Hcr. The components of Hr

and Hcr are also shown: Hj (black solid), Hpj (red dash), and Hcpj (blue dash).
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expected due to the current system emerging into the
computational domain. We find that the energy from the
periodic potential field, ò=

p W
xE B d0

1

8 0
2 3 , is slightly less than

that of the potential field Bp, ò=
p W

xE B dp
1

8 p
2 3 , as expected

from the Thomson theorem (see Appendix A). It is worth
mentioning that in Appendix A, the proof assumes that the
original magnetic field is also periodic. However, from the test
in Appendix D, even when the magnetic field B does not have
a periodic lateral boundary condition, E0 can still be smaller
than Ep. The energies of the two potential fields are very close
to each other and coevolve during the artificial emergence.
When the parameter d further decreases, each part of the energy
increases dramatically, in particular, the potential energy, since
the magnetic charges and the line current along the flux-rope
axis in the TD model are then close to the bottom boundary.

On the other hand, the helicity shows a rather different
behavior than energy. The helicity Hcpj is much smaller than
Hpj. Thus the relative magnetic helicity based on the periodic
potential field, Hcr is very close to the current-carrying part of
the magnetic helicity Hj. This is a feature of the newly defined
helicity. Comparing the new helicity with the original one, we
can find that the value of Hpj departs from Hr, and Hj gradually
dominates the relative magnetic helicity. The new relative
helicity Hcr always follows the mutual helicity between the
current-carrying field and the potential field, Hcpj.

3.2. Eruptive Case

Magnetic helicity plays an important role in solar eruptions
(Low 1996). This has been shown in many previous studies
using both observation and theory (Park et al. 2008, 2010;
Pariat et al. 2017; Linan et al. 2018; Zuccarello et al. 2018;
Moraitis et al. 2019). We have applied both our newly defined
and the original relative magnetic helicity to the data from an
eruption process model, an isothermal MHD simulation with
the same settings as in Mei et al. (2017), which uses the
Message Passing Interface Adaptive Mesh Refinement Versa-
tile Advection Code (Keppens et al. 2003, 2012; Porth et al.
2014; Xia et al. 2018). The initial condition of this MHD
simulation is the TD model with the same parameters as in
Section 3.1 but with the constant value d=30Mm. For the
boundary conditions, the magnetic field is fixed at ghost layers
at the initial value, and the velocity in the ghost layer of the
bottom boundary is determined by a constant value extrapola-
tion while the velocity at the other boundaries is fixed at zero.

Due to the symmetry of the magnetic field, the net flux remains
zero at both top and bottom boundaries during the simulation.
We show three snapshots of the magnetic field during the

eruptive process in Figure 3. As the twist of this initial
condition exceeds the Kruskal–Shafranov condition, the kink
instability sets in immediately at the start of the simulation. A
current sheet forms with the rise of the magnetic flux rope,
however, since this is not our main focus we use a coarser mesh
than that used in the original simulation (Mei et al. 2017). The
computational domain and resolution are the same as that used
in Section 3.1.
The total energy and helicity in the volume is shown in

Figure 4. As the bottom flow is not zero, both a Poynting flux
and helicity flux can be injected into the computational domain,
so the absolute value of both energy and helicity increase with
the development of the whole eruption (Figure 4), similar to the
increase seen in the artificial emergence in Section 3.1. The
normal component of the magnetic field on the lower boundary
does not change during the simulation. Hence the periodic
potential field is almost unchanged, since it only depends on
the distribution of Bz on the bottom and top boundaries, and the
top boundary is so high that the magnetic field on it is very
small. The relation with B0 is shown in Appendix B. As a
consequence of this, the energy of the periodic potential field,
E0, is constant (Figure 4(a)). The normal component of the
magnetic field on the lateral boundaries changes a little, which
leads to Ep becoming a little larger than E0. Regarding the
magnetic helicity, the potential field component, Bp1 is very
small, which makes Hcpj close to zero because it is the coupling
between this component of the potential field and the current-
carrying part. Therefore, the value of Hcr is very close to that of
Hj and shows a monotonic increase during the whole
simulation period. The helicity associated with the potential
field Bp does not show a departure from Hr in this case, in
contrast to the artificial emergence process in Section 3.1. That
is due to the boundary conditions: Bz is fixed in this case;
whereas in the emergence case, Bz changes due to the line
current and magnetic charges approaching the lower boundary.

