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Abstract

A physical magnetic field has a divergence of zero. Numerical error in constructing a model field and computing
the divergence, however, introduces a finite divergence into these calculations. A popular metric for measuring
divergence is the average fractional flux á ñfi∣ ∣ . We show that á ñfi∣ ∣ scales with the size of the computational mesh,
and may be a poor measure of divergence because it becomes arbitrarily small for increasing mesh resolution,
without the divergence actually decreasing. We define a modified version of this metric that does not scale with
mesh size. We apply the new metric to the results of DeRosa et al., who measured á ñfi∣ ∣ for a series of nonlinear
force-free field models of the coronal magnetic field based on solar boundary data binned at different spatial
resolutions. We compute a number of divergence metrics for the DeRosa et al. data and analyze the effect of spatial
resolution on these metrics using a nonparametric method. We find that some of the trends reported by DeRosa
et al. are due to the intrinsic scaling of á ñfi∣ ∣ . We also find that different metrics give different results for the same
data set and therefore there is value in measuring divergence via several metrics.

Unified Astronomy Thesaurus concepts: Solar corona (1483); Magnetic fields (994); Computational
methods (1965)

1. Introduction

The solar coronal magnetic field is difficult to directly infer,
and so it has become common to rely on nonlinear force-
free magnetic field (NLFFF) “extrapolations” to study it. An
NLFFF extrapolation uses observations of the vector magnetic
field at the photosphere to construct a three-dimensional
model of the coronal magnetic field. The coronal extrapolation
problem has a long history and is the subject of several
reviews (Aly 1989; Wiegelmann & Sakurai 2012; Régnier
2013).

A magnetic field is force-free if it satisfies the nonlinear
force-free equations (Sturrock & Andrew 1994):

 ´ ´ =B B 0, 1( ) ( )

and

 =B 0. 2· ( )

A force-free magnetic field is a natural equilibrium state for a

magnetized plasma where gas pressure and other forces are

negligible—the equilibrium being one where the magnetic

Lorentz force is self-balancing. It is also the minimum energy

state for a specified connectivity of field lines (Sakurai 1989).

An extrapolation involves solving Equations (1)–(2) in a three-

dimensional volume subject to boundary conditions on the

bottom boundary derived from spectro-polarimetric observa-

tions of the photospheric magnetic field. Such boundary data

are generally noisy and are additionally inconsistent with the

force-free model, because there are significant gas pressure and

gravity forces at the photosphere (Metcalf et al. 1995;

Gary 2001). This can cause problems for the modeling. The

extrapolated magnetic field model may have residual forces and

a finite divergence (DeRosa et al. 2009, 2015a).
Violations of the solenoidal condition are a particular

problem for NLFFF modeling because they lead to nonphysical
magnetic fields. They may also lead to spurious estimates for

the magnetic energy (Valori et al. 2013; DeRosa et al. 2015a),
and accurate estimates of energy are often a goal of NLFFF
modeling (e.g., Thalmann & Wiegelmann 2008).
Consequently, it is important to measure  B· for NLFFF

models to properly interpret the results. There are many ways
of doing this. The volume integral of either  B∣ · ∣ or  B 2∣ · ∣

is a common measure (e.g., Schrijver et al. 2006; Thalmann
et al. 2012). The nonsolenoidal contribution to the magnetic
energy is another measure (Valori et al. 2013; Moraitis et al.
2014; Su et al. 2014; Mastrano et al. 2018). Mastrano et al.
(2018) consider the total signed magnetic flux over the
boundary in addition to the nonsolenoidal component of the
energy. This list of metrics is not exhaustive, but demonstrates
that there are a variety of ways of measuring  B· that are in
use; each has different strengths and weaknesses. The total
signed magnetic flux is only sensitive to the volume integral of
 B· , which may vanish despite local nonzero values of B·

that cancel in the integral due to contributions within the
volume with different signs. The nonsolenoidal magnetic
energy is strictly only uniquely defined if the net  B· is
zero. However, Valori et al. (2013) show that this may not be a
serious problem in practice.
The average fractional flux, á ñfi∣ ∣ , is a commonly used

measure of the divergence of a vector field. It was first defined
by Wheatland et al. (2000) and is zero for a perfectly solenoidal
vector field. In principle, it can measure the divergence of any
vector field; however, it is primarily used to measure  B· in
the context of modeling solar magnetic fields. We argue that
á ñfi∣ ∣ is generally unsuitable as a metric for measuring  B·
because it scales with mesh resolution independently of  B· .
We show in Section 2 that

á ñ ~ Df V , 3i

1
3∣ ∣ ( ) ( )

for a magnetic field defined on a mesh where each cell has

uniform volumeDV . The symbol ∼ in this context indicates an

asymptotic, scaling relationship. The tendency for á ñfi∣ ∣ to scale
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with mesh resolution is mentioned by Valori et al. (2013), who

notes that values of á ñfi∣ ∣ may only be strictly compared

between meshes with the same cell volume. This makes it

difficult to use á ñfi∣ ∣ for comparisons between different studies,

as differences in á ñfi∣ ∣ may only reflect differences in the mesh

spacing.
Why does it matter if the particular metric, á ñfi∣ ∣ , is

potentially a poor measure of  B· ? There are two reasons.
The first reason is that á ñfi∣ ∣ is popular. Indeed, a cursory
survey of the literature indicates that at least 50 papers
published over the last 20 yr have used á ñfi∣ ∣ . On average, this
is about two to three papers per year. Our survey considered
only papers that directly cited Wheatland et al. (2000), so the
actual number is likely higher.

