
A Backstepping Approach to System Level Synthesis for
Spatially-Invariant Systems

Emily Jensen1 and Bassam Bamieh2

Abstract— We consider the controller design problem for
infinite-extent spatially-invariant systems composed of nth-order
subsystems, generalizing recent work on the special case of
1st-order subsystems. We provide a parameterization of all
internally stabilizing state-feedback controllers for general nth-
order finite-dimensional systems, and extend this result to the
infinite-extent spatially-invariant setting. We apply our results
to the vehicle consensus problem. We demonstrate, through this
example, that the H2 problem for infinite-dimensional spatially-
invariant systems can be formulated as a standard model-
matching problem with finitely many transfer function param-
eters, when constraints on the spatial spread of the closed-
loop responses are imposed. The number of transfer function
parameters scales linearly with the amount of spatial spread
permitted in the closed-loop mappings. Numerical results are
provided.

I. INTRODUCTION

The optimal controller design problem subject to structural
constraints has long been studied in the context of distributed
systems. Structural constraints can be imposed on the con-
troller transfer matrix in a convex manner in specific problem
settings, e.g. funnel causal [1] and quadratically invariant [2].
However, the structured controller design problem is non-
convex and challenging to solve in more general settings. For
example, the optimal controller design problem subject to a
banded structure constraint on a controller transfer matrix,
for a fully connected plant, is non-convex.

The recent work of System Level Synthesis (SLS) [3]
suggested an alternative method for enforcing subcontroller
communication constraints. A parameterization of all sta-
bilizing controllers for a plant was provided in terms of
an affine subspace constraint on the resulting closed-loop
mappings; structural constraints may be imposed on these
closed-loop mappings in a convex manner. Although this
is not the same as imposing structure on the controller
itself, it was shown that any controller resulting in sparse
closed-loop responses can be implemented with limited local
communication between subcontroller units [3].

In this paper, we follow the System Level approach, and
consider the case of infinite-extent spatially-invariant systems
[4]. Although most physical systems have finite spatial
extent, the infinite-spatial-extent setting is often a useful
idealization of the large-but-finite setting. In addition, this
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setting may allow for analytic solutions which can provide
intuition about more general problem settings, e.g. providing
insight to issues that arise in the finite vehicle platoons
problem as the number of vehicles increases [6]. Recent
work has extended SLS-like results to this setting [5], but
these results are restrictive to distributed systems composed
of 1st-order subsystems. In particular, the proof techniques
of [5] cannot be extended to problem settings for which
the mapping from control action to state is not invertible.
The vehicular platoon problem, which can be modeled as a
chain of 2nd-order subsystems, provides one example with
this structural property.

Our main result employs a backstepping procedure [8] to
extend the results of [5] to systems with higher-order dynam-
ics. We provide a parameterization of all internally stabilizing
controllers for general finite-dimensional systems, and extend
these results to the infinite-extent spatially-invariant setting.
We apply our results to the vehicle consensus problem; we
demonstrate that, when spatial sparsity constraints on the
closed loops are imposed, the infinite-extent H2 problem
may be converted to a standard model-matching problem
with finitely many transfer function parameters. The resulting
controller has a spatially localized implementation.

The rest of this paper is structured as follows. A parame-
terization of all internally stabilizing controllers for general
finite-dimensional systems is provided in Section II. Section
III provides a framework for the infinite-dimensional setting.
In Section IV, we extend the finite-dimensional results to
infinite-extent spatially-invariant systems. The vehicle con-
sensus problem is analyzed in Section V.

A. Notation & Finite-Dimensional System Preliminaries
We let Ik denote the k ⇥ k identity matrix and 0k denote

the k ⇥ k matrix of all zeros. For simplicity of notation,
we often omit the subscripts when the dimensions of these
matrices are clear from context.

A transfer function G is strictly proper if lims!1 G(s) =
0, and G is stable if it has no poles in {Re(s) � 0}.
We denote the set of all stable and strictly proper transfer
functions by RH2, and equip this space with the H2 norm,
defined by

kGk
2
H2

:= tr

✓Z
1

�1

G(j!)TG(j!)d!