4. Summary and Discussion

In this paper, we proposed a relative magnetic helicity based
on a periodic potential field, but we do not use the potential
field directly as the reference field. Our new helicity has a close
relationship with the original formula from Finn & Antonsen
(1985). We should mention that from the definition, this new
magnetic helicity can only be applied to the case where the

Figure 3. Evolution of the magnetic field for the eruptive MHD case at three snapshots. The bottom boundary shows the distribution of Bz, the vertical slice shows the
total current density J∣ ∣, and the values of the magnetic field and current are displayed in the same way as in Figure 1. The colored lines indicate magnetic field lines
associated with the erupting flux rope.
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domain has a periodic lateral boundary, e.g., a Cartesian box. It
does not apply, e.g., to a cylindrical domain. Moreover, equal
magnetic net fluxes on the top and bottom boundaries are
required. We apply the new helicity to two cases. One is a
series of calculations of the TD model, which mimic an
artificial emergence of a magnetic flux rope. The other is a data
set from an isothermal MHD simulation for a magnetic flux-
rope eruption. The absolute value of energy and helicity in both
cases show an increase during the development of the current
system (Figures 2 and 4). The most important difference
between the original helicity and our definition is that ours is
much closer to the current-carrying part of the magnetic
helicity, Hj. We also make a further check in Appendix D on
the calculation by using the magnetic field in half of the
computational domain by making a slice through the flux rope.
The result (Figure D1) is similar to that obtained in Section 3. It
is worthwhile to mention that the lower energy state of the
periodic potential field derived in Appendix A is based on a
periodic current-associated magnetic field Bc. This is not the
case in the TD model, however, it is still true in the calculation
of the test cases, especially, the case in Appendix D, which cuts
the domain into two parts so that the magnetic flux rope crosses
the boundary and the magnetic field on the boundary is not
small. The relative energy difference between E0 and Ep is
much larger than the error level in Valori et al. (2013). Besides,
there is another freedom of the proposed relative magnetic
helicity, the choice of the top and bottom boundaries.
Obviously, in our test case, we use a natural choice of the
bottom and top boundaries of the TD model. Consider rotating
by 90◦ into a new coordinate system x′=x, y′=−z, and
z′=y. The normal component of the magnetic field on the new
bottom and top boundaries will be very small, since the
computational domain is very large, and hence the new ¢B0 will
be very small. As a consequence of this, ¢Hcr and ¢Hcpj will be
very close to ¢Hr and ¢Hpj, respectively. All the variables with a
prime indicate the corresponding variables in the rotated
coordinate system.

In recent research, it has been argued that the ratio between
the current-carrying helicity and the relative helicity might play
a crucial role for the onset of a solar eruption (Pariat et al. 2017;
Linan et al. 2018; Zuccarello et al. 2018; Moraitis et al. 2019).
Simulations suggest that this ratio increases just before solar
flares and relaxes after (Pariat et al. 2017; Moraitis et al. 2019).
Figure 5 shows this ratio for the original relative magnetic
helicity and also the ratio with our definition for the eruptive
case. The background of Figure 5 is the time-distance diagram

Figure 4. (a) The black solid line indicates how the total magnetic energy evolves with time. The red and blue dotted lines represent the energy of the potential field
(Ep) from the fixed boundary and that from the periodic boundary (E0), respectively. The red/blue dashed lines are the corresponding free energies. As the energies in
the two cases are very close to each other, two subwindows show a zoomed-in view of a subrange of the whole diagram. (b) The red dotted line is the usual relative
magnetic helicity Hr, and the blue dotted line is our new helicity Hcr. The components of Hr and Hcr are also shown: Hj (black solid), Hpj (red dash), and Hcpj

(blue dash).