The second reason for considering á ñfi∣ ∣ is that it was
recommended by a well-cited NLFFF workshop paper (DeRosa
et al. 2015a). Based on International Space Science Institute
(ISSI) workshops held in 2013 and 2014, DeRosa et al. (2015a)
considered the effect of spatial resolution on  B· in NLFFF
modeling. They constructed NLFFF models for NOAA active
region AR 10978 using different numerical NLFFF methods
and spatial resolutions. For the models considered, DeRosa
et al. (2015a) found that á ñfi∣ ∣ tends to decrease as spatial
resolution is increased (DV becomes smaller). The decrease in
á ñfi∣ ∣ was interpreted as a true decrease in  B· ; however,

given that á ñfi∣ ∣ scales with DV
1
3( ) , this interpretation may be

called into question.
In this paper we have two aims. First, we aim to give a

formal description of the scaling problem for á ñfi∣ ∣ and to
propose a new metric—which we call the modified fractional
flux á ñfd∣ ∣ —that is based on á ñfi∣ ∣ , but is free from the scaling
problem. The scaling problem and the new metric are
introduced in Section 2. Second, we revisit the question of
DeRosa et al. (2015a) using additional metrics not considered
by DeRosa et al. (2015a), including á ñfd∣ ∣ . In Section 3 we
summarize the study of DeRosa et al. (2015a). In Section 4 we
present the results of the metrics applied to the DeRosa et al.
(2015a) data, and in Section 4.2 we perform a nonparametric
trend analysis of these metric data to ascertain the effect of
spatial resolution. We also examine the concordance between
different metrics, i.e., if we rank solutions using different
metrics, to what extent do these rankings agree/differ. We
again address this problem statistically. In Section 5 we discuss
the results and present the conclusions.

2. The Average Fractional Flux and the Scaling Problem

The average fractional flux is defined by Wheatland et al.
(2000) as

ò

ò
á ñ =

¶

¶

B S

B
f

d

dS
, 4i

S

S

i

i

∣ ∣

·

∣ ∣
( )

where ¶Si is the surface of a voxel whose volume is Si. The

subscript i is used to indicate that the computational mesh on

which B is defined is comprised of many such voxels. The

operator áñ is the arithmetic mean over every voxel of the mesh.

The ratio is the total flux over each voxel normalized by the

average of B∣ ∣ over the surface bounding the voxel. The surface

integral in the numerator is related to  B· by Gauss’s law,

i.e.,

ò ò= 
¶

B S Bd dV . 5
S S

i
i i

· ( · ) ( )

It follows that if  =B 0· , then á ñ =f 0i∣ ∣ too.

The most common form of á ñfi∣ ∣ that appears in the literature
is for a uniform Cartesian mesh:

á ñ = D
 B

B
f x

6
, 6i

i

i

∣ ∣
∣ · ∣

∣ ∣
( )

where Δx is the spacing of the mesh. In deriving this form, the

integrals in Equation (4) are approximated by cell and face

averages (Wheatland et al. 2000), meaning Equation (6) agrees

with Equation (4) only to within some truncation error in Δx.

However, nothing that we present here depends critically on

this approximation.
Equation (6) is a product of Δx and an average term, which

strongly suggests á ñ ~ Df xi∣ ∣ . However, it is also important to
realize that the average term depends on Δx too: at different
resolutions, the average is performed over different samplings
of  B B∣ · ∣ ∣ ∣, so that even if  B B∣ · ∣ ∣ ∣ is independent ofΔx,
the average will have some Δx dependence. As a function of
resolution, the term á  ñB B∣ · ∣ ∣ ∣ is a set of partial sums that
converges to a limit at a rate that depends on Δx. In particular,
it can be shown that, generally

òá ñ =
D 

+ D
B

B
f

x

V
dV x

6
, 7i

S

2∣ ∣
∣ · ∣

∣ ∣
( ) ( )

where S is the whole domain with volume V. The “error” term

D x2( ) reflects the fact that the average is a Riemann sum that

generally differs from the integral by a truncation error of order

D x( ). The coefficient of the average is Δx, leading to the

term D x2( ) in Equation (7). Hence, we may conclude that,

generally, á ñ ~ Df xi∣ ∣ to first order in Δx.

The tendency of á ñfi∣ ∣ to decrease with resolution is not a
special consequence of a uniform mesh. Equation (4) involves
the ratio of a volume integral to a surface integral. The
numerator has scaling ~DVi , where DVi is the volume of the

voxel i, while the denominator has scaling~DVi
2 3. Hence the

ratio has scaling ~DVi
1 3, and therefore á ñ ~ áD ñf Vi i

1 3∣ ∣ . The

quantityDVi
1 3 has the form of an “effective” linear dimension

of each voxel, i.e., it is the side length of a cube with the same
volume.
To address this issue with á ñfi∣ ∣ , we now introduce the

modified fractional flux, defined as

ò

ò
á ñ =

¶
B S

B
f

d

dV
. 8d

S

S

i

i

∣ ∣

·

∣ ∣
( )

Equation (8) differs from Equation (4) in that the denominator

is the integral over volume, i.e., á ñfd∣ ∣ involves a different

normalization of the net flux at each voxel. On a uniform mesh,

á ñ =
D

á ñf
x

f
6

. 9d i∣ ∣ ∣ ∣ ( )

Unlike á ñfi∣ ∣ , which is nondimensional, á ñfd∣ ∣ has units of

inverse length. As a result, values of á ñfi∣ ∣ and á ñfd∣ ∣ cannot be

directly compared because they are in different units. In

2
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principle, one could nondimensionalize á ñfd∣ ∣ with some

characteristic length scale, e.g., V1 3.
We expect

á ñ ~ + Df c V , 10d
1 3∣ ∣ ( ) ( )

where c depends on  B· , but is independent of DV . This is
an improvement over á ñfi∣ ∣ , because á ñfd∣ ∣ has a finite limit for

small DV1 3 when  ¹B 0· .