◆
,

for all G 2 RH2. An LTI state-feedback controller, u =
Kx, is internally stabilizing for G if all closed-loop transfer
functions resulting from G in feedback with K are elements
of RH2.
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II. A BACKSTEPPING APPROACH FOR
FINITE-DIMENSIONAL SYSTEM LEVEL SYNTHESIS

We consider finite-dimensional LTI systems of the form

ẋ = Ax+B1w +B2u, (1)

where x(t) 2 RN
, u(t) 2 Rk

, w(t) 2 Rp are the finite-
dimensional state, control action, and exogenous disturbance,
respectively. Following the SLS framework, given a (dy-
namic or static) controller u = Kx, we define the closed-
loop mappings, �x and �u, from disturbance to state and
control action as

x

u

�
=


�x

�u

�
B1w

:=


(sI �A�B2K(s))�1

K(s)(sI �A�B2K(s))�1

�
B1w.

(2)

A. Parameterization of Stabilizing Controllers
We assume (A,B2) is controllable. Then, it can be

shown that without loss of generality, (A + IN , B2) is in
controllable-canonical form [7], i.e of the form

(A+ IN ) =

2

666664

�a1Ik �a2Ik �a3Ik · · · �anIk

Ik 0k 0k · · · 0k
0k Ik 0k · · · 0k
...

. . .
0k Ik 0k

3

777775
,

B2 =
⇥
Ik 0k 0k · · · 0k

⇤T
,

(3)
for some real-valued coefficients a1, ..., an, where n is de-
fined to be the order of the system. Here, A is of dimension
N ⇥ N and B2 is of dimension N ⇥ k. We note that this
prescribed form (3) is somewhat nontraditional, and is chosen
to simplify the main result presented in Theorem 2.2.

The main result of this section leverages SLS results
to provide an explicit parameterization of all such closed-
loop mappings, which result from stabilizing state-feedback
controllers in feedback with systems of the form (3).

We begin by analyzing the specific case of 2nd-order
systems (n = 2). In this case, the plant of interest is of
the form

ẋ = Ax+B1w +B2u,

(A+ I) =


�a1I �a2I

I 0

�
, B2 =

⇥
I 0

⇤T
, (4)

Theorem 2.1: If u = Kx is an internally stabilizing
controller for the 2nd-order plant (4), then the resulting
closed-loop mappings, defined by (2), are of the form

�x =

 1
s+1I
1

(s+1)2 I

� ⇥
✓1 ✓2

⇤
+

 1
s+1I 0
1

s+1I
1

(s+1)2 I

�

�u =
1

(s+ 1)2
�(s)

⇥
✓1 ✓2

⇤
...

+
h

1
(s+1)2�(s)� I

1
s+1I

i
,

(5)

for some ✓1, ✓2 2 RH2, where

�(s) := (s+ 1) ·

✓
(s+ 1) + a1 +

a2

s+ 1

◆
I

with a1, a2 defined in (4). Conversely, if �x and �u are of
the form (5) for some ✓1, ✓2 2 RH2, then these closed-loop
maps are achieved by the internally stabilizing controller

u = Kx := �u (�x)�1
x.

A proof of Theorem 2.1 is presented in the Appendix.
Theorem 2.1 is also a direct corollary of the following more
general result.

Theorem 2.2: Let u = Kx be an internally stabilizing
controller for the n

th-order system (3), then the resulting
closed-loop mappings are of the form

�x =

2

666664

�
x
1

�
x
2

�
x
3
...
�
x
n

3

777775
=

2

666664

I
1

s+1I
1

(s+1)2 I

...
1

(s+1)n I

3

777775
⇥(s) + ⇤(s) (6)

�u = �⇥(s)+
h
�I

1
s+1I

1
(s+1)2 I · · ·

1
(s+1)n�1 I

i
,

for some ⇥ of the form ⇥(s) :=
1

s+1

⇥
(✓1 + I) ✓2 ✓3 · · · ✓n

⇤
with ✓1, ..., ✓n 2

RH2, where we have partitioned �x by block rows as

�x =

2

6664

�x
11 �x

12 · · · �x
1n

�x
21 �x

22 · · · �x
2n

...
�x

n1 �x
n2 · · · �x

nn

3

7775
=:

2

6664

�
x
1

�
x
2
...
�
x
n

3

7775

The transfer function parameters in (6) are defined as

⇤(s) :=

2

666664

0 0 0 · · · 0
0 1

s+1I 0 · · · 0
0 1

(s+1)2 I
1

s+1I · · · 0
...