Figure 5. Background shows the time-distance diagram of the electric current
from the eruption simulation from Section 3.2 along the line from the bottom to
the top of the simulation, at the center of the x–y plane. The red and blue curves
indicate the helicity ratio in our new definition, H Hj cr∣ ∣, and the original one,
H Hj r∣ ∣, respectively.
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of the electric current along the line from the bottom to the top
at the center of the x–y plane of the computational center. The
ratio for the new definition H Hj cr∣ ∣ experiences a gradual
increase followed by an almost constant stage, whereas for
H Hj r∣ ∣, a peak appears around 5×103 s with the magnetic flux
rope rising. Both curves increase at the initial stage when the
current system is rising due to the kink instability. Thus our
newly calculated relative magnetic helicity offers a new tool to
investigate the MHD system, that might be more closely related
to the current.

We have presented a new definition for magnetic helicity,
which shows different behavior from the usual relative magnetic
helicity in test cases. This indicates that magnetic helicity for open
magnetic fields is not a uniquely defined quantity.

To better understand the relative magnetic helicity and make
comparisons with previous research (Yang et al. 2013, 2018; Prior
& Yeates 2014; Pariat et al. 2017; Linan et al. 2018; Zuccarello
et al. 2018; Moraitis et al. 2019; Prior & MacTaggart 2019), we
need to make further detailed analyses by using our definition on
more general cases and comparing it with the original helicity.
Moreover, the physical role of helicity should be investigated in
detail for the onset of an MHD instability and the following
eruptive process (Guo et al. 2017; Pariat et al. 2017; Zuccarello
et al. 2018). It is also of interest to apply our new definition to the
magnetic field reconstructed from observed magnetograms.

This work was funded in part by an Australian Research Council
Discovery Project (DP180102408). K.E.Y. thanks Dr.Z.X.Mei,
for the discussion on the simulation. S.A.G. acknowledges that this
material is based upon work supported by the National Science
Foundation under grant No. 1841962. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
National Science Foundation.

Appendix A
Energy of Periodic Potential Field

The Thomson theorem involves the decomposition of a
magnetic field in a volume Ω as

= +B B B , A1j p ( )

where Bp=∇f is the potential field satisfying

=¶W ¶WB n B n A2p · ˆ∣ · ˆ∣ ( )

on all boundaries. The energy of the field is

ò
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ò ò
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According to the decomposition (A1) and the boundary
condition (A2), B nj · ˆ is zero on all boundaries, thus the

surface integral is zero. Then the magnetic energy can be
written as E=Ej+Ep, so that Ep is the minimum energy field
meeting the boundary condition (A2). This is the Thomson
theorem for the above decomposition of the magnetic field.
This energy is achieved by reducing the current in the volume
while preserving the normal component of the magnetic field
on all boundaries.
Consider a periodic field Bperiodic in domain, 0�x�Lx,

0�y�Ly, and 0�z�Lz. The periodic boundary condi-
tions are defined by

=
=

= =

= =

B n B n

B n B n

,

. A4

x x L

y y L

periodic 0 periodic

periodic 0 periodic

x

y

· ˆ∣ · ˆ∣

· ˆ∣ · ˆ∣ ( )

We consider the decomposition,

= +B B B , A5periodic c 0 ( )

where B0 is the potential field with Neumann boundary
conditions on the top and bottom boundaries:

== =B n B n , A6z L z L0 0, periodic 0,z z
· ˆ∣ · ˆ∣ ( )

and periodic lateral boundary conditions:

=
=

= =

= =

B n B n

B n B n

,

, A7

x x L

y y L

0 0 0

0 0 0

x

y

· ˆ∣ · ˆ∣

· ˆ∣ · ˆ∣ ( )

and where Bc is a nonpotential field which is zero on the top
and bottom boundaries:

==B n 0, A8z Lc 0, z
· ˆ∣ ( )

and which also has periodic lateral boundary conditions:

=
=

= =

= =

B n B n

B n B n

,

. A9

x x L

y y L

c 0 c

c 0 c

x

y

· ˆ∣ · ˆ∣

· ˆ∣ · ˆ∣ ( )

The periodic potential field can also be written as the gradient
of a scalar field B0=∇ψ. Without affecting B0, we can
neglect the constant part of ψ, thus ψ is a superposition of a
linear function of z and a sine and cosine function of x and y

times an exponential function of z. Then the solution of ψ is
also periodic in x and y. The details of the calculation of ψ are
given in Appendix B.
Considering the energy of this decomposition, similar to

(A3),

p
y= + +

W
B nE E E d

1

4
S. A100 c c∮ · ˆ ( )

The periodic potential field satisfies the condition (A6), which
leads to Bc vanishing on the top and bottom boundaries, and
the associated surface integral being zero. As a result of this,
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the surface integral becomes

ò ò

ò ò

y y y

y y

= - +

+ - +

W = =

= =

B n d B dydz B dydz

B dxdz B dxdz

S

,

A11

x
x

x L
x

y
y

y L
y

c
0

c, c,

0
c, c,

x

y

∮ · ˆ

( )

where Bc,x and Bc,x are the x and y components of the field Bc.
Since ψ is periodic in x and y directions, the surface integral
terms cancel, so the energy can be written as E=Ec+E0.
Hence E0 is the minimum energy field subject to the boundary
condition (A6). This is the Thomson theorem for the
decomposition (A5). This energy is achieved by reducing the
current from the volume while preserving the normal
component of the magnetic field on the top and bottom
boundaries, i.e.,z=0 and z=Lz, subject to the constraint of a
periodic boundary condition in the x and y directions.

For the field Bperiodic, both decompositions can be applied.
Then we can further make a separation of the potential field,
Bp=Bp1+B0, where Bp1 is a potential field with zero
normal value at the top and bottom boundaries, and a normal
component matching Bc on the lateral boundaries. Therefore,
Bp1 is also periodic in x and y directions, and hence the cross
term of the energy between Bp1 and B0 will be zero, as shown
by replacing Bc with Bp1 in Equation (A11). It follows that
Ep=Ep1+E0, where Ep1 is the energy of the potential
field Bp1. Hence,

E E . A12p 0 ( )

Thus E0 is a lower “minimum” energy for a field matching
Bperiodic on the bottom and top boundaries. The demonstration
of this lower “minimum” energy state assumes that the original
field B meets the lateral periodic boundary condition (A4).
However, in the numerical tests in Section 3, using the TD
model which is not periodic in the x and y directions, we also
find that E0 is smaller than Ep (Figures 2(a) and 4(a)). Also, in
the test with half data of the magnetic field in Appendix D, the
results show that E0 is much smaller than Ep (Figure D1(a)).
These results show that B0 can be a lower energy field than
Bp even when the total field is not periodic.

Appendix B
Periodic Solution of Laplace’s Equation

To calculate the lateral periodic potential magnetic field in a
rectangular domain (0�x�Lx, 0�y�Ly, 0�z�Lz)
based on the bottom and top boundaries (z=0, Lz), we define
the field as a gradient of a scalar function, B0=∇ψ. Then ψ
satisfies the Laplace’s equation ∇

2ψ=0. The method of
separation of variables can be used, which means that we
assume the solution is a superposition of all the basic separable
solutions, y = å X x Y y Z zi i i i( ) ( ) ( ), where Xi(x), Yi(y), and Zi(z)
are functions that only depend on each coordinate, i is the index
of each basic separable solution. The Laplace’s equation
becomes:

+

+ =

Y y Z z
d X x

dx
X x Z z

d Y y

dy

X x Y y
d Z z

dz
0. B1

i i
i

i i
i

i i
i

2

2

2

2

2

2

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( )