2.1. Application of á ñfi∣ ∣ and á ñfd∣ ∣ to a Test Case

In this section we apply á ñfi∣ ∣ and á ñfd∣ ∣ to a simple test case

that demonstrates the scaling problem for á ñfi∣ ∣ , and we show

that á ñfd∣ ∣ is free from this problem. In this section we use
nondimensional units. Magnetic fields, lengths, and differential
operators are scaled by an unspecified characteristic magnetic
field strength Bc and length scale Lc. Nondimensional
quantities are indicated with bars, e.g., the nondimensional
mesh spacing is D = Dx x Lc. The actual dimensions are not
important to the results.

Consider the magnetic field

=B zB z , 11s ˆ ( )

where ẑ is a the Cartesian unit vector, and Bs is a constant that

sets the magnitude of the field in nondimensional units. The

divergence is

 =B B . 12s· ( )

In what follows, we take =B 1 2s , and a uniform mesh with

spacing Dx that spans a three-dimensional box

Î ´ ´x y z, , 1, 2 1, 2 1, 2( ) [ ] [ ] [ ]. For these parameters, it

can be shown that

á ñ =
D

+ Df
x

x
log 2

6
, 13i

2∣ ∣
( )

( ) ( )

and

á ñ = + Df L xlog 2 . 14d c∣ ∣ ( ) ( ) ( )

The results are independent of Bs. To first order á ñ ~ Df xi∣ ∣

and á ñ ~f 1d∣ ∣ . The higher-order terms are the result of the

convergence of the average term.

The left panel of Figure 1 shows á ñfi∣ ∣ for this field computed
at different resolutions. The extent of the volume is unchanged
with resolution. The metric, á ñfi∣ ∣ , decreases systematically
with increasing spatial resolution; however, the underlying
divergence is unchanged. The solid line is a power-law fit to
the data with power-law index g = 1.0018 0.0004, with the
uncertainty derived from the covariance matrix of the fit—the
power-law index, γ, is close to unity, but not exactly, because
the scaling of á ñfi∣ ∣ departs from ~Dx for large Dx.
The right panel shows á ñfd∣ ∣ computed under the same

conditions. The á ñfd∣ ∣ metric changes very little with resolution.
A power-law fit has index g = 0.0018 0.0004, with the
uncertainty derived from the covariance matrix of the fit.
Again, γ is close to the asymptotic value of zero, but departs
from constant scaling for large values of Dx.

3. Description of the DeRosa et al. (2015a) Study

DeRosa et al. (2015a) performed NLFFF extrapolations of
NOAA active region AR 10978 on 2007 December 13 using
magnetic field boundary conditions derived from the Hinode/
Solar Optical Telescope Spectro-Polarimeter (Hinode/SOT)

observations (Tsuneta et al. 2008; Lites et al. 2013). A set of
boundary conditions for the modeling was constructed at
different spatial resolutions by binning the Hinode/SOT Stokes
spectra by different integer factors. The binned spectra were
then subject to spectro-polarimetric inversion, ambiguity
resolution, and remapping to a flat heliographic tangent plane
suitable for computing the NLFFF extrapolations in Cartesian
coordinates. The coordinate mesh on the tangent plane had
uniform spacing. A complete description of the data prep-
aration is given in DeRosa et al. (2015a).
Table 1 lists the models and shows the bin factors used in the

DeRosa et al. (2015a) study. A bin factor of unity corresponds
to no binning, but is not shown because DeRosa et al. (2015a)
did not perform extrapolations at this resolution due to the high
computational intensity of the calculations. For a bin factor of
unity, the mesh scale is 0.106Mm. The mesh spacing for the
other bin factors is given by 0.106Mm multiplied by the
relevant bin factor.
DeRosa et al. (2015a) used five different NLFFF extrapola-

tion methods: the optimization method (OPTI) described in

Figure 1. The left panel shows á ñfi∣ ∣ computed for the example field defined by Equation (11) on a series of uniform meshes with grid spacingDx. The solid line is a

power-law fit to the data with index g » 1. The metric decreases as Dx decreases. The right panel shows á ñfd∣ ∣ computed for the same magnetic field and the same
meshes. The solid line is a power-law fit with index g » 0. The metric á ñfd∣ ∣ remains approximately constant as a function of resolution. In these examples, the length
is measured in terms of an unspecified characteristic length Lc, which is constant. The magnitude of the two metrics differ, so a direct comparison is not meaningful
because á ñfd∣ ∣ is a dimensional quantity, while á ñfi∣ ∣ is not. In nondimensional units á ñfd∣ ∣ depends on the arbitrary scaling Lc, whereas á ñfi∣ ∣ does not.
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Wiegelmann & Inhester (2010) and Wiegelmann et al. (2012);
the magnetofrictional method (MAGF) described in Valori
et al. (2007, 2010); and three codes based on different
implementations of the Grad–Rubin method (Grad &
Rubin 1958), namely CFIT (Wheatland 2007), XTRAPOL
(Amari et al. 2006; Amari & Aly 2010), and FEMQ (Amari
et al. 2006).

Boundary conditions for each NLFFF method were derived
from the binned Hinode vector magnetogram data using an

approach specific to each method. Different approaches to
smoothing, censoring, and preprocessing were applied to derive
boundary conditions in each case. The detailed methods are
described in DeRosa et al. (2015a).
All the extrapolations were performed in Cartesian coordi-

nates. Some methods used a nonuniform mesh for the
calculation, but for the analysis, all data were mapped to a
uniform Cartesian mesh: the spacing and extent of the mesh
were consistent across methods. The spacing differed between

Table 1

Divergence Metrics for Extrapolations of DeRosa et al. (2015a)

Method Bin á ñfi∣ ∣ (́ -10 4) á ñfd∣ ∣ (́ - -10 m9 1) LQ(́ - -10 Mx cm8 3) Emix∣ ˜ ∣( ´ -10 2)