. . .
0 1

(s+1)n�1 I
1

(s+1)n�2 I · · ·
1

s+1I

3

777775
,

�(s) := (s+1)+ a1 +
a2

s+ 1
+

a3

(s+ 1)2
+ ...+

an

(s+ 1)n�1

with a1, ..., an defined in (3). Conversely, if �x and �u are
of the form (6), then they are achieved by the internally
stabilizing controller u = Kx := �u (�x)�1

x.

Theorem 2.2 follows from a procedure similar to the
backstepping approach for strict feedback systems presented
in [8]. We note that similar techniques have been applied in
e.g. [9]. A proof of Theorem 2.2 is presented in [10].

We next consider the infinite-extent spatially-invariant
setting.

III. INFINITE-DIMENSIONAL SYSTEM PRELIMINARIES
AND NOTATION

We consider infinite-extent spatially distributed systems,
where the state and all external signals are functions of a
spatial variable, n 2 Z, and a temporal variable, t 2 R+ :=
[0,1). We denote such spatio-temporal signals using lower-
case letters:

x = xn(t) = x(n, t),
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and denote the (temporal) Laplace transform of spatio-
temporal signals (transfer functions) using upper-case letters:

X = Xn(s) = X(n, s).

Note that this transform is taken only in the temporal
variable, the spatial variable remains in the original domain.

Square integrable spatio-temporal signals x are elements
of L2(Z ⇥ R+), i.e.

kxk
2
L2 :=

X

n2Z

Z
1

t=0
x
⇤

n(t)xn(t)dt < 1.

Definition 3.1: To each n 2 Z, we associate the spatial
translation operator Tn : L2(Z⇥R+) ! L

2(Z⇥R+) defined
by

Tn : xm(·) 7! xm�n(·).

An operator A on L
2(Z ⇥ R+) is translation invariant if A

commutes with all spatial translations, i.e. for all n 2 Z,
ATn = TnA.

We introduce the following translation invariant operators:
• The differentiation operator S is defined by

Sxn(t) =
d

dt
xn(t),

and is represented in the transfer function domain as

SXn(s) := s ·Xn(s).

For compact notation, we define the operator

 := S + I.

• A spatially-invariant system C is defined to be a spatio-
temporal convolution operator, i.e.

(Cx)n(t) := (c ⇤ x)n(t)

:=
X

m2Z

Z
1

⌧=0
cm(⌧)xn�m(t� ⌧)d⌧.

We refer to c = cn(t) as the spatio-temporal impulse
response of C. For each n 2 Z, t 2 R+, cn(t)
is a real-valued finite-dimensional matrix and xn(t) a
real-valued finite-dimensional vector. Special cases of
spatio-temporal convolution operators include:
• A purely spatial convolution operator, A, is of the
form

(Ax)n(t) :=
X

m2Z

amxm�n(t),

for some matrix-valued sequence {am},
• A pointwise multiplication operator, A is of the form

(Ax)n(t) := axn(t),

for some constant matrix a.
A spatially-invariant system K can be represented by a

spatial convolution in the transfer function domain, for each
fixed frequency s, i.e.

(CX)n(s) =
X

m2Z

Cm(s)Xn�m(s),

where we denote the Laplace transform (transfer function)
of the impulse response of system C by C(s).

A. Localized Systems
Definition 3.2: For a finite integer N , we define a spatio-

temporal signal x to be local with spatial extent N if

xn(t) ⌘ 0, for all |n| > N,

Equivalently, its transfer function representation satisfies

Xn(s) ⌘ 0, for all |n| > N.

A spatially-invariant system K is said to be local with spatial
extent N if it is of the form

Yn(s) =
X

|m|N

Km(s)Un�m(s),

where we use K(s) to refer to the transfer function repre-
sentation of the spatially-invariant system K.

A spatially-invariant system K is said to be an element of
RH2 if

Kn(s) 2 RH2 for all n 2 Z.