This equation can be translated to three ordinary differential
equations:

=-

=-

= +

d X x

dx
a X x

d Y y

dy
b Y y

d Z z

dz
a b Z z

,

,

. B2

i
i

i
i

i
i

2

2
2

2

2
2

2

2
2 2

( )
( )

( )
( )

( )
( ) ( ) ( )

The periodic lateral boundary condition of the magnetic
field restricts the values of a and b to the sets

= ¼p
n, 0, 1, 2, 3,

n

L

2

x
{ } and = ¼p

m, 0, 1, 2, 3,
m

L

2

y
{ },

respectively. In the condition n=m=0, the solution sets
for Xi(x), Yi(y), and Zi(z) are:

x y z1, , 1, , 1, . B3{ } { } { } ( )

The solutions xy, xz, yz, and xyz should be ruled out by the
periodic magnetic field. Moreover, the term xy only contributes
to an extra horizontal field, which cannot be determined from
the Neumann boundary condition on the top and bottom
boundaries. Therefore, for simplicity and the above reason, we
ignore the term xy. If n=0 and m¹0, then the solution
sets become:

p p

p p
- -

m

L
y

m

L
y

mz

L
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L
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, sin
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If m=0 and n¹0, then we have the solution sets:

p p

p p
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n

L
x
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L
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L

cos
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, sin
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, 1 ,

exp
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If n¹0 and m¹0, then the solution sets of X(x), Y(y), and Z

(z) are:

p p

p p

ph ph-

n

L
x

n

L
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m

L
y

z z
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2

, sin
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where h = +m n
n

L

m

L,
x y

2

2

2

2 . It is worth noting that as the

constraint from the lateral periodic boundary condition on the
solution of the magnetic field, the solution requires the equal
net fluxes on the top and bottom boundaries.
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As the Laplace’s equation is a linear equation, the solution
of ψ will be a superposition of a series of solutions as follows:
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where the symbols {ci, i=0, 1, 2, 3}, {ci,m, ci,n, i=4, 5, 6, 7},
and {ci,m,n, i=8, 9, 10, 11, 12, 13, 14, 15} indicate the
superposition coefficients of each term, which should be
determined by the boundary condition.

We use the Neumann boundary condition on the top and
bottom boundaries. As Bz=∂zψ, the data on the top and
bottom boundaries only constrain the terms in the variable z. It
is obvious that the only terms that cannot be determined using

=Bz z L0, z
∣ are c0, c1x, and c2y. The term c0 makes no difference

on the periodic potential field, while c1x and c2y give a constant
horizontal field, which cannot be constrained by the Neumann
boundary condition. For simplicity, we set c1=c2=0, and
hence the solution is unique if we ignore a constant horizontal
field. The other reason to ignore the constant horizontal field is
that we aim to obtain a “minimum” energy potential field.
Finally, the term c3 can be determined by the net flux on the

bottom, ò ò=c B x y dxdy,
L L

L L

z3
1

0 0x y

x y ( ) .

To determine the other coefficients, we define an inner
product between two functions, f1 and f2, as á ñ =f f,1 2

ò ò f x y f x y dxdy, ,
L L

0 0 1 2
x y ( ) ( ) . It is obvious that the inner

product between different terms is zero. Thus the coefficients
can be determined by taking the inner product between the
bottom and top boundary normal component of the magnetic
field with each term. For example, the coefficients c4,m and c6,m
can be determined by solving a linear equation:
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Here the terms A11, A12, A21, and A22 are corresponding
terms of the matrix A, and the determinant of A is
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, which is not zero.

Hence the solution for c4,m and c6,m is uniquely determined.
For the coefficients c8,m,n and c9,m,n, we can solve the linear

equation:
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where

ph
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ph ph
ph ph
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=
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A
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2 exp 2 ,

2 exp 2 . B11

m n

m n
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11 ,
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In this case the determinant of the matrix A is p h4
m n

2
,

2

[exp(−2πηm,nLz)−exp(2πηm,nLz)], which is not zero, which
indicates that the coefficients can be determined uniquely. The
other coefficients can be determined similarly with the above
calculation.