CFIT (N/P) 02 3.39/2.13 9.60/6.03 2.15/1.71 0.05/0.05

03 4.78/3.99 9.02/7.54 2.11/1.90 0.09/0.09

04 6.11/4.96 8.65/7.02 2.17/2.01 2.55/1.84

06 6.13/4.69 5.79/4.43 1.81/1.65 0.24/0.25

08 7.27/6.35 5.15/4.50 1.68/1.59 0.36/0.39

10 8.64/6.53 4.89/3.70 1.70/1.48 0.51/0.53

12 9.81/7.56 4.63/3.57 1.62/1.44 0.64/0.61

14 11.4/9.86 4.61/3.99 1.60/1.54 0.90/0.88

16 11.9/11.1 4.21/3.93 1.54/1.50 1.07/1.02

FEMQ (N/P) 02 0.387/0.424 1.10/1.20 0.516/0.541 0.024/0.023

03 0.663/0.695 1.25/1.31 0.701/0.714 0.066/0.064

04 0.981/0.988 1.39/1.40 0.750/0.748 0.001/0.003

06 1.75/1.77 1.65/1.67 0.856/0.861 0.001/0.001

08 2.78/2.78 1.97/1.97 1.05/1.05 0.275/0.272

10 3.52/3.50 1.99/1.98 1.00/1.00 0.199/0.183

12 4.61/4.51 2.18/2.13 1.03/1.02 0.197/0.205

14 5.30/5.23 2.14/2.12 1.06/1.06 0.461/0.454

16 6.86/6.40 2.43/2.27 1.07/1.05 0.120/0.117

MAGF 02 13.0 36.8 3.16 0.26

04 13.3 18.8 4.47 2.58

06 17.5 16.5 4.02 3.02

08 32.9 23.3 4.60 2.12

10 46.4 26.3 5.25 2.33

12 51.6 24.4 5.30 0.68

14 70.9 28.7 4.66 0.65

16 82.4 29.2 5.09 0.22

OPTI 02 1.14 3.23 1.40 11.0

03 1.75 3.30 1.51 7.70

04 2.18 3.09 1.14 9.75

06 3.70 3.49 1.20 7.13

08 6.14 4.35 1.09 8.49

10 10.2 5.76 1.324 6.63

12 15.7 7.41 1.316 9.21

14 17.7 7.16 1.24 5.88

16 19.5 6.90 1.04 5.75

XTRA (N/P) 02 0.403/0.46 1.14/1.30 0.592/0.669 0.050/0.048

03 0.77/0.828 1.45/1.56 0.763/0.806 0.106/0.101

04 1.20/1.24 1.70/1.75 0.904/0.925 0.149/0.146

06 2.11/2.20 1.99/2.08 1.03/1.06 0.275/0.281

08 3.05/3.07 2.16/2.18 1.11/1.12 0.389/0.393

10 4.69/5.06 2.66/2.86 1.24/1.26 0.575/0.560

12 5.67/6.00 2.68/2.83 1.21372/1.24 0.615/0.603

14 6.49/6.71 2.63/2.72 1.21371/1.22 0.936/0.890

16 7.85/7.85 2.78/2.78 1.27/1.29 1.05/1.01

Note. The labels indicate the method used to compute the NLFFF extrapolation and are explained in the text. For each method, several extrapolations were performed

at different spatial resolutions. The bin factor indicates the factor by which the Hinode/SOT data were binned before deriving boundary conditions for the NLFFF

modeling. We compute the values in columns 3–5 ourselves. The values in column 6 are reproduced from Table 4 of DeRosa et al. (2015a). The results in the last four

columns are plotted in Figure 2 versus bin factor.
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bin factors but the extent of the domain was the same in
each case.

For methods based on the Grad–Rubin iteration, there are
two solutions for each bin factor, labeled P and N. For the
Grad–Rubin method, boundary conditions on the electric
current density are only prescribed on one polarity of the
normal component of the magnetic field Bn (Grad &
Rubin 1958). Therefore, two solutions are possible given one
set of boundary data. For the P solution, electric current is
prescribed at points where >B 0n , and for the N solution,
electric current is prescribed at points where <B 0n .

We note that all of the authors of the current work were
involved in the DeRosa et al. (2015a) study. S.A. Gilchrist and
M.S. Wheatland computed the CFIT solutions.

4. Analysis of DeRosa et al. (2015a) Results

In this section we analyze the magnetic field data of DeRosa
et al. (2015a) using four metrics: the average fractional flux
á ñfi∣ ∣ , the modified fractional flux á ñfd∣ ∣ , the total unsigned
divergence LQ, and the mixed component of the nonsolenoidal
energy Emix∣ ˜ ∣. Two of these metrics have already been
discussed in Section 2, and we describe the other two in
Section 4.1. In Section 4.2 we apply the four metrics to the data
of DeRosa et al. (2015a), and we perform a nonparametric
analysis of the metric data.

4.1. Other Measures of ∇·B

One popular class of metric measures the total/average
unsigned  B· in the volume. One example from this class is
the volume-averaged absolute divergence, given by

ò=  BL
V

dV
1

, 15Q ∣ · ∣ ( )

which has units of flux per unit volume ( -Mx cm 3 in cgs).

Minor variations of this metric exist. For example,  B 2∣ · ∣

may be used in place of  B∣ · ∣ (Schrijver et al. 2006;

Thalmann et al. 2012). The integral may also be replaced by a

discrete average (Fan et al. 2012). It is important to note that LQ
depends on the magnitude of B, which complicates compar-

isons between cases where the characteristic magnetic field

strength differs. For example, comparisons between extrapola-

tions of different active regions whose magnetic field strengths

differ significantly cannot be strictly compared without

correcting for this difference in some way. We consider this

type of metric because of its prevalence in the literature.
As another metric, we consider the nonsolenoidal energy

metric of Valori et al. (2013). A magnetic field can be
decomposed into solenoidal and nonsolenoidal components:

z y= + +  + B B B , 16J sp,s , ( )

where Bp,s and BJ s, are the nonsolenoidal components, and z
and y are the solenoidal components. We define these in

more detail below, here it suffices to say that both z and y
are zero when  =B 0· . The total magnetic energy of the

field is then

= + + + +E E E E E E , 17J Jp,s ,s p,ns ,ns mix ( )

where

òp
=E B dV

1

8
, 18

V
p sp,s ,
2 ( )