The H2 norm can be extended to spatially-invariant systems
2 RH2, which are local with spatial extent N , as

kKk
2
H2

:=
X

|n|N

kKn(s)k
2
H2

IV. A BACKSTEPPING APPROACH TO SYSTEM LEVEL
SYNTHESIS FOR SPATIALLY-INVARIANT SYSTEMS

We extend the results of Section II to the infinite-extent
spatially-invariant setting. For simplicity of exposition, we
restrict our attention to the special case of 2nd-order sub-
systems, which applies to the vehicle consensus problem.
Specifically, the plant model we consider is an infinite
chain of 2nd-order subsystems with dynamics at each spatial
location n 2 Z given by

ẋn = Axn +B1wn +B2un, (7)

with (A,B2) controllable, so that without loss of generality
(A+ I), B2 are of the form of the form

(A+ I) =


�a1I �a2I

I 0

�
, B2 =

⇥
I 0

⇤T (8)

Remark 1: We note that the subsystem dynamics are
identical and decoupled. The setting of finite dimensional
distributed systems composed of subsystems with heteroge-
nous dynamics is analyzed in [10]. The case of coupled
subsystem dynamics is analyzed for special cases in [5],
and deriving more general results for the setting of coupled
subsystem dynamics is the subject of current work.

Equivalently, we write the dynamics of system (7) in
operator form as

Sx = Ax+B1w +B2w

y =


C

0

�
x+


0
�I

�
u,

(9)

where with slight abuse of notation we use A,B1, B2 to
denote finite-dimensional matrices as well as the pointwise
multiplication operators defined by these matrices. y is the
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performance output of interest, where C =
⇥
C1 C2

⇤
and

C1, C2 are spatial convolution operators that are local with
finite spatial extent.

Motivated by SLS, given a spatially-invariant controller
u = Kx, we define the resulting closed-loop mappings as1:


x

u

�
=


�x

�u

�
B1w :=


(S �A�B2K)�1

K(S �A�B2K)�1

�
B1w,

(10)
where B2K is a well-defined spatially-invariant system,
given by the composition of the pointwise multiplication
operator B2 and the spatially-invariant system K. �x and
�u, defined in (10), are spatially-invariant systems if and
only if K is, and an application of the results of [5] proves
the following result.

Lemma 4.1: The spatially-invariant controller, u = Kx,
is internally stabilizing for (9) if and only if the resulting
closed loops are elements of RH2 and satisfy

⇥
 � (A+ I) �B2

⇤  �x

�u

�
= I (11)

If �x
,�u

2 RH2 satisfy (11), then they are achieved by the
stabilizing controller u = Kx = �u (�x)�1

x.
We apply this lemma to prove the following result, which

is an infinite-dimensional analogue of Theorem 2.1.
Theorem 4.2: If u = Kx is a spatially-invariant, internally

stabilizing controller for (9), then the corresponding closed-
loop maps, �x and �u, are of the form

�x =


 �1

 �2

� ⇥
✓1 ✓2

⇤
+


 �1 0
 �1  �2

�

�u =  �2
�
⇥
✓1 ✓2

⇤
+
⇥
 �2

�� I  �1
⇤
,

(12)

for some ✓1, ✓2 2 RH2, where

� :=  2 + a1 + a2I

with a1, a2 defined in (4). Conversely, if �x and �u are of the
form (12), then they are achieved by the internally stabilizing,
spatially-invariant controller u = Kx := �u(�x)�1

x.
Proof: See Appendix.

A. Optimal Controller Design
The H2 design problem for system (9) may be written as:

inf
K

����


C 0
0 �I

� 
�x

�u

�
B1

����
2

H2

s.t. K stabilizing

= inf
✓1,✓22RH2

�����

 
C1 �1 + C2 �2

� �2
�

� ⇥
✓1 ✓2

⇤
+ ...


C1 �1 + C2 �2

C2 �2

�
�
 �2

�� I
�

� �1

�!
B1

�����

2

H2

(13)
where the equality follows from Theorem 4.2.

1A common assumption to ensure these inverse operators are well-defined
is that the spatially-invariant operator (S � A � B2K) defines a C0-
semigroup of operators, for a full exposition of infinite-dimensional systems
theory, we refer the reader to e.g. [11].