In summary, we have uniquely determined all the coeffi-
cients for ψ according to the Neumann boundary condition on
the top and bottom boundaries, and the periodic lateral
boundary condition. Therefore, the periodic potential field
B0=∇ψ can be uniquely calculated and only depends
on =Bz z L0, z

∣ .

Appendix C
Method for Computing Ap1

In this appendix we describe our method for computing Ap1

in the Coulomb gauge for a current-free magnetic field in a box
given the normal component of the magnetic field over the six
planar boundaries of the box.

C.1. Domain and Boundary-value Problem for Ap1

We define a boundary-value problem for Ap1 in a Cartesian
box with the normal component of Bc prescribed on the
boundary. Let Ω be the Cartesian box

W =      x y z x L y L z L, , 0 , 0 , 0 , C1x y z{( )∣ } ( )

with boundary

¶W = S , C2i⋃ ( )

where Si are the six planar faces of the box. We label the faces
by setting i to a letter paired with a number, e.g., i=z1. The
letter is either x, y, or z and indicates the normal direction to the
boundary. The number is either zero or one and indicates
whether the boundary is the “lower” or “upper” boundary
respectively. For example, Sx1 is the boundary at x=Lx, and
Sz0 is the boundary at =z 0.

In the interior of Ω, let Ap1 satisfy the Coulomb gauge

 =A 0. C3p1· ( )

In this case, a current-free =J 0( ) magnetic field satisfies the
vector Laplace’s equation

 =A 0. C42
p1 ( )

On the boundary ∂Ω, we impose the boundary condition

 ´ = ¶WA n B n . C5p1 c( ) · ˆ · ˆ ∣ ( )

Equations (C4)–(C5) define the boundary-value problem for
Ap1.

The standard approach to formulating a boundary-value
problem for the Laplace’s equation is in terms of either
Dirichlet or Neumann boundary conditions (Morse &
Feshbach 1953). In the context of computing Ap1, imposing
Dirichlet conditions corresponds to imposing the transverse

component of the vector potential:

= - ¶WA A A n n , C6t p1 p1( ( · ˆ) ˆ)∣ ( )

and imposing Neumann conditions correspond to specifying
the normal derivative of the normal component:

¶ =  ¶WA n nA . C7n n p1( · ˆ) · ˆ ∣ ( )

Equation (C5) does not directly match either of these forms,
and hence it is necessary to derive a set of Dirichlet/Neumann
boundary conditions by first introducing additional gauge
conditions at the boundary and second by solving a set of two-
dimensional boundary-value problems at each boundary Si. By
this means, a set of boundary data for At and ∂An are derived
that are consistent with Equation (C5). We describe this
process in Appendix C.2.

C.2. Dirichlet/Neumann Boundary Conditions for Ap1 for
Restricted Distributions of Bc

Here we introduce additional gauge conditions to put the
boundary-value problem described in Appendix C.1 into a
standard Dirichlet/Neumann form. Our approach, however, is
“restricted” because it is only applicable when Bc satisfies the
compatibility condition

ò =B n dS 0, C8
S

c
i

· ˆ ( )

for all six boundary faces Sij, i.e.,the net magnetic flux over
each individual face must be zero. This is a much more
restrictive condition than the requirement of net flux balance
over the entire boundary, which should always be the case
when ∇·Bc=0. This restriction turns out not to be a serious
impediment, however, as in Appendix C.3 we describe how the
restricted approach can be made applicable to a generic
magnetic field through the appropriate decomposition.
In addition to the Coulomb gauge condition, we follow

Amari et al. (1999) and impose the further condition

 =¶WA 0. C9i p1· ∣ ( )

Here the operator ∇i ·is a two-dimensional divergence
operator defined on each face i. Given this constraint, it
follows from Equations (C3)–(C5) that