òp
=E B dV

1

8
19J

V
J,s ,s
2 ( )

òp
z= E dV

1

8
, 20

V
p,ns

2∣ ∣ ( )

òp
y= E dV

1

8
, 21J

V
,ns

2∣ ∣ ( )

and

ò òp
z y=  + B BE dV dV

1

4
22

V V
Jmix p,s ,s⎜

⎛
⎝

· · ( )

ò òy z+  + B BdV dV 23
V V

Jp,s ,s· · ( )

ò òz y+   + B BdV dV . 24
V V

Jp,s ,s ⎟
⎞
⎠

· · ( )

The vector fields used in the decomposition are constructed by

first splitting B into the sum

= +B B B , 25Jp ( )

where Bp is the potential field that matches the normal

component of B on the boundary, and BJ is defined by

Equation (25), i.e., = -B B BJ p. The field BJ is sometimes

called the current-carrying component (e.g., DeRosa et al.

2015a); however, this is misleading. It is more accurate to say

that BJ is the field whose curl matches B. It is important to note

that even when the electric current density is zero everywhere,

BJ will generally have a finite value, unless  =B 0· . The

potential field Bp is further decomposed into the sum

z
z
z

= + 
 = 
¶ =¶

B B
B

where
0,

26
n V

p p,s

2
p

⎧
⎨
⎩

·

∣
( )

and where Bp,s is the solenoidal component of Bp, z is the

nonsolenoidal component of Bp, ¶n is the normal derivative at

the boundary, and ∇
2 is the Laplace operator. The BJ

component is also decomposed into a sum of solenoidal and

nonsolenoidal components:

y y
y

= + 
 = 
¶ =¶

B B
B

where
0.

27J J
J

n V
,s

2⎧
⎨
⎩

·

∣
( )

DeRosa et al. (2015a) found that Emix∣ ∣ was the largest

magnitude term in Equation (17), for the NLFFF models

considered. This mixed term is a coupling energy between the

solenoidal and nonsolenoidal components of the magnetic field.

As a metric for  B· , we consider the nondimensional form of

Emix∣ ∣ defined by Valori et al. (2013) as

=E
E

E
, 28mix

mix
∣ ˜ ∣

∣ ∣
( )

where E is the total energy in the magnetic field B. When

 =B 0· it follows that =E 0mix∣ ˜ ∣ .
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4.2. Application of Metrics to DeRosa et al. (2015a) Data

We compute á ñfi∣ ∣ , á ñfd∣ ∣ , and LQ from the DeRosa et al.
(2015a) data cubes (DeRosa et al. 2015b). We compute  B·

using a centered-difference approximation to the derivative
(Press et al. 2007). This is consistent with the method used to
compute  B· for analysis in DeRosa et al. (2015a), but is not
necessarily consistent with the numerical schemes used
internally by the various NLFFF methods/codes. We do not
recompute Emix∣ ˜ ∣. Instead, we simply rely on the value from
Table 4 of DeRosa et al. (2015a).

Table 1 shows á ñfi∣ ∣ , á ñfd∣ ∣ , LQ, and Emix∣ ˜ ∣ for each method
and bin factor. These results are shown also in Figure 2. A
visual inspection of the data does not reveal any clear trend that
is common to all methods.

4.3. Rank Correlation Trends for Metrics

For each of the methods, we compute the Kendall τ rank-
correlation coefficient (Kendall 1962; Daniel 1978; Press et al.
2007) between the bin factor and each metric. Kendall’s τ
measures the agreement (concordance) between two methods
of ranking data. For two sets of data xi and yj, Kendall’s τ is
defined as (Kendall 1962)

ååt =
-

- -
= >n n

x x y y
2

1
sgn sgn , 29

i

n

j i

n

i j i j

1( )
( ) ( ) ( )

where sgn is the sign function, and n is the number of data

points in each data set. Kendall’s τ takes values in the range

t Î - +1, 1[ ]. A value of t = 1 implies perfect agreement/
disagreement between the two rankings. A value of t = 0

implies no relationship. We choose τ because it is nonpara-

metric—it measures the degree to which a relationship between

two parameters that describe a data set results in the same

ordering, without making assumptions about the functional

form of the relationship. This may be contrasted with the

product-moment (Pearson) correlation coefficient, r, which

measures the departure from a linear relationship.
A basic test of the significance of τ is to compute the P value

under the null hypothesis that there is no relationship between
the two rankings. Under the null hypothesis, the probability
distribution for τ is given exactly by (Kendall 1962)

t
t

=P n
F S

n
, , 30H

n
0
( )

[ ( )]

!
( )

where

t t=
-

S
n n 1

2
31( )

( )
( )

and Fn is defined by the recursion

å= + -+
=

F S F S n k2 , 32n

k

n

n1

0

( ) ( ) ( )

with Fn= 0 whenever Ï - - + -S n n n n1 2, 1 2[ ( ) ( ) ].