The following lemma, whose proof follows from definition
(12), allows us to easily impose locality constraints on the
closed-loop maps using formulation (13).

Lemma 4.3: The closed-loop mappings �x
,�u are local

with spatial extent N if and only if ✓1, ✓2 defined in (12) are
local with spatial extent N .

In Section V, we will demonstrate, through an example,
that when locality constraints are imposed on the closed
loops, this infinite-dimensional H2 problem (13) may be for-
mulated as a standard model-matching problem with finitely
many transfer function parameters. The corresponding con-
troller has the following local implementation [5]

u = S�u(x� x̃)

x̃ = (S�x
� I)(x� x̃).

(14)

V. APPLICATION: VEHICLE CONSENSUS WITH LOCALITY
CONSTRAINTS

We consider the problem of consensus of an infinite chain
of vehicles. Following [6], we model each vehicle in the
platoon as a double integrator

⇠̈n = un + wn, n 2 Z, (15)

with un the local control signal and wn the local disturbance.
The control objective is to maintain a specified cruising
velocity, v, of all vehicles, and keep the distance between
neighboring vehicles at a prescribed value of �. ⇠n repre-
sents the absolute deviations of vehicle n from the desired
trajectory:

⇠n(t) := vt+ n�.

The plant dynamics can be written in the framework of
Section IV as

ẋn =


1 �1
1 �1

�
xn +


1
0

�
(wn + un)

=: Axn +B1wn +B2un,

yn =


⇠n � ⇠n�1

�un

�
(16)

with xn :=
⇥
(⇠n + vn) ⇠n

⇤T where vn = ⇠̇n is the ve-
locity of vehicle n, and the performance output y represents
a local position error and a scaled version of the control
effort. The optimal H2 design problem for (16) is written in
terms of the closed loops:

inf
K

����


C 0
0 �I

� 
�x

�u

�
B1

����
2

H2

s.t. K stabilizing
(17)

with C =
⇥
C1 C2

⇤
:=
⇥
0 (I � T1)

⇤
. Without addi-

tional structural constraints, this problem can be solved using
the methods of [4].

A problem of interest, that remains unsolved, is (17)
subject to locality constraints on the controller K:

inf
K

����


C 0
0 �I

� 
�x

�u

�
B1

����
2

H2

s.t. K stabilizing
K local with spatial extent N

(18)
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The solution to (18) would provide a solution to the best-
achievable-performance of the vehicular consensus problem
under constraints on the interaction and communication be-
tween the spatially distributed subcontroller units. However,
(18) is nonconvex and challenging to solve. Solutions to
this problem in the case of static controllers and controllers
with just one internal state have been analyzed in e.g. [12],
[13], [14], although the general constrained H2 problem (18)
remains unsolved.

Motivated by SLS, we then impose locality constraints
on the resulting closed-loop mappings rather than on the
controller itself, solving:

inf
K

����


C 0
0 �I

� 
�x

�u

�
B1

����
2

H2

s.t. K stabilizing
�x

,�u local with spatial extent N

(19)

The main result of this section demonstrates that with
locality constraints imposed on the closed loops, this infinite-
dimensional H2 design problem (19) can be formulated
as a standard model-matching problem, with finitely many
transfer function parameters. In addition, the corresponding
controller can be implemented in a local manner. We present
this result for the specific vehicle consensus example, and
note that similar techniques may be applied to more general
settings.

To prove our result, we first apply Lemma 4.3 to write
(18) in terms of the parameters ✓1, ✓2, defined in (12):

inf
✓1,✓22RH2

�����

 
C1 �1 + C2 �2

� �2
�

� ⇥
✓1 ✓2

⇤
+ ...


C1 �1 + C2 �2

C2 �2

�
�
 �2

�� I
�

� �1

�!
B1

�����

2

H2

s.t. ✓1, ✓2 local with spatial extent N
(20)

For the vehicle consensus problem, C1 = 0, C2 = I�T1,
B1 =

⇥
I 0

⇤T , and � =  2 +  � 2I , and (20) can be
written as

inf
✓12RH2

��(I � T1) 
�2(✓1 + I)

��2
H2

...