¶ =A 0 C10n n ( )

and

c=  ´A n, C11t i i ˆ ( )

where

c = B n . C12i i S
2

c i
· ˆ ∣ ( )

Here again, the subscript i indicates that the operator and
variable is defined on the two-dimensional boundary plane Si.
The boundary condition on At is computed by solving

Equation (C12) on each boundary subject to boundary
conditions on each edge. The correct boundary conditions are
the homogeneous Neumann boundary conditions

c¶ = 0. C13n ( )

Equations (C13) and (C12) define the boundary-value problem
for χ on each face. Since the boundary conditions are
homogeneous Neumann boundary conditions, the source term
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in Equation (C12) must satisfy a compatibility condition
(Briggs et al. 2000). This condition is expressed by
Equation (C8).

C.3. Decomposition and Solution for a Generic Magnetic Field

In this subsection we describe how to decompose a generic
magnetic field so that the problem of solving for A reduces to
solving the restricted boundary-value problem described in
Appendix C.2.

In order to satisfy the Neumann compatibility condition for a
generic magnetic field, we decompose A as

= +A A A , C14b ub ( )

where both Ab and Aub must satisfy Equations (C4) and (C3).
We define Aub such that

ò ò ´ =A n B ndS dS. C15
S S

ub
c

i i

( ) · ˆ · ˆ ( )

This condition ensures that

ò ò ´ = =A n B ndS dS 0 C16
S S

b b

i i

( ) · ˆ · ˆ ( )

over each boundary face.
The vector potential Aub is not uniquely defined by

Equation (C15) and can be chosen with some freedom. For
convenience, we choose a version of Aub with a simple closed
form expression. Its components are

=
-F + F - F

A
L y yz

V
, C17x

z z z zub 0 1 0( )
( )

= -
F

A
L z

V
C18y

x xub 0 ( )

and

=
-F + F - F

A
L x xy

V
, C19z

y y x xub 0 1 0( )
( )

where V=LxLyLz, and

òF = B n dS C20i
S

c
i

· ˆ ( )

is the net flux over the boundary Si. When defining the flux, we
use the same normal on both the “lower” and “upper”
boundaries, e.g., the positive unit vector ẑ is used on both
the z=0 and z=Lz surfaces.

It is straightforward to show that Aub satisfies Equations (C3),
(C4), and (C9). The magnetic field corresponding to Aub has
components

=
- F + F

B
L x x

V
, C21x

x x xub 0 1( )
( )

=
- F + F

B
L y y

V
, C22y

y y yub 0 1( )
( )

and

=
- F + F

B
L z z

V
. C23z

z z zub 0 1( )
( )

The divergence of this magnetic field is

 =
F - F + F - F + F - F

B
V

, C24
x x y y z zub 1 0 1 0 1 0· ( )

and it follows that ∇·Bub=0 when there is net flux balance
over the entire boundary ∂Ω, which is a basic requirement for
any magnetic field (Jackson 1998).
Given Bub, we may define a corrected magnetic normal

component

= -B n B n B n. C25b
c

ub· ˆ · ˆ · ˆ ( )

The vector potential Ab can then be found by the method of
Appendix C.2 with B nb · ˆ as the right-hand side of
Equation (C12). By construction of Bub, the Neumann
compatibility condition is satisfied for B nb · ˆ.

C.4. Summary of Method for Computing Ap1

Here we summarize our method for computing Ap1.

1. Compute Aub and Bub analytically from B nc · ˆ.
2. Compute B nb · ˆ on the ∂Ωfrom Equation (C25).
3. Compute At

b on each face by solving Equation (C12) on
each face Si.