The recursion for F is initiated with

=F S, 2 1. 33( ) ( )

It follows from the definition of τ that S is always an integer,

and PH0
is a discrete probability distribution. The two-sided P

value is the probability of obtaining a value of t∣ ∣ greater than

Figure 2. Metrics for evaluating  B· vs. bin factor for the DeRosa et al. (2015a) data. Lower bin factors correspond to higher resolution. The numerical values are
shown in Table 1. The trend clearly visible in á ñfi∣ ∣ is not consistently evident. There are similar trends for some methods for some metrics.
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or equal to the observed value (tobs) under the null hypothesis.
This value is computed from Equation (30) as

å å= +
 

P P S n P S n, , , 34
S S

H

S S

H

obs

0

obs

0
( ) ( ) ( )

where t=S Sobs obs( ). We have written a Python function for

computing this distribution. We have made our module

available online (Gilchrist 2020).
The first four columns of Table 2 show Kendall’s τ

computed between the bin factor and each of the four metrics:

á ñfi∣ ∣ , á ñfd∣ ∣ , LQ, and Emix∣ ˜ ∣. We note that some entries in
Table 2 are exactly ±1.00. This occurs because the data are
perfectly monotonic and are not a result of rounding to a finite
precision in the table. If we were dealing with the product-
moment correlation coefficient, r, then finding exactly = r 1

for real-world (noisy) data would be cause for some suspicion.
However, for a given sample size, n, τ takes one of

+ -n n1 1 2( ) rational values and will be exactly±1 when
the data are perfectly monotonic.

Table 3 shows the log of the two-sided P value for the values
of τ in Table 2. A small value for P indicates that the
probability of obtaining the observed value of τ by chance is
small. A large value indicates the opposite. In the following we
consider a P value of 0.05 as the threshold for significance.
This is a historically popular, but ultimately arbitrary, choice.

Computing rank correlations in the presence of ties is more
complicated than in the absence of ties. In this context, a tie
occurs when a metric has the same value for different bin
factors for a given method. Where necessary, we quote values
in Table 1 to sufficient precision to prevent the appearance of
apparent ties due to rounding. Since we do not compute Emix∣ ˜ ∣,
we are limited to the precision quoted in Table 4 of DeRosa
et al. (2015a) for this metric. At this precision, a tie occurs in
Emix∣ ˜ ∣ for bins 5 and 6 for FEMQ-N. We break the tie by adding

a factor of either - -10 9 or + -10 9 to bin 4 of FEMQ-N. This
gives values of τ equal to .33 and .39, respectively, with an
average of 0.36. The corresponding Plog10( ) values are −0.59
to −0.74 with an average of −0.67. The tie breaking does not
significantly affect the results. In Tables 2 and 3 we show the
“best case” value, i.e., the largest τ value with the smallest P
value.

We consider the difference between á ñfi∣ ∣ and á ñfd∣ ∣ . This is
an important comparison because it is a measure of the role that
the scaling problem plays in the trends noted by DeRosa et al.
(2015a). For the metric á ñfi∣ ∣ we find tá ñfi∣ ∣ close to unity in each

case. However, for á ñfd∣ ∣ the trends are more complicated.
Generally, tá ñfd∣ ∣ is smaller in all cases. MAGF achieves the
smallest magnitude value of tá ñfd∣ ∣ , which is not significant
based on the corresponding P value, suggesting that there is no
trend with spatial resolution for MAGF. In the case of CFIT,
we find a significant negative value of tá ñfd∣ ∣ for both the P and
N solutions, indicating worse performance with increasing
spatial resolution. Thus for some methods, the improvement
with resolution reported by DeRosa et al. (2015a) was likely
due to the intrinsic scaling of á ñfi∣ ∣ , but for more than half the
methods, there is still a significant trend of improvement with
resolution. Every method showed some significant improve-
ment with resolution (i.e., t > 0 with <P 0.05) for at least
one metric.
For the LQ metric we find a lot of variation between methods.

CFIT-N, CFIT-P, and OPTI became worse with increasing
resolution. Some have P values above a 0.05 threshold. The
amount of variation between methods as measured by the LQ
metric is similar to that measured by á ñfd∣ ∣ : CFIT again shows a
significant worsening with resolution. In this case, OPTI also
worsens with resolution, although the result is not statistically
significant, while all the other methods show significant
improvement with resolution. It is important to note that LQ
measures  B· in absolute terms and therefore will tend to
scale with the magnitude of B. If one replaces B by lB, where
λ is a constant, then LQ becomes lLQ. The other metrics are
normalized in some sense and do not have this particular
scaling. It is difficult then to compare LQ between resolutions
because the scale of B varies with bin factors. Indeed, DeRosa
et al. (2015a) discuss the effect of the binning on the inferred
field strengths, the vertical electric current density Jz, and the
total magnetic flux.
The metric Emix∣ ˜ ∣ has the fewest significant results. The

methods MAGF and FEMQ do not achieve P values below a
0.05 threshold, suggesting no significant improvement with
resolution. For those methods where τ is significant, the trends
are opposite those of LQ, except for XTRAPOL. So, for
example, CFIT shows improvement with spatial resolution by
this metric.
It is important to recall that τ measures monotonicity of data.

It does not measure the strength of a particular relationship in

Table 2

The First Four Columns Give the Kendall τ Rank-correlation Between Bin Size

and the Four Metrics á ñfi∣ ∣ , á ñfd∣ ∣ , LQ, and Emix∣ ˜ ∣ Computed From the DeRosa
et al. (2009) Solution Data Values

Method tá ñfi∣ ∣ tá ñfd∣ ∣ tLQ t Emix∣ ˜ ∣ W

CFIT-N 1.00 −1.00 −0.83 0.67 0.21

CFIT-P 0.94 −0.61 −0.61 0.67 0.30

FEMQ-N 1.00 0.94 0.89 0.39 0.83

FEMQ-P 1.00 0.94 0.83 0.39 0.81

MAGF 1.00 0.36 0.64 −0.43 0.34

OPTI 1.00 0.72 −0.39 −0.61 0.28

XTRA-N 1.00 0.89 0.83 1.00 0.97

XTRA-P 1.00 0.72 0.83 1.00 0.92

Note. A value of t = 1 indicates that the particular metric is monotonically

increasing with bin factor (and therefore monotonically decreasing with

increasing resolution). A value of t = -1 indicates the opposite. The final

column contains the coefficient of concordance, W, described in Section 4.4 for

three of the four metrics.