+
���
��
I + �1

� 2 �2
�
✓1 + 

�1
� 2 �2

���2
H2

s.t. ✓1 local with spatial extent N
(21)

For simplicity, we consider the case of N = 1, corre-
sponding to nearest neighbor interactions. With this locality
constraint, (21) can be written in terms of the nonzero entries
of the transfer function ✓1, denoted by ✓1,�1, ✓1,0, ✓1,1, as

inf
✓�1,✓0,✓12RH2

������
H(s) + V (s)

2

4
✓�1

✓0

✓1

3

5

������

2

H2

, (22)

Fig. 1. Closed-loop cost of the infinite-dimensional H2 problem for vehicle
consensus with control cost weighting � = 0.1 is plotted against the locality
constraint imposed on the closed-loop responses.

with H(s) =
h
0 1

(s+1)2
�1

(s+1)2 0 0 �(s) 0
iT

,

V (s) =

2

6666666664

1
(s+1)2 0 0
�1

(s+1)2
1

(s+1)2 0

0 �1
(s+1)2

1
(s+1)2

0 0 �1
(s+1)2

�↵(s) 0 0
0 �↵(s) 0
0 0 �↵(s)

3

7777777775

,

↵(s) =
⇣
1 + 1

s+1 �
2

(s+1)2

⌘
, and �(s) = �

s+1 �
2�

(s+1)2 .

This is a standard model-matching problem with three
transfer function parameters. The solutions for more general
N follow similarly, resulting in a model-matching problem
with 2N + 1 transfer function parameters. Thus, the com-
plexity of the resulting problem scales with the amount of
spatial spread allowed in the closed-loop mappings.

We numerically solve this problem for � = 0.1 and
varying values of N ; the results are illustrated in Figure 1.
The closed-loop norm decreases as we allow the closed-loop
mappings to have a larger spatial extent, as we are imposing
a less strict constraint. We note that this convergence appears
to be exponential. Formally analyzing this convergence rate,
for instance using proof techniques similar to [15], [16], is
the subject of future work.

VI. CONCLUSIONS
In this paper we studied the problem of optimal con-

troller design for distributed systems, subject to subcontroller
communication constraints. We provided a parameteriza-
tion of the set of all stabilizing controllers for n

th order
finite-dimensional systems, and extended these results to
the infinite-extent spatially-invariant setting, with decoupled
subsystem dynamics. The proof of our results followed
from a nonstandard controllable-canonical formulation along
with a backstepping algorithm. We applied our results to
the vehicle consensus problem, demonstrating that when
locality constraints are imposed on the closed loops, the H2

design problem for infinite-extent spatially-invariant systems
composed of 2nd-order subsystems may be converted to a
standard model-matching problem with finitely many transfer
function parameters. Current work includes extending these
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results to more general classes of distributed systems, com-
posed of subsystems with coupled dynamics.
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APPENDIX

A. Proof of Corollary 2.1

To prove this result, we employ the following lemma,
which follows directly from the results of [3].

Lemma 6.1: If the controller u = Kx internally stabilizes
(1), then the corresponding closed-loop mappings are ele-
ments of RH2 and satisfy:
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By Lemma 6.1, it is sufficient to show that �x
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with �(s) :=
⇣
a1 + (s+ 1) + a2
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imply �x
2 RH2, and it is straightforward to show that
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for some ✓1, ✓2 2 RH2. The proof of the converse follows
from a direct computation to confirm that (24) holds for all
for �x

,�u of the form (5). ⌅
B. Proof of Theorem 4.2

By Lemma 4.1 it is sufficient to prove that �x
,�u are

of the form (12) if and only if �x
,�u

2 RH2 satisfy (11).
First assume that �x

,�u
2 RH2 satisfy (11), so that
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As A and B2 are pointwise multiplication operators, taking
a Laplace transform shows that (26) is equivalent to
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It then follows from Corollary 2.1 that for all n,
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Then �x

,�u can be written in terms of the spatially-invariant
systems ✓1, ✓2 2 RH2 as
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where ✓i denotes both the spatially-invariant system and its
transfer function. The proof of the converse is straightfor-
ward and is omitted.
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