4. Compute Ab by solving the vector Laplace’s equation with
boundary conditions given by Equations (C10)–(C11).

5. Compute the resultant field A=Aub+Ab.

The problem of determining Ap1 in the Coulomb gauge in
the context of computing helicity has been addressed in a
number of other works, e.g., Thalmann et al. (2011), Rudenko
& Myshyakov (2011), and Yang et al. (2013). It is of some
interest to compare our approach to these. These methods, and
ours, are similar in that they are based on the same gauge
choice of Amari et al. (1999) at the boundary. One major
difference between the methods is the treatment of the
boundary-value problem for χ. Thalmann et al. (2011) solve
a nonhomogenous boundary-value problem for χ with ∂nχ
chosen on the edges to account for flux imbalance across each
face. Rudenko & Myshyakov (2011) perform a decomposition
of A similar to that described in Appendix C.3. Their choice of
Ab , however, differs from ours. Our approach is simpler in a
sense, because we do not need to solve an algebraic system to
determine our A.

C.5. Numerical Implementation

We compute Ap1 by solving the vector Laplace’s equation
using a numerical finite-difference method. The problem is
discretized using a second-order centered differencing scheme
(Press et al. 2007). Both the two-dimensional boundary-value
problem for χi and the three-dimensional boundary-value
problem for Ab are solved using the same approach.
The finite-difference equations are solved using a geometric

multigrid method with Red–Black relaxation as the basic
relaxation operator (Briggs et al. 2000; Press et al. 2007). Our
code performs multigrid V-cycles until the maximum differ-
ence between V cycles is below a given threshold. The method
is implemented in Fortran2003 (Metcalf et al. 2011) and all
variables are stored in double precision. The code is
parallelized for shared memory parallel computers using
OpenMP (Chandra et al. 2001).
To demonstrate the method, we apply it as a simple analytic

test case and measure the scaling of the numerical truncation
error as a function of resolution. For a test case, we consider the
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vector potential with components

= - -A A kx ky lzcos sin exp , C26x 0 ( ) ( ) ( ) ( )

= + -A A kx ky lzsin cos exp , C27y 0 ( ) ( ) ( ) ( )

and

=A 0, C28z ( )

where =l k2 , and A0 is a free parameter that we set to unity.
For k=2πn, where n is an integer, this vector potential
satisfies the Coulomb gauge and the additional gauge
conditions at the boundary.

To measure the numerical error, we compare our numerical
solution to the analytic one using the following metrics

= -V V V VE , max , C29max 1 2 1 2( ) (∣ ∣) ( )

and

= á - ñV V V VE , , C30avg 1 2 1 2( ) ∣ ∣ ( )

where ∣∣ is the component-wise absolute value, max() is the
component-wise maximum over the whole domain, and áñ is
the average over the domain.
Figure C1 shows Emax and Eavg at different mesh spacings h

for a box of unity length in each direction. The solid lines are
power-law fits to the data with power-law index γ. Based on
the fits, both metrics have scaling ∝h2, which is consistent with
the second-order discretization.

Appendix D
Checking Calculation by Breaking the Symmetries of the

Magnetic Field

For the calculation in Sections 3.1 and 3.2, the computa-
tional domain is so large that the magnetic field on the side
boundaries is very small. In a more realistic case, the magnetic
field on the side boundaries might not be small. Moreover,
the lower energy state of B0 mentioned in Appendix A might
be not convincing enough given the small energy difference
shown in Figures 2(a) and 4(a). Therefore, we apply
the calculation on half of the original magnetic field by cutting
the computational domain into two parts by a vertical plane
(x–z) at the middle of the computational box (y=0), which
separates the flux rope into two equal parts and corresponds to
the vertical plane shown in Figure 3. In this case the magnetic
flux rope crosses the side boundary. The evolution of the
energy and helicity are shown in Figure D1, from which we
find that, as expected, the energy difference between the two
potential fields Bp and B0 is much larger than that shown in
Section 3. This supports the lower energy state of B0 derived
in Appendix A. Nevertheless, the time evolution of each
component of the magnetic energy and helicity still shows a
similar behavior as that in Section 3.

Figure C1. Numerical error vs. mesh spacing h for the test case in
Appendix C.5. The solid lines are power-law fits.
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