Table 3

Table of the Plog10( ) Values for the τ and W Results in Table 2

Method tá ñP fi
( )∣ ∣ tá ñP fd

( )∣ ∣ tP LQ( ) tP Emix( )∣ ˜ ∣ P(W)

CFIT-N −5.26 −5.26 −3.07 −1.90 −0.13

CFIT-P −4.30 −1.61 −1.61 −1.90 −0.28

FEMQ-N −5.26 −4.30 −3.62 −0.74 −1.98

FEMQ-P −5.26 −4.30 −3.07 −0.74 −1.88

MAGF −4.30 −0.56 −1.51 −0.75 −0.37

OPTI −5.26 −2.23 −0.74 −1.61 −0.25

XTRA-N −5.26 −3.62 −3.07 −5.26 −2.51

XTRA-P −5.26 −2.23 −3.07 −5.26 −2.34

Note. The P-value is the probability of obtaining the results or a more extreme

value in Table 2 under the null hypotheses. The null hypotheses are explained

in Sections 4.3 and 4.4. For reference, the 0.05 significance level in the log

scale is » -log 0.05 1.3010( ) .
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absolute terms. Weakly varying data may be monotonic and
have t = 1, but may also be practically constant when
measured in absolute terms. For example, if two data sets, x
and y, are related by the linear relation = +y x b, where
 x b and b is a constant for the range of x considered, then
one finds t = 1 for these data. However, in absolute terms
»y b. In this way, a value of τ close to zero is more

informative as it indicates that no monotonic trend exists either
in terms of rank or in absolute terms of the data. A value of
t  1 indicates a strong correlation in rank, but the data may
vary little when considered in absolute terms.

4.4. Measure of Concordance between Different Metrics

To measure the agreement/disagreement between different
metrics, we compute Kendall’s coefficient of concordance, W,
for three of the metrics (Kendall 1962; Daniel 1978).

A set of n “objects” can be ranked in m different ways
according to different metrics. If we define vij as the rank of
object i according to ranking j, then the coefficient of
concordance is defined as (Kendall 1962)

å=
-

-
=

W
m n n

u u
12

, 35
i

n

i2 3
1

2

( )
( ) ( )

where

å=
=

u v 36i

j

m

ij

1

( )

is the sum of the ranks over the different rankings, and

= +u m n
1

2
1 . 37( ) ( )

Kendall’s W measures the extent to which the m rankings

agree. It takes a value in the range 0, 1[ ]. A value of W=1
indicates perfect agreement between the m rankings. A value of

W=0 indicates no agreement. The P value for W under the

null hypothesis can be computed from the asymptotic formula

(Kendall 1962).

= -cP P m n W1 , 382 [ ( ) ] ( )

where cP 2 is the c2 distribution with -n 1 degrees of freedom.

When computing, W we use the “correction for continuity”

described by Kendall (1962), which is appropriate for small

sample sizes. The correction is performed by subtracting one

from the numerator and adding two to the denominator of the

ratio in Equation (35). It should be noted that the form ofW and

the corresponding P value are only appropriate when there are

no ties in the data. More complex expressions are required

when ties are present (Kendall 1962). We have developed a

Python module for evaluating both W and the asymptotic P

value. This module utilizes basic numerical functions from the

SciPy library (Virtanen et al. 2020). We have made our module

available online (Gilchrist 2020).
In the present context, the “objects” are the NLFFF solutions

at different resolutions for a give method, and the metrics are
those that we have defined in Sections 2 and 4.1. We consider
three metrics, so m=3 in our case, and n is the number of
different bin factors: n=8 for MAGF and n=9 for all the
other methods.

The final column of Table 2 shows W for á ñfd∣ ∣ , LQ, and

Emix∣ ˜ ∣. It measures the agreement between these three metrics.
We exclude á ñfi∣ ∣ from the calculation, because of the scaling
problem. The final column of Table 3 shows the log10 of the P
values for W for each of the codes/methods.
No method achieves a perfect score of W=1, although

XTRAPOL and FEMQ come the closest. The other methods
generally achieve values of <W 0.4 and are not significant,
according to their P values. Only XTRAPOL and FEMQ have
P values below a 0.05 level of significance, suggesting that for
the other metrics there is no real association between the
rankings given by á ñfd∣ ∣ , LQ, and Emix∣ ˜ ∣.

5. Discussion and Conclusions

The metric á ñfi∣ ∣ as originally defined by Wheatland et al.
(2000) is problematic as a metric for measuring divergence
because it exhibits a scaling problem: á ñ ~ Df Vi

1 3∣ ∣ ( )

regardless of  B· , where here DV is the volume of a mesh
cell on which B is defined. This means that comparing á ñfi∣ ∣

computed on different meshes is ill-advised, because á ñfi∣ ∣
naturally becomes smaller when using a finer mesh, even
without any actual change in  B· . To address this deficiency,
we define a new metric, á ñfd∣ ∣ , which is a simple modification

of á ñfi∣ ∣ . As shown in Section 2, the new metric has the

improved scaling á ñ ~ + Df c Vd
1 3∣ ∣ ( ), where c is indepen-

dent of DV . Hence, á ñfd∣ ∣ is not asymptotic to zero for small

DV as á ñfi∣ ∣ is.
We also revisit the issue considered by DeRosa et al. (2015a)

of whether spatial resolution affects  B· for NLFFF
extrapolations. We consider the two divergence metrics
computed by DeRosa et al. (2015a), i.e., á ñfi∣ ∣ and Emix∣ ˜ ∣. We

also consider á ñfd∣ ∣ and LQ. Our aims are threefold. First we

aim to assess the effect of the scaling problem for á ñfi∣ ∣ on the
results DeRosa et al. (2015a). Second, we aim to perform a
quantitative analysis of the trends in spatial resolution for the
four metrics. Third, we aim to measure the concordance
between different metrics, i.e., if we rank solutions using
different metrics, to what extent do these rankings agree/differ.
In Section 4.3 we compute Kendall’s rank-correlation

coefficient, τ, for the different metrics/methods. The trends
are more complicated than those reported in DeRosa et al.
(2015a), suggesting that the scaling problem for á ñfi∣ ∣ is
partially responsible for those results. From our results, it
appears that some NLFFF methods perform worse than others
in terms of satisfying the  =B 0· condition. XTRAPOL and
FEMQ have the smallest magnitude of each  B· metric at
almost every spatial resolution, but FEMQ does not have a
consistent trend of decreasing Emix∣ ˜ ∣ with increasing spatial
resolution (t = 0.39 with = -Plog 0.7410( ) ). On the other
hand, the MAGF typically has the largest magnitude for each
metric. For this method, only the metric LQ appears to improve
significantly with resolution. The results for CFIT and the
OPTI are mixed. For some of the metrics they have t < 0
indicating increasing  B∣ · ∣ with resolution.
From our analysis, it would appear that some NLFFF

solution methods are worse than others in terms of achieving
 =B 0· . However, some caution is required when drawing
conclusions of this nature. The DeRosa et al. (2015a) results
depend not only on the NLFFF method used, but also on the
various ways the boundary data were treated. As described in
DeRosa et al. (2015a), the binned boundary data were
smoothed, censored, and preprocessed in different ways
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depending on the NLFFF method used. It is difficult, therefore,
to completely separate the effects of the NLFFF method from
the effects of the processing.

Although the processing methods are different, we expect a
general reduction in  B∣ · ∣ as electric currents are removed
from the boundary data due to smoothing/censoring. As
electric current is removed, the NLFFF solution approaches a
potential field. The construction of a potential field is a well-
posed mathematical problem that is straightforward to imple-
ment numerically, and we expect negligible  B· violations
for this special case. We therefore expect a general reduction in
 B∣ · ∣ for NLFFF solutions as the limit of a potential field is
approached.

As discussed in Section 4.4, we find values for the
coefficient of concordance, W, that are statistically consistent
with zero for all but two methods (FEMQ and XTRAPOL).
This indicates that the ranking of solutions from best to worst
generally depends on the metric. In particular, in some
instances, what is regarded as the most solenoidal solution
depends on the choice of metric.

In the limit that  B· goes to zero, one expects some
association between the metrics á ñfd∣ ∣ , LQ, and Emix∣ ˜ ∣. However,
for finite  B· , these metrics may differ because they depend
on the distribution of  B· and B in different ways. The á ñfd∣ ∣

metric is normalized by B∣ ∣, whereas LQ is not. The metric

Emix∣ ˜ ∣ depends not just on  B· , but also on the orientation of
the nonsolenoidal field relative to the solenoidal field (Valori
et al. 2013). Both Valori et al. (2013) and DeRosa et al. (2015a)
found that the á ñfi∣ ∣ metric does not predict Emix∣ ˜ ∣. Given these
results, we conclude that there is value in computing different
metrics for  B· .

For the metrics that we consider, a smaller value is better in
the sense that it indicates a more divergence-free magnetic
field. How small, then, do these metrics need to be before an
NLFFF solution should be accepted? In some contexts this
question has a definitive answer. For example, to use an
NLFFF extrapolation to estimate free energy, a common
application, it is necessary that Emix∣ ˜ ∣ and the other non-
solenoidal energy components be smaller than the measured
free energy, otherwise the free energy is unphysical. In other
contexts, the answer is unclear. How large do the metrics need
to be before either the helicity or topology of an NLFFF
extrapolation becomes unreliable? A priori, the answer to this
question is unclear, and more research is required to properly
address it. As a first step, we recommend the reporting of these
metrics so that it is at least possible to make comparisons
between different studies.

We acknowledge that in both our approach and that of
DeRosa et al. (2015a)  B· is computed using a method that is
inconsistent with the way derivatives are approximated by the
NLFFF codes. We compute  B· using a second-order finite-
difference approximation to the derivatives, whereas the
NLFFF codes use a variety of alternatives. For example,
FEMQ is a finite element code, and CFIT is based on a Fourier
spectral method. In using a method of numerical differentiation
that differs from the codes some additional truncation error is
introduced, and thus our analysis reflects trends in not only the
codes/methods, but also the truncation error introduced in
computing  B· itself.

The reliability of our statistical approach may also be
questioned given the small number of data points under
consideration. We compute τ and the P values from eight to

nine data points in each case. How reliable are these numbers?
We can be confident that the P values for τ are meaningful
because the probability distribution for τ under the null
hypothesis can be computed exactly for any sample size
(Kendall 1962)—we do not rely on a large sample size to
justify assumptions of asymptotic normality in deriving P for τ,
for example. As noted previously, P only measures the
significance of τ from zero. We have not computed confidence
intervals for τ, which is nontrivial given the small data set. For
the calculation of the P values for W, we rely on an asymptotic
distribution. However, Kendall (1962), recommends this
approach for a sample size of >n 7. Hence, the P values
computed in this way are unlikely to be significantly different
from those computed from an exact distribution for the null
hypothesis of W.
In summary, we have shown that the average fractional flux

á ñfi∣ ∣ is generally a poor measure of the divergence due to an
intrinsic scaling problem and should be replaced by the
modified fractional flux á ñfd∣ ∣ . In reanalyzing the results of
DeRosa et al. (2015a) we find that the scaling problem masks a
more complicated trend. More generally, we find that
measuring divergence depends somewhat on how it is being
measured: different metrics may give different results. There-
fore, it is recommended to calculate more than one metric. As
NLFFF extrapolations are used often, it is increasingly
important to quantify  =B 0· violations in order to
meaningfully interpret the results of these calculations.

This material is based upon work supported by the National
Science Foundation under grant Nos. 1841962 and 1630454,
and by NASA award No. 80NSSC18K0071. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of either the National Science Foundation or the
National Aeronautics and Space Administration. The research
presented in this article is based on data resulting from the
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